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Abstract

In this paper, we define concepts of crowns and quasi-crowns, valid in an arbitrary schurian al-
gebra, and which generalise the corresponding concepts in an incidence algebra. We show first that
a triangular schurian algebra is strongly simply connected if and only if it is simply connected and
contains no quasi-crown. We then prove that the absence of quasi-crowns in a triangular schurian
algebra implies the existence of a multiplicative basis.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to explore some of the relations between the existence of a
multiplicative basis in a schurian algebradaits strong simple connectedness. Indeed,
it is known since [4] (see also [20]) that a schurian strongly simply connected algebra
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admits a normed presentation, hence a multiplicative basis. Our starting point, however,
is the criterion for the strong simple connectedness of an incidence algebra, that of the
absence of crowns [20]. We then notice that Bongartz’ well-known example of an algebra
not admitting a multiplicative basis [14] contains a full convex subcategory isomorphic to

a crown. Here, we define more general notions of crowns and quasi-crowns, valid in an
arbitrary schurian algebraVe investigate how the absence of quasi-crowns implies the
strong simple connectedness of the algebra, and show that this absence always implies the
existence of a multiplicative basis.

Our motivation comes from the representation theory of finite dimensional algebras
over an algebraically closed field For such an algebra, there exists a (uniquely de-
termined) quiverQ 4 and (at least) a surjective algabmorphism from the path algebra
kQa of Q4 onto A, whose kernel is denoted hy, see, for instance, [13]. The alge-
bra A is calledtriangular if Q4 has no oriented cycles. For each péir4, I,,), called
a presentationof A, one can define thundamental groupr1(Q4, I,), see [23,25]. A
triangular algebrad is calledsimply connectedf, for every presentationiQ4, I,), the
groupm1(Qa, 1) is trivial [8], andstrongly simply connecteflevery full convex subcat-
egory of A is simply connected [33]. IA is aschurian algebrgthat is, if, for each pair
of primitive idempotents, f of A, we have dim(eAf) < 1), then all its presentations
yield isomorphic fundamental groups [10], aAds simply connected if and only if so is
the associated chain complex [16,17,29]. Simply connected algebras have played an im-
portant role in representation theory: indeed, covering techniques allow to reduce many
problems to problems about simply connected algebras. While finding criteria for the sim-
ple connectedness of an algebra is an urtidite problem (because it can be reduced to a
word problem), it is known (see [33]) that, if an algebra is separated in the sense of [11],
then it is simply connected (but the converse is not true). On the other hand, the class of
strongly simply connected algebras seems much easier to handle. Indeed, characterisations
of strong simple connectedness were obtained, for instance, in [4], and the representation
theory of the tame strongly simply connected algebras is largely known, see [28,31,32].
In particular, a question was asked by Skofaski in [33] whether it is true that a simply
connected algebra is strongly simply connected if and only if it contains no full convex
subcategory which is hereditary of tyﬁe While the answer to this question is negative,
even for incidence algebras (see example 1 in 3.1 below) there are many classes for which
this statement holds true (see, for instance, [1]). In this paper, we return to the general
case.

It was shown by Dréxler [20] that an incidence algebra is strongly simply connected if
and only if its quiver contains no crowns. Crowns are well known in the combinatorics of
posets, and are associated to their dismantlability (see, for instance, [19,21]). In this paper,
we define a notion of dismantlability in an arbitrary schurian algebra.

On the other hand, we relate the strong simple connectedness to the vanishing of some of
its (co)homology groups, namely, the Hochschild cohomology gréLifi$ (A) of A with
coefficients in the bimodulgA 4 (see [18]) and the simplicial homology (and cohomology
with coefficient in an abelian grou@) groupsSH,.(A) (andSH*(A, G), respectively) of
the simplicial complex associated with

We are now able to state our first main theorem.
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Theorem A. Let A be a schurian triangular algebra. Ehfollowing conditions are equiv-
alent

(a) A is strongly simply connected.

(b) A is dismantlable.

(c) A is separated and contains no quasi-crowns.

(d) A is simply connected and contains no quasi-crowns.

(e) SH1(A) =0andA contains no quasi-crowns.

() SHL(A, G) =0 for every abelian grou;, and A contains no quasi-crowns.

(g) A is a quotient of an incidence algebr&, H1(A) = 0, and A contains no crowns.

As a consequence of the equivalence of (a) and (b), we give an algorithm allowing to
check whether a schurian triangular algebra is strongly simply connected or not (thus, in
particular, verifying that the strong simple connectedness of a schurian triangular algebra
is a decidable problem).

Predictably, we obtain much better results for quotients of incidence algebras, namely,
in this case, we are able to replace “quasi-crowns” by “crowns” in the statement of the
theorem above.

Also, we answer in the negative the conjecture saying that the presence of a bypass in
the quiver of a schurian algebra prevents it from being simply connected. We show, on
the other hand, that the presence of such a bypass in a simply connected schurian algebra
implies the existence of a quasi-crown.

Our second main theorem is the following.

Theorem B. Let A be a schurian triangular algebra containing no quasi-crowns. THen
admits a multiplicative basis.

This clearly generalises the main result of [14], which states the existence of a multi-
plicative basis in a triangular representation-finite algebra. As an easy consequence of our
result, only finitely many non-isomorphic schurian algebras of a given dimension do not
contain quasi-crowns.

Our proofs rely heavily on the use of a Mayer—Vietoris sequence for a one-point exten-
sion, as in [15,26]. We also obtain as consequences some of the results of [20,22].

The paper is organised as follows. After a preliminary Section 2, we introduce our no-
tions of crown and quasi-crown in Section 3, and our notion of dismantlability in Section 4.
Section 5 is devoted to the proof of Theorem A and Section 6 to the proof of Theorem B.

2. Preliminaries
2.1. Notation
In this paper, by algebra, we always mean a basic and connected finite dimensional

algebra over an algebraically closed fiéldGiven a quiverQ, we denote byQg its set of
points and byQ1 its set of arrows. Aelationin Q from a pointx to a pointy is a linear
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combinationp = ) _i" ; A;w; where, for each, A; € k is non-zero andy; is a path of
length at least two from to y. A relation in Q is called amonomiaif it equals a path, and
acommutativity relatiorif it equals the difference of two paths. We denoteklgy the path
algebra ofQ and byk Q(x, y) thek-vector space generated by all pathgirfrom x to y.
For an algebrai, we denote by0 4 its quiver. For every algebra, there exists an idedl

in kQ 4, generated by a set of relations, such th&x kQ /1. The pair(Q4, I) is called
apresentatiorof A. An algebrad = kQ/I can equivalently be considered ak-aategory
of which the object clasd is Qg, and the set of morphism$(x, y) from x to y is the
guotient ofk O (x, y) by the subspac&(x, y) =1 NkQ(x, y), see [13]. A full subcategory
B of A is calledconvexf any path inA with source and target iB lies entirely inB. An
algebraA is calledtriangular if Q4 has no oriented cycles, and it is calchurianif, for

all x, y € Ag, we have dimA(x, y) < 1. In this paper, we deal exclusively with schurian
triangular algebras. For a pointin the quiverQ 4, we denote by, the corresponding
primitive idempotent, and by, and/, the corresponding indecomposable projective and
injective A-module, respectively.

2.2. Simple connectedness

Let O be a connected quiver without oriented cycles drok an ideal ok Q gener-
ated by relations. A relation =) _7" ; Ajw; € I(x, y) is calledminimalif m > 2 and, for
every non-empty proper subsetC {1,2,...,m}, we havey_;_, Ajw; ¢ I(x, y). For an
arrowa, we denote by~ its formal inverse A walkin Q from x to y is a formal compo-
sitionajtes? - - o' (Wheree; € Q1 ande; € {1, —1} for all i) from x to y. Thehomotopy
relationis the least equivalence on the set of all walkgirsuch that:

(a) Foreach arrow : x — y, we havexa ™! ~ ¢, anda~1a ~ey.
(b) For each minimal relatioh ; w;, we havew; ~ w; forall i, j.
(c) If u~v,thenwuw’ ~wvw’, whenever these products are defined.

The set of all equivalence classes of walks starting and ending at a fixed basegpoint
is a group, called thtundamental groupf (Q, I) and denoted byr1(Q, I). A triangu-
lar algebraA is calledsimply connected, for any presentatioiQ 4, I) of A, the group
m1(Q 4, I) is trivial [8]. It is calledstrongly simply connectdtlevery full convex subcate-
gory of A is simply connected [33].

It is shown in [10] that, if an algebrd = kQ 4/ is schurian and triangular, then the
fundamental group1(Q 4, I) does not depend on the presentation, /) of A. We may
thus use the unambiguous notatiei(A) to stand forr1(Qa, I).

Moreover, it is known that, for every connected bound quii@r 7), there exists a
CW-complexB = B(Q, I), called itsclassifying spacesuch thatr1(Q, I) = 71(5), see
[17]. If kQ/I is schurian and triangular, then the classifying spac@, 1) is a simplicial
complex, see [16,29], which coincides with the one considered in [15]. It is constructed as
follows: ani-simplex is a set ofi + 1)-distinct objectqxg, x1, ..., x;} in Ag such that, for
any j with 1< j <i, there exists;; € A(xj_1, x;) such that;a;_1 - --a1 # 0. We denote
by C.(A) the corresponding chain complex.

For concepts and results from algebraic topology, we refer the reader to [30].
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We need the following concept. L&t be a non-necessarily connected algebr®-a
module M is calledseparatedf the supports of the distinct indecomposable summands
of M lie in distinct connected components Bf For an algebra, and forx € Ag, let A*
denote the full subcategory af generated by the non-predecessors @f Q4. Thenx
is calledseparatingif the restriction toA* of radP, is separated as a#t*-module. The
algebraA is calledseparatedf eachx € Ag is separating. It is shown in [33] that any
separated algebra is simply connected.

2.3. Strong simple connectedness

Let O be a connected quiver without oriented cyclescaxtour (p, ¢) in Q from x
to y is a pair of parallel paths of positive length fromto y. A contour(p, ¢) is called
interlacedif p andg have a common point besidesandy. It is calledirreducibleif there
exists no sequence of patlps= po, p1,..., pn = g from x to y such that, for each,
the contour(p;, p;+1) is interlaced. A cycleC in Q is calledirreducible if, either C is
an irreducible contour, of is not a contour, but satisfies the following condition and its
dual: for each source in C, no proper successor afin Q is also a source of’, and
exactly two proper successorsxoin Q are sinks ofC. This is equivalent to the definition
of irreducibility given in [4, 1.5]. It is proven in [4, 2.4] that an algebtas schurian and
strongly simply connected if and only if

(a) allirreducible cycles are irreducible contours, and
(b) there exists a presentatign= kQ 4 /1 such that for each irreducible contogy, ¢),
we havep,q ¢ I butp —g e I.

Such a presentation is a normed presentation, in the sense of [12]. Its existence implies
that such an algebra admits a multiplicative basis.

2.4. Incidence algebras and their quotients

Let (¥, <) be afinite poset (partially ordered set) witkelements. Théncidence alge-
bra kX is the subalgebra of the algelt, (k) of all n x n matrices ovek consisting of
the matricega;;] satisfyinga;; =0 if j £ i. The quiverQ 5 of kX is the (oriented) Hasse
diagram of¥, andk X = kQyx /I, wherely is generated by all differencgs— ¢, with
(p, q) a contour inQ . The quiverQ s has ndbypassthat is, no subquiver of the form

B2

O —— 0 — +++ — 0 — O

/31/4 ) \t

[e] ]

and, conversely, for any quivap having no bypass, there exists a podetsuch that
Q=0x.

In many places, we consider quotients of incidence algebras. For such a quotient
kQa/l1, there exists a posef with Qs = Q4 and, furthermore] = Iy + J, whereJ is
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an ideal ofk O > generated by monomials. It is well known thatdifis schurian strongly
simply connected, then it is a quotient of an incidence algebra, see [20, 2.7], [4, 2.4].

3. Crowns

3.1. Before our main definitions, we give some motivating examples. We recall that
in [33], Skowrahski stated the following problem. Let be a simply connected algebra.
Is it true thatA is strongly simply connected if and only & contains no full convex
subcategory which is hereditary of tyge (we then say tha# is strongly A-free)? The

answer to this question is negative in geal, and even for incidence algebras.

Example 1. Let indeedX be the poset with quiver

o
o (]
o o
@]
Clearly, the incidence algebka is not strongly simply connected, but is simply connected
and stronglyA-free.
One could think of replacing the requirement thabgstrongly&-free by the one that
A contains no full subcategory which is hereditary of typéve then say that is A-free).
This, however, is not true, even if one assumes (as we dojtimschurian, as is shown
by the incidence algebra of the following poset (called a “cross”).
Example 2.
¢} (]
@]
@] [e]

it is strongly simply connected, but natfree.

However, it was shown in [20, 3.3] that an incidence algebra is strongly simply con-
nected if and only if it contains no crown as full subcategory. We shall define here a concept
of quasi-crown which makes sense for any schurian algebra, and reformulate S&kigro
guestion as follows: le be a schurian and simply connected, is it true thag strongly
simply connected if and only if it contains no quasi-crown as a full subcategory? Our first
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main result answers this question positively. In case thi a quotient of an incidence
algebra we may replace “quasi-crown” by “crown” in this reformulation.

We notice that, in casa is not a quotient of an incidence algebra, the requirement that
A is simply connected does not necessarily imply thatontains no crown, as is shown
by the following example.

Example 3.

O=<—20
‘&
oO=<—2o0 O =<— o0

/ =
O=<— 0

with all squares commutative except the upper left one, where we have the rejation.

Here A is simply connected even though it contains a crown. This example is called the
“box,” because its geometric realisation isabic box with all faces closed, except the
upper one, which is half-open. Note thatis a tame quasi-tilted algebra. It is actually a
semiregular branch enlargement of a tame concealed algebra (but is not iterated tilted of
typeA), see [3].

3.2. We now recall a few notions and results from the theory of split-by nilpotent
extensions (see, for instance, [5,9]). l&tnd B be two algebras, we say thAtis asplit
extensiorof A by the two sided nilpotent idedV if there exists a split surjective algebra
morphismr : B — A whose kernelv is a nilpotentideal oB. In this casel is generated
by arrows of the quiver oB. Indeed, letB = kQp/I, then a sefS of generators oV is
specialif, for eachp + I € S, we have:

(a) If p is a path inQ g then, for each proper subpathof p, we haveo’ + I ¢ W.
(b) If p=>"1"1Aw; is a relation withm > 2, then for each non-empty proper subset
JC{l,2,....m},wehave}_; ,Ajw;+1¢W.

Itis shownin [9, 1.3] that, ifB =k Qp/I is a split extension ofA by W, thenW has a
special set of generators and any such set consists of the classes motlatmows inQ 5.
We now give a criterion allowing to verify whether a bound quiver is a split extension or
not.

Lemma. Let B =k(Qp/I be a schurian triangular algebra an@ be an ideal inB gen-
erated by classes moduloof a set of arrows. The® is a split extension o8/ W by W
if and only if, for every pair of non-zero paths= y1y2- - -y, andy’ = yy,-- -y, bound
by a minimal relation.y + wy’ in B, if there exists an (with 1 <i < r) such thaty; € S,
then there exists g (with 1 < j < s) such thaty]f €Ss.
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Proof. NecessityAssumeB is a split extension oB/W by W. Then the subalgebra
generated by the classes of arrows which are nétigisomorphic toB/ W, so we can
assume that for any arrofv¢ S, the lifting of 5+ W € B/W to Biis f = B+ I. Assumey
andy’ are as stated, and that ¢ S forall j. Theny’ + W = (y;+ W) --- (y{ + W) #0in
B/W,hencey'=y{---y/ ¢ Win B.Ontheotherhang; =y +1 € W andiy +uy’' € I
imply y’ € W (because: = 0), a contradiction.

SufficiencyWe need only observe that our hypothesis implies that the subalgeBra of
generated by all arrows not i$1is isomorphic toB/W. Since it is obviously a subspace,
it suffices to prove that, i, § are paths inQz andy =y + 1, § =8 + I, then the product
(¥ + W)(6 + W) =y + W yields the same value for all representatives of the clagses
ands. However, if this is not the case, then there exist paths’ such thaty — y' e W,
§—68 e W andys e W, whiley’s’ ¢ W. Now, y8 andy’s’ being parallel paths are bound
by a minimal relation, and we get a contradiction to our hypothesis.

3.3. Inthis section, all algebras are schurian triangular algebrasA lbet an algebra.
We define thenterval [x, y]4, or more briefly{x, y] betweernx andy (with x, y € Ag) to
be the full subcategory oA generated by all points € Ag which lie on a non-zero path
from x to y, that is, such that

A(x,2)A(z,y) #0.

Clearly, if all paths fromx to y in A are non-zero, thefx, y] coincides with the full
subcategory(x, y) of A generated by the convex hull efand y. This is the case, for
instance, whenevet is an incidence algebra.

3.4. The notion of crown is well known in the combinatorics of posets, see, for in-
stance, [20,21]. We generalise it tohsirian algebras as follows. Lét be a full subcat-
egory of A consisting of 2 objects{x1, ..., x,, y1, ..., y»} @and 21 non-zero morphisms
{ua,...,un,v1,...,v,} with n > 2, and of the form

X1 v X2 v T Xn
uy l Nz l Un
y1 y2 s Yn

We say that is acrown (of width ) in A if:

(@) [xi, yj1N[xn, yi1# 0 ifand only if j =i and(h,1) € {(G, i), ( —1,i),(,i + D)} or
j=i+land(h, ) e{Gi+1),Gi), 0 @+1,i+1)}.

(b) The intersection of three distinpt;, y;] is empty.

(c) Foreach, [x;, yi1N[x;, yiral = {x;} and[x;, y;1 N [x;—1, yi] = {yi}.

We agree to setp = x;, Xn+1= X1, YO = Yns Yn+1 = Y1.
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We now generalise this notion. Létbe a full subcategory ol =kQ4/1. ThenC is
aquasi-crownf there exists a set of arrowss, ap, ..., «,} in Q4 such that, ifR denotes
the ideal ofA generated by the arrows + I (with 1 <i <r), then

(a) C is a split extension of’ = C/C N R, and
(b) C’isacrowninA/R.

In this case, we say that the points®induce a quasi-crown ia.

Intuitively, a quasi-crowr may be thought of as consisting of a cro@htogether with
some additional paths between the point€gfand these paths makga split extension
of C'.

Quasi-crowns already appred implicitly in Bongartz’ proof [14] (see the proof of
Lemma 3) and as we shall see in 3.8 below, also in [6, 2.4].

Example4. The following is an example of a quasi-crown, takiRg= (¢). Let C be given

by the quiver
>
€

Example 5. Clearly, in incidence algebras, quasi-crowns are crowns. But the two notions
do not coincide even for quotients of incidence algebras, as is shown by the algebra given
by the quiver

o

8

O<—-0
O=<—0

bound byae =0, ye =0.

O/O\O (o]
Y
NP

bound byeg = 0 anday =0.

3.5. Recall that [20, 3.3] says that an incideradgebra is strongly simply connected if
and only if contains no crowns. We have the following lemma.

Lemma. Let A be a schurian strongly simply connected algebra, tAerontains no quasi-
crown.

Proof. Assume thatd = kQ 4/ contains a quasi-cromi. Thus, there exists an ideal
of A generated by the classes modulof a set of arrowsas, oz, ..., a,} of Q4 such that
Cisasplitextensionof’ = C/CNR,andC’ is acrowninA/R. Therefore, there exisi2
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objects{x1, ..., x4, ¥1, ..., ya} Of C and 2 non-zero morphisméu1, ..., u,, v1, ..., v,}
of A/R with n > 2. LetI" be the cycle given by

X1 o X2 v . Xn
ui l &2 l Un
yi y2 S Yn

Clearly, I' is not a contour. Sincd is schurian strongly simply connected, we obtain
by [4, 1.3 or 2.4], thaf™ is reducible. Hence, there exists a patlon fromx; to y; (with
j#i,i+1)orfromx; tox; (with j i) or dually fromy; to y; (with j #i). We can
assume thaj > i and thatj — i is minimal for this property. Let us first suppose that
j —i>1.Ifwe have a pathw from x; to x;, then

w

T

Xi Xit+1 e Xj
Vit+1
\Hl l \ \ l N
Vi
Yi+1 e Yj

defines a cycle which must be irreducible by the minimalityj of i. This yields a con-
tradiction to [4, 1.3] sinced is schurian strongly simply connected. The other cases are
similar.

Therefore,j =i + 1 and we can assume, up to duality, that there is a path f;oim
xi+1, sayw. We thus have a contour given l§y;, wu;11). SinceA is schurian strongly
simply connected, there exists a binomial relation involving those paths. Mois,a
guotient of an incidence algebra amd is non-zero, hence we get thatu; 1 is also
non-zero. Sinc&’ = C/C N R is a crown, thenwu; 11 must be zero iM /R, otherwise
Xit+1 € [xi, yi+1] N [xi+1, yi+1]. On the other hand, sinaew; 1 is not zero inA, we can
assume that there exists an arww R which is a subpath abu;+1. The binomial relation
of A involving v; andwu; 1 forcesw; to be zero inA/R (by 3.2), a contradiction. Hence,
there is no quasi-crown containeddn O

Example 6. AssumeA = kX/J is a quotient of an incidence algebra. 3f contains a

(quasi-)crown this does not necessarily implies thatontains a (quasi-)crown. Let, for
instance A be the quotient of the incidence algebra of the poset with quiver

o o
@
o
£l
o

by the ideal generated 8.
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3.6. We recall that we always assume our algebras to be schurian and triangular. The
following construction, due to Bretscher and Gabriel [15] is needed essentially in the se-
guel. Lets be a source in an algebra We define the following two sets of objects 4f

X, ={x € Ao| A(s.x) #0}

(that is, X5 consists of the objects in the support of the corresponding indecomposable
projectiveA-modulePy), and

o=\ s}

(that is, X consists of the objects in the support of the radicaPgf We partially order
each of these sets by setting

x<y ifandonlyif A(s, y)A(y,x)#0

(that s, there exist non-zero paths freno y and fromy to x with non-zero composition).
The incidence categorigsX; andk X, can be identified with subcategories4f usually
not full.

Example7. Let A be given by the quiver
N
N
o (]
N
@]

bound byas = 0. ThenX and X} are respectively given by the posets

Lemma. Lets be a source irA. If the points{xs, ..., x,, ¥1, ..., ¥,} induce a crown" in
kX, then the same points induce a quasi-crowmin
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Proof. By hypothesis, there exists a full subcategory &f of the form

N
aq (o7
a2
_xl v xz 2 cee v _xn
n
ui \L NZ \L Un

yi y2 e Yn

Let C’ denote the full subcategory generated by thandy;. Also let R be the ideal
of A generated by the classes of all the arrows which are naEin We show that the full
subcategory” of A generated by’ induces a quasi-crown of. Clearly,C' =C/C N R.
Thus, it suffices to verify thaf is a split extension of’. Let x andy be points ofC and
thus of C’ such that there exists a pathfrom x to y in kX;. We have to show that the
class of no path from to y in A lies in R. Suppose thus that there exists a non-zero path
w fromx to y in R. Sincex is in C’, itis also ink X and there exists a paihfrom s to
x in A such thaty is a non-zero path. Sinae belongs tor, this means thatw = 0. On
the other handA is a schurian algebra, thus there exists a scalauch thaty = Aw in A.
Thereforepy = A(vw) = 0 a contradiction which proves that no such patlexists. This
shows thatC is a split extension of’. O

Example 8. In general, the quasi-crown induced as in the lemma is not a crodnas is
shown by the algebra given by the quiver

N
o o
| >
o
o B o
\_/
bound by all possible commutativity relations agél= 0, y8 = 0.

3.7. We have better results for quotients of incidence algebras.

Lemma. Let A be a quotient of an incidence algebra and assume k3t contains a
crown. ThenA contains a crown.

Proof. By 3.6,A contains a quasi-crowR, induced by one of X. We first claim that the
interval fromx to y in kX coincides with the one of. Letz € [x, y]a, that is, there exist
pathsp : x ~» z andq : z ~» y such thatpq is not zero inA. Sincex andy belong tok X,
there exist non-zero paths: s ~» x andv : s ~ y. SinceA is a quotient of an incidence
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algebra andv, upq) is a contour, thempgq is non-zero inA. Thuspg corresponds also to

a non-zero path ik X;. This proves that € [x, ylrx,. The other inclusion being obvious,

this establishes our claim. Now, in order to show tRahust be a crown im, assume that

this is not the case. In the notation of 3.4, this means that there exists a patk; ftomy;

(with j # i), from y; to y; (with j # i), or fromx; to y; (with j #i,i 4+ 1). In each of

these cases, we find a zero path parallel to a non-zero one, a contradiction to the fact that
A is a quotient of an incidence algebrac

3.8. As a consequence of 3.6, we connect the notion of quasi-crown with the results
of [6, 2.4]. Let A = B[M] be a one-point extension algebra, andenote the exten-
sion point. Since all presentations afgive rise to isomorphic fundamental groups, we
fix a presentation oo, and consider the induced presentationBofLet = be the least
equivalence relation on the set of arrows of sowaich thatw; = a2 whenever there
exists a minimal relation of the foromy (¢1v1) + A2(a2v2). Let ¢ be the number of equiv-
alence classeBs1], ..., [B;] of arrows with source. For eachi, with 1 <i <1, let
[(i) be the number of tuples of path{s1, vs, ..., u,, v,) such that there are relations
)\/]_’z(alvl) + )\/]iz((XZUZ): cees )L;,,l’n(anflvnfl) + )‘Zfl,n (anun), A;’l(anvn) + )\Z’l(alul)
with a1, ag, ..., a, distinct arrows in ;1.

Let further,B = B; x --- x B., whereBs, ..., B, are connected, then for eaghthe
embedding ofB; inside A induces a canonical group morphispn : w1(B;) — m1(A),
hence a morphism : ]_[j-=l m1(B;j) — m1(A).

Corollary. With the above notatian

(a) Assume that for somewith 1 < i <7, we havel(i) # 0, then A contains a quasi-
crown. If, in particular, A is a quotient of an incidence algebra, then A contains a
crown.

(b) AssumeA contains no quasi-crown, then, for each abelian graupwve have a short
exact sequence of abelian groups

) 2229, T Hom(x1(B)). G) —> .

j=1

0— G ¢ — Hom(nl(A), G

(c) If Ais simply connected, but one of tBe is not, thenA contains a quasi-crown.

Proof. (a) Assumd (i) # 0 for somei, and(u1, v1, ..., u,, v,) be a tuple as above, then
A contains a subcategory of the form

N
g (o201
az
_xl v xz 2 “ee - _xn
uy \L \2 \L Un

yi y2 e Yn
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It suffices, in view of 3.6, to show that; contains a crown. We may clearly, without
loss of generality, assume thais minimal. This implies immediately that the points
andy; satisfy conditions (a) and (b) of the definition of crown, see 3.4. In the terminology
of [7], these points induce a weak crown &Xs. By [7, 3.2], the convex hull of these
points (ink X;) contains a crown. By 3.64 contains a quasi-crown. This shows our first
statement. For the second, assume thista quotient of an incidence algebra, then, as just
seenk X contains a crown. By 3.7 itself contains a crown.

(b, ¢) Itis shown in [6, 2.4] that, for each abelian graGpthere is an exact sequence
of abelian groups

c t
0—> G'~* — Hom(r1(4), G) 2™, TT Hom(n1(B)). G) — [ G'7.
j=1 i=1

Both (b) and (c) then follow immediately from (a).0

4. Dismantlability

4.1. Let A be a schurian algebra. A pointe Ag is called adoubly irreducible(see
[21]) if there is at most one arrow of targetand at most one arrow of souree

Given a doubly irreducible in A, we define a new catego® = A(x) such thatBy =
Ao\{x} as follows.

Assume first thay % PN af # 0, we letB be the full subcategory of consisting
of all its objects except. If, on the other hand = 0, we letB be the category whose
object class iy = Ap\{x} and whose arrows are the same as thosé,axcept for the
arrowsa and 8 which are replaced by a new arra: y — z. Finally, the relations oB

are exactly those of, except the relationg = 0 which disappears.

We define similarlyB if x £ z orif y % x.

Note thatB is generally not schurian: id is given by the quiver

bound by = 0, thenB is given byy =
Y

As will be seen, the statement and proof of the following lemma hold true evetxif
is not schurian, by taking the fundamental group of the induced presentation.

Lemma. Let A be a schurian algebra, and be a doubly irreducible irA such thatA (x)
is schurian. Themr1(A) = 71(A(x)).
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Proof. Since we are only interested in the homotopy relationd iand A(x), we may,
and shall, assume without loss of generality thihbinomial relations are commutativity
relations.

Assume first thay < x LN z. We have two caseg8 # 0 anda = 0. We show that
the second case may be reduced to the first. Indeed, suppose0. It is known that
the homotopy ignores the monomial relations. WeAétbe the algebra (not necessarily
schurian) given by the same quiver as and the same relations exceg = 0, which
disappears. Then the identity morphismsaely induce an isomorphism between the fun-
damental groups of andA’.

ReplacingA by A’ if necessary, we may thus assume from the start thi a not

necessarily schurian algebra, and thas a doubly irreducible such that% x LN z and

aB # 0. Moreover,A is only bound by monomial relations or commutativity relations.
Then the full subcategor® = A(x) of A such thatBg = Ag\{x} is also bound by mono-

mial relations and commutativity relations. We assume first that there is no relation of the
formaB = y1...y:. Thus, the arrows, 8 are replaced irB by a new arrowx’ : y — z.

We define a magp from the setVp of all walks in B to the sedV, of all walks in A by
setting

¢(x") =x'forall x’ € By,
¢@(y) =y forany arrowy # o’ in B, and
p(@') =ap.

We extendp to any walk inWg by the formula
Pt &) =pED ... @)

(hereg; is an arrow inB, ande; € {1, —1} for eachi). This map is surjective: indeed, any
irreducible closed walk it involving a€, or 8¢ (with € € {1, —1}) involves(aB)¢ because
the pointx is doubly irreducible. Since clearly respects the mimial relations, it induces
a group epimorphism : 71(B) — m1(A).

We now defing) : W4 — W; as follows:

¥ (x) =z,

¥ (x) =x"forall x" # x in Ao,
V(o) =0,

¥ (B) =z, and

¥(y)=y forany arrowy #a, g in A.

We extendy to any walk as above. Sinae respects the minimal relations, it induces
a morphismy : 71(A) — m1(B). On the other hand, we havep = 1y, so thatyreg =
1.,(p) and sop is a group isomorphism.

Assume now that there exists a minimal relation of the fan=y1...y,. In this case,
the arrowsy andg are simply deleted irB.

We definep : Wp — W, to be the inclusion. Clearly, it induces a group morphism
¢ :m1(A) — 7w1(B). We now defing) : W4 — Wp as follows:
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¥ (x) =1z,

¥ (x) =x"forall x" # x in Ao,
V) =y1...7,
¥(B) =z and

¥(y)=y forany arrowy #a, g in A.

We extendys to walks in the usual way. Clearly; is surjective. Also, it respects
the minimal relations, hence it induces a group epimorphismri1(A) — 71(B). To
finish the proof, it suffices to show that) = 1;,(4). In order to do it, we prove that
for every closed walkw in A, we havegy (w) ~ w (where ~ denotes the homo-
topy relation). Clearly, we may consider only the case where wiaBw> (or, dually,
w= wlﬁ_la_lwz), and then we haveéy (w) = ¢(w1y1...y,w2) = WiYL...Y;Ww2 ~ W
(or g¥ (w) = w1y, t...y7 twy ~ w, respectively).

Finally, the cases where > zandy & x are similar. O

4.2. We deduce that this construction presembesstrong simple connectedness of the
algebra.

Corollary. AssumeA to be schurian strongly simply connected and that Ag is doubly
irreducible. ThenB = A(x) is strongly simply connected.

Proof. Let C be a full convex subcategory df. Assume again that % x LN z (the
other cases being similar). If andz do not both lie inC, thenC is (isomorphic to) a

full convex subcategory oft, and hence is simply connected. Otherwise, there exists a
full convex subcategorg’ of A such thatC = C’(x). SinceC’ is simply connected, and
71(C") = w1(C), thenC is simply connected. O

4.3. A schurian algebra is said to balismantlable (by doubly irreducibles) if there
exists an orderingx1, xo, ..., x,} of all objects ofA such thats is doubly irreducible in
A and, foreach > 1, A(x1,...,x;) = A(x1, ..., x;—1)(x;) is schurian and the objegt 1
is doubly irreducible inA (x1, ..., x;).

Remark. Let A be a schurian algebra whose quiver contains no bypass. There exists a
unique poset’ such that) s = Q4. We show in 4.6 below that, if is dismantlable then
S0 iskX'. The converse, however, is not true.

Example9. Let X' be the poset given by the quiver

7N
N
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andJ be the ideal ok X generated bwg (= y§), thenA = kX/J is not dismantlable,
even thouglt X clearly is.

Proposition. Let A be dismantlable. TheA is simply connected.

Proof. By induction on|Ag|. For|Ag| = 1, there is nothing to show. Assume the statement
holds for all dismantlable algebras such thatAj| < [Ao|, and letA be dismantlable.
Let {x1,...,x,} be an ordering of the objects of as in the above definition. By 4.1,
m1(A(x1)) = m1(A). By the induction hypothesisi(x1) is simply connected. Hence so
isA. O

4.4. We now show that dismantlability iplies strong simple connectedness.

Lemma. Let A be a schurian dismantlable algebra, and &¢be a full convex subcategory
of A. ThenC is dismantlable.

Proof. By induction on|Ag|.The statement being clear fotg| = 1, assume thatg| > 1
and thatA contains a full convex subcatego€y which is not dismantlable. In particu-
lar, C # A. SinceC is convex inA, there exists a source or a sinke Ag\Cp. We may
then, up to duality, writeA = B[M], whereB is the full convex subcategory of with
Bo = Ag\{a}. We haveC C B, andC is convex inB. Since|Bg| = |Ag| — 1, the induc-
tion hypothesis implies tha is not dismantlable. Since, howevdrijtself is dismantlable,
there exists an orderifgs, .. ., x,} of the objects ofA as in the definition 4.3. In particular,
x1 # a because otherwisB would be dismantlable. If; ¢ Co, thenC is (isomorphic to)
a full convex subcategory of(x1), andA(x1) is dismantlable with one object less that
then the induction hypothesis yields a a@aliction to the non-dismantlability @f. There-
fore x1 € Cop. This implies thatC(x1) is a full convex subcategory of(x1). But then the
induction hypothesis yields that(x1) is dismantlable. Therefor€ itself is dismantlable,
another contradiction. O

4.5. This lemma and 4.3 imply immediately the following.
Corollary. Let A be a schurian dismantlable algebra, thdris strongly simply connected.

4.6. As promised, we prove that dismantlability of a schurian algebra implies that of a
corresponding incidence algebra.

Proposition. Let A be a schurian dismantlable algebra, then there exist a unique Poset
such thatQy = Q4 andk X is also dismantlable.

Proof. By the above corollary and [2, 4.4] there exist a unique péssuch thatQ s =
Q4 andk X is strongly simply connected. Thus, by [20, 3.8}, contains no crown. By
[21, 2.3],k X is dismantlable. O
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4.7. We end this section by proving the converse of 4.5.

Proposition. Let A be a schurian strongly simply connected algebra. THeis dismant-
lable.

Proof. By [2, 4.4], sinceA is strongly simply connected, there exists a strongly simply
connected incidence algebr& such thata is a quotient ok X'. By [20, 3.3],k X contains

no crown. By [21, 2.3]k X' is dismantlable. In particulak,X’ contains a doubly irreducible

x which is also doubly irreducible id. Now, notice thatA (x) is schurian. This is clear if
A(x) is a full subcategory ofi. Otherwise, there exist two arrows y — x andg : x — z
suchthatyg =0in A. If x does not belong to a cycle, then the statement is clear. However,
if it does, then we can clearly assume thatrthexists an irreducible cycle containiag
andg, and this contradicts [4, 2.4]. By 4.2 abov&—= A(x) is strongly simply connected.
Since|Bg| < |Agl, induction says thaB is dismantlable. Hence sois. O

5. Theproof of Theorem A

5.1. This section is devoted to the proof of our first main theoremslie a source in
a schurian triangular algebra. Then we can writed = B[M] whereB is the full convex
subcategory ofA such thatBo = Ag\{s}. We defineX; and X as in 3.6. By [15, 2.6], we
have a short exact sequence of complexes
0— (k=) 2 cokzy @ o) 2 cua) — 0,
whereu, v, i, j are induced by the inclusions. Passing to (simplicial) homology yields the
Mayer-Vietoris sequence

- —> SH(A) %> SH1(kX!) —> SH1(kZy) ® SH1(B) —> SHi(A)
2> SHo(kX)) - SHo(k %) ® SHo(B) —> SHo(A)

and it is shown in [15, p. 34] that the morphisnis injective if and only if the poink

is separating. On the other hand, the pasgtadmits a maximal element, hence the
corresponding chain complex is contratgilfbecause it is homeomorphic to a cone, see
[16, 3.4]), therefore&s H,, (kX) =0 foralln > 1.

Lemma. Let A be a schurian algebra, andbe a source ird.

(a) If kX; contains no crowns, then there exists a monomorpliigh(B) — SH1(A).
Thus,SH1(A) =0 impliesSH1(B) = 0.

(b) If s is separating, then there exists an epimorphiSH1(B) — SH1(A). Thus,
SH1(B) =0impliesSH1(A) =0.

(c) If kX, contains no crowns and is separating, then we have an isomorphism
SH1(B) = SH1(A).
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Proof. SinceSH1(kX;) =0, we have an exact sequence
NN SHl(kES’) — SH1(B) — SH1(A) AN SHO(kES’) s

If the incidence algebraX; contains no crown, then it is strongly simply connected.
In particular,r1(k X7) is trivial, and henceSHy (kX)) = 0 (because, by the Hurewicz—
Poincaré theoren§ Hy(k X)) is the abelianisation of1(k X)). Hence (a) follows. Ifs is
separating, thenis injective, thus giving (b). Finally, (c) follows trivially. O

5.2. ltis well known that, ifA is a simply connected algebra (or, elseHit{ 1(A) = 0),
then every source i is separating, see [6] (or [33], respectively). In the schurian case,
we can say more.

Corollary. Let A be a schurian algebra. I§ H1(A) = 0, then every source iA is separat-
ing.

Proof. Indeed, it follows from the Mayer—Vietoris sequence that the morphisnmnjec-
tive. O

5.3. The following lemma is part of the proof of our Theorem A.

Lemma. Let A be a schurian algebra, not containing quasi-crowns and such that
SH1(A) =0. ThenA is strongly simply connected.

Proof. By induction on|Ap|. Since the statement is clear farg| = 1, assume that it holds
for all schurian algebraB without quasi-crowns such thaBg| < |Ag| andSH1(B) = 0.

Let s be a source iM, and B be the full convex subcategory df defined byBg =
Ao\{s}. We claim thatt X contains no crowns. If this is not the case, ands a crown
in kX;, thenI" is a crown ink X, hence by 3.6 there exists a quasi-crowmdirwhich
must lie in B (because ¢ Ip) and this yields a contradiction which establishes our claim.
ThereforeSH1 (kX)) =0.

Since, as pointed out aboveH; (k Xs) is zero, the Mayer—Vietoris sequence gives

0= SHi(kX;) — SH1(B) — SH1(A) =0.

Hence,SH1(B) = 0. FurthermoreB contains no quasi-crown. Therefojs strongly
simply connected, by the induction hypothesis. Since, on the other hasdeparating
(by the above corollaryy is simply connected.

In order to show thadl is strongly simply connected, we need to show that every proper
full convex subcategor¢ of A is simply connected. But, sinag is proper, there exists a
sources (up to duality) ofA such thats ¢ Co. Letting, as aboveBg = Ag\{s}, andB be
the full subcategory it generates, we get tRais strongly simply connected, a@dC B.
Therefore( is simply connected. O
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5.4. We may replace “quasi-crowns” by “crowns” in the case whtiie a quotient of
an incidence algebra.

Corollary. Let A be a quotient of an incidence algebra, not containing crowns and such
that SH1(A) = 0. ThenA is strongly simply connected.

Proof. This follows from 3.7 and the proof of 5.3 abovex
5.5. We also deduce from 5.3 an alternative proof of 3.8(c).

Corollary. Let A = B[M] be a schurian simply connected algebra such tRats not
simply connected. TheB contains a quasi-crown.

Proof. Lets denote the extension point. We suppose thabntains no quasi-crowns and
reach a contradiction. By the proof of 5&%; contains no crowns and sXH; (kX)) = 0.
On the other hand, the simple connectednesgsyiéldsSH1(A) = 0.By 5.1,SH1(B) = 0.
Since B has no quasi-crown, and satisfi§&/1(B) = 0, it follows from 5.3 thatB is
strongly simply connected, a contradiction to our hypothesis.

5.6. Itis a general problem to determine for which classes of algebras is simple con-
nectedness equivalent to the vanishing of the first Hochschild cohomology group (see, for
instance, [3,6,24,33]).

Proposition. Let A be a connected quotient of an incidence algebra, containing no crowns.
The following conditions are equivalent

(a) A is separated,
(b) A is simply connected,
(c) HHY(A) =0.

Proof. That (a) implies (b) follows from [33, 2.2]. Assume nowto be simply connected.
Since A is schurian, it follows from [27] thatH H1(A) = Hom(z1(A), k) = 0. Thus,
(b) implies (c).

We prove that (c) implies (a) by induction ddg|. Since the statement is clear for
|Ap| = 1, assume thatdp| > 1 and that the statement holds for any algeBrauch that
|Bo| < |Ao| andH HY(B) = 0.

Suppose thatf H1(A) = 0. We must prove that each objectin Ag is separating.
Let s be a source iA and letB be the full convex subcategory af with object class
Bo=Ao\{s}. ThenA = B[M] andB = ]_[j:1 Bj,whereBy, ..., B, are connected. More-
over, sinced is a quotient of an incidence algebra, then so areRheBy [33, 3.2],s is
separating, so we may assuméo be different froms. SinceA contains no crown, then,
by 3.8(a, b), there exists, for any abelian graipa short exact sequence

0— G — H0m(7T1(A), G) — 1_[ HOm(TL'l(Bj)a G) — 0.
j=1
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TakingG = k*, we have Horr1 (A), k™) = H HY(A) = 0. Hence, forany, H H(B;) =
Hom(r1(B;), k™) = 0, so, by the induction hypothesis, eaBh is separated. Since is
different froms, it belongs to someB;. SinceB; is separatedy is separating inB; and
therefore inA (becaused* = Bj?). ]

As will be seen shortly (and as is evident from 5.4) the equivalent conditions of the
proposition are equivalent to strong simple connectedness.

5.7. We are now able to prove our first main theorem.

Theorem. Let A be a schurian triangular algebra. Enfollowing conditions are equiva-
lent

(a) A is strongly simply connected.

(b) A is dismantlable.

(c) A is separated and contains no quasi-crowns.

(d) A is simply connected and contains no quasi-crowns.

(e) SH1(A) =0andA contains no quasi-crowns.

() SHL(A, G) =0 for every abelian grougs, and A contains no quasi-crowns.
(g) A is a quotient of an incidence algebre,H1(A) = 0 and A contains no crowns.

Proof. (a) implies (b). By 4.7.

(b) implies (a). By 4.5.

(a) implies (c). By [33, 4.1], every strongly simply connected algebra is separated. We
also apply 3.5.

(c) implies (d). By [33, 2.2], every separated algebra is simply connected.

(d) implies (e). Follows from thélurewicz—Poincaré theorem.

(e) implies (a). By 5.3.

(e) is equivalent to (f). By the Dual Universal Coefficients Theorem, we have, for any
abelian groupG:

SHY(A, G) = Homy(SH1(A), G) ® Ext; (SHo(A), G).

SinceA is connected$ Ho(A) = Z so thatSH1(A, G) = Homy(SH1(A), G). Thus (e)
implies (f). The converse follows upon takidg= SH1(A).

(a) implies (g). By [2, 4.5] (see also [4,20]} is a quotient of an incidence alge-
bra. MoreoverH H1(A) = 0 and by 3.5A contains no quasi-crown, theh contains no
crowns.

(g) implies (c). By 5.6. O

As a direct consequence of the equivalence between the strong simple connectedness
and the dismantlability of a schurian algebra, we have the following algorithm which al-
lows us to verify the strong simple connectedness of a schurian algebra:
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INPUT: A (which is a schurian algebra).
Check if there exists an € Ag which is a doubly irreducible.
If there exists no doubly irreducible
OUTPUT: A is not strongly simply connected.
If there exists a doubly irreducible

Check if A(x) is schurian.

If A(x) is notschurian

OUTPUT: A is not strongly simply connected.
If A(x) is schurian, then set := A(x).

If Agis a singleton

OUTPUT: A is strongly simply connected.

If Agis not a singleton, return to input.

Example 10. The following is an example of a simply connected algebra containing a
quasi-crown, and which is evidently not strongly simply connectedALl¢ given by the
quiver

S vy [} v (o] o]
v3
ui uz uz uq
va
[e] o] y [e] 0]
\\’S l
o
o al ®
}\

bound byui1ad =0, cuz =0, ov3 =0, ura = v1 = oy, u2B8 = VoA, Y8 = uzh =
vau, ugp = vaad. Indeed, letB be a full convex subcategory of with object class
Bo = Ap )\ {s}, then B is obviously a simply connecteddidence algebra (because it has
a minimal point) and the extension module= rad P, is indecomposable. Hence, by [6,
2.5], A = B[M] is simply connected. Observe also thais a quotient of an incidence
algebra and contains a crown.

5.8. We may replace “quasi-crowns” by “crowns” in conditions (c)—(f) of Theorem A
in the case of quotients of incidence algebras.

Corollary. Let A be a quotient of an incidence algebra. The following conditions are equiv-
alent

(a) A is strongly simply connected.
(b) A is dismantlable.
(c) A is separated and contains no crowns.
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(d) A is simply connected and contains no crowns.

(e) SH1(A) =0andA contains no crowns.

() SHY(A, G) =0 for every abelian groug;, and A contains no crowns.
(9) HH'(A)=0andA contains no crowns.

Proof. This follows from 5.7, 5.6, and 5.4.0
5.9. Remarks
We recall that, ifA is an incidence algebra, then the following conditions are equivalent:

(a) A is strongly simply connected;
(b) A has no crown;
(c) Aisdismantlable

(by [20, 3.3] and [21, 2.3]). These conditions imply each of the following:

(d) HHY(A) =0;
(e) A is simply connected;
(f) Ais separated

(by [33]). However, the latter conditions are not equivalent and, while (f) implies (e), which
implies (d), the other implications are not true. l4ebe the incidence algebra of the poset
with quiver

[¢]

o [¢]
¢} >< o
Then A is simply connected but not separated, thus (e) does not imply (f). Finally, it is
well known that (d) does not imply (e) (see, for instance, [16, 3.10]).

5.10. We also get the following obvious corollary.

Corollary. Let A be a schurian triangular algebra containing no quasi-crowns. The fol-
lowing conditions are equivalent

(a) A is strongly simply connected.
(b) A is dismantlable.

(c) A is separated.

(d) A is simply connected.

(e) SH1(A)=0.
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() SHL(A, G) =0, for each abelian grous.
(g) A is a quotient of an incidence algebra, aktlH1(A) = 0.

5.11. The question has arisen whether the presence of a bypass in the bound quiver of
a schurian algebra may prevent this algetoom being simply connected. We now answer
this question in the negative: the following is an example of schurian simply connected
algebra containing a bypass.

Example 11. Let A be given by the quiver

x
a1
az
3
vy
u
B2
B1

SO

/

<
<
w
-

></ 3
uy

(¢]

v2

[e]
[e] o o
[e]

3

T

bound byajv1 =0, ya1 =0, vy = yaoup, yaz =0, dug = 0 and all other squares are
commutative. Then the full convex subcategdrgf A with objects clasBg = Ag\ {s} is

the “box” of Example 3 of 3.1 above and, in particular, is simply connected. The extension
moduleM = rad Py is indecomposable, so that= B[M] is simply connected. However,

we notice thatd contains a (quasi-)crown: this is a general fact.

X

(¢]

Corollary. Let A be a simply connected schurian algebra containing a bypass. Bhen
contains a quasi-crown.

Proof. Assume thatd is a simply connected algebra containing a bypass but no quasi-
crown. By Theorem A, it is strongly simply connected. Hence there exists an incidence
algebrak > such thatQ 4 = Qi x (see, for instance, [2]). But thea contains no bypass,

a contradiction. O

5.12. The following is an easy consequence of the previous corollary.
Corollary. Let A be a simply connected representation-finite algebra. Th@ontains no

bypass.

6. Schurian algebrasnot containing quasi-crowns

6.1. We now turn to the proof of our second main theorem.A &k a schurian algebra.
Following [12, 1.2], we call3 amultiplicative basiof A if:
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(a) ey € B foreachx € Ao,
(b) BNex(rad' A)e, is a basis ok, (rad' A)e, forall x,y € Ag and alln € N,
(c) be BNexAey, andc € BNeyAe, imply be € B orbe=0.

The following is an example of an algebra having no multiplicative basis.

Example 12. Let A be given by a quiver

@]
oy
az
o o
u l ><2 l
v2
o

\//O
B

[e]

1
N

1

bound byaju1 = azv2, a1v1 = aguz, uiyr = viyz, v2y1 = cuzyz, u1f =0, v18 =0,
By> =0 and radA = 0 (wherec is a constant different from 0 and 1). We notice that
contains a quasi-crown. Alsd\ is a split extension of the algebra in Bongartz’ example
[14], the latter being obtained by deleting the arréw

6.2. Inthe following lemma, we show that a schurian algeltraot containing quasi-
crowns, has only low-dimensional simplicial homology and cohomology groups. For our
purpose, the key statement is thfaf2(A) = 0, all other statemes follow easily from
[26, 3.1]. We give however an independent proof for the convenience of the reader.

Lemma. Let A be a schurian algebra not containing quasi-crowns. Then

(a) SH,(A)=0foralln > 2.
(b) SH"(A, G) =0for all n > 3 and all abelian groups;.

Proof. (a) We use induction ofAg|. Lets be a source i, andB be the full subcategory
of A with object classBy = Ag \ {s} (thus A = B[M]). Forn > 2, we have an exact
sequence

—> SH,(B) — SH,(A) —> SH,_1(kX}) — .

By 3.7,kX! has no crowns. Since it is an incidence algebra, it is (strongly) simply con-
nected. In particularS H1(kX;) = 0. On the other hand, sincB has no quasi-crowns
either, the induction hypothesisimplies ti§ai, (B) = 0= SH, (kX}) foralln > 2. There-

fore SH,(A) =0forn > 2.
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(b) This follows from (a) and from
SH"(A, G) = Homy(SH,(A), G) & Ext%(SH,l_l(A), G). O
6.3. We are now able to prove our second main Theorem B.

Theorem (Multiplicative basis) Let A be a schurian algebra not containing quasi-
crowns. Them admits a multiplicative basis.

Proof. Let k* denote the multiplicative group of then-zero scalars. Applying 6.2, the
Dual Universal Coeffi@nts Theorem yields
SH?(A, k™) = Homy (SHa(A), k) @ Ext; (SH1(A), k)
= Ext} (SH1(A), k) =0,

sincek™ is a divisible abelian group (becaukés an algebraically closed field). By [15,
2.2], this implies thatd has a multiplicative basis. O

Remark. In [26, 3.2], Martins and de la Pefia prove the existence of a multiplicative basis
in an algebrad such that gdimA < 2 and H H%(A) = 0. We replace both of these hy-
potheses by the one of the absence of quasi-crowns. Our result may thus be applied, for
instance, to algebras of an #rhrily large global dimension.

6.4. The next corollary follows immediately from our Theorem B.

Corollary. For each natural numbed, there exist only finitely many isomorphism classes
of schurian algebras, not containing quasi-crowns, of dimengion

Proof. Indeed, this follows, from the facts that, for such an algebra, the number of points,
the number of arrows and hence the number of paths are bounded, and a basis consists of
classes of paths modulo the ideata

6.5. A second immediate corollary is the following well-known result of Bongartz.

Corollary [14]. Let A be a representation-finite triangular algebra, then A admits a mul-
tiplicative basis.

6.6. As another corollary of our two main Theorems A and B, we obtain a new proof
of [4, 2.4].

Corollary. Let A be a schurian strongly simply connected algebra, tHhesdmits a multi-
plicative basis.
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6.7. The following corollary is a direct consequence of [15, 2.2] and the fact that, if
is a schurian triangular algebra having no quasi-crowns, Si##A(A, k*) = 0. We recall
that3(A) denotes the classifying spacesfsee [17].

Corollary. Let A, A’ be schurian triangular algebras such thathas no quasi-crowns and
B(A) = B(A), then there exists an isomorphisnkeflgebrasA = A’.

6.8. To end this paper, we illustrate our rhetls by obtaining short proofs of some
well-known results about strongly simply connected algebras.

Corollary [20, 2.4] A schurian algebra& is strongly simply connected if and only if, for
every full convex subcatego€yof A, we haveSH1(C) = 0.

Proof. NecessityAssume thati is strongly simply connected. Then any full convex sub-
categoryC of A is also strongly simply connected. By Theorem$¥/1(C) = 0.

SufficiencyLet C be a full convex subcategory df. By hypothesis§ H1(C) = 0. Since
A is schurian, it follows from [27] that

HH(C) = Hom(n1(C), k) = Hom(SH1(C), k) = 0.
By [33, 4.1], A is strongly simply connected.O

6.9. The next corollary is expressed by saying that a schurian strongly simply con-
nected algebra (or, more precisétg classifying space) is acyclic.

Corollary [20, 2.6] Let A be a schurian strongly simply connected algebra, then

(a) SH,(A)=0foralln > 1.
(b) SH"(A,G) =0for all » > 1 and all abelian group%.

Proof. (a) By 6.2, this is clear ifi > 2. Forn = 1, this is granted by the simple connect-
edness ofA.
(b) We recall that the strong simple connectedness afplies thatSH1(A, G) =0
for all abelian groups;, see 5.7. Moreover,
SH?(A, G) = Homy,(SHa2(A), G) ® Ext; (SH1(A), G) = 0.
Finally, forn > 3, this follows from 6.2. O

6.10. We end this paper with a short proof of the following result of [22].

Corollary [22]. Let A be a schurian strongly simply connected algebra, then the
Hochschild cohomology ringl H*(A) of A is k.



188 I. Assem et al. / Journal of Algebra 283 (2005) 161-189

Proof. It follows from [17, (6.5)] that, for allz > 1, we haveH H"(A) = SH" (A, k™).
By 6.9(b), the latter vanishes.o

Obse_rve that, in this case Af= B[M] is written as one-point extension, then we clearly
have Ex},(M, M) =0, for alli.
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