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ABSTRACT

In this paper is studied the relationship between quadratic tangencies of principal lines with the

boundary of a surface and the Darbouxian umbilics of a smooth boundaryless surface which

approximates it through the process of thickening and smoothing defined here.
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1 INTRODUCTION

Consider a smooth i.e.C∞, compact, connected, oriented and regular surfaceS with boundaryB

embedded intoR3. Without loss of generality, we can assume thatS is contained in a boundaryless

surfaceŜ defined implicitly by a smooth functionf : R
3 → R such that

Ŝ = {p ∈ R
3 : f = 0}

and thatS andB are given in terms of a smooth functionb : R
3 → R, by

S = {p ∈ Ŝ : b ≥ 0}

and

B = {p ∈ Ŝ : b = 0},
with ∇f �= 0 onŜ andT̂ = ∇f ∧ ∇b �= 0 onB.
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2 RONALDO GARCIA and JORGE SOTOMAYOR

The functionf is defined so that the positive orientation i.e. the positive unit normal map of

the surfaceS is given byN = ∇f
|∇f | . The positive orientation onB is defined by the unit tangent

vector fieldT = T̂

|T̂ | .
The principal configuration on the pair(S; B) consisting of the oriented surfaceS and the

oriented boundaryB is defined by the quadruple

P(S,B) = (US,CS,F1S,F2S),

whereUS is the set ofumbilic points of S, i.e. points at which the principal curvatures coincide

i.e. dN ≡ −kI for somek, CS is the set oftangential singularities on B at whichT is a principal

direction, that isdN(T ) is collinear withT , andF1S andF2S are theminimal andmaximal principal

foliations onS\US∪CS. The leaves of these foliations are the arcs of minimal and maximal principal

lines onS \ US ∪ CS. The points onCS further split intoC1S andC2S according to which foliation

is tangent toB. The arcs ofFiS that touchB \ CS are closed at their extremes located onB.

Examples can be given easily by choosingf andb. For instance, iff = 1 − x2 − y2, Ŝ is a

cylinder around thez-axis; since the orientation is towards the outside, its minimal principal lines

are the circular parallels and its maximal principal ones are the meridians, which are lines parallel

to thez-axis. Takingb = r2 − y2 − z2, for r < 1, get two cylindrical disks. Each one has four

tangential singularities, two minimal and two maximal, all external. Forr > 1, get a cylindrical

surface whose boundary consists of two sinusoidal closed curves, each of which carries two internal

and two external minimal tangencies. Notice that there is no maximal tangential singularities in

this example.

The examples above do not have umbilic points. By takingŜ to be an ellipsoid with three

different axes, examples with umbilic points can be obtained.

The principal configurationP(S,B) carries the extremal – maximal and minimal – bending

structure of a surface. In Surface Theory it is the natural analogous to thephase portrait which,

in Differential Equations and Dynamical Systems, carries the orbit structure of a vector field or

flow (Melo and Palis 1982). For the case of boundaryless surfaces the principal configuration has

been first studied by (Gutierrez and Sotomayor 1982, 1991) from the point of view of Structural

Stability under small deformations ofS. It, however, has deep roots that goes back to the classical

works of Monge, Dupin and Darboux, (Darboux 1896) and (Gutierrez and Sotomayor 1991). See

also (Gutierrez and Sotomayor 1998), for a survey on Charathéodory conjecture on umbilic points

on convex surfaces and recent developments on structural stability. For an extension of principal

configurations to surfaces inR4, see the paper (Garcia and Sotomayor 2000).

The reader is referred to (Spivak 1980) for the basic general properties of lines of curvature

and umbilic points.

A number of natural mathematical questions could be raised now aboutP(S,B) and its depen-

dence on deformations of the pair(S,B), i.e. on deformations of the functionsf andb. This would

lead to an extension to surfaces with boundary of the structural stability results established for-

boundaryless ones in (Gutierrez and Sotomayor 1982, 1991). Another related sort of deformations
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of a surface with boundary will be considered in this paper.

Here will be given a first step towards the extension to surfaces with boundary(S,B) of the

analysis and stability properties of principal configurations known for boundaryless surfaces. This

is done by comparison with the principal configuration of a suitable deformationSε,δ, obtained

through the operations ofε-thickening andδ-smoothing applied to the surface with boundary.

Theε-thickening of S is the tubular neighborhoodTSε of S:

TSε = {q ∈ R
3 : | q − p |≤ ε, p ∈ S}

For ε small,Sε = ∂TSε is the envelope of the family of spheres of radiusε and center ranging on

S; it is aC1 compact boundaryless surface oriented towards the exterior ofSε .

This surface is smooth on the complement of the curveBε,± which is the inverse image ofB

by the tubular projectionπ : Ŝε → Ŝ. In fact Bε,± is the common border of the two connected

smooth surfaces with boundarySε,± = S ± εN (with a connected component for each sign) and

half of the tube centered alongB and radiusε, defined parametrically by

Tε = B + ε cosθN + ε sinθN ∧ T , 0 ≤ θ ≤ π.

See Figure 1 for an illustration of the surfaceSε .

Fig. 1 – Thickening of the surfaceS.

Theδ−smoothing ofSε is an embedding ofSε into R
3 whose image is a smooth surfaceSε,δ

which coincides with the identity outside aδ−tubular neighborhood ofBε,±.

This surfaceSε,δ is (not uniquely) defined by averaging the functions

Pε = (x − πŜ(x))
2 − ε2, for x on b ◦ πŜ ≥ 0,

and

pε = (x − πB(x))
2 − ε2, for x on b ◦ πŜ ≤ 0,

by means of a smoothtransition function hδ,ε = h(δ/ε).
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More precisely, take

Pε,δ = hδ,εPε + (1 − hδ,ε)pε
and Sε,δ = P−1

ε,δ (0) whereh is a smooth decreasing function in the interval[0, δ] such that

h(n)(0) = h(n)(δ) = 0 for all n ∈ N, h(t) = 1 for t ≤ 0 andh(t) = 0 for t ≥ δ.
The principal configuration of the surfaceSε outsideBε,± is known. On one portion it is

provided by that of theTube (Gutierrez and Sotomayor 1991); on the other, i.e. onS − εN and

S + εN, it is obtained from that ofS by translation alongεN and−εN. Notice that sinceSε is

oriented by its outward normal, the minimal and maximal principal foliation are exchanged in the

transition fromS − εN to S + εN. For the sake of completeness, the principal configurations on

theTube and translated surfacesS ± εN are reviewed and established in Section 2.

In this paper it will be proved that, with specific restrictions on the type of transition function

h (see section 3), from points ofCS of quadratic tangencies of principal lines withB, bifurcate

only Darbouxian umbilic points of typesD1 andD3 onSε,δ, for ε andδ small. See (Gutierrez and

Sotomayor 1982, 1991) and Section 4 for the basic properties of Darbouxian Umbilics.

The main result is the following.

Theorem 1. Consider a point p0 of CS such that the minimal (or maximal) principal foliation has

quadratic contact (internal or external cases) with the boundary at this point. Then, for appropriate

transition function h, there exists a regular curve of umbilics, tangent to N(p0) and intersecting

transversally the surface Sε,δ at a point pε , for ε > 0 (or ε < 0) and δ small. This point is a

Darbouxian umbilic point for the surface Sε,δ and it is of type D1 (external tangency case) or D3

(internal tangency case). See Figure 2.

Fig. 2 – Minimal principal foliation ofSε,δ: external and internal tangency.

This result expresses the bifurcation phenomenon of transition of tangencies into umbilics

on principal configurations, under thickening and smoothing. For smallε andδ, tangencies are

transferred into umbilics, from∂S to Sε,δ.

Together with umbilics, periodic lines of principal curvature, which are the compact leaves

of the principal foliations, are of great relevance for the understanding of the global structure of
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principal configurations. In the forthcoming paper (Garcia and Sotomayor 2001), is pursued the

study of the transition fromP(S,B) into periodic principal lines onSε,δ.

From the geometric point of view this work represents a contribution to the analysis of the

smooth transition between the two possible principal configurations (one for each orientation) on

surfaces with boundary, when passing from one orientation to the other. It is also related to the study

of the transition on the phase portrait of a discontinuous differential equation (that of the maximal

and minimal curvature lines, one on each side of the surface with boundary), when crossing a

line of discontinuity (represented here by the boundary curveB). See the paper by (Sotomayor

and Teixeira 1998) dealing with the regularization, i.e. the smoothing, of general discontinuous

differential equations.

The fact that the differential equations of principal lines have a geometric realization, one on

each side of the surface that carries them, makes it natural to express geometrically the smooth

transition between them by means of the surface obtained with the operations of thickening and

smoothing defined here.

2 PRINCIPAL CONFIGURATION OF Sε

This section provides a self sufficient presentation of the elementary properties of principal con-

figurations on surfaces obtained through the thickening procedure from one with boundary.

Let (S,B) be a given surface with boundary, positively oriented by the normal unitary fieldN ,

as above. Consider the family of parallel surfacesSε given bySε : S + εN .

Near a connected component of the borderB we consider a tube of radiusε with center ranging

alongS, as in Figure 1. This procedure defines a boundaryless surfaceSε of class onlyC1.

Proposition 1. Let c : [0, l] → R
3 be a regular arclength parametrization of a connected com-

ponent of B, such that {T ,N ∧ T ,N} is a positive frame of R
3. Then the expression

α(u, v) = c(u)+ v(N ∧ T )(u)+
[

1

2
k⊥
n (u)v

2 + o(v2)

]
N(u), −δ < v < δ (1)

where k⊥
n is the normal curvature of S in the direction of N ∧ T , defines a local C∞ chart on the

surface Ŝ defined in a small tubular neighborhood of c.

Proof. The mapα(u, v,w) = c(u) + v(N ∧ T )(u) + wN(u) is a local diffeomorphism in a

neighborhood of theu axis. For eachu, the curvev → v(N ∧ T )(u) + w(u, v)N(u) is the

intersection of the surfaceS with the plane spanned by{(N ∧ T )(u),N(u)}. Using Hadamard’s

lemma it follows that

w(u, v) =
[

1

2
k⊥
n (u)v

2 + v2A(u, v)

]
N(u)

whereA(u,0) = 0 andk⊥
n is the (plane) curvature of the curve in the plane spanned by{N∧T ,N},

that cuts the surfacêS. This ends the proof. �
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Remark 1. A similar chart has proved to be useful in (Gutierrez and Sotomayor 1982), for the

study of periodic principal lines, and in (Garcia and Sotomayor 1997), for the analysis of asymptotic

lines near parabolic curves.

According to (Spivak 1980), the Darboux frame{T ,N ∧T ,N} alongB satisfies the following

system of differential equations:

T ′ = kgN ∧ T + knN
(N ∧ T )′ = −kgT + τgN

N ′ = −knT − τg(N ∧ T )
(2)

wherekn is thenormal curvature, kg is thegeodesic curvature andτg is thegeodesic torsion of the

boundary curveB.

Proposition 2. Consider a surface S and a connected component of the boundary B parametrized

by c. Then the principal lines of S are transversal to c at a point c(u0) if and only if τg(u0) �= 0.

Assuming that (k⊥
n −kn)(u0) = (k2−k1)(u0) > 0, a minimal principal curvature line has quadratic

contact with c at a point c(u0) if and only if τg(u0) = 0 and τ ′
g(u0) �= 0.

The contact is internal (respectively external) if τ ′
g(u0) > 0 (respectively τ ′

g(u0) < 0).

Proof. Using the parametrization defined by equation 1 and the Darboux frame given by equation

2, it follows that:

E(u,0) = 1, F (u,0) = 0, G(u,0) = 1

e(u,0) = kn(u), f (u,0) = τg(u), g(u,0) = k⊥
n (u)

Therefore the tangent vectorT (u) is a principal direction if and only ifτg(u) = 0.

From the differential equation of curvature lines

(Fg −Gf )dv2 + (Eg −Ge)dudv + (Ef − Fe)du2 = 0,

see (Gutierrez and Sotomayor 1991) and (Spivak 1980), it follows that near a point of tangency the

minimal principal curvature lines are the solutions of the following differential equation:

u′ = −(k⊥
n − kn)(u0)+ · · ·

v′ = τ ′
g(u0)(u− u0)+ · · ·

Therefore,v(u) = −1

2
τ ′
g(0)(k

⊥
n − kn)−1(0)(u− u0)

2 + · · · . �

Remark 2. For the maximal principal lines the contact is internal (respectively external) if

(k⊥
n − kn)τ ′

g(u0) < 0 ( respectively(k⊥
n − kn)τ ′

g(u0) > 0).

Proposition 3. Consider a surface S parametrized near a connected component of the boundary

by α as in equation (1). Let Sε,+ be the parallel surface defined by

αε = α + εN, (3)
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Then the principal configurations of S and Sε,+ are the same, i.e., by a parallel displacement

the principal curvature lines, the umbilic points and the tangencies are preserved.

Proof. Direct calculation in any chart(u, v) shows that the coefficients of the first and second

fundamental forms ofS andSε,+ are expressed as follows:

Eε = (1 − εK)E + (ε2H − 2ε)e

Fε = (1 − εK)F + (ε2H − 2ε)f

Gε = (1 − εK)G+ (ε2H − 2ε)g

eε = (1 − εH)e + εKE
fε = (1 − εH)f + εKF
gε = (1 − εH)g + εKG

HereK andH are respectively the Gaussian and Mean Curvature of the surfaceS. Therefore,

Fεgε −Gεfε = (1 + ε2K − εH)(Fg −Gf )
Eεgε −Gεeε = (1 + ε2K − εH)(Eg −Ge)
Eεfε − Fεeε = (1 + ε2K − εH)(Ef − Fe)

Therefore, differential equations of the principal curvature lines ofS andSε,+ are the same.

This ends the proof. �

Remark 3. As above, analogous identification of principal configurations, but taking into account

the exchange of maximal into minimal and vise-versa, holds for the surfaceS and that defined by

negative translation:αε = α − εN. This is due to the orientation convention assumed.

Proposition 4. Let c : [0, l] → R
3 be a parametrization by arclength u of a connected component

of B such that {T ,N ∧ T ,N} is a positive basis of R
3. Then the expression below

β(u, θ) = c(u)+ εcosθN(u)+ εsinθ(N ∧ T )(u) (4)

is a regular parametrization of the tube Tε of radius ε centered at the curve c.

The differential equation of the principal curvature lines is given by

du(dθ − τg(u)du) = 0.

At the points where τg(u0) = 0 and τ ′
g(u0) �= 0 the contact between the maximal principal lines

and the curves defined by θ = 0 and θ = π is of quadratic type.

Proof. The tube centered atc and of constant radiusε is clearly a regular surface forε > 0 small.

Using the Darboux frame given by equation (2) and the parametrization (4), it follows that

βu = (1 − εkn cosθ − ε sinθ)T − ετg cosθN ∧ T − ετg sinθN

βθ = −ε sinθN + ε cosθN ∧ T
βu ∧ βθ = ε(1 − εkn cosθ − ε sinθ)[sinθN ∧ T + cosθN ]
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So the coefficients of the first fundamental form are given by:

E = (1 − εkn cosθ − ε sinθ)2 + (ετg)2
F = −ε2τg

G = ε2

As the tube is the envelope of an one parameter family of spheres of radiusε centered alongc

the circles parametrized byu = cte are the minimal principal lines, see (Gutierrez and Sotomayor

1991) and (Spivak 1980). Here the positive orientation of the tube is defined by the exterior

normal, having the circlesu = cte principal curvaturek1 = −1
ε
. Therefore, the orthogonal family

of curves, the other family of principal lines, is defined by the integral curves of the vector field

X = G ∂
∂u

− F ∂
∂θ

or equivalently by the differential equationdθ
du

= −F
G

= τg(u). A solution of the

equation above has the following Taylor expansion

θ(u) = θ0 + 1

2
τ ′
g(u0)(u− u0)

2 + · · · .

This ends the proof. �

Proposition 5. Consider the boundaryless surface Sε obtained from a surface S by a parallel

displacement of distance ε in both normal directions, glued to each other by the half tubes Tε of

radius ε > 0centered along the boundary B of S. Then for small ε, the surface Sε = Sε,+∪Tε∪Sε,−
is smooth outside the curves B ± εN and regular of class C1 along these curves.

The principal foliations lines of Sε are as follows:

1. The minimal principal lines of Sε , away from tangencies, are the minimal principal lines of

Sε,+, together with the minimal principal lines of the tubes Tε (semi circles) and the minimal

principal lines of the surface Sε,−. These last mentioned curves are the parallel translation of

the maximal principal ones of S.

2. The maximal principal lines of Sε , away from tangencies, are the maximal principal lines

of Sε,+, together with the maximal principal lines of the tubes Tε (curves defined by the

differential equation dθ − τgdu = 0) and the maximal principal lines of the surface Sε,−.

These last mentioned curves are the parallel translation of the minimal principal ones of S.

See Figure 3.

Proof. In this situation the tubeTε is glued toSε,+ at θ = 0 and toSε,− at θ = π . The tube is

oriented positively with normal exterior andSε,− has orientation opposite ofSε,+. The minimal

(respectively maximal) principal lines ofSε,− are obtained by parallel displacement of the maximal

(respectively minimal) principal lines ofSε,+. �

The considerations above allow us to define the principal configuration ofSε as a pair of

piecewise smooth foliations with singularities located at umbilics onSε \ Bε and the minimal
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Fig. 3 – Piecewise Smooth Principal configuration ofSε : internal and external tangency.

(resp. maximal) tangencies withBε whenε > 0 (resp. whenε < 0). The piecewise smooth

leaves are defined by continuation of the principal lines on the tube and parallel surfaces, crossing

throughSε,±. In this context the external,E, and internal,I , minimal tangencies give rise to local

configurations topologically equivalent to those aroundD1 andD3 umbilics.

Recall that the main result of this paper establishes that by a suitable smoothing the piecewise

smooth principal configuration is deformed into a smooth one for which curves of ‘‘new’’ umbilics

appear along arcs which are tangent toE andI . Furthermore, the umbilics are Darbouxian of types

D1 andD3, respectively. See Figures 2 and 3 for an illustration of the principal configuration in

Sε,δ andSε .

3 SMOOTHING OF Sε IN A LOCAL CHART

In this section will be studied the principal configurations of the smoothing of the surfaceSε by

the operation ofδ− smoothing. To this end consider an appropriate local chart(u, v).

Proposition 6. Let c : [0, l] → R
3 be a parametrization by arclength u of a connected component

of Bε such that {T ,N ∧ T ,N} is a positive frame of R
3. Then the expression

β(u, v) = c(u)+ v(N ∧ T )(u)+
(
−ε +

√
ε2 − v2

)
N(u) (5)

defines a regular parametrization of the tube Tε of radius ε centered at the curve c − εN .

Proof. Direct by the parametrization of the circle in the plane{N ∧ T ,N}. �

Proposition 7. Consider the surface Sε with boundary Bε . Then the surface Sε has the following

parametrization

βε(u, v) = c(u)+ v(N ∧ T )(u)+ R(u, v, ε)N(u), 0< v < δ,

αε(u, v) = c(u)+ v(N ∧ T )(u)+ S(u, v, ε)N(u), −δ < v ≤ 0,
(6)
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where,
R(u, v, ε) = − ε +

√
ε2 − v2, 0< v < δ

S(u, v, ε) = k⊥
n

v2

2
+ a(u, ε)v

3

6
+ · · · , −δ < v ≤ 0.

Here k⊥
n = k⊥

n (u, ε) is the normal curvature of Bε = B + εN and u is the arc length of c.

Proof. Similar to that of proposition 1. �

Remark 4. The principal curvatures ofS andSε are related by:

k2(ε) = k2

1 + εk2
, k1(ε) = k1

1 + εk1

The extensions ofβε andαε , given by equation 6, in a neighborhood ofc, i.e., for −δ < v < δ,
it will be supposed in the following.

Let h be a smooth function defined inR satisfying the properties,h|−∞,0) = 1, h|δ,∞) = 0

andh decreasing in the interval[0, δ].
An example of suchh is given by the following.

Let

ψ(v) =



0, for v ≤ 0

e−
a
v , for 0< v ≤ δ

Defineh by,

h(v) = ψ(δ − v)
ψ(v)+ ψ(δ − v) (7)

Also consider the function

H(v) = −1 + h+ 2vhv + 1

2
v2hvv = −

[
(1 − h)v

2

2

]
vv

that will appear in the proof of Theorem 1. See section 4 and equation 13.

Proposition 8. Consider the function H(v) = −1 + h + 2vhv + 1
2v

2hvv defined in the interval

[0, δ]. Then for an appropriate transition function h it follows that H(v) < 0 for all v ∈ (0, δ].
Proof. Let

ψ(v) =



0, for v ≤ 0

e−
a
v , for 0< v ≤ δ

Define

h(v) = ψ(δ − v)
ψ(v)+ ψ(δ − v)

Thenh is a C∞ function having all derivatives equal to zero atv = 0 andv = δ, with

h(0) = 1, h(δ) = 0 andh being decreasing in the interval[0, δ].

An. Acad. Bras. Cienc., (2002)74 (1)
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Plotting the graphs ofh andH it follows that fora > 0 small enoughh has the properties

mentioned above andH |(0,δ) is negative. See Figure 4. This numerical assertion can be corroborated

by an asymptotic analysis ina > 0.

In fact, ash is strictly decreasing in the interval[0, δ] and is concave near 0, i.e.,hvv(v) < 0,

it follows thatH is strictly decreasing in an interval[0, ρ(a, δ)] with H(0) = 0 and having all

derivatives equal to zero atv = 0.

The functionH has the following asymptotic expansion ina.

H(v, a, δ) = −1

2
+ 1

4

δ3 − 4vδ2 + 4v2δ − 2v3

v(δ − v)3 a + o(a2).

In a compact interval[ρ(a, δ), δ] the function

Ha(v) = 1

4

δ3 − 4vδ2 + 4v2δ − 2v3

v(δ − v)3 = 1

4

[
1

v
+ vδ − v2 − δ2

(δ − v)3
]

is negative ifδ is small.

Therefore, it follows that fora > 0 andδ > 0, both small, the functionH is negative in the

interval[0, δ], as asserted. �

Fig. 4 – Transition functionh and functionH .

Remark 5. The functionH(v) = −
[
(1 − h(v))v2

2

]
vv

is proportional to the curvature of the plane

curveC(v) =
(
v, (1 − h(v))v2

2

)
. For an appropriatedh as considered aboveH is negative if

a > 0 is sufficiently small.

Consider the parametrization of the surfaceSε given by equation 6 and consider the

δ−smoothing

γ (u, v, ε) = αε(u, v)h
( v
ε2

)
+

(
1 − h

( v
ε2

))
βε(u, v), −δ < v < δ. (8)
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Direct calculation shows that

γ (u, v, ε) = c(u)+ v(N ∧ T )(u)

+
{
h(
v

ε2
)

[
k⊥
n

v2

2
+ a(u, ε)v

3

6
+ · · ·

]

+
[
1 − h

( v
ε2

)] [
−ε +

√
ε2 − v2

]}
N(u)

(9)

Now consider the rescalingv = ε2v̄ in the expression above and rewriting back(v = v̄), it is

obtained that

γ (u, v, ε) = c(u)+ ε2v(N ∧ T )(u)+ A(u, v, ε)N(u)
= c(u)+ ε2v(N ∧ T )(u)

+
{
ε4h(v)

[
k⊥
n

v2

2
+ εa(u, ε)v

3

6
+ · · ·

]

+ ε[1 − h(v)]
[
−1 +

√
1 − ε2v2

]}
N(u).

(10)

The non unitary normal vector toSε is given by

N̄ = (N1, N2, N3) = N1T (u)+N2(N ∧ T )(u)+N3N(u)

where,N1 = (a2b3 − a3b2)/ε
2, N2 = (a3b1 − a1b3)/ε

2,N3 = (a1b2 − a2b1)/ε
2 and

a1 = 1 − ε2kgv − knA b1 = 0,

a2 = −τgA, b2 = ε2,

a3 = Au + ε2τgv, b3 = Av.

Let

a11 = ∂a1

∂u
− kga2 − kna3, a21 = −ε2kg − knAv, a31 = 0,

a12 = ∂a2

∂u
+ kga1 − τga3, a22 = −τgAv, a32 = 0,

a13 = ∂a3

∂u
+ kna1 + τga2, a23 = ε2τg + Auv, a33 = Avv.

Therefore,
γuu = a11T + a12N ∧ T + a13N

γuv = a21T + a22N ∧ T + a23N

γvv = a31T + a32N ∧ T + a33N

The coefficients of the first fundamental form ofγ are given by:

E = 〈 γu, γu 〉 = a2
1 + a2

2 + a2
3

F = 〈 γu, γv〉 = a1b1 + a2b2 + a3b3

G = 〈 γv, γv〉 = b2
1 + b2

2 + b2
3
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The coefficients of the second fundamental form ofγ are proportional to the following func-

tions:
e = 〈 γuu, γu ∧ γv〉 = a11N1 + a12N2 + a13N3

f = 〈 γuv, γu ∧ γv〉 = a21N1 + a22N2 + a23N3

g = 〈 γvv, γu ∧ γv〉 = a31N1 + a32N2 + a33N3

Direct calculation shows that:

E(u, v, ε) = 1 − 2ε2kgv + ε3kn (1 − h)+ ε4v2(τ 2
g + k2

g − knk⊥
n h)+ ε6(· · · )

F (u, v, ε) = 1

12
ε5v2

[
1

2
τg(−1 + h+ vhv)+ 1

2
ετk⊥

n (h+ vhv)+ ε2v(· · · )
]

G(u, v, ε) = ε4

[
1 + 1

4
ε2v2(vhv + 2h− 2)2 + ε4v2(· · · )

] (11)

e(u, v, ε) = kn + εkgv
(

1 − h− 1

2
vhv

)

+ 1

2
ε2v

[
2τ ′ − kg(4kn + 2k⊥

n h+ k⊥
n vhv)

] + ε3(· · · )

f (u, v, ε) = ε2τg + ε4v

[
(k⊥
n )

′v
(

1

2
vhv + h

)
+ τgv2(h− 1 + vhv)2

]
+ ε6(· · · )

g(u, v, ε) = ε3

[
−1 + h+ 2vhv + 1

2
v2hvv

]
+ ε4k⊥

n

[
h+ 2vhv + 1

2
v2hvv

]
+ ε5v(· · · )

(12)

Therefore it is obtained:

L(u,0, ε) = (Fg −Gf )(u,0, ε) = −ε6τg

M(u,0, ε) = (Eg −Ge)(u,0, ε) = ε4(k⊥
n − kn)

N(u,0, ε) = (Ef − Fe)(u,0, ε) = ε2τg

It follows that:

L(u, v, ε) = ε6
[−τg + ε2v(· · · )]

M(u, v, ε) = ε3

[
−1 + h+ 2vhv + 1

2
v2hvv

]

+ ε4

[
k⊥
n − kn + k⊥

n

(
−1 + h+ 2vhv + 1

2
v2hvv

)]
+ ε5v(· · · )

N(u, v, ε) = ε2τg + ε4

4
v
[
(4h+ 2vhv)(k

⊥
n )

′ + τg(h2
vv

3 − 4v2hv + 4v2hhv

− 8vh+ 4v + 4vh2 − 8kg)
] + ε5(· · · )

(13)

4 PROOF OF THE MAIN RESULT

In this section the proof of Theorem 1 will be given. In what follows the classification of Darbouxian

umbilic points will be reviewed. See (Darboux 1896) and (Gutierrez and Sotomayor 1982, 1991)

for proofs.
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Let 0 be an umbilic point of aC4 immersionα parametrized in a Monge chart(x, y) by

α(x, y) = (x, y, h(x, y)), where

h(x, y) = k

2
(x2 + y2)+ a

6
x3 + b

2
xy2 + c

6
y3 +O(4)

The differential equation of principal curvature lines is given by:

−[by + P1]dy2 + [(b − a)x + cy + P2]dxdy + [by + P3]dx2 = 0

wherePi , i = 1,2,3, represent functions of orderO(x2 + y2).

Let

=P = 4b(a − 2b)3 − c2(a − 2b)2

Proposition 9 (Gutierrez and Sotomayor 1982, 1991).Under the conditions above suppose that

the transversality condition T = b(b − a) �= 0 holds and consider the following situations:

D1 ) =P > 0

D2 ) =P < 0 and
a

b
> 1

D3 )
a

b
< 1

Then each principal foliation has in a neighborhood of 0, one hyperbolic sector in theD1 case,

one parabolic and one hyperbolic sector in D2 case and three hyperbolic sectors in the case D3.

The umbilics are called Darbouxian of types D1, D2 and D3.

See Fig. 5 for illustrations ofD1 andD3. The typeD2 does not appear in this work.

Fig. 5 – Darbouxian umbilic pointsD1 andD3.

Lemma 1. Let u0 be a point of tangency such that τg(u0) = 0, τ ′
g(u0) �= 0 and (k⊥

n −kn)(u0) > 0.

Then the set Uε = {(u, v, ε) : M(u, v, ε) = N(u, v, ε) = 0} is a regular curve. The curve of

umbilic points γ (Uε) is tangent to the normal vector N(c(u0)) and is transversal to the surface

Sε,δ in a neighborhood of this point of tangency.
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Proof. Solving the equationN(u, v, ε) = 0 it follows, by Implicit Function Theorem, that there

exists a smooth functionu(v, ε) such thatN(u(v, ε), v, ε) = 0 and

u(v, ε) = ε2ξ(v, ε), ξ(0) = 0.

Therefore the equationM(u, v, ε) = 0 is such thatM(u(v, ε), v, ε) = M(v, ε) = 0. Applying

the Implicit Function Theorem to this equation it follows that there exists a smooth function of the

form ε = ϕ(v), where

ϕ(v) = (1 − h− 2vhv − 1/2v2hvv)

(kn − k⊥
n )(u0)

[1 + · · · ]

withM(v, ϕ(v)) = 0, ϕ(0) = 0 and is a flat function atv = 0. By the properties of the transition

functionh, it follows thatϕ is decreasing forv > 0 small. So it follows thatv = ϕ−1(ε).

Returning to the original coordinates(u, v, ε), recalling thatv = ε2v̄ and sov̄ = ϕ−1(ε), it

follows thatv = ε2ϕ−1(ε). Therefore the curve of umbilic points is given by

U(ε) = (ε2ξ(ε2ϕ−1(ε), ε), ε2ϕ−1(ε), ε).

Direct calculation givesU′(0) = (0,0,1) = N(c(u0)). �

Proposition 10. Suppose that τg(0) = 0, τ ′
g(0) �= 0 and (k⊥

n − kn)(0) > 0. Then the curve of

umbilic points γ (Uε) is tangent to the normal vector N(c(u0)) and is transversal to the surface

Sε,δ in a neighborhood of this point of tangency c(u0). This intersection point is an umbilic point

of typeD1 orD3 according to τ ′
g(0) < 0(external tangency) or τ ′

g(0) > 0 (internal tangency). The

principal configuration is regular near c(0)− εN .

Proof. The umbilic points of the surfaceγ are given by equation 13,L(u, v, ε) = M(u, v, ε) =
N(u, v, ε) = 0.

By Lemma 1, near an umbilic point(0, v1), it follows that

L(u, v, ε) = −ε6τ ′
g(0)u+ o(2)

M(u, v, ε) = ε(k⊥
n − kn)′(0)u+ b(ε)(v − v1)+ o(2), b(0) = b0 < 0

N(u, v, ε) = τ ′
g(0)u+ o(2)

whereb0 = ∂H

∂v
(v1) < 0.

The differential equation of curvature lines is given by,

[−τ ′
g(0)ε

2u+ o(2)]dv2 + ε2
[
εk0u+ b(ε)(v − v1)+ o(2)

]
dudv + [

τ ′
g(0)u+ o(2)]du2 = 0

wherek0 = (k⊥
n − kn)′(0).

By the classification of Darbouxian umbilic points, Proposition 9, it follows that the tangent

to the umbilic separatrices are defined byu = λv, where

λ
[
τ ′
g(0)λ

2 + ε3k0λ+ ε2(b − τ ′
g(0)ε

2)
] = 0.
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Therefore the discriminant of the equation above is given by

= = ε2
[−4bτ ′

g(0)+ 4ε2(τ ′
g(0))

2 + ε4k2
0

]
.

So, if τ ′
g(0) > 0 it follows that= > 0 and the umbilic point is of the typeD3.

On the other hand, ifτ ′
g(0) < 0 it follows that= < 0 and the umbilic point is of the typeD1.

Near the pointc(0)− εN , since the orientation is exchanged it follows thatk⊥
n (0, ε)−kn(0, ε) < 0

and thenM(u, v, ε) �= 0 in a neighborhood of this point. Therefore the principal foliations are

regular there. �

Remark 6. The main result of this paper shows that from a quadratic tangency the Darbouxian

umbilic of typeD2 does not appear in the process of thickening and smoothing.

5 CONCLUDING REMARKS

A global result, relating quadratic tangencies, Darbouxian umbilic points and the Euler-Poincaré

characteristic of the surface is given by the following proposition.

Proposition 11. Consider a compact, oriented surface S with regular boundary B such that all

umbilic points of S are Darbouxian and the tangencies, internal and external, of the principal

foliations F1S and F2S with the boundary at CS are quadratic. Then the following expression for

the Euler-Poincaré characteristic for S and Sε,δ holds:

χ(Sε,δ) = 2χ(S) = 2

[
#(D1)+ #(D2)− #(D3)+ #(E)− #(I )

2

]
,

where #(Di), i = 1, 2, 3, is the number of umbilic points of type Di and #(E), #(I ) are,

respectively, the number of external and internal tangencies of both principal foliations with the

boundary B.

Proof. The proof follows recalling thatχ(Sε,δ) = χ(Sε) = 2χ(S) and thatχ(Sε,δ), by Poincaré-

Hopf Theorem, is equal to the sum of the indices of the singularities of principal curvature line field

L1S, see (Spivak 1980) and also (Garcia et al. 2000), and that near a point of quadratic tangency

bifurcate a Darbouxian umbilic point of typeD1 or D3, according the tangency is external or

internal. �
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RESUMO

Neste trabalho são estudadas as linhas de curvaturas principais de uma superfície com bordo e da superfície

regular, sem bordo, obtida pelo processo de engrossamento e regularização. É analisada a relação entre

as tangências quadráticas das folheações principais com o bordo e os pontos umbílicos Darbouxianos, da

superfície sem bordo, que bifurcam dos referidos pontos de tangências.

Palavras-chave: configuração principal, pontos umbílicos, singularidade tangencial.

REFERENCES

Darboux G. 1896. Leçons sur la Théorie des Surfaces, vol. IV. Sur la forme des lignes de courbure dans

la voisinage d’un ombilic, Note 07, Paris: Gauthier Villars, 420p.

Garcia R and Sotomayor J. 1997. Structural stability of parabolic points and periodic asymptotic lines,

Matemática Contemporânea, 12: 83–102.

Garcia R and Sotomayor J. 2000. Lines of Axial Curvature on Surfaces Immersed inR
4, Differential

Geometry and its Applications, 12: 253–269.

GarciaRandSotomayor J.2001. Periodic behavior of principal curvature lines on surfaces with boundary,

in preparation.

Garcia R, Gutierrez C and Sotomayor J. 2000. Lines of Principal Curvature around Umbilics and

Whitney Umbrellas, Tohoku Math J, 52: 163–172.

Gutierrez C and Sotomayor J. 1982. Structural Stable Configurations of Lines of Principal Curvature,

Asterisque, 98-99: 185–215.

Gutierrez C and Sotomayor J. 1991. Lines of Curvature and Umbilic Points on Surfaces, Brazilian

18th Math. Coll., Rio de Janeiro: IMPA, 112p. Reprinted as Structurally Configurations of Lines of

Curvature and Umbilic Points on Surfaces, Lima: Monografias del IMCA.

GutierrezCandSotomayor J.1998. Lines of Curvature, Umbilical Points and Carathéodory Conjecture,

Resenhas IME-USP, 3: 291-322.

Melo W and Palis J. 1982. Geometric Theory of Dynamical Systems, New York: Springer Verlag, 320p.

Sotomayor J and Teixeira M. 1998. Regularization of Discontinuous Vector Fields, International Con-

ference on Differential Equations (Equadiff 95), Word Scientific Publishing Co. p. 207-223.

Spivak M. 1980. A Comprehensive Introduction to Differential Geometry, Vol. III, Berkeley: Publish or

Perish, 530p.

An. Acad. Bras. Cienc., (2002)74 (1)


