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Abstract

In this paper, we define concepts of crowns and quasi-crowns, valid in an arbitrary schur
gebra, and which generalise the corresponding concepts in an incidence algebra. We show
a triangular schurian algebra is strongly simply connected if and only if it is simply connecte
contains no quasi-crown. We then prove that the absence of quasi-crowns in a triangular s
algebra implies the existence of a multiplicative basis.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to explore some of the relations between the existenc
multiplicative basis in a schurian algebra and its strong simple connectedness. Inde
it is known since [4] (see also [20]) that a schurian strongly simply connected al
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admits a normed presentation, hence a multiplicative basis. Our starting point, ho
is the criterion for the strong simple connectedness of an incidence algebra, that
absence of crowns [20]. We then notice that Bongartz’ well-known example of an al
not admitting a multiplicative basis [14] contains a full convex subcategory isomorph
a crown. Here, we define more general notions of crowns and quasi-crowns, valid
arbitrary schurian algebra. We investigate how the absence of quasi-crowns implies
strong simple connectedness of the algebra, and show that this absence always im
existence of a multiplicative basis.

Our motivation comes from the representation theory of finite dimensional alg
over an algebraically closed fieldk. For such an algebraA, there exists a (uniquely de
termined) quiverQA and (at least) a surjective algebra morphism from the path algeb
kQA of QA onto A, whose kernel is denoted byIν , see, for instance, [13]. The alg
bra A is calledtriangular if QA has no oriented cycles. For each pair(QA, Iν), called
a presentationof A, one can define thefundamental groupπ1(QA, Iν), see [23,25]. A
triangular algebraA is calledsimply connectedif, for every presentation(QA, Iν), the
groupπ1(QA, Iν) is trivial [8], andstrongly simply connectedif every full convex subcat
egory ofA is simply connected [33]. IfA is a schurian algebra(that is, if, for each pair
of primitive idempotentse, f of A, we have dimk(eAf ) � 1), then all its presentation
yield isomorphic fundamental groups [10], andA is simply connected if and only if so i
the associated chain complex [16,17,29]. Simply connected algebras have played
portant rôle in representation theory: indeed, covering techniques allow to reduce
problems to problems about simply connected algebras. While finding criteria for the
ple connectedness of an algebra is an undecidable problem (because it can be reduced
word problem), it is known (see [33]) that, if an algebra is separated in the sense o
then it is simply connected (but the converse is not true). On the other hand, the c
strongly simply connected algebras seems much easier to handle. Indeed, characte
of strong simple connectedness were obtained, for instance, in [4], and the represe
theory of the tame strongly simply connected algebras is largely known, see [28,3
In particular, a question was asked by Skowroński in [33] whether it is true that a simpl
connected algebra is strongly simply connected if and only if it contains no full co
subcategory which is hereditary of typẽA. While the answer to this question is negati
even for incidence algebras (see example 1 in 3.1 below) there are many classes fo
this statement holds true (see, for instance, [1]). In this paper, we return to the g
case.

It was shown by Dräxler [20] that an incidence algebra is strongly simply connec
and only if its quiver contains no crowns. Crowns are well known in the combinatori
posets, and are associated to their dismantlability (see, for instance, [19,21]). In this
we define a notion of dismantlability in an arbitrary schurian algebra.

On the other hand, we relate the strong simple connectedness to the vanishing of s
its (co)homology groups, namely, the Hochschild cohomology groupsHH •(A) of A with
coefficients in the bimoduleAAA (see [18]) and the simplicial homology (and cohomolo
with coefficient in an abelian groupG) groupsSH•(A) (andSH •(A,G), respectively) of
the simplicial complex associated withA.

We are now able to state our first main theorem.
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Theorem A. Let A be a schurian triangular algebra. The following conditions are equiv
alent:

(a) A is strongly simply connected.
(b) A is dismantlable.
(c) A is separated and contains no quasi-crowns.
(d) A is simply connected and contains no quasi-crowns.
(e) SH1(A) = 0 andA contains no quasi-crowns.
(f) SH 1(A,G) = 0 for every abelian groupG, andA contains no quasi-crowns.
(g) A is a quotient of an incidence algebra,HH 1(A) = 0, andA contains no crowns.

As a consequence of the equivalence of (a) and (b), we give an algorithm allow
check whether a schurian triangular algebra is strongly simply connected or not (th
particular, verifying that the strong simple connectedness of a schurian triangular a
is a decidable problem).

Predictably, we obtain much better results for quotients of incidence algebras, n
in this case, we are able to replace “quasi-crowns” by “crowns” in the statement
theorem above.

Also, we answer in the negative the conjecture saying that the presence of a by
the quiver of a schurian algebra prevents it from being simply connected. We sho
the other hand, that the presence of such a bypass in a simply connected schurian
implies the existence of a quasi-crown.

Our second main theorem is the following.

Theorem B. Let A be a schurian triangular algebra containing no quasi-crowns. TheA

admits a multiplicative basis.

This clearly generalises the main result of [14], which states the existence of a
plicative basis in a triangular representation-finite algebra. As an easy consequence
result, only finitely many non-isomorphic schurian algebras of a given dimension d
contain quasi-crowns.

Our proofs rely heavily on the use of a Mayer–Vietoris sequence for a one-point e
sion, as in [15,26]. We also obtain as consequences some of the results of [20,22].

The paper is organised as follows. After a preliminary Section 2, we introduce ou
tions of crown and quasi-crown in Section 3, and our notion of dismantlability in Secti
Section 5 is devoted to the proof of Theorem A and Section 6 to the proof of Theore

2. Preliminaries

2.1. Notation

In this paper, by algebra, we always mean a basic and connected finite dimen
algebra over an algebraically closed fieldk. Given a quiverQ, we denote byQ0 its set of
points and byQ1 its set of arrows. Arelation in Q from a pointx to a pointy is a linear
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i=1 λiwi where, for eachi, λi ∈ k is non-zero andwi is a path of

length at least two fromx to y. A relation inQ is called amonomialif it equals a path, and
acommutativity relationif it equals the difference of two paths. We denote bykQ the path
algebra ofQ and bykQ(x, y) thek-vector space generated by all paths inQ from x to y.
For an algebraA, we denote byQA its quiver. For every algebraA, there exists an idealI
in kQA, generated by a set of relations, such thatA ∼= kQA/I . The pair(QA, I) is called
apresentationof A. An algebraA = kQ/I can equivalently be considered as ak-category
of which the object classA0 is Q0, and the set of morphismsA(x,y) from x to y is the
quotient ofkQ(x, y) by the subspaceI (x, y) = I ∩kQ(x, y), see [13]. A full subcategor
B of A is calledconvexif any path inA with source and target inB lies entirely inB. An
algebraA is calledtriangular if QA has no oriented cycles, and it is calledschurianif, for
all x, y ∈ A0, we have dimk A(x, y) � 1. In this paper, we deal exclusively with schuri
triangular algebras. For a pointx in the quiverQA, we denote byex the corresponding
primitive idempotent, and byPx andIx the corresponding indecomposable projective
injectiveA-module, respectively.

2.2. Simple connectedness

Let Q be a connected quiver without oriented cycles andI be an ideal ofkQ gener-
ated by relations. A relationρ = ∑m

i=1 λiwi ∈ I (x, y) is calledminimal if m � 2 and, for
every non-empty proper subsetJ ⊂ {1,2, . . . ,m}, we have

∑
j∈J λjwj /∈ I (x, y). For an

arrowα, we denote byα−1 its formal inverse. A walk in Q from x to y is a formal compo-
sitionα

ε1
1 α

ε2
2 · · ·αεt

t (whereαi ∈ Q1 andεi ∈ {1,−1} for all i) from x to y. Thehomotopy
relation is the least equivalence on the set of all walks inQ such that:

(a) For each arrowα : x → y, we haveαα−1 ∼ ex andα−1α ∼ ey .
(b) For each minimal relation

∑
λiwi , we havewi ∼ wj for all i, j .

(c) If u ∼ v, thenwuw′ ∼ wvw′ , whenever these products are defined.

The set of all equivalence classes of walks starting and ending at a fixed base px0
is a group, called thefundamental groupof (Q, I) and denoted byπ1(Q, I). A triangu-
lar algebraA is calledsimply connectedif, for any presentation(QA, I) of A, the group
π1(QA, I) is trivial [8]. It is calledstrongly simply connectedif every full convex subcate
gory ofA is simply connected [33].

It is shown in [10] that, if an algebraA ∼= kQA/I is schurian and triangular, then th
fundamental groupπ1(QA, I) does not depend on the presentation(QA, I) of A. We may
thus use the unambiguous notationπ1(A) to stand forπ1(QA, I).

Moreover, it is known that, for every connected bound quiver(Q, I), there exists a
CW-complexB = B(Q, I), called itsclassifying space, such thatπ1(Q, I) = π1(B), see
[17]. If kQ/I is schurian and triangular, then the classifying spaceB(Q, I) is a simplicial
complex, see [16,29], which coincides with the one considered in [15]. It is construc
follows: ani-simplex is a set of(i + 1)-distinct objects{x0, x1, . . . , xi} in A0 such that, for
anyj with 1 � j � i, there existsaj ∈ A(xj−1, xj ) such thataiai−1 · · ·a1 �= 0. We denote
by C•(A) the corresponding chain complex.

For concepts and results from algebraic topology, we refer the reader to [30].
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We need the following concept. LetB be a non-necessarily connected algebra, aB-
moduleM is calledseparatedif the supports of the distinct indecomposable summa
of M lie in distinct connected components ofB. For an algebraA, and forx ∈ A0, let Ax

denote the full subcategory ofA generated by the non-predecessors ofx in QA. Thenx

is calledseparatingif the restriction toAx of radPx is separated as anAx -module. The
algebraA is calledseparatedif eachx ∈ A0 is separating. It is shown in [33] that an
separated algebra is simply connected.

2.3. Strong simple connectedness

Let Q be a connected quiver without oriented cycles. Acontour (p, q) in Q from x

to y is a pair of parallel paths of positive length fromx to y. A contour(p, q) is called
interlacedif p andq have a common point besidesx andy. It is calledirreducibleif there
exists no sequence of pathsp = p0,p1, . . . , pm = q from x to y such that, for eachi,
the contour(pi,pi+1) is interlaced. A cycleC in Q is calledirreducible if, either C is
an irreducible contour, orC is not a contour, but satisfies the following condition and
dual: for each sourcex in C, no proper successor ofx in Q is also a source ofC, and
exactly two proper successors ofx in Q are sinks ofC. This is equivalent to the definitio
of irreducibility given in [4, 1.5]. It is proven in [4, 2.4] that an algebraA is schurian and
strongly simply connected if and only if

(a) all irreducible cycles are irreducible contours, and
(b) there exists a presentationA ∼= kQA/I such that for each irreducible contour(p, q),

we havep, q /∈ I butp − q ∈ I .

Such a presentation is a normed presentation, in the sense of [12]. Its existence
that such an algebra admits a multiplicative basis.

2.4. Incidence algebras and their quotients

Let (Σ,�) be a finite poset (partially ordered set) withn elements. Theincidence alge-
bra kΣ is the subalgebra of the algebraMn(k) of all n × n matrices overk consisting of
the matrices[aij ] satisfyingaij = 0 if j � i. The quiverQΣ of kΣ is the (oriented) Hass
diagram ofΣ , andkΣ ∼= kQΣ/IΣ , whereIΣ is generated by all differencesp − q , with
(p, q) a contour inQΣ . The quiverQΣ has nobypass, that is, no subquiver of the form

◦ β2 ◦ · · · ◦ ◦
βt

◦
β1

α ◦

and, conversely, for any quiverQ having no bypass, there exists a posetΣ such that
Q = QΣ .

In many places, we consider quotients of incidence algebras. For such a quotieA 

kQA/I , there exists a posetΣ with QΣ = QA and, furthermore,I = IΣ + J , whereJ is
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an ideal ofkQΣ generated by monomials. It is well known that, ifA is schurian strongly
simply connected, then it is a quotient of an incidence algebra, see [20, 2.7], [4, 2.4]

3. Crowns

3.1. Before our main definitions, we give some motivating examples. We recal
in [33], Skowrónski stated the following problem. LetA be a simply connected algebr
Is it true thatA is strongly simply connected if and only ifA contains no full convex
subcategory which is hereditary of typẽA (we then say thatA is strongly Ã-free)? The
answer to this question is negative in general, and even for incidence algebras.

Example 1. Let indeedΣ be the poset with quiver

◦

◦ ◦

◦ ◦

◦ ◦

Clearly, the incidence algebrakΣ is not strongly simply connected, but is simply connec
and stronglỹA-free.

One could think of replacing the requirement thatA be stronglỹA-free by the one tha
A contains no full subcategory which is hereditary of typeÃ (we then say thatA is Ã-free).
This, however, is not true, even if one assumes (as we do) thatA is schurian, as is show
by the incidence algebra of the following poset (called a “cross”).

Example 2.
◦ ◦

◦

◦ ◦

it is strongly simply connected, but not̃A-free.

However, it was shown in [20, 3.3] that an incidence algebra is strongly simply
nected if and only if it contains no crown as full subcategory. We shall define here a co
of quasi-crown which makes sense for any schurian algebra, and reformulate Skowrński’s
question as follows: letA be a schurian and simply connected, is it true thatA is strongly
simply connected if and only if it contains no quasi-crown as a full subcategory? Ou



I. Assem et al. / Journal of Algebra 283 (2005) 161–189 167

e

that
n

d the
he

a
ilted of

tent

ra

set

n or
main result answers this question positively. In case thatA is a quotient of an incidenc
algebra we may replace “quasi-crown” by “crown” in this reformulation.

We notice that, in caseA is not a quotient of an incidence algebra, the requirement
A is simply connected does not necessarily imply thatA contains no crown, as is show
by the following example.

Example 3.

◦
α

◦
β

◦ ◦

◦ ◦ ◦

◦

with all squares commutative except the upper left one, where we have the relationαβ = 0.
HereA is simply connected even though it contains a crown. This example is calle
“box,” because its geometric realisation is acubic box with all faces closed, except t
upper one, which is half-open. Note thatA is a tame quasi-tilted algebra. It is actually
semiregular branch enlargement of a tame concealed algebra (but is not iterated t
typeÃ), see [3].

3.2. We now recall a few notions and results from the theory of split-by nilpo
extensions (see, for instance, [5,9]). LetA andB be two algebras, we say thatB is asplit
extensionof A by the two sided nilpotent idealW if there exists a split surjective algeb
morphismπ : B → A whose kernelW is a nilpotent ideal ofB. In this case,W is generated
by arrows of the quiver ofB. Indeed, letB = kQB/I , then a setS of generators ofW is
specialif, for eachρ + I ∈ S, we have:

(a) If ρ is a path inQB then, for each proper subpathρ′ of ρ, we haveρ′ + I /∈ W .
(b) If ρ = ∑m

i=1 λiwi is a relation withm � 2, then for each non-empty proper sub
J ⊂ {1,2, . . . ,m}, we have

∑
j∈J λjwj + I /∈ W .

It is shown in [9, 1.3] that, ifB = kQB/I is a split extension ofA by W , thenW has a
special set of generators and any such set consists of the classes moduloI of arrows inQB .
We now give a criterion allowing to verify whether a bound quiver is a split extensio
not.

Lemma. Let B = kQB/I be a schurian triangular algebra andW be an ideal inB gen-
erated by classes moduloI of a set of arrows. ThenB is a split extension ofB/W by W

if and only if, for every pair of non-zero pathsγ = γ1γ2 · · ·γr , andγ ′ = γ ′
1γ

′
2 · · ·γ ′

s bound
by a minimal relationλγ + µγ ′ in B, if there exists ani (with 1� i � r) such thatγi ∈ S,
then there exists aj (with 1 � j � s) such thatγ ′ ∈ S.
j
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Proof. Necessity. AssumeB is a split extension ofB/W by W . Then the subalgebraB
generated by the classes of arrows which are not inS is isomorphic toB/W , so we can
assume that for any arrowβ /∈ S, the lifting ofβ +W ∈ B/W to B is β = β + I . Assumeγ
andγ ′ are as stated, and thatγ ′

j /∈ S for all j . Thenγ ′ +W = (γ ′
1 +W) · · · (γ ′

s +W) �= 0 in
B/W , henceγ ′ = γ ′

1 · · ·γ ′
s /∈ W in B. On the other hand,γ = γ +I ∈ W andλγ +µγ ′ ∈ I

imply γ ′ ∈ W (becauseµ �= 0), a contradiction.
Sufficiency. We need only observe that our hypothesis implies that the subalgebraB

generated by all arrows not inS is isomorphic toB/W . Since it is obviously a subspac
it suffices to prove that, ifγ, δ are paths inQB andγ = γ + I , δ = δ + I , then the produc
(γ + W)(δ + W) = γ δ + W yields the same value for all representatives of the classγ

andδ. However, if this is not the case, then there exist pathsγ ′, δ′ such thatγ − γ ′ ∈ W ,
δ − δ′ ∈ W andγ δ ∈ W , while γ ′δ′ /∈ W . Now,γ δ andγ ′δ′ being parallel paths are boun
by a minimal relation, and we get a contradiction to our hypothesis.�

3.3. In this section, all algebras are schurian triangular algebras. LetA be an algebra
We define theinterval [x, y]A, or more briefly[x, y] betweenx andy (with x, y ∈ A0) to
be the full subcategory ofA generated by all pointsz ∈ A0 which lie on a non-zero pat
from x to y, that is, such that

A(x, z)A(z, y) �= 0.

Clearly, if all paths fromx to y in A are non-zero, then[x, y] coincides with the full
subcategory(x, y) of A generated by the convex hull ofx and y. This is the case, fo
instance, wheneverA is an incidence algebra.

3.4. The notion of crown is well known in the combinatorics of posets, see, fo
stance, [20,21]. We generalise it to schurian algebras as follows. LetC be a full subcat-
egory ofA consisting of 2n objects{x1, . . . , xn, y1, . . . , yn} and 2n non-zero morphism
{u1, . . . , un, v1, . . . , vn} with n � 2, and of the form

x1

u1

v1
x2

u2

v2
· · · xn

un

vn

y1 y2 · · · yn

We say thatC is acrown(of widthn) in A if:

(a) [xi, yj ] ∩ [xh, yl] �= ∅ if and only if j = i and(h, l) ∈ {(i, i), (i − 1, i), (i, i + 1)} or
j = i + 1 and(h, l) ∈ {(i, i + 1), (i, i), (i + 1, i + 1)}.

(b) The intersection of three distinct[xj , yl] is empty.
(c) For eachi, [xi, yi] ∩ [xi, yi+1] = {xi} and[xi, yi] ∩ [xi−1, yi] = {yi}.

We agree to setx0 = xn, xn+1 = x1, y0 = yn, yn+1 = y1.
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We now generalise this notion. LetC be a full subcategory ofA = kQA/I . ThenC is
aquasi-crownif there exists a set of arrows{α1, α2, . . . , αr } in QA such that, ifR denotes
the ideal ofA generated by the arrowsαi + I (with 1 � i � r), then

(a) C is a split extension ofC′ = C/C ∩ R, and
(b) C′ is a crown inA/R.

In this case, we say that the points ofC induce a quasi-crown inA.
Intuitively, a quasi-crownC may be thought of as consisting of a crownC′ together with

some additional paths between the points ofC′, and these paths makeC a split extension
of C′.

Quasi-crowns already appeared implicitly in Bongartz’ proof [14] (see the proof
Lemma 3) and as we shall see in 3.8 below, also in [6, 2.4].

Example 4. The following is an example of a quasi-crown, takingR = 〈ε〉. Let C be given
by the quiver

◦
α

β ◦
δ

γ

◦ ε ◦
bound byαε = 0, γ ε = 0.

Example 5. Clearly, in incidence algebras, quasi-crowns are crowns. But the two no
do not coincide even for quotients of incidence algebras, as is shown by the algebra
by the quiver

◦
α

◦ ◦
β

γ

◦

◦ ◦ ◦
bound byαβ = 0 andαγ = 0.

3.5. Recall that [20, 3.3] says that an incidence algebra is strongly simply connected
and only if contains no crowns. We have the following lemma.

Lemma. LetA be a schurian strongly simply connected algebra, thenA contains no quasi
crown.

Proof. Assume thatA = kQA/I contains a quasi-crownC. Thus, there exists an idealR

of A generated by the classes moduloI of a set of arrows{α1, α2, . . . , αr } of QA such that
C is a split extension ofC′ = C/C∩R, andC′ is a crown inA/R. Therefore, there exist 2n
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objects{x1, . . . , xn, y1, . . . , yn} of C and 2n non-zero morphisms{u1, . . . , un, v1, . . . , vn}
of A/R with n � 2. LetΓ be the cycle given by

x1

u1

v1
x2

u2

v2
· · · xn

un

vn

y1 y2 · · · yn

Clearly,Γ is not a contour. SinceA is schurian strongly simply connected, we obt
by [4, 1.3 or 2.4], thatΓ is reducible. Hence, there exists a path inQA from xi to yj (with
j �= i, i + 1) or fromxi to xj (with j �= i) or dually fromyi to yj (with j �= i). We can
assume thatj � i and thatj − i is minimal for this property. Let us first suppose th
j − i > 1. If we have a pathw from xi to xj , then

xi

vi

w

xi+1

ui+1
vi+1

· · · xj

uj

yi+1 · · · yj

defines a cycle which must be irreducible by the minimality ofj − i. This yields a con-
tradiction to [4, 1.3] sinceA is schurian strongly simply connected. The other cases
similar.

Therefore,j = i + 1 and we can assume, up to duality, that there is a path fromxi to
xi+1, sayw. We thus have a contour given by(vi,wui+1). SinceA is schurian strongly
simply connected, there exists a binomial relation involving those paths. Now,A is a
quotient of an incidence algebra andvi is non-zero, hence we get thatwui+1 is also
non-zero. SinceC′ = C/C ∩ R is a crown, thenwui+1 must be zero inA/R, otherwise
xi+1 ∈ [xi, yi+1] ∩ [xi+1, yi+1]. On the other hand, sincewui+1 is not zero inA, we can
assume that there exists an arrowα ∈ R which is a subpath ofwui+1. The binomial relation
of A involving vi andwui+1 forcesvi to be zero inA/R (by 3.2), a contradiction. Hence
there is no quasi-crown contained inA. �
Example 6. AssumeA = kΣ/J is a quotient of an incidence algebra. IfΣ contains a
(quasi-)crown this does not necessarily implies thatA contains a (quasi-)crown. Let, fo
instance,A be the quotient of the incidence algebra of the poset with quiver

◦
α

◦

◦
β

◦ ◦
by the ideal generated byαβ .
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3.6. We recall that we always assume our algebras to be schurian and triangula
following construction, due to Bretscher and Gabriel [15] is needed essentially in th
quel. Lets be a source in an algebraA. We define the following two sets of objects ofA:

Σs = {
x ∈ A0 | A(s, x) �= 0

}

(that is,Σs consists of the objects in the support of the corresponding indecompo
projectiveA-modulePs ), and

Σ ′
s = Σs \ {s}

(that is,Σ ′
s consists of the objects in the support of the radical ofPs ). We partially order

each of these sets by setting

x � y if and only if A(s, y)A(y, x) �= 0

(that is, there exist non-zero paths froms to y and fromy to x with non-zero composition)
The incidence categorieskΣs andkΣ ′

s can be identified with subcategories ofA, usually
not full.

Example 7. Let A be given by the quiver

s

α γ

◦

β

◦

δ

◦

bound byαβ = 0. ThenΣs andΣ ′
s are respectively given by the posets

s

α γ

◦ ◦

δ

◦

and ◦ ◦

δ

◦

Lemma. Let s be a source inA. If the points{x1, . . . , xn, y1, . . . , yn} induce a crownΓ in
kΣs , then the same points induce a quasi-crown inA.
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Proof. By hypothesis, there exists a full subcategory ofkΣs of the form

s

α1

α2

αn

x1

u1

v1
x2

u2

v2
· · · xn

un

vn

y1 y2 · · · yn

Let C′ denote the full subcategory generated by thexi andyj . Also let R be the ideal
of A generated by the classes of all the arrows which are not inkΣs . We show that the ful
subcategoryC of A generated byC′ induces a quasi-crown ofA. Clearly,C′ = C/C ∩ R.
Thus, it suffices to verify thatC is a split extension ofC′. Let x andy be points ofC and
thus ofC′ such that there exists a pathγ from x to y in kΣs . We have to show that th
class of no path fromx to y in A lies in R. Suppose thus that there exists a non-zero
w from x to y in R. Sincex is in C′, it is also inkΣs and there exists a pathv from s to
x in A such thatvγ is a non-zero path. Sincew belongs toR, this means thatvw = 0. On
the other hand,A is a schurian algebra, thus there exists a scalarλ, such thatγ = λw in A.
Therefore,vγ = λ(vw) = 0 a contradiction which proves that no such pathw exists. This
shows thatC is a split extension ofC′. �
Example 8. In general, the quasi-crown induced as in the lemma is not a crown inA, as is
shown by the algebra given by the quiver

s

◦
α

◦
γ

◦ β ◦

bound by all possible commutativity relations andαβ = 0, γβ = 0.

3.7. We have better results for quotients of incidence algebras.

Lemma. Let A be a quotient of an incidence algebra and assume thatkΣs contains a
crown. ThenA contains a crown.

Proof. By 3.6,A contains a quasi-crownΓ , induced by one ofkΣs . We first claim that the
interval fromx to y in kΣs coincides with the one ofA. Let z ∈ [x, y]A, that is, there exis
pathsp : x � z andq : z � y such thatpq is not zero inA. Sincex andy belong tokΣs ,
there exist non-zero pathsu : s � x andv : s � y. SinceA is a quotient of an incidenc
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algebra and(v,upq) is a contour, thenupq is non-zero inA. Thuspq corresponds also t
a non-zero path inkΣs . This proves thatz ∈ [x, y]kΣs . The other inclusion being obviou
this establishes our claim. Now, in order to show thatΓ must be a crown inA, assume tha
this is not the case. In the notation of 3.4, this means that there exists a path fromxi to xj

(with j �= i), from yi to yj (with j �= i), or from xi to yj (with j �= i, i + 1). In each of
these cases, we find a zero path parallel to a non-zero one, a contradiction to the f
A is a quotient of an incidence algebra.�

3.8. As a consequence of 3.6, we connect the notion of quasi-crown with the r
of [6, 2.4]. Let A = B[M] be a one-point extension algebra, ands denote the exten
sion point. Since all presentations ofA give rise to isomorphic fundamental groups,
fix a presentation ofA, and consider the induced presentation ofB. Let ∼= be the leas
equivalence relation on the set of arrows of sources such thatα1 ∼= α2 whenever there
exists a minimal relation of the formλ1(α1v1) + λ2(α2v2). Let t be the number of equiv
alence classes[β1], . . . , [βt ] of arrows with sources. For eachi, with 1 � i � t , let
l(i) be the number of tuples of paths(u1, v1, . . . , un, vn) such that there are relation
λ′

1,2(α1v1)+λ′′
1,2(α2u2), . . . , λ

′
n−1,n(αn−1vn−1)+λ′′

n−1,n(αnun), λ
′
n,1(αnvn)+λ′′

n,1(α1u1)

with α1, α2, . . . , αn distinct arrows in[βi].
Let further,B = B1 × · · · × Bc, whereB1, . . . ,Bc are connected, then for eachj , the

embedding ofBj insideA induces a canonical group morphismφj : π1(Bj ) → π1(A),
hence a morphismφ : ∏c

j=1 π1(Bj ) → π1(A).

Corollary. With the above notation:

(a) Assume that for somei with 1 � i � t , we havel(i) �= 0, thenA contains a quasi-
crown. If, in particular, A is a quotient of an incidence algebra, then A contain
crown.

(b) AssumeA contains no quasi-crown, then, for each abelian groupG, we have a shor
exact sequence of abelian groups

0 −→ Gt−c −→ Hom
(
π1(A),G

) Hom
(
φ,G

)
−−−−−−→

c∏
j=1

Hom
(
π1(Bj ),G

) −→ 0.

(c) If A is simply connected, but one of theBj is not, thenA contains a quasi-crown.

Proof. (a) Assumel(i) �= 0 for somei, and(u1, v1, . . . , un, vn) be a tuple as above, the
A contains a subcategory of the form

s

α1

α2

αn

x1

u1

v1
x2

u2

v2
· · · xn

un

vn

y1 y2 · · · yn
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It suffices, in view of 3.6, to show thatkΣs contains a crown. We may clearly, witho
loss of generality, assume thatn is minimal. This implies immediately that the pointsxi

andyj satisfy conditions (a) and (b) of the definition of crown, see 3.4. In the termino
of [7], these points induce a weak crown inkΣs . By [7, 3.2], the convex hull of thes
points (inkΣs ) contains a crown. By 3.6,A contains a quasi-crown. This shows our fi
statement. For the second, assume thatA is a quotient of an incidence algebra, then, as
seen,kΣs contains a crown. By 3.7,A itself contains a crown.

(b, c) It is shown in [6, 2.4] that, for each abelian groupG, there is an exact sequen
of abelian groups

0 −→ Gt−c −→ Hom
(
π1(A),G

) Hom(φ,G)−−−−−−→
c∏

j=1

Hom
(
π1(Bj ),G

) −→
t∏

i=1

Gl(i).

Both (b) and (c) then follow immediately from (a).�

4. Dismantlability

4.1. Let A be a schurian algebra. A pointx ∈ A0 is called adoubly irreducible(see
[21]) if there is at most one arrow of targetx, and at most one arrow of sourcex.

Given a doubly irreduciblex in A, we define a new categoryB = A(x) such thatB0 =
A0\{x} as follows.

Assume first thaty α−→ x
β−→z. If αβ �= 0, we letB be the full subcategory ofA consisting

of all its objects exceptx. If, on the other handαβ = 0, we letB be the category whos
object class isB0 = A0\{x} and whose arrows are the same as those ofA, except for the
arrowsα andβ which are replaced by a new arrowα′ : y → z. Finally, the relations ofB
are exactly those ofA, except the relationαβ = 0 which disappears.

We define similarlyB if x
β−→ z or if y

α−→ x.
Note thatB is generally not schurian: ifA is given by the quiver

x

β

y
γ

α

z

bound byαβ = 0, thenB is given byy
α′
⇒
γ

z.

As will be seen, the statement and proof of the following lemma hold true even ifA(x)

is not schurian, by taking the fundamental group of the induced presentation.

Lemma. Let A be a schurian algebra, andx be a doubly irreducible inA such thatA(x)

is schurian. Thenπ1(A) ∼= π1(A(x)).
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Proof. Since we are only interested in the homotopy relations inA andA(x), we may,
and shall, assume without loss of generality thatall binomial relations are commutativit
relations.

Assume first thaty α−→ x
β−→ z. We have two cases:αβ �= 0 andαβ = 0. We show tha

the second case may be reduced to the first. Indeed, supposeαβ = 0. It is known that
the homotopy ignores the monomial relations. We letA′ be the algebra (not necessar
schurian) given by the same quiver asA, and the same relations exceptαβ = 0, which
disappears. Then the identity morphisms clearly induce an isomorphism between the fu
damental groups ofA andA′.

ReplacingA by A′ if necessary, we may thus assume from the start thatA is a not

necessarily schurian algebra, and thatx is a doubly irreducible such thaty
α−→ x

β−→ z and
αβ �= 0. Moreover,A is only bound by monomial relations or commutativity relatio
Then the full subcategoryB = A(x) of A such thatB0 = A0\{x} is also bound by mono
mial relations and commutativity relations. We assume first that there is no relation
form αβ = γ1 . . . γt . Thus, the arrowsα, β are replaced inB by a new arrowα′ : y → z.
We define a map̄ϕ from the setWB of all walks inB to the setWA of all walks inA by
setting

ϕ̄(x ′) = x ′ for all x ′ ∈ B0,
ϕ̄(γ ) = γ for any arrowγ �= α′ in B, and
ϕ̄(α′) = αβ .

We extendϕ̄ to any walk inWB by the formula

ϕ̄
(
ξ

ε1
1 . . . ξ εr

r

) = ϕ̄(ξ1)
ε1 . . . ϕ̄(ξr )

εr

(here,ξi is an arrow inB, andεi ∈ {1,−1} for eachi). This map is surjective: indeed, an
irreducible closed walk inA involving αε , orβε (with ε ∈ {1,−1}) involves(αβ)ε because
the pointx is doubly irreducible. Sincēϕ clearly respects the minimal relations, it induce
a group epimorphismϕ : π1(B) → π1(A).

We now defineψ̄ :WA →WB as follows:

ψ̄(x) = z,
ψ̄(x ′) = x ′ for all x ′ �= x in A0,
ψ̄(α) = α′,
ψ̄(β) = z, and
ψ̄(γ ) = γ for any arrowγ �= α,β in A.

We extendψ̄ to any walk as above. Sincēψ respects the minimal relations, it induc
a morphismψ : π1(A) → π1(B). On the other hand, we havēψϕ̄ = 1WB

so thatψϕ =
1π1(B) and soϕ is a group isomorphism.

Assume now that there exists a minimal relation of the formαβ = γ1 . . . γt . In this case,
the arrowsα andβ are simply deleted inB.

We defineϕ̄ : WB → WA to be the inclusion. Clearly, it induces a group morph
ϕ : π1(A) → π1(B). We now defineψ̄ :WA → WB as follows:
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ψ̄(x) = z,
ψ̄(x ′) = x ′ for all x ′ �= x in A0,
ψ̄(α) = γ1 . . . γt ,
ψ̄(β) = z, and
ψ̄(γ ) = γ for any arrowγ �= α,β in A.

We extendψ̄ to walks in the usual way. Clearly,̄ψ is surjective. Also, it respect
the minimal relations, hence it induces a group epimorphismψ : π1(A) → π1(B). To
finish the proof, it suffices to show thatϕψ = 1π1(A). In order to do it, we prove tha
for every closed walkw in A, we haveϕ̄ψ̄(w) ∼ w (where ∼ denotes the homo
topy relation). Clearly, we may consider only the case wherew = w1αβw2 (or, dually,
w = w1β

−1α−1w2), and then we havēϕψ̄(w) = ϕ̄(w1γ1 . . . γtw2) = w1γ1 . . . γtw2 ∼ w

(or ϕ̄ψ̄(w) = w1γ
−1
t . . . γ −1

1 w2 ∼ w, respectively).

Finally, the cases wherex
β−→ z andy

α−→ x are similar. �
4.2. We deduce that this construction preservesthe strong simple connectedness of

algebra.

Corollary. AssumeA to be schurian strongly simply connected and thatx ∈ A0 is doubly
irreducible. ThenB = A(x) is strongly simply connected.

Proof. Let C be a full convex subcategory ofB. Assume again thaty α−→ x
β−→ z (the

other cases being similar). Ify andz do not both lie inC, thenC is (isomorphic to) a
full convex subcategory ofA, and hence is simply connected. Otherwise, there exi
full convex subcategoryC′ of A such thatC = C′(x). SinceC′ is simply connected, an
π1(C

′) ∼= π1(C), thenC is simply connected. �
4.3. A schurian algebraA is said to bedismantlable(by doubly irreducibles) if there

exists an ordering{x1, x2, . . . , xn} of all objects ofA such thatx1 is doubly irreducible in
A and, for eachi � 1, A(x1, . . . , xi) = A(x1, . . . , xi−1)(xi) is schurian and the objectxi+1
is doubly irreducible inA(x1, . . . , xi).

Remark. Let A be a schurian algebra whose quiver contains no bypass. There e
unique posetΣ such thatQΣ = QA. We show in 4.6 below that, ifA is dismantlable then
so iskΣ . The converse, however, is not true.

Example 9. Let Σ be the poset given by the quiver

◦
α γ

◦

β

◦

δ

◦
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andJ be the ideal ofkΣ generated byαβ (= γ δ), thenA = kΣ/J is not dismantlable
even thoughkΣ clearly is.

Proposition. LetA be dismantlable. ThenA is simply connected.

Proof. By induction on|A0|. For|A0| = 1, there is nothing to show. Assume the statem
holds for all dismantlable algebrasA′ such that|A′

0| < |A0|, and letA be dismantlable
Let {x1, . . . , xn} be an ordering of the objects ofA as in the above definition. By 4.1
π1(A(x1)) ∼= π1(A). By the induction hypothesis,A(x1) is simply connected. Hence s
is A. �

4.4. We now show that dismantlability implies strong simple connectedness.

Lemma. LetA be a schurian dismantlable algebra, and letC be a full convex subcatego
of A. ThenC is dismantlable.

Proof. By induction on|A0|.The statement being clear for|A0| = 1, assume that|A0| > 1
and thatA contains a full convex subcategoryC which is not dismantlable. In particu
lar, C �= A. SinceC is convex inA, there exists a source or a sinka ∈ A0\C0. We may
then, up to duality, writeA = B[M], whereB is the full convex subcategory ofA with
B0 = A0\{a}. We haveC ⊆ B, andC is convex inB. Since|B0| = |A0| − 1, the induc-
tion hypothesis implies thatB is not dismantlable. Since, however,A itself is dismantlable
there exists an ordering{x1, . . . , xn} of the objects ofA as in the definition 4.3. In particula
x1 �= a because otherwiseB would be dismantlable. Ifx1 /∈ C0, thenC is (isomorphic to)
a full convex subcategory ofA(x1), andA(x1) is dismantlable with one object less thatA,
then the induction hypothesis yields a contradiction to the non-dismantlability ofC. There-
fore x1 ∈ C0. This implies thatC(x1) is a full convex subcategory ofA(x1). But then the
induction hypothesis yields thatC(x1) is dismantlable. ThereforeC itself is dismantlable
another contradiction.�

4.5. This lemma and 4.3 imply immediately the following.

Corollary. LetA be a schurian dismantlable algebra, thenA is strongly simply connected

4.6. As promised, we prove that dismantlability of a schurian algebra implies tha
corresponding incidence algebra.

Proposition. LetA be a schurian dismantlable algebra, then there exist a unique posΣ

such thatQΣ = QA andkΣ is also dismantlable.

Proof. By the above corollary and [2, 4.4] there exist a unique posetΣ such thatQΣ =
QA andkΣ is strongly simply connected. Thus, by [20, 3.3],kΣ contains no crown. By
[21, 2.3],kΣ is dismantlable. �
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4.7. We end this section by proving the converse of 4.5.

Proposition. Let A be a schurian strongly simply connected algebra. ThenA is dismant-
lable.

Proof. By [2, 4.4], sinceA is strongly simply connected, there exists a strongly sim
connected incidence algebrakΣ such thatA is a quotient ofkΣ . By [20, 3.3],kΣ contains
no crown. By [21, 2.3],kΣ is dismantlable. In particular,kΣ contains a doubly irreducibl
x which is also doubly irreducible inA. Now, notice thatA(x) is schurian. This is clear i
A(x) is a full subcategory ofA. Otherwise, there exist two arrowsα : y → x andβ : x → z

such thatαβ = 0 in A. If x does not belong to a cycle, then the statement is clear. How
if it does, then we can clearly assume that there exists an irreducible cycle containingα

andβ , and this contradicts [4, 2.4]. By 4.2 above,B = A(x) is strongly simply connected
Since|B0| < |A0|, induction says thatB is dismantlable. Hence so isA. �

5. The proof of Theorem A

5.1. This section is devoted to the proof of our first main theorem. Lets be a source in
a schurian triangular algebraA. Then we can writeA = B[M] whereB is the full convex
subcategory ofA such thatB0 = A0\{s}. We defineΣs andΣ ′

s as in 3.6. By [15, 2.6], we
have a short exact sequence of complexes

0−→ C•
(
kΣ ′

s

) [u−v ]−−→ C•(kΣs) ⊕ C•(B)
[ij ]−−→ C•(A) −→ 0,

whereu, v, i, j are induced by the inclusions. Passing to (simplicial) homology yields
Mayer–Vietoris sequence

· · · −→ SH2(A) δ−→ SH1
(
kΣ ′

s

) −→ SH1(kΣs) ⊕ SH1(B) −→ SH1(A)

δ−→ SH0
(
kΣ ′

s

) ι−→ SH0(kΣs) ⊕ SH0(B) −→ SH0(A)

and it is shown in [15, p. 34] that the morphismι is injective if and only if the points
is separating. On the other hand, the posetΣs admits a maximal elements, hence the
corresponding chain complex is contractible (because it is homeomorphic to a cone,
[16, 3.4]), thereforeSHn(kΣs) = 0 for all n � 1.

Lemma. LetA be a schurian algebra, ands be a source inA.

(a) If kΣ ′
s contains no crowns, then there exists a monomorphismSH1(B) → SH1(A).

Thus,SH1(A) = 0 impliesSH1(B) = 0.
(b) If s is separating, then there exists an epimorphismSH1(B) → SH1(A). Thus,

SH1(B) = 0 impliesSH1(A) = 0.
(c) If kΣ ′

s contains no crowns ands is separating, then we have an isomorphi
SH1(B) ∼= SH1(A).
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Proof. SinceSH1(kΣs) = 0, we have an exact sequence

· · · δ−→ SH1
(
kΣ ′

s

) −→ SH1(B) −→ SH1(A)
δ−→ SH0

(
kΣ ′

s

) ι−→ · · · .

If the incidence algebrakΣ ′
s contains no crown, then it is strongly simply connect

In particular,π1(kΣ ′
s) is trivial, and henceSH1(kΣ ′

s) = 0 (because, by the Hurewicz
Poincaré theorem,SH1(kΣ ′

s) is the abelianisation ofπ1(kΣ ′
s)). Hence (a) follows. Ifs is

separating, thenι is injective, thus giving (b). Finally, (c) follows trivially. �
5.2. It is well known that, ifA is a simply connected algebra (or, else, ifHH 1(A) = 0),

then every source inA is separating, see [6] (or [33], respectively). In the schurian c
we can say more.

Corollary. LetA be a schurian algebra. IfSH1(A) = 0, then every source inA is separat-
ing.

Proof. Indeed, it follows from the Mayer–Vietoris sequence that the morphismι is injec-
tive. �

5.3. The following lemma is part of the proof of our Theorem A.

Lemma. Let A be a schurian algebra, not containing quasi-crowns and such
SH1(A) = 0. ThenA is strongly simply connected.

Proof. By induction on|A0|. Since the statement is clear for|A0| = 1, assume that it hold
for all schurian algebrasB without quasi-crowns such that|B0| < |A0| andSH1(B) = 0.

Let s be a source inA, andB be the full convex subcategory ofA defined byB0 =
A0\{s}. We claim thatkΣ ′

s contains no crowns. If this is not the case, andΓ is a crown
in kΣ ′

s , thenΓ is a crown inkΣs , hence by 3.6 there exists a quasi-crown inA which
must lie inB (becauses /∈ Γ0) and this yields a contradiction which establishes our cla
ThereforeSH1(kΣ ′

s ) = 0.
Since, as pointed out above,SH1(kΣs) is zero, the Mayer–Vietoris sequence gives

0= SH1
(
kΣ ′

s

) −→ SH1(B) −→ SH1(A) = 0.

Hence,SH1(B) = 0. Furthermore,B contains no quasi-crown. Therefore,B is strongly
simply connected, by the induction hypothesis. Since, on the other hand,s is separating
(by the above corollary),A is simply connected.

In order to show thatA is strongly simply connected, we need to show that every pr
full convex subcategoryC of A is simply connected. But, sinceC is proper, there exists
sources (up to duality) ofA such thats /∈ C0. Letting, as above,B0 = A0\{s}, andB be
the full subcategory it generates, we get thatB is strongly simply connected, andC ⊆ B.
Therefore,C is simply connected. �
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5.4. We may replace “quasi-crowns” by “crowns” in the case whereA is a quotient of
an incidence algebra.

Corollary. Let A be a quotient of an incidence algebra, not containing crowns and
thatSH1(A) = 0. ThenA is strongly simply connected.

Proof. This follows from 3.7 and the proof of 5.3 above.�
5.5. We also deduce from 5.3 an alternative proof of 3.8(c).

Corollary. Let A = B[M] be a schurian simply connected algebra such thatB is not
simply connected. ThenB contains a quasi-crown.

Proof. Let s denote the extension point. We suppose thatB contains no quasi-crowns an
reach a contradiction. By the proof of 5.3,kΣ ′

s contains no crowns and soSH1(kΣ ′
s) = 0.

On the other hand, the simple connectedness ofA yieldsSH1(A) = 0. By 5.1,SH1(B) = 0.
SinceB has no quasi-crown, and satisfiesSH1(B) = 0, it follows from 5.3 thatB is
strongly simply connected, a contradiction to our hypothesis.�

5.6. It is a general problem to determine for which classes of algebras is simple
nectedness equivalent to the vanishing of the first Hochschild cohomology group (s
instance, [3,6,24,33]).

Proposition. LetA be a connected quotient of an incidence algebra, containing no cro
The following conditions are equivalent:

(a) A is separated,
(b) A is simply connected,
(c) HH 1(A) = 0.

Proof. That (a) implies (b) follows from [33, 2.2]. Assume nowA to be simply connected
SinceA is schurian, it follows from [27] thatHH 1(A) ∼= Hom(π1(A), k+) = 0. Thus,
(b) implies (c).

We prove that (c) implies (a) by induction on|A0|. Since the statement is clear f
|A0| = 1, assume that|A0| > 1 and that the statement holds for any algebraB such that
|B0| < |A0| andHH 1(B) = 0.

Suppose thatHH 1(A) = 0. We must prove that each objectx in A0 is separating
Let s be a source inA and letB be the full convex subcategory ofA with object class
B0 = A0\{s}. ThenA = B[M] andB = ∏c

j=1 Bj , whereB1, . . . ,Bc are connected. More
over, sinceA is a quotient of an incidence algebra, then so are theBj . By [33, 3.2],s is
separating, so we may assumex to be different froms. SinceA contains no crown, then
by 3.8(a, b), there exists, for any abelian groupG, a short exact sequence

0 −→ Gt−c −→ Hom
(
π1(A),G

) −→
c∏

Hom
(
π1(Bj ),G

) −→ 0.
j=1
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TakingG = k+, we have Hom(π1(A), k+) ∼= HH 1(A) = 0. Hence, for anyj , HH 1(Bj ) ∼=
Hom(π1(Bj ), k

+) = 0, so, by the induction hypothesis, eachBj is separated. Sincex is
different froms, it belongs to someBj . SinceBj is separated,x is separating inBj and
therefore inA (becauseAx = Bx

j ). �
As will be seen shortly (and as is evident from 5.4) the equivalent conditions o

proposition are equivalent to strong simple connectedness.

5.7. We are now able to prove our first main theorem.

Theorem. Let A be a schurian triangular algebra. The following conditions are equiva
lent:

(a) A is strongly simply connected.
(b) A is dismantlable.
(c) A is separated and contains no quasi-crowns.
(d) A is simply connected and contains no quasi-crowns.
(e) SH1(A) = 0 andA contains no quasi-crowns.
(f) SH 1(A,G) = 0 for every abelian groupG, andA contains no quasi-crowns.
(g) A is a quotient of an incidence algebra,HH 1(A) = 0 andA contains no crowns.

Proof. (a) implies (b). By 4.7.
(b) implies (a). By 4.5.
(a) implies (c). By [33, 4.1], every strongly simply connected algebra is separate

also apply 3.5.
(c) implies (d). By [33, 2.2], every separated algebra is simply connected.
(d) implies (e). Follows from theHurewicz–Poincaré theorem.
(e) implies (a). By 5.3.
(e) is equivalent to (f). By the Dual Universal Coefficients Theorem, we have, fo

abelian groupG:

SH 1(A,G) ∼= HomZ

(
SH1(A),G

) ⊕ Ext1
Z

(
SH0(A),G

)
.

SinceA is connected,SH0(A) ∼= Z so thatSH 1(A,G) ∼= HomZ(SH1(A),G). Thus (e)
implies (f). The converse follows upon takingG = SH1(A).

(a) implies (g). By [2, 4.5] (see also [4,20]),A is a quotient of an incidence alg
bra. Moreover,HH 1(A) = 0 and by 3.5,A contains no quasi-crown, thenA contains no
crowns.

(g) implies (c). By 5.6. �
As a direct consequence of the equivalence between the strong simple connec

and the dismantlability of a schurian algebra, we have the following algorithm whic
lows us to verify the strong simple connectedness of a schurian algebra:
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INPUT: A (which is a schurian algebra).
Check if there exists anx ∈ A0 which is a doubly irreducible.
If there exists no doubly irreducible
OUTPUT:A is not strongly simply connected.
If there exists a doubly irreduciblex
Check ifA(x) is schurian.
If A(x) is not schurian
OUTPUT:A is not strongly simply connected.
If A(x) is schurian, then setA := A(x).
If A0 is a singleton
OUTPUT:A is strongly simply connected.
If A0 is not a singleton, return to input.

Example 10. The following is an example of a simply connected algebra containi
quasi-crown, and which is evidently not strongly simply connected. LetA be given by the
quiver

s

u1

v1

σ

◦
u2

v2
◦

u3
v3

γ

◦
u4

v4◦

α

◦
β

◦

λ

◦

µ◦

δ

◦
bound byu1αδ = 0, σu3 = 0, σv3 = 0, u1α = v1β = σγ , u2βδ = v2λ, γ δ = u3λ =
v3µ, u4µ = v4αδ. Indeed, letB be a full convex subcategory ofA with object class
B0 = A0 \ {s}, thenB is obviously a simply connected incidence algebra (because it h
a minimal point) and the extension moduleM = radPs is indecomposable. Hence, by [
2.5], A = B[M] is simply connected. Observe also thatA is a quotient of an incidenc
algebra and contains a crown.

5.8. We may replace “quasi-crowns” by “crowns” in conditions (c)–(f) of Theorem
in the case of quotients of incidence algebras.

Corollary. LetA be a quotient of an incidence algebra. The following conditions are eq
alent:

(a) A is strongly simply connected.
(b) A is dismantlable.
(c) A is separated and contains no crowns.
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(d) A is simply connected and contains no crowns.
(e) SH1(A) = 0 andA contains no crowns.
(f) SH 1(A,G) = 0 for every abelian groupG, andA contains no crowns.
(g) HH 1(A) = 0 andA contains no crowns.

Proof. This follows from 5.7, 5.6, and 5.4.�
5.9. Remarks

We recall that, ifA is an incidence algebra, then the following conditions are equiva

(a) A is strongly simply connected;
(b) A has no crown;
(c) A is dismantlable

(by [20, 3.3] and [21, 2.3]). These conditions imply each of the following:

(d) HH 1(A) = 0;
(e) A is simply connected;
(f) A is separated

(by [33]). However, the latter conditions are not equivalent and, while (f) implies (e), w
implies (d), the other implications are not true. LetA be the incidence algebra of the pos
with quiver

◦

◦ ◦

◦ ◦
ThenA is simply connected but not separated, thus (e) does not imply (f). Finally

well known that (d) does not imply (e) (see, for instance, [16, 3.10]).

5.10. We also get the following obvious corollary.

Corollary. Let A be a schurian triangular algebra containing no quasi-crowns. The
lowing conditions are equivalent:

(a) A is strongly simply connected.
(b) A is dismantlable.
(c) A is separated.
(d) A is simply connected.
(e) SH1(A) = 0.



184 I. Assem et al. / Journal of Algebra 283 (2005) 161–189

iver of
er

ected

re

nsion
r,

en

uasi-
ence
,

.

(f) SH 1(A,G) = 0 , for each abelian groupG.
(g) A is a quotient of an incidence algebra, andHH 1(A) = 0.

5.11. The question has arisen whether the presence of a bypass in the bound qu
a schurian algebra may prevent this algebra from being simply connected. We now answ
this question in the negative: the following is an example of schurian simply conn
algebra containing a bypass.

Example 11. Let A be given by the quiver

s◦

δ

γ

◦
α1

α2
α3◦

u1
v1

◦
u2

v2

◦
u3

v3

◦
β1

◦
β2

◦
β3

◦
bound byα1v1 = 0, γα1 = 0, δv1 = γα2u2, γα3 = 0, δu1 = 0 and all other squares a
commutative. Then the full convex subcategoryB of A with objects classB0 = A0 \ {s} is
the “box” of Example 3 of 3.1 above and, in particular, is simply connected. The exte
moduleM = radPs is indecomposable, so thatA = B[M] is simply connected. Howeve
we notice thatA contains a (quasi-)crown: this is a general fact.

Corollary. Let A be a simply connected schurian algebra containing a bypass. ThA

contains a quasi-crown.

Proof. Assume thatA is a simply connected algebra containing a bypass but no q
crown. By Theorem A, it is strongly simply connected. Hence there exists an incid
algebrakΣ such thatQA = QkΣ (see, for instance, [2]). But thenA contains no bypass
a contradiction. �

5.12. The following is an easy consequence of the previous corollary.

Corollary. LetA be a simply connected representation-finite algebra. ThenA contains no
bypass.

6. Schurian algebras not containing quasi-crowns

6.1. We now turn to the proof of our second main theorem. LetA be a schurian algebra
Following [12, 1.2], we callB amultiplicative basisof A if:
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(a) ex ∈ B for eachx ∈ A0,
(b) B ∩ ex(radn A)ey is a basis ofex(radn A)ey for all x, y ∈ A0 and alln ∈ N,
(c) b ∈ B ∩ exAey andc ∈ B ∩ eyAez imply bc ∈ B or bc = 0.

The following is an example of an algebra having no multiplicative basis.

Example 12. Let A be given by a quiver

◦

α2

α1

◦

v2
u1

◦
u2

v1

◦

γ1
β

◦

γ2

◦

bound byα1u1 = α2v2, α1v1 = α2u2, u1γ1 = v1γ2, v2γ1 = cu2γ2, u1β = 0, v1β = 0,
βγ2 = 0 and rad3A = 0 (wherec is a constant different from 0 and 1). We notice thaA

contains a quasi-crown. Also,A is a split extension of the algebra in Bongartz’ exam
[14], the latter being obtained by deleting the arrowβ .

6.2. In the following lemma, we show that a schurian algebraA, not containing quasi
crowns, has only low-dimensional simplicial homology and cohomology groups. Fo
purpose, the key statement is thatSH2(A) = 0, all other statements follow easily from
[26, 3.1]. We give however an independent proof for the convenience of the reader.

Lemma. LetA be a schurian algebra not containing quasi-crowns. Then

(a) SHn(A) = 0 for all n � 2.
(b) SHn(A,G) = 0 for all n � 3 and all abelian groupsG.

Proof. (a) We use induction on|A0|. Let s be a source inA, andB be the full subcategor
of A with object classB0 = A0 \ {s} (thus A = B[M]). For n � 2, we have an exac
sequence

−→ SHn(B) −→ SHn(A) −→ SHn−1
(
kΣ ′

s

) −→ .

By 3.7, kΣ ′
s has no crowns. Since it is an incidence algebra, it is (strongly) simply

nected. In particular,SH1(kΣ ′
s) = 0. On the other hand, sinceB has no quasi-crown

either, the induction hypothesis implies thatSHn(B) = 0 = SHn(kΣ ′
s) for all n � 2. There-

foreSHn(A) = 0 for n � 2.
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(b) This follows from (a) and from

SHn(A,G) ∼= HomZ

(
SHn(A),G

) ⊕ Ext1
Z

(
SHn−1(A),G

)
. �

6.3. We are now able to prove our second main Theorem B.

Theorem (Multiplicative basis). Let A be a schurian algebra not containing qua
crowns. ThenA admits a multiplicative basis.

Proof. Let k× denote the multiplicative group of thenon-zero scalars. Applying 6.2, th
Dual Universal Coefficients Theorem yields

SH 2(A,k×) ∼= HomZ

(
SH2(A), k×) ⊕ Ext1

Z

(
SH1(A), k×)

∼= Ext1
Z

(
SH1(A), k×) = 0,

sincek× is a divisible abelian group (becausek is an algebraically closed field). By [15
2.2], this implies thatA has a multiplicative basis.�
Remark. In [26, 3.2], Martins and de la Peña prove the existence of a multiplicative
in an algebraA such that gl.dimA � 2 andHH 2(A) = 0. We replace both of these h
potheses by the one of the absence of quasi-crowns. Our result may thus be app
instance, to algebras of an arbitrarily large global dimension.

6.4. The next corollary follows immediately from our Theorem B.

Corollary. For each natural numberd , there exist only finitely many isomorphism clas
of schurian algebras, not containing quasi-crowns, of dimensiond .

Proof. Indeed, this follows, from the facts that, for such an algebra, the number of p
the number of arrows and hence the number of paths are bounded, and a basis co
classes of paths modulo the ideal.�

6.5. A second immediate corollary is the following well-known result of Bongartz

Corollary [14]. Let A be a representation-finite triangular algebra, then A admits a m
tiplicative basis.

6.6. As another corollary of our two main Theorems A and B, we obtain a new p
of [4, 2.4].

Corollary. LetA be a schurian strongly simply connected algebra, thenA admits a multi-
plicative basis.
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6.7. The following corollary is a direct consequence of [15, 2.2] and the fact that,A

is a schurian triangular algebra having no quasi-crowns, thenSH 2(A, k×) = 0. We recall
thatB(A) denotes the classifying space ofA, see [17].

Corollary. LetA,A′ be schurian triangular algebras such thatA has no quasi-crowns an
B(A) = B(A′), then there exists an isomorphism ofk-algebrasA ∼= A′.

6.8. To end this paper, we illustrate our methods by obtaining short proofs of som
well-known results about strongly simply connected algebras.

Corollary [20, 2.4]. A schurian algebraA is strongly simply connected if and only if, f
every full convex subcategoryC of A, we haveSH1(C) = 0.

Proof. Necessity. Assume thatA is strongly simply connected. Then any full convex s
categoryC of A is also strongly simply connected. By Theorem A,SH1(C) = 0.

Sufficiency. LetC be a full convex subcategory ofA. By hypothesis,SH1(C) = 0. Since
A is schurian, it follows from [27] that

HH 1(C) ∼= Hom
(
π1(C), k+) ∼= Hom

(
SH1(C), k+) = 0.

By [33, 4.1],A is strongly simply connected.�
6.9. The next corollary is expressed by saying that a schurian strongly simply

nected algebra (or, more precisely, its classifying space) is acyclic.

Corollary [20, 2.6]. LetA be a schurian strongly simply connected algebra, then

(a) SHn(A) = 0 for all n � 1.
(b) SHn(A,G) = 0 for all n � 1 and all abelian groupsG.

Proof. (a) By 6.2, this is clear ifn � 2. Forn = 1, this is granted by the simple conne
edness ofA.

(b) We recall that the strong simple connectedness ofA implies thatSH 1(A,G) = 0
for all abelian groupsG, see 5.7. Moreover,

SH 2(A,G) ∼= HomZ

(
SH2(A),G

) ⊕ Ext1
Z

(
SH1(A),G

) = 0.

Finally, for n � 3, this follows from 6.2. �
6.10. We end this paper with a short proof of the following result of [22].

Corollary [22]. Let A be a schurian strongly simply connected algebra, then
Hochschild cohomology ringHH ∗(A) of A is k.
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Proof. It follows from [17, (6.5)] that, for alln � 1, we haveHHn(A) ∼= SHn(A,k+).
By 6.9(b), the latter vanishes.�

Observe that, in this case, ifA = B[M] is written as one-point extension, then we clea
have ExtiB(M,M) = 0, for all i.
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[8] I. Assem, A. Skowrónski, On some classes of simply connected algebras, Proc. London Math. Soc.

(1988) 417–450.
[9] I. Assem, D. Zacharia, On split by-nilpotent extensions, Colloq. Math. 98 (2) (2003) 259–275.

[10] M.J. Bardzell, E.N. Marcos,H1(Λ) and presentations of finite dimensional algebras, in: Representations
Algebras, in: Lecture Notes in Pure and Appl. Math., vol. 224, Dekker, New York, 2002, pp. 31–38.

[11] R. Bautista, F. Larrión, L. Salmerón, On simplyconnected algebras, J. London Math. Soc. (2) 27 (19
212–220.

[12] R. Bautista, P. Gabriel, A.V. Roiter, L. Salmerón, Representation-finite algebras and multiplicative
Invent. Math. 81 (2) (1985) 217–285.

[13] K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (3) (1981/82) 331–3
[14] K. Bongartz, Zykellose Algebren sind nicht zügellos, in: Proc. ICRA II, Ottawa, 1979, in: Lectures Notes

Math., vol. 832, Springer-Verlag, Berlin, 1980, pp. 97–102.
[15] O. Bretscher, P. Gabriel, The standard form of a representation-finitealgebra, Bull. Soc. Math. France 11

(1983) 21–40.
[16] J.C. Bustamante, On the fundamental group ofa schurian algebra, Comm. Algebra 30 (11) (2002) 53

5329.
[17] J.C. Bustamante, The classifying space of a bound quiver, J. Algebra, in press.
[18] H. Cartan, S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton NJ, 1956.
[19] J. Constantin, G. Fournier, Ordonnés escamotables et points fixes, Discrete Math. 53 (1985) 21–33.



I. Assem et al. / Journal of Algebra 283 (2005) 161–189 189

6)

ith

83)

is,

30 (3)

ite

ta

y

3)

n,

7)

as,
[20] P. Dräxler, Completely separating algebras, J. Algebra 165 (2) (1994) 550–565.
[21] D. Duffus, I. Rival, Crowns in dismantlable partially ordered sets, Coll. Math. Soc. J. Bolyai 18 (197

271–292.
[22] S. Gastaminza, J.A. de la Peña, M.I. Platzeck, M.J. Redondo, S. Trepode, Finite dimensional algebras w

vanishing Hochschild cohomology, J. Algebra 212 (1) (1999) 1–16.
[23] E.L. Green, Graphs with relations, coverings and group graded algebras, Trans. Amer. Math. Soc. 279 (19

277–292.
[24] D. Happel, Hochschild cohomology of finite dimensional algebras, in: Séminaire M.-P. Malliavin, Par

1987–1988, in: Lecture Notes in Math., vol. 1404, Springer-Verlag, Berlin, 1989, pp. 108–126.
[25] R. Martinez-Villa, J.A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra

(1983) 277–292.
[26] Ma.I.R. Martins, J.A. de la Peña, Comparing the simplicial and the Hochschild cohomologies of a fin

dimensional algebra, J. Pure Appl. Algebra 138 (1999) 45–58.
[27] J.A. de la Peña, M. Saorin, On the first Hochschild cohomology group of an algebra, Manuscrip

Math. 104 (4) (2001) 431–442.
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