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Objective: To evaluate the influence of sleep loss on sexual behavior, hormone levels, sperm parameters, and testis-specific gene
expression in male rats.

Design: Experimental research.

Setting: Animal laboratory.

Animal(s): Male adult Wistar-Hannover rats.

Intervention(s): Sexually experienced rats were subjected to paradoxic sleep deprivation (PSD) for 96 hours or sleep restriction (SR) for
21 days or kept in their home cage as control (CTRL).

Main Outcome Measure(s): Sexual behavior, hormone levels, sperm parameters and expression of stress and nitric oxide-related
genes were evaluated.

Result(s): PSD significantly decreased sexual behavior compared with the CTRL group, whereas SR had no effect. The PSD group had
significantly lower testosterone levels than the CTRL group. Both PSD and SR groups had lower sperm viabilities than the CTRL group.
The decrease in the number of live sperm compared with the CTRL group was larger in the PSD group than in the SR group. Regarding
testicular gene expression, both PSD and SR led to an increase of iNOS and hydroxysteroid 113-dehydrogenase 1 expressions compared
with the CTRL group. These changes were more pronounced in the PSD group. A significant increase in endothelial nitric oxide synthase
expression was observed in the PSD groups compared with the CTRL group. No changes were observed in dimethylarginine dimethy-
laminohydrolase 1 and casein kinase 2(6-polypeptide expressions.

Conclusion(s): Sleep loss can promote marked changes in the male reproductive system of rats, partlcularly affectlng spermatic func-
tion in part by interfering in the testicular nitric oxide pathway. (Fertil Steril® 2015;103: E -l a
1355-62. ©2015 by American Society for Reproductive Medicine.) oy
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eproductive function in humans
R has been of particular concern in

recent years. Diseases, psycho-
logic factors, stress, and hormonal
changes are some of the factors that
contribute to the appearance of
dysfunction in the male reproductive
system (1). Studies have shown that
sperm  concentration has  been
decreasing over the years (2-5) and a

high prevalence of erectile
dysfunction complaints has been
observed in men 18-40 year old in
association with psychosocial but not
organic problems (6). The stress
resulting from socioeconomic pressure
combined with increased workload
lead to a decrease of total sleep time.
Because it is difficult to study the
isolated role of sleep loss in human
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reproduction, it becomes valuable to
use nonhuman models.

In rats, adverse effects of sleep
deprivation (SD) have been well docu-
mented and include changes in func-
tional parameters of male sexual
behavior, leading to increased fre-
quency of spontaneous erections and
ejaculations (7, 8). To comprehen-
sively assess sexual behavior, one
must scrutinize other motivational
behaviors, expressed as performance,
such as the numbers of mounts,
intromissions, and ejaculations.
Alvarenga et al. (9) demonstrated that
rats exposed to 96 hours of paradoxic
SD (PSD) displayed reduced sexual
performance, as evidenced by an
increased latency for intromission
initiation and a reduction in the
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number of intromissions compared with a control group. In
addition to altering sexual behavior, PSD has been found to
influence sex hormones. Male rats exhibit marked hormonal
alterations when subjected to PSD, with decreases in
testosterone (T) and E, concentrations, as well as increases
in progesterone (P) and glucocorticoid levels (10-12).

Progesterone, LH, FSH, and T are all intimately involved
in the process of cellular division and spermatogenesis, which
ultimately leads to spermatozoid production (13-17). Some
specific genes are also responsible for spermatogenesis and
infertility (18, 19). In addition to the important role of nitric
oxide (NO) in male fertility, mainly on the effectiveness of
erection for sexual intercourse, NO can be toxic to cells at
high levels, owing to the inhibition of DNA replication and
lipid peroxidation (20). Inducible nitric oxide synthase
(iNOS), a calcium-independent NOS present in the testis, is
implicated in spermatogenesis and apoptosis of Sertoli and
germ cells (21). Therefore, we hypothesized that both acute
and chronic SD may lead to endocrine alterations, adversely
affecting sexual behavior and sperm quality and quantity in
association with molecular modulation of the NO pathway
in the reproductive system of male rats.

MATERIALS AND METHODS
Animals

Adult male Wistar-Hannover rats were bred and raised in the
animal facility of the Centro de Desenvolvimento de Modelos
Experimentais para Medicina e Biologia of the Universidade
Federal de Sao Paulo. The animals were housed in a colony
with a constant temperature of 22 + 1°C and a 12-h/12-h
light/dark cycle (lights on at 07:00) and had free access to
water and food. All animals were treated in accordance with
the National Institutes of Health guidelines, and all proce-
dures were approved by the university’s Ethics Committee
(CEP no. 09/071).

Training and Sexual Behavior Evaluation

Before sexual behavior was evaluated, the rats acquired
sexual experience through training. Because sexually inexpe-
rienced male rats can display low performance, we followed
an established protocol that standardizes the degree of copu-
latory activity and avoids possible bias (22). Twenty-four
hours after the last training session, the rats with excellent
sexual performance (i.e., animals that showed >700% ejacula-
tion frequency during the training) were selected and sub-
jected to PSD for 96 hours or sleep restriction (SR) for
21 days. After these periods, sexual behavior was reevaluated
immediately.

Training and testing of sexual behavior was performed
with the use of a Plexiglas cylinder arena with a 45-cm
diameter. Dim red lights shone during the dark phase of the
light/dark cycle. A male rat was introduced into the arena
5 minutes before a female rat. Sexual receptivity in the female
rats was established by subcutaneous administration of E,
benzoate (10 ug/0.1 mL sesame oil; Sigma Chemical Co.)
48 hours and 24 hours before testing, followed by subcutane-
ous administration of P (500 ug/0.1 mL sesame oil; Sigma

Chemical Co.) 4 hours before testing sexual behavior. Each
test of sexual behavior lasted for 30 minutes after the intro-
duction of the female rat, during which the following vari-
ables were recorded: time to first mount; intromission and
ejaculation latencies; total numbers of mounts (i.e., mounts
with pelvic thrusting); intromissions (mounts with pelvic
thrusting and penile insertion); and ejaculations. The
copulation rate (number of intromissions/[number of mounts
4+ number of intromissions]), inter-intromission interval
(ejaculation latency/number of intromissions) and intercopu-
latory interval (ejaculation latency/[number of intromissions
-+ number of mounts]) were also calculated (23).

Protocol Designs

The animals that displayed excellent performance after sexual
training were randomly assigned to one of the following three
groups (n = 10 per group): CTRL, control rats maintained in
their home cage; s PSD, rats submitted to 96 hours of PSD;
and SR, rats submitted to 21 days of SR.

Paradoxic Sleep Deprivation

Rats were subjected to 96 hours of PSD by means of the
modified multiple-platform method. The 96-hour length of
the PSD was chosen based on previous studies showing
that the most dramatic alterations in behavior (24) and hor-
mone concentrations (11) occur for this period of PSD. The
ten rats were individually placed inside a tiled water tank
(143 x 41 x 30 cm) containing 14 circular platforms (each
6.5 cm in diameter) with the water level within 1 cm of the up-
per surface. The rats could move within the tank by jumping
from one platform to another. When they reached the para-
doxic phase of sleep, muscle atonia caused them to fall into
the water and awaken. Throughout the study, the experi-
mental room was maintained at a controlled temperature
(22 £ 1°C) with a 12-h/12-h light/dark cycle (lights on from
07:00 to 19:00). The rats had free access to food and water
located on a grid at the top of the tank. The water in the
tank was changed daily during the PSD period. All animals
began their PSD period at the same time in the dark phase
of the light/dark cycle (19:00). Because we elected not to
invert the light/dark cycle, the rats were trained and tested
during a dark phase.

Sleep Restriction

The SR protocol was based on the technique used for the PSD
conditions. The difference in the SR protocol was that the rats
were kept on the platforms for 18 hours (beginning at 16:00)
and allowed to sleep for 6 hours (10:00-16:00) every day for
21 days, providing partial compensation for sleep loss (24).
The time interval of 10:00-16:00 was chosen because it rep-
resented the time when paradoxic sleep is at its highest (25).

Sperm Evaluation

Immediately after male ejaculation, the female rat was killed
and the seminal fluid directly removed from the uterine horns.
Seminal fluid was stored in Eppendorf tubes at 37°C and sub-
jected to microscopic and macroscopic analyses (26).
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For examination of sperm viability, seminal fluid (10 uL)
was placed on a slide with eosin-nigrosine dye (10 uL), which
allowed us to count the number of live (nonstained) and dead
(stained) sperm. To prepare the dye, eosin (1 g) was diluted in
distilled water (100 mL), followed by the addition of nigrosine
(5 g) and sodium citrate (2.9 g). The dye was filtered and stored
in amber bottles.

For measurement of sperm concentration, we carried out
a 1:100 dilution of the seminal fluid (10 uL) with the use of
10% formalin (90 uL) and counted the sperm with the aid of
a Neubauer chamber. For evaluation of sperm mobility, 100
sperm were classified according to the types of movement
as follows: fast progressive; slow progressive; in situ; or quiet
(no movement). For assessment of morphology, 100 sperm
were classified as follows: normal; only a tail; only a head;
or two heads. The following macroscopic variables of the
seminal fluid were examined: color (yellow, white or trans-
parent); volume; and pH level.

Blood Sampling and Hormone Determination

Immediately after behavioral testing, all of the rats in the
CTRL, PSD, and SR groups were taken to an adjacent room
and decapitated. Blood samples were collected and stored
individually. Blood was collected in glass tubes, centrifuged
at 3,018.4 g for 15 minutes at room temperature and frozen
at —20°C until analysis. The serum T (intra-assay coefficient
of variation [ICV] 7.79%) and P (ICV = 6.5%) levels were
measured with the use of a chemiluminescent enzyme immu-
noassay (Advia Centaur; Bayer Corporation). LH and FSH
(ICV 9.9%) were measured with the use of Multiplex/Luminex
technology (Millipore).

Tissue Collection and Total RNA Extraction

The animals were decapitated immediately after the sexual
behavior test. The right testis was rapidly dissected, flash-
frozen on dry ice, and then stored at —80°C until RNA extrac-
tion. Total RNA was extracted from the testis with the use of
Trizol reagent (Invitrogen) according to the instructions of the
manufacturer. After extraction, RNA was evaluated by means
of electrophoresis in agarose gel to assure integrity of the 18S
and 28S ribosomal subunits.

Reverse Transcription and Quantitative Real-Time
Polymerase Chain Reaction

Total RNA (2 ug) was reverse transcribed into cDNA with
the use of the High-Capacity cDNA Reverse Transcription
Kit (Life Technologies) according to the instructions of
the manufacturer. Reverse transcription was performed at
25°C for 10 minutes, 37°C for 120 minutes, and 85°C for
5 minutes. Amplification (400 ng cDNA) and detection
was performed with the use of Assay-on-Demand and
Tagman 5 fluorogenic nuclease chemistry in an Applied
Biosystems 7500 Real-Time PCR system (Applied Bio-
systems) according to the instructions of manufacturer. A
two-stage cycle (hold stage of 50°C for 2 minutes and
95°C for 10 minutes, followed by 95°C for 15 seconds and
60°C for 1 minute) was repeated 40 times and followed by
a dissociation stage. Identifications of primers for rat
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iNOS2, rat endothelial nitric oxide synthase (eNOS), rat
dimethylarginine dimethylaminohydrolase 1 (Ddah1),
hydroxysteroid 11(-dehydrogenase 1 (Hsd11bl), and
casein kinase 23-polypeptide (Csnk2b) target genes were
Rn00561646_m1, Rn02132634_s1, Rn00574200_ml,
Rn00567167_m1, and Rn01525929_m1, respectively.
Endogenous control genes chosen for normalization
were (-actin (reference sequence NM_031144) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH;
reference sequence NM_017008), whose primer sequences
(5'-3') are, respectively, AGCGTGGCTACAGCTTCACC/
AAGTCTAGGGCAACATAGCACAGC and TGCCCCCATGT-
TTGTGATG/GCTGACAATCTTGAGGGAGTTGT.

Statistical Analysis

Sexual behavior data were assessed for normality and homo-
geneity with the use of the Shapiro-Wilk and Levene tests,
respectively. To meet the necessary prerequisites for the use
of parametric tests, it was necessary to standardize the data
with the use of z-score. Subsequently, we used one-way anal-
ysis of variance (ANOVA) followed by a Tukey post hoc test
when required. The hormonal and semen data were analyzed
by means of one-way ANOVA followed by a Tukey post hoc
test to compare individual group pairs.

The expression fold changes of all genes were calcu-
lated by means of the 27AAC method (27) using the arith-
metic mean of the reference genes, GAPDH and $-actin, as
the normalization factor because they did not differ be-
tween groups. The variables were first tested for normality
and homogeneity distribution, and all of them fit the para-
metric criteria, except the iNOS-relative gene expression
values. Therefore, for that variable we used a rank-based
nonparametric analysis (Kruskal-Wallis) followed by
Games-Howell test, which is a post hoc test suitable for
unequal variance. We used the Monte Carlo method for
computing the significance level and considered 99% to
be the confidence interval. For eNOS, Hsd11b1, Ddahl,
and Csnk2b gene expression, ANOVA was applied, fol-
lowed by Tukey post hoc tests. The analyses were per-
formed with the use of SPSS software (version 17). Data
are expressed as mean + SEM. The level of significance
was P<.05.

RESULTS
Sexual Behavior Parameters

Significant differences were found in the intromission param-
eters. The PSD group had a longer latency to first intromission
compared with the CTRL and SR groups (F, 53 = 9.42; P<.001
[P<.002 and P<.003, respectively]; Fig. 1A). The PSD group
displayed a significant decrease in the number and total num-
ber of intromissions (F, ,; = 3.87; P<.008; and F, ,, = 5.20;
P<.002 [P<.03 and P<.009, respectively; Fig. 1B; and
P<.03 and P<.002, respectively; Fig. 1C]) and ejaculations
(F5,4 = 6.43; P<.001 [P<.001]; Fig. 1D) compared with the
CTRL and SR groups. The SR group showed no significant dif-
ferences from the CTRL group for any of the measures of sex-
ual behavior, including the parameters of latency and number
of mounts (Fig. 1).
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The PSD group showed significant increases in the interco-
pulatory interval (P<.01), interintromission interval (P<.01)
and copulatory rate (P<.01) compared with the CTRL and SR
groups (Table 1). The SR group showed a similar rate and
similar intervals compared to the CTRL group (Table 1).

Hormone Concentrations

ANOVA followed by a Tukey test revealed a significant
decrease (45%) in the T concentration in the PSD group
compared with the CTRL group (P<.01). Figure 2B shows
the effects of PSD and SR on the P levels. ANOVA revealed
no significant differences among the three groups (P>.05).
In addition, FSH and LH concentrations showed no signifi-
cant changes in the PSD and SR groups compared with the
CTRL group (P>.05).

Testicular Gene Expression

ANOVA revealed a significant group effect (F,,¢ = 8.09;
P<.01) on eNOS gene expression, demonstrating that
PSD rats (0.67 + 0.05) had decreased gene expression in
the testis compared with CTRL (1.03 + 0.08; P<.01) and
SR (0.96 + 0.07; P<.05) rats (Fig. 3A). Regarding relative
iNOS gene expression in the testis from the different
groups (Fig. 3B), Kruskal-Wallis analysis showed signifi-
cant differences between groups (x> = 20.43; P<.0001),

and Games-Howell post hoc test revealed that both PSD
(rank = 22.20; P<.001) and SR (rank = 15.88; P<.01)
led to increases in iNOS expression compared with CTRL.
Also, PSD differed from SR (P<.05). Regarding the gene
expression of the Ddah1l enzyme in the testis (Fig. 3Q),
ANOVA revealed no group effect (F,,, = 0.28; P>.05).
Regarding Hsd11b1 expression levels (Fig. 3D), statistical
analysis showed a group effect (F,,3 = 6.07; P<.01)
with a significant increase in Hsd11b1 gene expression
in PSD (1.48 4+ 0.05) and SR (1.44 + 0.18) groups
compared with CTRL (1.00 + 0.08). No changes were
observed in Csnk2b mRNA levels (Fig. 3E) between the
groups (F, .6 = 2.32; P>.05).

Semen Analysis

Microscopic variables of sperm concentration, viability, and
mobility. No significant differences in the sperm concentra-
tions were observed among the CTRL, PSD, and SR groups.
However, both PSD and SR groups showed significantly fewer
spermatozoa with faster movement compared with the CTRL
group (P<.01; Supplemental Table 1). Importantly, the sperm
viability was decreased by 50% in the PSD group compared
with the CTRL group (P<.01). The SR group also had signifi-
cantly lower sperm viability (15%) compared with the CTRL
group (P<.01; Supplemental Table 1).
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Macroscopic parameters of semen volume and pH. No sig-
nificant differences were observed in the volume or pH of the
seminal fluid among the CTRL, PSD, and SR groups
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(Supplemental Table 1). Notably, the semen volume was
decreased ~50% in the PSD group compared with the CTRL
and SR groups, but the differences did not reach statistical
significance (Supplemental Table 1).

DISCUSSION

In this study, 96 hours of PSD hampered sexual behavior in
male rats that previously had excellent sexual behavior.
This effect was reflected in an increased latency to initiate
intromission behavior and reduced numbers of intromissions
and ejaculations, which previously have been shown to repre-
sent lower sexual performance (9). However, when the sleep
period was shortened for a longer duration in an attempt to
mimic the chronic sleep debt present in human lifestyle, we
found no significant alterations in motivation or sexual per-
formance. It seemed that the SR was more subtle and did not
alter sexual response of these animals. These responses may
have been influenced by the actions of sex hormones. Previ-
ously, it was demonstrated that rats submitted to PSD for
96 hours have decreased T concentration (9-11, 28).
Testosterone supplementation is an efficient means to
maintain and even improve sexual response in adults
and elderly male rats (29-31). There is evidence that
supplementation of T combined with E, shows better results
(32). It is plausible to speculate that T replacement
combined or not with E, or P during the period of SD could
improve sexual performance of these animals. Our results
suggest that sleep amount modulates T levels, which in turn
may contribute, at least in part, with the changes in sexual
performance and sperm parameters.

In the present study, we did not find significant differ-
ences in the absolute number of sperm. However, other pa-
rameters, such as motility and viability, may also be
indicative of infertility. Singla and Challana (33) demon-
strated that decreased sperm viability resulted in a 100%
reduction of pregnancy rate in female rats. Our findings indi-
cate that sleep loss can impair the spermatic viability, and we
suppose that these effects may be caused by disruption of the
spermatic cycle maintenance (15, 16) owing to a decline in T
(9-11, 28). The relationships between endogenous T and sex,
sleep, and sleep disturbances have been debated (34),
including results of clinical trials as well as nonhuman
animal studies. However, not only T may have mediated the
sperm viability reduction, because only the PSD group
showed an impairment of sexual performance and T levels,
whereas both PSD and SR led to negative changes in the
sperm quality and quantity. A recent study demonstrated
that decrease in total T, but not in bioavailable T, was
related to erectile dysfunction complaints (35). Our findings
indicate that, indeed, this hormone plays a role directly
proportional to sexual performance. Therefore, we can not
definitively exclude the action of T on the sexual and
spermatic response of these animals in both sleep-deprived
groups. Recently, we published a study showing that the
offspring of fathers undergoing PSD or SR presented a decline
in the sexual response, accompanied by a reduction in T con-
centrations (36), revealing far-reaching consequences of sleep
loss in reproduction.
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The exposure to stressful stimuli seems to alter testicular
and plasma T concentrations in a biphasic manner (37, 38).
Although there is some evidence that the inhibition of
testicular androgen activity observed in chronic stress is
associated with reduction in GnRH and LH, this is not
always followed by LH reduction (38), as observed in the
present study. Therefore, it is possible that corticosterone
may be responsible for this feedback block, because the
reduction of sleep time is known to increase glucocorticoid
levels. However, it is difficult to separate stress from the
lack of sleep itself (39). Although PSP led to increased levels
of corticosterone, no significant changes were observed in
the animals of SR group, suggesting that maybe they have
suffered an adaptation by long exposure time in the chronic

sleep deprivation. Stress may have dual effect on the HPA
axis: adaptation due to repeated exposure or potentiation/
facilitation of the response due to a new acute stressor (40).
Mazaro and Lamano-Carvalho (41) showed that rats exposed
during the neonatal period to maternal deprivation and
neonatal stimulation showed reduced basal corticosterone
levels compared with a control group, but not when being
exposed to a new acute stressor of immobilization. Stress
has been shown to interfere in male and female reproductive
capability in various animal species (9, 10), and curtailment of
sleep has an inherent stress component (11).

In the present study, we also proposed to evaluate some
genes that could help us to clarify the mechanisms involved
in decreased sperm viability after lack of sleep. We highlight
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TABLE 1

Effect of paradoxic sleep deprivation (PSD) or sleep restriction (SR)

on intercopulatory interval, interintromission interval, and

copulatory rate.

Sexual behavior

parameter Control PSD SR

Intercopulatory 294 +26 80.6 + 23.92P 287+ 4.6
interval

Interintromission 41.6 £ 3.7 136.8 + 35.4%P 489 £ 8.3
interval

Copulatory rate 0.6 + 0.1 0.3 +0.1*P 0.6 &+ 0.0

@ Significant difference compared with control group (P<.01).
® Significant difference compared with SR group (P< .01).

Alvarenga. Sleep loss affects rat sperm function. Fertil Steril 2015.

the genetic contribution to testicular function. Some candi-
date genes were selected, especially those involved with cell
apoptosis and NO pathway. Most of the NO produced in the
testis is originated from activated testicular macrophages,
which have high levels of iNOS (42). Although the positive ef-
fects of NO lead to erection, NO can be toxic to cells at high
levels, owing to the inhibition of DNA replication and lipid
peroxidation (21), and the increase of NO synthesis due to
up-regulation of iNOS has been described as responsible for
cellular injury and apoptosis (43). Accordingly, the high
expression of iNOS and eNOS are related to apoptosis of
Sertoli and germ cells in the testis as well as spermatogenesis
(18-22). In the present study, an increase of NO generators
was observed in both PSD and SR groups, indicating that
these animals may show signs of infertility in association
with decreased sperm viability and motility (because sperm
quantity or concentration was not affected) due at least in
part to NO modulation. Corroborating these findings, a
significant increase in Hsd11b1 expression levels was also
found in the PSD and SR groups, suggesting that the excess
of this gene expression may disrupt sperm formation and
thus regulation of spermatogenesis (44). On the other hand,
the gene expression of testis Ddahl, which acts in the
regulation of NO production by inhibition of a NOS
endogenous inhibitor (asymmetric dimethyl-L-arginine),
was not significantly changed after PSD or SR. The same
occurred with Csnk2b expression, which has a regulatory
function in cell proliferation, cell differentiation, and
apoptosis, being associated with infertility (45). Finally, genes
whose expressions are affected in opposite directions by PSD
and SR could be potential candidates for understanding sleep
homeostasis interaction with male reproduction.

Study Limitations

Some limitations regarding the influence of other factors,
such as stress, need to be considered in our nonhuman animal
model of sleep deprivation, and more accurate measurements
of sperm quality and quantity as well as mechanistic ap-
proaches focused on the mechanisms underlying the findings
are desirable. For example, treatment with T supplementation,
glucocorticoid inhibition, or NOS modulation during SD
would be an elegant way to understand whether these path-
ways are the key factors for the sleep-fertility relationship
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in a cause-effect direction. Importantly, although our study
has relevance to human conditions, the translational validity
of even statistically significant findings are not directly appli-
cable to the clinical framework without clinical studies.

CONCLUSION

Male sexual behavior depends on the interactions of several
factors within a complex cascade of chemical events
involving hormones, NOS increase, and environmental
contexts. The present study demonstrates that lack of sleep
is detrimental to sexual behavior and could interfere in
the reproductive system of male rats, the latter being clearly
reflected in the reduction of spermatic viability and increased
expression of apoptosis-related NO genes in the testis. Such
findings draw our attention to previously unknown conse-
quences of SD and may be a harbinger of consequences yet
to be discovered.
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SUPPLEMENTAL TABLE 1

Effect of paradoxical sleep deprivation (PSD) or sleep restriction (SR) on sperm concentration, pH, volume, viability and mobility parameters of
sperm analysis according to type of movement: fast progressive (A), slow progressive (B), in situ (C), or quit (D).

Mobility parameter

Variable Concentration A B Cc D pH Volume (mL) Viability (%)
CTRL 110.5 4+ 13.0 364 +57 1244+ 2.6 134 + 3.1 36.0 £ 84 9.9 £ 0.5 0.4+ 0.1 69.2+24

PSD 939 £+ 14.5 10.4 £+ 2.6* 142 +3.8 13.8+5.2 454 + 6.8 88+04 0.2+0.0 36.4 + 1.0*
SR 99.6 + 13.8 11.1 & 4.5*% 74 +£23 103 +£36 37.4 +£10.2 9.7+0.4 0.4+ 0.1 41.8 +£7.0*

* Denotes a significant difference (P<.01) compared to a control (CTRL) group.
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