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Abstract
A recent proposal producing superpositions of two truncated phase states in
a high-Q microwave cavity has been presented. The scheme was based on
dispersive interactions of two-level Rydberg atoms with a single mode field
inside a cavity. Here we consider a simplified scheme doing the same, via
Raman interaction of the field with degenerate three-level atoms. The
extension to 2K phase states components (K > 1) is discussed.

Keywords: quantum state engineering, Raman interaction, Pegg–Barnett
phase state

1. Introduction

An important topic in quantum optics is one concerned
with tailoring interesting nonclassical states of the quantized
electromagnetic field, either for stationary modes trapped
inside high-Q cavities [1–5] or for travelling modes [6–
13]. Besides the number and the coherent state, another
basic state of the quantized electromagnetic field is the phase
state. It plays the role of complementing the number state,
since the number operator N̂ and the phase operator φ̂

constitute a conjugate pair of observables [14]: [φ̂, N̂ ] = i .
This commutation relation was questioned for a long time
and the nature of the phase of a quantized electromagnetic
field has remained an enigma, also due to the lack of a
corresponding Hermitian phase operator [15]. Such difficulties
placed the phase state in the unique position of being a
classical observable with no corresponding Hermitian operator
counterpart. In practice this situation was not so uncomfortable
since most experiments then involved vacuum and thermal
states—for which the phase has no relevance. However, the
advent of laser light [16] and squeezed light [17] has renewed
interest in the problem. Despite being not consensual [18], the
problem of the phase state (and Hermitian phase operator) was
well addressed in 1988, by Pegg–Barnett [19]. Generation of
the phase state has been studied recently, for stationary and
travelling fields [8, 9, 20].

3 Author to whom any correspondence should be addressed.

More recently yet, a proposal generating superpositions
of truncated phase states (STPS) has also been presented for
fields trapped inside a high-Q cavity [5] and for travelling
fields [6]. In [5] the scheme relies on (nonunitary) collapse
of an entangled state caused by a process of selective atomic
detection. The mentioned entangled state describes two
interacting sub-systems, namely a two-level (Rydberg) atom
and a single-mode field. The scheme is similar to others related
to the generation of the so-called ‘Schrödinger cat state’ [4].

In the present paper we will consider an alternative and
simpler scheme generating the mentioned superposed states
in cavity-QED. We will employ a different Hamiltonian, the
physical system so modelled having a Raman interaction
of degenerate �-type three-level atoms with a single mode
cavity field. This procedure, which is inspired by [21],
simplifies the traditional procedure in [4] by ignoring the use
of Ramsey zones. Actually, our approach goes beyond [21] by
economizing two Ramsey zones instead of one.

This paper is arranged as follows: in section 2, for
comparison and completeness, we present a summary of the
previous scheme used in [5]. Section 3 discusses our simplified
scheme and section 4 contains comments and conclusions.

2. Generation of STPS via dispersive interaction

To create a stationary field inside a microwave cavity in a
STPS we start from a single-mode truncated phase state (TPS)
previously prepared in it. The method requires the use of a
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Figure 1. Schematic illustration of the setup creating the STPS in a high-Q microwave cavity using dispersive atomic probes.

high-Q superconducting cavity C, placed between two low-Q
cavities (Ramsey zones R1 and R2), as shown in figure 1.

A two level Rydberg atom is ejected with selected velocity
from a source Sa and prepared in circular excited state |e〉
(principal quantum number n = 51 in the case of rubidium)
by an appropriated laser beam. When the atom crosses both
Ramsey zones R1 and R2 it interacts with classical fields
produced by a microwave generator (MG). These interactions
are resonant with the atomic transition between the states |e〉
and |g〉 (n = 50), the field intensities being adjusted to produce
a π/2 rotation in the atomic space, namely,

|e〉 −→ (|g〉 + |e〉)/√2, (1)

|g〉 −→ (|g〉 − |e〉)/√2. (2)

An auxiliary (third) atomic level |i〉 (n = 52) is crucial in the
scheme: the cavity frequency is adjusted close to resonance
(detuned by small δ) with the transition |e〉 −→ |i〉, but far
from the transition |g〉 −→ |e〉, as shown in figure 2. This
avoids the change of number of photons in the field, hence
only the phase may vary; this characterizes the atom–field
interaction as dispersive, instead of resonant. This interaction
is described by the effective atom–field Hamiltonian [22],

Hint = h̄ωeff â
†â(|i〉 〈i | − |e〉 〈e|), (3)

where ωeff = 2d2/δ and d is the atomic dipole moment. So,
the atom produces a phase shift in the field state when it crosses
the cavity in its excited state |e〉, but no phase shift results when
the atom is in the ground state |g〉.

Next, consider the field inside the cavity initially prepared
in a TPS, as shown in [8, 20], given by [19]

|θl〉 = 1√
N + 1

N∑
n=0

einθl |n〉, (4)

where

θl = θ0 + l

(
2π

N + 1

)
, (5)

where l = 0, 1, 2, . . . , N and θ0 is a reference phase. The
evolution of the entangled atom–field state, as the atom
crosses the system, follows the steps shown in table 1 (up to
normalization and using eiφâ†â|θl〉 = |θl + φ〉, with φ = ωeff t ;
t stands for the time spent by the atom crossing the cavity).

Thus, if the atom is detected in the state |g〉 (|e〉), the field
in the cavity is projected onto the state |θm〉 + |θl〉 (|θm〉− |θl〉),

Figure 2. Schematic diagram of the two-level atom interacting with
the single-mode field.

Table 1. Evolution of the atom–field state as the atom crosses the
system.

Atom position |�〉atom+field

Before R1 |e〉|θl 〉
After R1 (|g〉 + |e〉)|θl 〉
After C |g〉|θl 〉 + |e〉|θl + φ〉
After R2 |g〉(|θl + φ〉 + |θl 〉) + |e〉(|θl + φ〉 − |θl 〉)

where θm = φ + θl . Note that the state |θm〉 ± |θl〉 will
correspond to the wanted STPS (up to normalization), if the
phase φ satisfies the condition [19]

φ = θm − θl = (m − l)

(
2π

N + 1

)
, (6)

with m + 1 � l � m + N .

3. Generation of STPS via Raman interaction

Figure 3 displays our simplified setup preparing the STPS
inside a high-Q cavity: Sa represents ‘source of atoms’;
‘excitation’ prepares the (highly excited) Rydberg atom; C
represents the cavity; De and Dg stand for ‘atomic detectors’.

In this scheme a �-type three-level atom is injected into
the cavity, the lower energies Eg and Ee (corresponding to the
states |g〉 and |e〉) being assumed as equal [21], as shown in
figure 4. When the atomic transition frequency ω0 is highly
detuned from the cavity frequency ωf , i.e. � = ω0 − ωf being
large, the upper state |i〉 can be adiabatically eliminated [23].
Under this condition the effective Hamiltonian describing such
a system reads [24]

He = −βa†a(|e〉〈g|+|g〉〈e|)−a†a(β1|g〉〈g|+β2|e〉〈e|), (7)
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Figure 3. Scheme of the setup creating the STPS inside a high-Q microwave cavity.
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Figure 4. Schematic diagram of the degenerate �-type three-level
atom interacting with the single-mode field.

where a†(a) is the creation (annihilation) operator for the
cavity mode, and

β = λ1λ2

�
, β1 = λ2

1

�
, β2 = λ2

2

�
,

with λ1(λ2) denoting the coupling constant between the
transition |e〉 → |i〉 (|g〉 → |i〉) and the cavity mode. At
this point, the assumption λ1 = λ2 = λ (hence β1 = β2 = β)
is a natural simplification.

The atom crossing the cavity is assumed to be initially
prepared in the excited state |e〉 and interacts with an initial TPS
prepared inside the cavity. Thus, since the Hamiltonian (7) is
time-independent, the evolution operator is given by U (t) =
exp(−it H/h̄) and its application to the initial state describing
the whole atom–field system, |�AF(0) = |e〉|θl〉, results in

|�AF(t)〉 = 1
2

{[
e2in̂βt − 1

]|g, θl〉 +
[
e2in̂βt + 1

]}|e, θl〉. (8)

As a consequence, if one detects the atom in the state |e〉 (|g〉)
then the field, in the number-basis representation, collapses
into the state |�(+)(τ)〉(|�(−)(τ)〉) as follows

|�(±)
F (τ)〉 = N (±)

N∑
n=0

[
ein(φ(τ )+θl ) ± einθl

] |n〉, (9)

where φ(τ) = 2βτ , with τ = L/va, L and va standing for the
cavity lengthy and atomic velocity, respectively; N (±) stands
for normalization, and has no relevance for the present purpose.
Note that the state |�(±)

F (τ)〉 in the equation (9) will correspond
to the wanted STPS (up to normalization),

|�(±)
F (τ)〉 = |θm〉 ± |θl〉, (10)

where θm = φ(τ) + θl and the phase φ(τ) satisfying the
prescription given by equation (6). Accordingly, the phase
φ(τ) is controlled by the time τ spent by atom to cross the
cavity. The foregoing scheme requires the existence of the
truncated phase state |θl〉, previously prepared inside the cavity,
a point discussed in [8, 9, 20].

At this point, to be specific, consider the generation of the
STPS |θl〉 + |θm〉 of dimension N = 7, with l = 0 and m = 1.

We take typical values for the parameters involved [25]: the
coupling constant λ � 7 × 105 s−1 and the detuning �/2π �
39 MHz. These data lead to β = λ2/� � 2 × 104 s−1 and the
interaction time τ = π(m − l)/(N + 1)β � 1.9×10−5 s. This
result requires the Rydberg atom with velocity v � 382 m s−1,
belonging to typical intervals available in laboratories, v ∼
300–500 m s−1 [25]. So the scheme is experimentally feasible
within the realm of microwave. It simplifies the previous
scheme implemented in [5], also concerned with two phase
states components.

Now, how to go further, preparing such superposition
with 2K components? The extension to this case is achieved
by assuming K atoms passing throughout the system one
finds (with success probability about 1/2K ) the generalized
superposition given by

|�K (φ)〉 = N (φ)

JK∑
j=0

(eiφn̂|θ j〉 + |θ j〉), (11)

where |θ j〉 = e
i jφn̂

2K−1 |θ0〉, JK = 2K−1 −1 and N (φ) standing for
normalization of the state. The extended procedure works in a
similar way as the extension studied in [26] for the generation
of 2K circular coherent states in the phase space. Here the
novelty is the necessary inclusion of the prescription given in
equation (6), which specifies the (Pegg–Barnett [19]) phase
character of the state.

In practice, the extended case is accompanied by some
difficulties, such as the diminution of both probability and
fidelity of generation [4, 27], including the problem of
decoherence of a state being prepared inside a cavity [28] due
to unavoidable interaction of the system with its environment.
With respect to the nonclassical properties exhibited by a state,
those for superpositions involving two components of phase
states have already been studied in [5]; since the properties of
a state do not depend on the way the state has been generated,
then their study here would be redundant. However, since the
extended superposition of 2K coherent states was shown to
exhibit remarkable nonclassical properties [26, 29], then the
detailed study of properties of the extended superposition of
2K phase states deserves further attention.

4. Comments and conclusion

In this paper we have discussed a model-Hamiltonian
describing the Raman interaction of a �-type three-level atom
with a single-mode field. This allows one to generate a
STPS starting from a TPS previously prepared inside a high-
Q microwave cavity. The procedure is simplified, since it
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economizes the two Ramsey zones used in [5]. Although we
have been inspired by [21], who economize the traditional
second Ramsey zone, the present approach goes one step
beyond by using no Ramsey zone. This improvement in
comparison with [21] comes from assuming that the atom
enters the cavity in the excited state |e〉, which makes the
first Ramsey zone also useless; otherwise the first Ramsey
zone would become necessary. Since the time intervals spent
by atoms crossing the cavity and crossing a Ramsey zone
are of the same order, about 1 µs [30], then the present
simplifications have significative importance, by economizing
the arrangement and the time of experiment. Actually,
all schemes for stationary fields require the use of cavities
having high quality to sustain the prepared field state for
sufficiently ‘large’ times, in view of its degradation due
to decoherence of the state caused by unavoidable field–
environment interactions [28].

The extension of the present STPS having two
components, for the case of 2K components (K stands for
the number of atoms, crossing the cavity one-by-one), has
been briefly discussed (end of section 3). A detailed treatment
of this generalization, especially concerning the nonclassical
properties exhibited by these kinds of state emerging from
different values of the parameter K and different atomic state
detections (|e〉 or |g〉), is under investigation and will be
published elsewhere.
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