STRUCTURAL STABILITY OF PARABOLIC
POINTS AND PERIODIC ASYMPTOTIC LINES
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Abstract

In this paper are studied the simplest qualitative properties of asymp-
totic lines of a surface immersed in Euclidean space. These lines are the
integral curves of the null directions of the second fundamental form (nor-
mal curvature), on the closure of the hyperbolic region of the immersion,
where the Gaussian curvature is negative. Conditions for local struc-
tural stability of asymptotic lines around parabolic points and periodic
asymptotic lines are established.

Resumo

Neste trabalho estudamos as propriedades qualitativas mais simples
das linhas assintdticas numa superficie imersa no espaco Euclideano. Es-
tas linhas sdo as curvas integrais das dire¢es nulas da segunda forma fun-
damental ( curvatura normal), no fecho da regiao hiperbdlica da imersao
na qual a curvatura Gaussiana é negativa. Sao estabelecidas condigoes
para estabilidade estrutural local das linhas assintéticas em torno dos
pontos parabdlicos e linhas assintéticas fechadas.

1. Introduction

Consider a C"*°, i.e. smooth, immersion « of a smooth, oriented, two-dimensional
manifold M into Euclidean space F2.

The Fundamental Forms of a at a point p of M are the symmetric bilinear
forms on T,M defined as follows [St, Sp]:

The First Fundamental Form: I,(p;v,w) = (Da(p;v), Da(p;w)).

The Second Fundamental Form: [1,(p;v,w) = —(DN,(p;v), Da(p; w)).

*The authors are grateful to The University of Pittsburgh for its hospitality during the
conclusion of this paper. The first author was partially supported by Capes, and the second
by Fapesp, Grant 96/3450-0. Both authors are fellows of CNPq.
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Here, < .,. > is the Euclidean inner product on E* and NV, is the positive

normal of the immersion:
a, N\ ay

N

- | A ey |

where (u,v) is a positive chart on M and A is the vector (wedge) product

) ) ) Jda Jda
associated to a once for all fixed orientation on F?, a, = — and o, =

Ju o
A line £ = R.v, tangent at a point p of M ( i.e. v € T,M\0), along which

the normal curvature
ba(pit) = Helriv)
La(p;v,v)
vanishes, is called an asymptotic direction of o at p.
A maximal, regular curve ¢ : (a,b) — M, parametrized by arc length s,
whose tangent line is an asymptotic direction is called an asymptotic line of a.
That is, for every s in (a,b), it holds that I1,(c(s);c'(s),c'(s)) = 0. In a local

chart this equation writes as:
e(u,v)du® + 2f(u,v)dudv + g(u,v)dv® = 0,

where € =< @y, ay Ay >, [ =<y, ay Ay, > and g =< ay,py, ay Ay >

Through every point p of the hyperbolic region H,, of the immersion «, char-
acterized by the condition that the Gaussian Curvature K = det(DN,) is neg-
ative, pass two transverse asymptotic lines of a, tangent to the two asymptotic
directions through p. This follows from the usual existence and uniqueness the-
orems on Ordinary Differential Equations. In fact, on H, the local line fields
are defined by the kernels L, 1, L, 2 of the smooth one-forms w, 1, ws2 which
locally split I1, = ws1 @ wy 2.

The forms w,,; are locally defined up to a non vanishing factor and a per-
mutation of their indices. Therefore, their kernels and integral foliations are
locally well defined only up to a permutation of their indices.

Under the orientability hypothesis imposed on M., it is possible to globalize,
to the whole H,, the definition of the line fields £, 1, £,2 and of the choice of

an ordering between them, as follows:
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Consider the field C, of tangent cones on H,, defined by the non-negative
part of the second fundamental form, i.e. I,(p;v,v) =1 [l,(p;v,v) > 0, ori-
ented compatibly with M. Call {e;(p), e2(p)} a positive basis for T, M consisting
of unit asymptotic vectors, positive also for C,(p).

This choice of a basis can also be defined as follows:

Da(p,ei(p)) A Da(p,es(p)) = No(p) and  [1,(p;v,v) >0, for
v =ei(p) + ealp).

There is only one other different choice, {€¢/(p), €’2(p)}, for such a basis; both
choices define the same asymptotic line fields of a:

L,1(p) =R.ei(p)) = R.€'1(p) and L,2(p) = R.ey(p) = R.€'5(p).

These two line fields, called the asymptotic line fields of «, are smooth on
H,,; they are distinctly defined together with the ordering between them given
by the subscripts {1,2} which define their orientation ordering: “1 7 for the
first asymptotic line field L, “27 for the second asymplotic line field L, 5 .
They will be presented as an ordered pair L, = {L41, La2}

The asymptotic foliations of « are the integral foliations A, ; of £, and
A, 2 of L, 9; they fill out the hyperbolic region H,. The ordered asymptotic net
of the immersion « is the ordered pair A, = {A, 1, As2}, the index i = {1,2}
will be called the orientation ordering of the asymptotic foliation.

Clearly, an exchange in the orientations either of M or of E* produces an
inversion in the orientation ordering of the asymptotic line fields.

When non-empty, the region H, is bounded by the set (generically, i.e. for
most o's, a regular curve [Ke-Th, Ba - Th ,BI-W]) P, of parabolic points of a,
on which K, vanishes. On P, the pair of asymptotic directions degenerate into
a single one or into the whole tangent plane at points where 71, = 0, called flat
umbilic points.

The parabolic points will be regarded here as the singularities of the asymp-
totic net. In fact, in the context of Singularity Theory, P, is the singular set of
the the Normal Map N, from M to the unit sphere S%. On the Elliptic Region
E,, defined by K, > 0, the asymptotic directions are imaginary and will not be

studied here. Thus the domain for real asymptotic directions and their integral
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curves in the present work will be the set {K, < 0} of non elliptic points, which
generically is either the empty set or a manifold with boundary coincident with
ClosH,, .

An immersion « is said to be C* -local asymptotic structurally stable at a
compact set S in ClosHL, if for any sequence a,, converging to a together with
its first s derivatives in a compact neighborhood Vs of S there is a sequence of
compact subsets S, and a sequence of homeomorphisms h, mapping S to .5,
converging to the identity of M such that on Vs it maps arcs of the asymptotic
foliations A, ; to arcs of that of A, ; for i =1,2.

Asymptotic lines, together with geodesics and principal curvature lines are
studied in Classical Differential Geometry [Da, H-CV, An, B-F, G-S5,1,2,3, Ke-
Th, Ba-Th, Ba-Ga-McC, Sp, St].

This paper is devoted to an initial study of the simplest qualitative aspects
of asymptotic lines on surfaces immersed into Euclidean space, focusing on their
local structural stability and genericity properties near the parabolic curve and
periodic asymptotic lines. The results establish necessary and sufficient condi-
tions for an immersion « to be C*-local asymptotic stable, s > 5, at parabolic
points and periodic asymptotic lines.

The precise formulation of the results and their proofs are given in Theorem
1, section 2 and Theorem 2, section 3. In section 4 two examples are given to

illustrate the conditions expressed in these theorems.

2. Asymptotic Lines near Parabolic points

In this section it will be established the behavior of the asymptotic foliations
near parabolic points, in terms of differential geometric invariants of the im-
mersion a.

Let ¢ : [0,L] — M? be a regular arc of parabolic points, parametrized by
arc length u. To fix the notation, suppose that ky. = 0 and k;). < 0, where
kiand ky are the principal curvatures of the immersion a. Let ¢(u) the angle

between ¢/(u) = t(u) and the principal direction Ly(«a), corresponding to &z, at
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the point ¢(u). Denote by k,(u) the geodesic curvature of ¢ at the point ¢(u).

The main result of this section is formulated now.

Theorem 1. Let ¢: [0, L] — M be a reqular curve of parabolic points as above.
Then the following holds:

1) If p(u) # 0, the asymptotic foliation, near c(u), is as shown in Fig. 2.1.a (
cuspidal type).

2) If o(u) =0 and ¢'(u) # 0 there are three cases:
a)  ky(u)/¢'(u) <1,
b) 1 <ky(u)/¢'(u) <9

) 9 <ky(u)/¢'(u)

In cases a), b) and c¢) above the asymptotic foliation is as shown in the fig-
ures 2.1.b, 2.1.c and 2.1.d respectively; and correspond respectively to the folded
saddle, focus and node types parabolic points.

3) The set of immersions whose parabolic points satisfy conditions 1) and 2) is

open and dense in C®-topology.

4) The points described in 1) and 2) are the only stable locally asymptotic struc-
turally stable parabolic points.
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Asymptotic foliations near parabolic points

Remark. The pictures above are well known in the literature. Appear for
example in the book of Banchoff-Gafney-McCroy, [Ba-Ga-McC] and in the work
of Thom and Banchoff,[Ba-Th|. The classification given above, in terms of
geometric invariants, has not been found elsewhere.

The following lemma and calculations will be useful in the proof.

Lemma 2.1. Let ¢ : [0, L] — M? be a reqular arc of parabolic poinls, parametrized
by arc length u. Then the expression:
2

a(u,v) = (aoc)(u) +o(N Al)(u) + [ki(U)% +v*A(u, 0)]N(e(u)) (1)

where, A(u,0) =0 and k;-(u) = k,(c(u), N ANt(u)) defines a local chart of class

C* around c.

Proof. The map a(u,v,w) = (aoc)(u) + v(N A t)(u) + wN(u) is a local
diffeomorphism. Therefore, solving the equation < a(u,v,w(u,v)), N(u) >=0

and using Hadamard’s lemma follows the result asserted. O
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Calculations in the chart (u,v)

The Darboux equations for the positive frame {{, N A t, N} are:

t(u) = kg(u)(N A1) () + Fn(u)N(u)
(N A (u) = —ky(w)t(u) + 75 ()N (u)
(N)'(u) = =75(u)(N A)(u) = kn(u)t(u)

with 72(u) = k- (u)k,(u). This is because ¢ is a parabolic curve.
Also, using Euler’s formula, k, = ky sin® ¢ + ko cos? o, [Sp, St], follows that,
kX = ki cos? o,
k, = ky sin® o,
kX +k, =2H,

T, = ki sin ¢ cos .

Computation of the Second Fundamental Form of o

In what follows i1t will be calculated the coefficients and the derivatives of
the second fundamental form of « in the chart introduced in lemma 3.1 For the
sake of simplicity in the expressions that follow, write

A= A(u,v), N =(Noc)(u), k, = kn(u), ki = kr(u) and k, = k,(u).

Moreover the following notation will be used:

E =<ay,a, > e =< Oy N Qyy Oy >
F =< a,,a,> [ =< ay, ANay, oy, >
G =< a,,aq, > G =< Qy N\ Qy, Qyy, >

Here E.F,G and e/ | ay N, >|, f/|auANa, > and g/ | au Ao, >|
are respectively the coefficients of the first and second fundamental forms of «,
expressed in the chart (u,v).

Differentiating (1), using (2), obtain:

2 2
aw = (1= kyv — k(b + 02 At — 7, (kF 2 + vPA)N AL
2 2 3)

2
Flrgv + (k) 5 + V" AN
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:N/\t—l—(kiv—l—ZvA—l—va )N (4)
ay Ny, = —[rv+ (kL)’UQ +v2A, + Tg(k‘ 5} —|— UQA)

(kv 4 204 + 0v2A )t — [(1 — kyv — Ky, (kL + v?A)) (5)

2

(kfv +20A 4+ v2A)IN A L1 — kyo — kn(kyf? + v’ A)|N

2
O = kv — kn((k;)'% +o2A,) — K (kL - v2A)
2

(g0 + (b

+v2A, )+ kng(ki— + U2A)]t

+[k, (1 —kgv—kn(k 5 +v2A)) (TgU—I-(]{?J') ?—I-UQA )
(6)
((kL) 5 —|— v’ A) — Tg((kL) 5 —|— v’ AN At

2 2
k(1 — kyo — kn(ki% +02A)) — T;(k;% +02A)

2

—|—’7’ v+ (k‘L) 5 + UQAM]N

Q= — [k, + kn(ktv + 204 + v2A)t
+[r, + (K5 v + 20A, + 02 AL) N (7)
—Tg(kiv + 20A +v2A,)N At

= [kX + 24 + A + v’ A, )N (8)

From (3) to (8), it results that

e(u,0) = ky(u)=Fksin’¢p

f(u,0) = 7,(u) = Fkysinpcosp

9(u,0) = k;(u)=kicos’

e (u,0) = —k,(2k, + ki) + 7';

fw0) = (Y )
a(u,0) = —kkF+6A4,

FE,(u,0) = =2k,

Fo(u,0) = 0

Gy(u,0) = 0
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From the relation,
IH(EG — F?)? = e — 2fF + gE
and (9) follows that,
6A,(u,0) = 2H, — 6k, H + ky(2k, + 4k;y) — 7, (10)
Also, from
K(EG = F?) = eg — f?,

and equations (9) and (10), it is obtained that,
Ko(u,0) = kyl[k{ cos 2¢ — 272] + ky7) — 27, (k;r) — 2H ky # 0 (11)
which expresses condition of regularity of the parabolic set.

Proof of Theorem 1.

1) The cuspidal case: transversal crossing
Suppose that the principal foliation Fy(«) is transversal to the parabolic line
at the point ug. This means that ¢(ug) # 0.
Using Hadamard lemma and equations (9) and (10), write:
v) = kp(u) + v[—Fk,(2k, + k}f) + T;] + vAi(u,v)
flu,v) = 7,(u) + v(kr) + v2Ay(u,v)
g(u,v) = kr(u) + v[2H, — 6k,H + k,(2k, + 3k}) — T;] + v?As(u,v),
with, k,(u) = kysin®p,  k(u) = kycos? ¢, 7,(u) = k;sinpcos p.

e(u,

The differential equation of the asymptotic lines are given by:
edu’® + 2 fdudv + gdv2 =0
Then,

fE[f?—eg)?

€

du/dv = —

Let v = w?. So, it follows that,



92 R. GARCIA J. SOTOMAYOR

2 2
du :—2w£:|:2w W (u, w?)
dw € €

u(uo,0) = ug

where W (u,0) = [/Cu(u,())]% > 0 by transversality conditions. The expression
of K,(u,0) is given by equation (11).
Solving the Cauchy problem above it results that:

u(ug,v) = ug — cotge(ug)v £ W(uo,())v% 4.,

Therefore near a cuspidal parabolic point the asymptotic foliation A, ; and

A, > are as shown in the Fig. 2.1.a.

Remark . It follows from [Ar] that there exist a system of coordinates (U, V)
near a cuspidal parabolic point such that the differential equation of the asymp-

totic lines is given by

(dV/dU)* = U.

2) The singular case: point of quadratic tangency

Now suppose that ¢(ug) = 0, ug = 0, or equivalently 7,(ug) = 0. This
means that the parabolic line is tangent to the principal foliation Fy(a) at uq.
In fact, at a parabolic point the principal direction corresponding to the zero
principal curvature is an asymptotic direction. Suppose also that at the point of
tangency ug the contact above is quadratic, which is expressed by the conditions
©(0) = 0 and ¢'(0) # 0.

Consider the implicit differential equation,

F(u,v,p)=e+2fp+gp’ =0, p=dv/du
and the line field given locally by the vector field X,

X:4 v =pk, (12)
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The projections of the integral curves of X by Il(u,v,p) = (u,v) are the
asymptotic lines of a. On the surface F~'(0) there exist a canonical involution
o that exchanges the families of asymptotic lines. This procedure is used in a
more general setting in [Ar, Dv] for the study of Implicit Differential Equations.
The singularities of X in F~'(0) are given by: (ug,0,0), where 7,(u ) = 0.
Suppose ug = 0.

It results that the Jacobian matrix of DX(0) is given by:

2fu  2f, 2¢
DX(0) = 0 0 0 (13)
—€uu  —Cup _(qu —I' ev)
Using (9) and (13) it results that the eigenvalues of DX(0) are given by:
kL !
A da = (G)Hlky = @) £ [(ky = ) (ks = 9¢)]7 }
The eigenspace associated to A; is given by:

!/

E: = (1,0, %[(a —1) £ /(a—1)(a—9) —4])

k

where a = —gl.

The tangent space of II7'({v = 0}) NF~(0) at the point (ug,0,0) is gener-
ated by (1,0,0).

Therefore E; is transversal to the singular set II7*({v = 0}) N {F = 0}.

In the case of the saddle point (A2 < 0), although the eigenspaces have
inclinations of same sign, that is, (A, — 2kX¢')(Ay — 2k ¢’) > 0, the vector
(1,0,0) bisects the acute angle formed by F; and F,. This implies that the

asymptotic foliations near a saddle folded parabolic point are as shown in Fig.

2.1.b.
In the case of a focus singularity (A, = Ay , Re(\) # 0) the asymptotic
foliations are as shown in Fig. 2.1.c.

In the case of a nodal singularity (A; A2 > 0) the two eigenspaces also have

inclinations of the same sign, but here (1,0,0) bisects the obtuse angle formed
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by Ei and Fs. Also Ej bisects the angle formed by (1,0,0) and £, ( the tangent
space to the strong separatrix ). Therefore near a nodal folded parabolic point

the asymptotic foliations are as shown in Fig. 2.1.d.

Remark. Related results has been obtained in the smooth category by Davy-
dov, [Dv], where normal forms are obtained under generic non resonance condi-
tions. Topological normal forms for singularities of binary implicit differential

equations appear in the works of Bruce and Tari, [B-T,1,2] and Palmeira [Pa).

3) Openness and Density.

Openness is obvious from the transversality conditions involved in the ex-
pressions that define 1) and 2). Notice here that the class C® is essential for the
analysis in the nodal point, where a blowing up must be performed on the field
X in (12) in order to conclude that its nearby orbits behave as illustrated in
Fig 2.1.c. That is, the strong separatrix splits a neighborhood into a parabolic

and parallel sectors.

Density follows from the approximation results of Bleeker and Wilson [Be-W]
which establishes that generically the Gaussian Map of an immersion has only
Whitney folds and cusps singularities [Wh]. The folds singularities correspond
to case 1) (¢ # 0). The Whitney cusps correspond to case 2) (¢ =0, ¢’ #0).
At this point, using the third expression in 9), approximate the immersion so

that only one of the conditions a), b) and c) hold at each Whitney cusp.

4) Local Stability.

The construction of the local topological equivalence, using the method of
canonical regions, can be done in the same way as in Gutierrez and Sotomayor
[G-S, 1, 3]. A detailed construction will appear in the global version of asymp-
totic stability [Ga-G-S]. O
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3. Periodic Asymptotic Lines and their First Return
Maps

For the purpose of this section a periodic asymptotic line is a compact leave
of one of the asymptotic foliations A, ; in particular it is disjoint from the

parabolic points.

Here will be established an integral expression for the derivative of the first
return map of a periodic asymptotic line in terms of curvature functions of the
immersion a. Also, it will be shown how to deform the immersion in order to
make hyperbolic a periodic asymptotic line. This means that the derivative of

the return map is different from one.

Lemma 3.1. Lel ¢ : [0,L] — M? be a periodic asymplotic line, positively

oriented, parametrized by arc length u. Then the expression:
a(u,v) = (aoc)(u) + v(N At)(u)+ [H(u)v2 + A(u, v)vQ]N(c(u)) (1)

where A(u,0) = 0 and H is the Mean Curvature of o, defines a local chart of

class C* around c.

Proof. Similar to that of lemma 2.1; the coefficient of v? stated there is given
by kL.

Using that k,(u) = k,(c(u),t(u)) = 0 for an asymptotic line and applying
Euler’s formula it follows that, ki + k, = 2H. O

Proposition 3.2. Let ¢ : [0, L] — M? be a periodic asymptotic line, positively
oriented, parametrized by arc length uw. Then the derivative of the Poincaré map

I1, associated to it is given by:

T'( _eXp/L\];%

where k, is the geodesic curvature of ¢ and /—K = 7, is the geodesic lorsion of

C.
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Proof. The Darboux equations for the positive frame {t, N A {, N} are:

(u) = kg(u)(N At)(u)
(N A () = =ky(w)t(u) + 75 (w) N (u) (2)
N'(u) = =75 (u)(N A)(u)

N

The same calculation procedure used in lemma 2.1 gives that:
e(u,0) =0, en(u,0) =7, — 2H(u)ky(u)
f(u,0) = 71,(u) g(u,0) =2H(u)

The differential equation of asymptotic lines in a neighborhood of the line

(3)

{v =0} is given by:
dv

)=
Denote by v(u,r) the solution of the (4) with initial condition v(0,r) = r.

e—|—2f —|—g( 0 (4)

Therefore the return map Il is clearly given by Il(r) = v(L,r).
Differentiating (4) with respect to r, it results that:

grve(dv/du)® + (2gv., + 2f,0,)(dv/du) + e,v, = 0
Evaluating at v = o, it follows that:
2f(u,0)vy,(u,0) + e,(u,0)v,(u,0) =0 (5)

Therefore, using the expressions for f an e, found in (3), integration of (5)

it is obtained: / L
L —71/ +2H
InIT'(0) = / — 2~y
0 27,
Performing the integration in the equation above we obtain the result stated.

This ends the proof. O

Proposition 3.3 Let ¢ : [0,L] — M? be a regular periodic asymplotic line,
positively oriented, paramelrized by arc length uw. Then there exist a deformation

a. which for € #£ 0 small has ¢ as a hyperbolic periodic asymptotic line.

Proof. Consider the following one parameter deformation of a:

ac(u,v) = alu,v) + ew(u)d(v)v’N(u)
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where § |.= 1 and has small support.
Performing the calculation as in lemma 2.1 it follows that:
e(e,u,0)=0
Jle;u,0) = 7y(u)
g€, 1, 0) = 2(H(u) + ew(u))
ev(€,u,0) = —2[H(u) + ew(u)]k,(u) + 7, (u)
Therefore {v = 0} is a closed asymptotic line for a. and the derivative of

the Poincaré map Il,,, , associated to it is given by:

I l [t + “”Wdu]

o 7y(u)

Take w(u) = ky(u), it holds that:

% (H'a(())) o= /OL kg(U)zdu

7y(u)
This integral expression never vanishes. In fact on asymptotic lines the the
geodesic curvature coincides with the ordinary curvature. Therefore, if k, |.= 0

identically, contradicts the periodicity of ec. O

The main result of this section is given by the theorem below, whose proof

is immediate after the propositions above.

Theorem 2. Lel ¢ : [0, L] — M be a closed asymplolic line, parametrized by
arc length w, of an immersion «.

Then « is C*- local asymptotic structurally stable at [0, L], s > 4, if only

il is hyperbolic i /Lkng £
3 1t 1S Eroolic 1.€. u
’ P o V=K

4. Examples

In this section are given two examples that illustrate the two results of this
work. Proposition 4.1 focuses on three types of parabolic singularities. Propo-

sition 4.2 exhibits an immersed surface with a hyperbolic asymptotic line. The
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authors have not found in the classical literature examples of asymptotic generic

immersions exhibiting periodic asymptotic lines.

Proposition 4.1. Let ¢ : [0, L] — E? be closed curve of class C*°, parametrized

by arc length u, with positive curvature k and torsion 7. Consider the mapping:
a(u,v) = c(u) + rcosvN(u)+ rsinvB(u)

where {T, N, B} is the orthonormal Frenet frame of c.
It holds that:

i) For r small o is an immersion of the Torus whose hyperbolic region H,
s

2

is the annulus given by {(u,v): —= <v < g}
i) If 7(u) # 0 then (u, eg), ¢ = %, are cuspidal parabolic points.
i) If 7(ug) = 0 and 7'(ug)e < 0 both points are folded saddles

iv) If 7(ug) = 0 and 7'(ug)e > 0 then (u,eg) is a folded node (resp. folded
focus) if k(ug) — 8rer’(ug) > 0(resp. < 0).

Proof. The map « is an immersion when 1 — krcosv # 0 Direct calculation

gives that the coefficients of the second fundamental form are proportional to :

e(u,v) = —rr?+ kcosv(l — krcosv)
flu,v) =r?r (1)
g(uvv) = _TQ

Therefore the parabolic set is given by eg — f? = —kr cos v(1 —kr cosv) = 0,
which holds if and only if v = :I:g. The hyperbolic region is {(u,v) : —g <v<

2t

Consider the implicit differential equation of asymptotic lines,
F(u,v,p) =e+2fp+gp* =0, p=dv/du

where the coefficients are given by (1).
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The suspended line field is given by X,
u = F,
X :{ v =pF, (2)
p'=—(Fu+pk)
The projections of the integral curves of X by Il(u,v,p) = (u,v) are the
asymptotic lines of a.
The singularities of X in F"~'(0) are given by: (ug, +£Z2,0), where 7(ug) = 0.
The linear part of X at the singular points is given by:
—2rr! 0 2r
0) = 0 0 0
—2r(r")? K sin(5) 2r7’ — ksin(5)

m
DX(uo,cg,

where € = 1.
Then the eigenvalues of DX (ug,€7,0) are

—ke + \/k(k — 8rer’)
)\1,)\2 ==

2

Therefore for 7/(0)e < 0 the point is a folded saddle.

When 7/(0)e > 0 the point is a node or a focus provided k—8r7" > 0 or < 0.

When 7(u) # 0 the field (2) is transversal to the suspended parabolic line
{v=0}. O

Proposition 4.2. Lel ¢ : [0,L] — E® be a closed curve, paramelrized by arc
length s, such that the curvature k(s) and the torsion 7(s) of ¢ are different
from zero for all s € [0, L]. The ruled surface

a(s,v) =c¢(s) + vn(s).
has ¢ as a hyperbolic periodic asymptotic line.

Proof. Direct calculation gives that:
e(s,v) = (—kr 4+ )v + (£)'r%0?
fls,v)=r1
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g(s,v) =0
Therefore the every point is hyperbolic and differential equations of the

asymptotic lines are given by:

ds =0
v 7! 3
{ = (kDo (O ?

ds T
This is a Riccati differential equation. The Poincaré map is given by m(vy) =
v(L,vg), where v is the solution of (3) with v(0,v9) = wvo. Clearly #'(0) =
exp [ —k(s)ds # 0. This ends the proof. O

Remark 1. Curves with the properties in 4.2 above are provided by the toroidal
helices in [Be-Go].
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