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Abstract

Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires 
maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of mul-
tiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this 
short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic 
responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review 
data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii 
and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data sug-
gesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling 
extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may 
also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock. 
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The maintenance of a stable internal environment is, 
perhaps, the main objective of all physiological processes 
(1). Water deprivation and hypernatremia are challenges 
for the organism. Although daily intake and loss of water 
and sodium can vary widely, water and sodium concentra-
tions must remain within narrow limits. Therefore, it is no 
surprise to observe the existence of multiple mechanisms 
and neural pathways involved in the regulation of the vol-
ume and composition of extracellular fluid (ECF). This wide 
variety of mechanisms ranges from renal mechanisms that 
alter the handling of sodium up to mechanisms that control 
ingestive behaviors. 

Changes in body fluid osmolality such as those induced 
by intravenous infusion of small volumes of hypertonic 
saline (2-7) elicit behavioral, humoral and cardiovascular 
adjustments. An increase in plasma sodium concentration 
stimulates the ingestion of water and the release of vasoac-
tive peptides such as vasopressin, atrial natriuretic peptide 

(ANP) (2) and oxytocin (3), increases lumbar sympathetic 
activity and reduces renal and splanchnic nerve discharge 
(4,5), and causes a pattern of cardiovascular adjustments 
characterized by transient hypertension and marked and 
sustained increases in renal blood flow and vascular con-
ductance (5-7). 

This integrative regulation is represented in several 
levels of the central nervous system. Similar to what is 
observed in other regulatory systems, this integrative ac-
tion is organized in an increasing level of complexity along 
the neuroaxis. 

The medulla oblongata affects several homeostatic 
systems, including those controlling the volume and compo-
sition of the ECF. Within the medulla oblongata, two areas 
are especially important for the control of ECF volume and 
composition: the nucleus of the tractus solitarius (NTS) and 
the ventrolateral medulla (VLM). Since the seminal study of 
Guertzenstein and colleagues (8-10), the involvement of the 



878 S.L. Cravo et al.

www.bjournal.com.brBraz J Med Biol Res 44(9) 2011

VLM in ECF regulation has been extensively investigated 
(11-18). Twelve years ago, our laboratory began a series 
of studies to identify the participation of the VLM in the 
cardiovascular responses to acute changes of volume and 
composition of the ECF. The purpose of this short review 
is to summarize our findings and the literature concerning 
the central neural mechanisms underlying cardiovascular, 
hormonal and autonomic responses to circulating volume 
changes. We either expanded the ECF by infusion of iso-
tonic solutions, or acutely increased sodium concentration 
through injection of minute volumes of hypertonic saline (3 
M NaCl). The data obtained with these studies allow us to 
unveil a neural pathway involving carotid body afferents 
that transmit information to relays in the NTS and VLM, 
which in turn project to the median preoptic nucleus in 
the hypothalamus. We also demonstrated a new role of 
catecholaminergic medullary neurons in the cardiovascular 
and ingestive responses to sudden changes in ECF com-
position. Finally, recent data from our laboratory suggest 
that catecholaminergic neurons may mediate the beneficial 
effects of intravenous infusion of hypertonic saline on re-
covery from hemorrhagic shock.

Role of carotid afferents in responses to ECF 
changes

Several lines of evidence have suggested that, besides 
their well-known role in arterial blood pressure regulation, 
aortic and carotid afferents are also involved in cardiovas-
cular adjustments induced by acute changes in volume or 
composition of the extracellular compartment (2,3,5,19-24). 
In a previous study, Morris and Alexander (2) showed that 
the ANP release after hypernatremia is severely reduced 
after sinoaortic denervation (SAD). Since hypernatremia in 
this study was induced by intravenous infusion of a small 
volume of hypertonic saline, ANP release could not be at-
tributed to atrial expansion or activation of cardiopulmonary 
afferents. Several subsequent studies suggested that SAD 
also impairs the release of vasopressin, ANP and oxytocin 
(2,3,19,24). Additional studies indicated that aortic and 
carotid afferents are involved in the modulation of renal 
sympathetic nerve activity (5,25) and regulation of regional 
blood flow (20,23) during changes of circulating volume.

Consistent with these findings, results from our labo-
ratory have shown that carotid and aortic baroreceptor 
afferents are involved in cardiovascular responses to hy-
pervolemia and hypernatremia (20,23). In these studies, 
SAD abolished renal vasodilation, an important mechanism 
for the increase of sodium and water excretion, induced by 
volume expansion or hypertonic saline infusion, whereas 
bilateral vagotomy was ineffective in modifying these 
responses. Noteworthy is the observation that the effect 
of SAD was restricted to the renal territory, i.e., SAD did 
not block the hindlimb vasodilation induced by volume 
expansion. Overall, these results support the idea that 

integrity of the carotid and aortic afferents is essential for 
the cardiovascular responses that follow acute changes in 
ECF composition.

Several studies have shown that acute blockade of 
carotid and aortic afferents impairs the ability to maintain 
arterial pressure during hemorrhagic shock. The combined 
removal of baroreceptors and chemoreceptors potentiates 
the hypotension induced by hemorrhage in anesthetized 
rabbits (22) and dogs (24). This finding is predictable, and 
compatible with the known importance of the barorecep-
tor reflex in minimizing sudden changes in arterial blood 
pressure. 

Recently, we showed that selective denervation of 
carotid afferents abolished the recovery of arterial blood 
pressure induced by infusion of hypertonic saline in rats 
submitted to hypotensive hemorrhage (21). In that study, 
carotid afferents were removed after the induction of 
hemorrhagic shock and mean arterial pressure was lower 
than 60 mmHg, i.e., below afferent threshold. Therefore, 
removal of carotid afferents did not modify the establish-
ment of hypotension, but minimized the beneficial effects 
of hypertonic solution in the recovery phase. 

It should be emphasized that the technique used in this 
study destroyed not only baroreceptor but also chemore-
ceptor afferents present in the carotid bifurcation. We 
subsequently examined the role of carotid body chemore-
ceptors in the effect of hypertonic saline, inactivating the 
carotid body chemoreceptors by ligation of the carotid 
body arteries. That study indicated that the nervous organ 
glomus caroticum has a prominent and determinant role in 
the effect of hyperosmotic saline (26). When the function 
of carotid body chemoreceptors was blocked, leaving all 
nerves in the area functional, hyperosmotic saline failed to 
restore arterial pressure. Thirty years ago, Gallego et al. 
(27) demonstrated that hypertonic solutions cause excitation 
of chemosensory afferents and depolarization of carotid 
body type I cells. Our recent studies are compatible with 
this early observation and suggest that the sensitivity of 
the chemoreceptors to tonicity has functional effects and 
triggers homeostatic responses.

The caudal ventrolateral medulla

The earliest evidence indicating a role of the VLM in 
body fluid homeostasis can be traced to the studies of 
Feldberg, Guertzenstein and Rocha e Silva Jr. (28-30). 
These investigators demonstrated that topical application 
of nicotine to the caudal VLM (CVLM) induced release of 
vasopressin, but not oxytocin, in anesthetized cats. Inhibition 
of neuronal activity in the CVLM also inhibited the vasopres-
sin release induced by carotid occlusion. Combining the 
effects of selective blockade of sites in the rostral (RVLM) 
and CVLM on the cardiovascular and hormonal responses 
with bilateral carotid occlusion, they postulated that the 
RVLM is primarily related to pressor responses, whereas 
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the CVLM is essential for vasopressin release. 
Shortly afterward, Blessing et al. (11) demonstrated 

that CVLM sites similar to those described in cats regulate 
vasopressin release in rabbits. They also demonstrated that 
these sites contain catecholaminergic cells belonging to the 
A1 group as originally described by Dahlstroem and Fuxe 
(31) in the 1960s. Combining functional and neuroanatomi-
cal studies, they demonstrated that A1 cells in the CVLM 
directly project to the supraoptic (SON) and paraventricular 
nuclei (PVN) of the hypothalamus, the two main sources 
of vasopressin (32,33). 

At first it was thought that A1 neurons in the CVLM 
inhibit sympathoexcitatory neurons in the RVLM (34), but 
it became clear later that the CVLM neurons that mediate 
sympathoinhibition are GABAergic, and mainly distributed 
around the periambigual area (dorsally and medially to the 
A1 neurons). Now it is widely accepted that catecholamin-
ergic A1 cells in the CVLM do not project to the RVLM, and 
that their main projections are to diencephalic nuclei involved 
in the control of water and salt balance (4,12-15,17,18).

Neuroanatomical studies have further extended these 
original observations demonstrating that A1 noradrener-
gic cells receive projections from arterial baroreceptors 
as well as from vagal cardiopulmonary volume receptors 
(35,36). These neurons are also reciprocally connected 
with hypothalamic regions known for their involvement in 
neuroendocrine, hydroelectrolytic, and cardiovascular regu-
lation, including the median preoptic nucleus (MnPO), the 
subfornical organ (SFO), the PVN, and the SON (32,33). 

A functional role of A1 neurons in cardiovascular and 
humoral responses to acute reductions in central blood vol-
ume was also demonstrated in rats (12,13,18). Buller et al. 
(12) demonstrated that Fos staining induced by hypotensive 
hemorrhage in neurosecretory vasopressin cells in the SON 
and PVN was reduced by lesions in the A1 region. Such 
lesions also reduce the vasopressin secretion induced by 
decreased circulating volume (13,18).

Despite the abundance of evidence for the role of A1 
noradrenergic neurons in response to reductions of blood 
volume, relatively little is known about their role in response 
to hypernatremia and volume expansion. Subcutaneous, 
intraperitoneal and intravenous administration of hypertonic 
saline increases Fos expression in the A1 group (14,15), 
indicating neuronal activation. 

We have recently demonstrated that A1 noradrenergic 
neurons are involved in the autonomic and cardiovascular 
responses induced by increases in plasma sodium con-
centration (4,17). In those studies, we used anti-dopamine-
β-hydroxide-saporin, an immunotoxin that selectively kills 
dopamine-β-hydroxide (DβH)-containing neurons. Injection 
of this toxin into the CVLM caused a 62-79% loss of A1 
catecholaminergic neurons. The increase of renal blood flow 
and vascular conduction induced by intravenous hypertonic 
saline infusion was abolished in rats treated with anti-DβH-
saporin (17). Furthermore, lesion of A1 noradrenergic 

neurons prevented the renal sympathoinhibition induced 
by hypernatremia (4). Additionally, we have demonstrated 
that these noradrenergic cells were part of an inhibitory 
circuit involved in the control of NaCl intake induced by 
ANG II-dependent mechanisms (37). These studies repre-
sent the initial observation that A1 noradrenergic neurons 
are involved in autonomic, cardiovascular and behavioral 
adjustments induced by changes in circulating volume.

The anteroventral third ventricle region

The preoptic-periventricular tissue surrounding the 
anteroventral third ventricle (AV3V) is a forebrain region 
with a critical role in the maintenance of fluid and electrolyte 
balance and cardiovascular function (7,38-44). The AV3V 
received its name because of its location just anteroventral 
(AV) to the third ventricle (3V). This area encompasses 
several distinct neural structures including the organum 
vasculosum laminae terminalis (OVLT), the ventral portion 
of the MnPO, the preoptic periventricular nucleus (PPO), 
and the more medial aspects of the medial preoptic nucleus 
(MPO) (45,46).

The OVLT and SFO are located in regions devoid of a 
blood brain barrier, and act as sensors of blood composi-
tion (47). The MnPO seems to be an integrative and relay 
station that receives inputs from the SFO and OVLT as 
well as inputs from high- and low-pressure baroreceptor 
pathways (48-51). The MnPO connects to regions known 
to be involved in body fluid homeostasis and cardiovascular 
regulation, such as the hypothalamic PVN and SON (48,51-
53). These connections appear to be important elements of 
central pathways involved in responses induced by changes 
in the body fluid volume and composition. 

Several lines of evidence have demonstrated the 
importance of the AV3V in electrolyte balance and cardio-
vascular homeostasis. Intravenous infusion of hypertonic 
saline induces c-Fos expression in the AV3V region (54). 
Functional studies have demonstrated that the dipsogenic 
and natriuretic effects induced by hypernatremia are mark-
edly reduced in AV3V-lesioned animals (43,55,56). In ad-
dition, lesions in this region impair water intake (43) and 
ANP release (39,57) in response to changes in circulatory 
volume. Consistent with these findings, our laboratory has 
demonstrated that electrolytic acute or chronic lesions 
of the AV3V prevent the renal vasodilation induced by 
intravenous infusion of hypertonic saline and by volume 
expansion (7,38). 

Neuroanatomical studies have shown that catecholamin-
ergic neurons from the A1 noradrenergic group in the CVLM 
project strongly to the MnPO (33,58). Microdialysis studies 
have demonstrated that electrical stimulation of A1 nora-
drenergic groups stimulates the release of norepinephrine 
in the MnPO (49,59). Moreover, Tanaka et al. (51) have 
demonstrated that electrical stimulation of the A1 nora-
drenergic region in the VLM can increase the discharge 
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of MnPO neurons that project to the PVN. 
This excitatory response was blocked by the 
α-adrenoceptor antagonist phentolamine, but 
not by the β-adrenoceptor antagonist timolol. 
These results suggest that the A1 region acts 
by enhancing the activity of MnPO neurons 
through an activation of α-adrenoceptors. 

As mentioned before, we have recently 
demonstrated that the renal sympathoinhibi-
tion and vasodilation induced by hyperna-
tremia were abolished after lesions of the A1 
noradrenergic neurons in the CVLM induced 
with the selective toxin anti-DβH-saporin 
(4,17). Consistent with these findings, nano-
injection of norepinephine into the MnPO, the 
major source of AV3V efferents, increased 
renal sodium excretion (60) and ANP release, 
whereas acute pharmacological blockade 
of α1-adrenoceptors in the AV3V reduced 
the ANP release induced by blood volume 
expansion (40). Therefore, we hypothesized 
that noradrenergic neurotransmission from 
the A1 noradrenergic group to the MnPO 
may be involved in the cardiovascular 
responses to hypernatremia. To confirm 
this hypothesis, we studied the effects of 
nanoinjection of adrenergic antagonists 
into the MnPO and observed that blockade 
of α1- and α2-adrenoceptors in the MnPO 
prevented the renal vasodilation induced 
by intravenous infusion of hypertonic saline 
(44). Moreover, α1-adrenoceptors seem to 
be important not only in the initiation, but also 
in the maintenance of this hypernatremia-
induced response (44).

Overall, these recent lines of evidence 
support the view that A1 neurons in the 
CVLM are activated upon stimulation of 
peripheral carotid afferents (baroreceptor 
and chemoreceptors), engaging efferent 
pathways to hypothalamic regions, such 
as the MnPO, that regulate the endocrine, 
autonomic, behavioral, and cardiovascular responses that 
maintain body fluid homeostasis (Figure 1). Since this path-
way is important for sympathetic responses to changes of 
circulating volume, dysfunction of these neurons may result 
in inadequate function of the renal sympathetic nerves, and 
this may contribute to the pathophysiology of hypertension, 

congestive heart failure and cirrhosis. 
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