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Current macroecological research places great emphasis on patterns of species richness (alpha diversity) and the
underlying ecological and evolutionary processes involved in their origin and maintenance. However, few studies dealing
with continental scales have addressed dissimilarities in species composition among areas (beta diversity). Using data for
the occurrence of 3836 bird and 1641 mammal species in 4220 cells covering the New World, we assessed whether
broad-scale macroecological patterns in beta diversity are related to dissimilarities in environmental variables and biotic
units. We employed spatial regression and tree regression to model beta diversity. Difference in altitude was the best
predictor of beta diversity. Accordingly, the highest beta diversity values were found in mountainous areas, particularly in
the Andes, Central America and western North America. Explanatory variables related to transitions between biotic units
(biome, ecoregion) were relatively unimportant. Areas that differ in altitude from their surroundings harbor different
sets of species, and this may reflect either species adaptation to particular environmental conditions by range shifts, or
species divergence by vicariance, or both.

Early ecologists recognized that biological diversity in an
area can be decomposed into two components. The first
component relates to the number of species found in a
single site or habitat. The second component concerns the
change in species composition among sites, habitats or
gradients. Whittaker (1960, 1972) termed the first compo-
nent alpha diversity, and the second component beta
diversity. He termed gamma diversity the total diversity
of all sites or habitats, and proposed that gamma�alpha �
beta. This simple relationship has been applied in a number
of studies, particularly those dealing with differences among
habitats or small-scale gradients (Koleff et al. 2003,
Magurran 2004). Despite the wide use of the formula
proposed by Whittaker (1960, 1972), many other formulas
and even approaches have been suggested (Harrison et al.
1992, Koleff et al. 2003, Magurran 2004). For instance,
beta diversity can be quantified as dissimilarities among
sites (Koch 1957, Whittaker 1972, Koleff et al. 2003). Also,
if a species-accumulation curve is constructed using nested
subsamples (Crist and Veech 2006) and linearized by a log
or a log-log transformation, the slope of the line adjusted to
the data can be used as a measure of beta diversity
(Rodrı́guez and Arita 2004). Thus, Diniz-Filho et al.
(2004) used the equivalent z-parameter of the power
function S�cAz as a measure of beta diversity among
nested sets of quadrats (see also Lennon et al. 2001).
Interest in beta diversity has resurged in the last 10 yr,

stimulated in part by the popularization of additive
partitioning (Veech and Crist 2007).

Although most of the literature treats different measures
of beta diversity as synonyms, this is not always the case. For
instance, Crist and Veech (2006) showed that the slope of a
species-accumulation curve constructed using nested or
non-nested areas results in different measures of beta
diversity. Koleff et al. (2003) compiled 18 formulas
used in beta diversity studies, and showed that they respond
differently to variation in their matching components, and
that some of them are oversensitive to differences in species
richness among samples. When using dissimilarities to
quantify beta diversity among samples, one may opt to
use a multiple-site approach where a single value is obtained
from all the samples in the comparison (Diserud and
Ødegaard 2007, Baselga et al. 2007). In contrast, a pair-
wise approach produces a single beta diversity value for each
sample, consisting of the mean dissimilarities from a focal
cell and all the remaining cells. Although usually treated as
synonyms, the multiple-site approach measures beta diver-
sity using all information on differences among samples,
and is directly related to the multiplicative formulas
proposed by Whittaker (1960). In contrast, the pair-wise
approach quantifies the difference between a focal sample
and the remaining samples.

At broad macroecological scales, much emphasis has
been given to patterns of species richness and the associated
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ecological and evolutionary processes underlying their
origin and maintenance (Hawkins et al. 2003, Currie
et al. 2004, Kark et al. 2007, Qian et al. 2007, Rangel
et al. 2007). These macroecological studies usually did not
take into account dissimilarities among assemblages at a
given spatial scale. However, diversity within (alpha) and
among (beta) areas seems to be intrinsically associated, and
some mechanisms that are usually associated with richness
gradients, especially those related to niche dynamics over
ecological and evolutionary time spans, are actually driven
by changes in species composition among areas (Qian et al.
2005, Qian and Ricklefs 2007). For example, Stevens
(1989), in his classical paper on Rapoport’s rule, suggested
that increasing species turnover towards tropical regions,
associated with the decrease in geographical range size as a
consequence of increasing habitat specialization, could
explain the diversity gradients. Although the association
between latitudinal gradients in geographical range size
(Rapoport’s rule) and richness has been widely discussed
and questioned (Gaston et al. 1998, Hawkins and Diniz-
Filho 2006), packing mechanisms (such as habitat specia-
lization and niche-breath reduction) may generate high
alpha diversity on a large scale, as a result of increased beta
diversity at smaller scales (Rodrı́guez and Arita 2004).

A few macroecological studies have treated broad-scale
patterns of beta diversity. Mourelle and Ezcurra (1997)
evaluated patterns of beta diversity of cacti in Argentina,
and found that variation among one-degree cells was
highest in the northwest part of the country, an area with
highly variable topography and many transitions among
biogeographical provinces. Lennon et al. (2001) analyzed
patterns in beta diversity in British birds, showed how these
patterns change with the spatial scale of the analysis
(i.e. grain size), and discussed the implications of these
findings for conservation biology. More recently, Qian and
Ricklefs (2007) evaluated broad-scale patterns of beta
diversity of native vascular-plant communities in latitudinal
bands of North America, concluding that a north-south
gradient in the magnitude of beta diversity exists. They also
showed that geographical and environmental distances
explained about the same amount of variation in beta-
diversity gradients, and there has indeed been a recent trend
to associate these two sources, respectively, with neutral
(dispersion and historical events) and niche-based adaptive
processes. McKnight et al. (2007) mapped beta diversity of
birds, mammals and amphibians in the Western Hemi-
sphere, and found that congruence in regions of high beta
diversity among the groups depended on the region studied,
being higher in the Neotropical than in the Nearctic realm.

Broad-scale studies usually do not evaluate continuous
patterns of variation in beta diversity at geographical scales
(but see Mourelle and Ezcurra 1997, Rodrı́guez and Arita
2004, van Rensburg et al. 2004, Gaston et al. 2007,
McKnight et al. 2007). Instead, these studies usually focus
on the comparison of spatially distant areas, ecoregions and
latitudinal bands (Harrison et al. 1992, Blackburn and
Gaston 1996, Willig and Gannon 1997, Qian et al. 2005,
Wittmann et al. 2006, Qian and Ricklefs 2007, Veech and
Crist 2007). Also, most beta-diversity studies, irrespective of
the spatial scale concerned, have focused on documenting
patterns, and only rarely have they explicitly attempted to
evaluate ecological and evolutionary factors generating beta

diversity (but see Mourelle and Ezcurra 1997, van Rensburg
et al. 2004, Qian et al. 2005, Harborne et al. 2006).

Beta diversity is generated broadly by geographical
distance and environmental differences (Cody 1986, Con-
dit et al. 2002, Tuomisto et al. 2003, Legendre et al. 2005,
Tuomisto and Ruokolainen 2006, Steinitz et al. 2006).
Restrictions on dispersal may produce autocorrelated dis-
tributions of individuals of each species. Accordingly,
distant areas will contain different sets of species. This
hypothesis assumes that species are able to survive and
reproduce irrespective of habitat conditions, and that
dispersal limitation is the key factor generating dissimila-
rities in species composition among areas. Accordingly, we
would expect that taxa differing in dispersal abilities would
differ in beta diversity (Steinitz et al. 2006). In contrast,
traditional ecological theory predicts that species are limited
in space by their niche requirements. Areas with contrasting
environmental conditions would harbor different sets of
species (Cody 1986).

We evaluated biotic and abiotic predictors of broad-scale
macroecological patterns in beta diversity of New World
birds and mammals. We mapped beta diversity for each
18 by 18 cell using the pair-wise approach, wherein each
focal cell is compared to its first-order adjacent cells. Our
measure of beta diversity thus quantifies how different the
focal cell is in relation to its adjacent cells. We hypothesize
that beta diversity is generated by differences in environ-
mental conditions of areas. Using two regression ap-
proaches, we selected abiotic and biotic predictors that
best predicted the distinctiveness in species composition of a
cell in relation to its adjacent cells.

We used a beta-diversity index developed by Lennon
et al. (2001) that allows evaluation of patterns of beta
diversity independently of species-richness gradients. Be-
cause our beta-diversity measure quantifies mean dissim-
ilarities of a focal cell in relation to its neighborhood cells,
we used the differences in environmental variables between
the focal cell and its adjacent cells as predictors. This
approach has been rarely used to model beta diversity.

Materials and methods

Data

For the analysis, we used the digitized bird (Ridgely et al.
2005) and mammal (Patterson et al. 2005) databases for
3836 bird species and 1641 mammal species, available at

/<www.natureserve.org>. These databases have been ex-
tensively used in broad-scale diversity and macroecological
analyses (Hawkins and Diniz-Filho 2006, Hawkins et al.
2007a, b, Rangel et al. 2007, Diniz-Filho et al. 2008; see
also Orme et al. 2005 and subsequent papers using the
global bird-distribution dataset). The databases were pro-
cessed using ESRI ArcView 3.1 scripts to record each
species’ presence, as defined by its breeding range, in the
18 by 18 cell grid (m�4220) covering the New World.
Cells with B50% land area, and small islands were
excluded from the grid. We then constructed a presence/
absence matrix for the entire New World, to allow
calculating different metrics for the beta diversity of each
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cell using functions written in the R environment (R
Development Core Team 2007) (see below).

Environmental predictors of beta diversity

Beta diversity has been interpreted in many ways, and as a
consequence many formulas and approaches have been
suggested (Koleff et al. 2003, Legendre et al. 2005,
Tuomisto and Ruokolainen 2006). In our study, beta
diversity is measured and interpreted as distinctiveness. This
usage has been employed in conservation studies aimed
toward designing representative networks of protected areas
(Wiersma and Urban 2005). In the present study, beta
diversity in each squared cell measures how different this
cell is, in terms of species composition, from the adjacent
cells. Accordingly, we can expect that its distinctiveness will
be due to differences in environmental conditions between
the focal and adjacent cells. We thus modeled beta diversity
in a given cell in relation to the distinctiveness of the cell in
terms of environmental predictors. The distinctiveness of an
environmental predictor has only rarely been used to model
beta diversity (Mourelle and Ezcurra 1997, Gaston et al.
2007). In case of important relationships between beta
diversity and distinctiveness of environmental predictors,
the direct interpretation is that species are adapted to their
environment, and therefore change in the environment is
accompanied by change in species composition. An indirect
relationship mediated by species occupancy, which was not
evaluated here, was reported by Gaston et al. (2007)
between beta diversity and mean environmental predictors
of the focal grid cell. The authors argued that abundant
resources would allow the occurrence of many species with
large ranges, which in turn would decrease beta diversity
(see also Cody 1986).

For each of the following seven environmental factors,
which are commonly used in the analyses of broad-scale
diversity patterns, we obtained the mean differences of the
values in the focal cell from all of its adjacent cells. For
clarity, in the remaining text we refer to each of these
environmental predictors as its name plus the suffix ‘‘.dif’’
to indicate that differences, and not the original values
of the variable, are being used: 1) altitude, 2) temperature
3) precipitation, 4) humidity, 5) net primary productivity
(NPP), 6) potential evapo-transpiration (PET), and
7) actual evapo-transpiration (AET) (see New et al. 1999,
Willmott and Kenji 2001, Hawkins et al. 2007a, Rangel
et al. 2007, for detailed definitions of variables and sources).

In addition to environmental variables, beta diversity of
birds and mammals may be affected by biotic differences
among the areas where they live. Therefore, we should
expect high beta diversity among adjacent cells located in
different ecoregions or biomes (Williams 1996, van
Rensburg et al. 2004, Kark et al. 2007), although a test
using birds, mammals and trees in the United States and
Canada did not support this expectation (McDonald et al.
2005). We investigated this expectation using the classifica-
tion system for the Terrestrial Ecoregions of the world,
available at: /<http://www.worldwildlife.org/science/data/
item1872.html> (Olson et al. 2001). The system is
composed of three types of variables: realms, biomes and
ecoregions (Olson et al. 2001). A fourth variable indicates

habitat polygons within each ecoregion (available in the
database). For each of the four variable types, we calculated
the Jaccard distance index between the focal cell and all the
first-order adjacent cells. Cells in the interior of biotic units
should receive low values of distance, while those cells
in transition zones should receive high values. Thus, in
addition to the seven abiotic difference variables, we
considered as predictors the mean Jaccard distance
based on 8) realms (realms.jac), 9) biomes (biomes.jac),
10) ecoregions (ecoregions.jac), and 11) polygons (poly-
gons.jac).

Before modeling, we analyzed the multicollinearity
structure among predictors using the variance inflation
factor (VIF). Based on this criterion, we found high VIFs
for altitude.dif and temperature.dif (see correlations in
Supplementary material, Table S1). However, after deleting
temperature.dif, all VIF values became lower than 5, much
lower than the critical heuristic value of 10. Thus, our final
analyses were performed using 6 climatic variables (i.e. their
pairwise differences) and 4 variables expressing differences
among biotic units, as predictors.

Measuring beta diversity in grid systems

Since the pioneering work of Whittaker (1960), dozens of
indices to measure beta diversity using presence-absence
data have been proposed. Koleff et al. (2003) reviewed
60 publications dealing with the subject, and compiled
24 formulas. Because some formulas are re-expressions or
equivalent forms of others, they listed 18 measures of beta
diversity. We initially considered three measures of beta
diversity listed by Koleff et al. (2003). The first measure was
the Sørensen dissimilarity index:

bsor�1�
2a

2a � b � c

where a�number of species in both cells, b�number of
species exclusive to the focal cell, and c�number of species
exclusive to the adjacent cell. The Sørensen index (and its
equivalent Jaccard, bj�2*bsor/(1�bsor)) is a popular
choice in beta-diversity studies (Koleff et al. 2003,
Magurran 2004). Despite its popularity, Lennon et al.
(2001) pointed out that bsor is very susceptible to
differences in species richness between cells. For instance,
Baselga et al. (2007) showed that the Sørensen dissimilarity
index and its multiple-site version (Diserud and Ødegaard
2007) are not able to distinguish between nestedness and
true differences in species composition among sites.
Accordingly, Lennon et al. (2001) proposed two measures
to distinguish beta diversity due to difference in species
richness (bgl) and due to difference in species composition
(bsim):

bgl�
2jb � cj

2a � b � c
;

bsim�1�
a

a � min (b; c)
:

We evaluated whether this was the case in our bird and
mammal datasets. Indeed, the correlation between bgl and
the difference of bsor and bsim was extremely high for birds
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(r�0.95) and mammals (r�0.98). We compared the maps
of beta diversity produced by bsor and bsim and found that
they were quite similar. The few exceptions were large
differences in some cells, usually in coastal areas, where bsor

produced relative values much higher than those produced
by bsim. Based on these two findings and on the
recommendation of Lennon et al. (2001), we opted to
use bsim for all further analyses.

Beta diversity for each cell was quantified as the mean of
the beta-diversity values between a focal cell and each of the
eight adjacent cells. Increasing this distance of influence (i.e.
calculating beta diversity for the 24 and 48 cells in second-
and third-order adjacencies) did not qualitatively affect the
patterns described here (results not shown). Means were
obtained using fewer values for coastal cells. This approach
was also used by Mourelle and Ezcurra (1997), Lennon
et al. (2001) and Gaston et al. (2007) to study the beta
diversity of Argentine cacti, British birds and the global
avifauna respectively.

Statistical modeling of beta diversity

We evaluated the relationship between beta diversity and
the 10 predictor variables using both regression tree (De’ath
and Fabricius 2000) and multiple regression including
spatial terms. Regression trees produce graphical binary
trees that allow easy interpretation of main effects and
interactions. On the other hand, multiple regression allows
the inclusion of spatial terms to assess the influence of
autocorrelation. We opted to use both methods, because
they are complementary and can be used to assess the
robustness of results from different analyses.

Regression tree
The regression tree method results in a binary tree, where a
node represents a split of the data set according to an
explanatory variable, and leaves represent the fitted value of
the response variable. The analysis selects the explanatory
variable that best partitions the response data into two
homogenous groups. For continuous response data, this
partition will be the one that maximizes the coefficient of
determination (R2). Each subgroup is then partitioned
again, using the explanatory variable that best reduces the
error within the two subgroups of data. The explanatory
variable used in this second partition may be the same one
used in the first split. This process of partitioning is known
as growing the tree, and continues until the number of
observations in each subgroup is considered small or when
the increase in R2 is small. This usually overlarge tree is then
pruned to the size at which the splits significantly reduce the
variability within subgroups. We used the package rpart
(Therneau and Atkinson 2007) run under the R environ-
ment (R Development Core Team 2007) to obtain trees.
Analyses were done using the ANOVA method and all
default options, except that an overlarge tree was grown by
setting the complexity parameter cp�0.001.

We applied two criteria to prune the overlarge tree, and
chose the one that resulted in the smallest tree. The first
criterion was cross-validation, where a random subset of the
data is used to grow the tree and predict the response in a
second subset. We followed the recommendations of De’ath

and Fabricius (2000) and used the 1-SE criterion to prune
trees. This criterion consists of 1) selecting the tree that
represents the smallest cross-validation error, 2) adding its
respective 1-SE, and 3) obtaining the smallest tree with
cross-validation error within the threshold: minimum cross-
validation error plus its 1-SE. As cited above, the cross-
validation procedure uses random subsets of the data.
Accordingly, different error values will be obtained each
time the cross-validation is run. The size of the tree selected
by the 1-SE criterion may thus vary. We followed the
suggestion of De’ath and Fabricius (2000) and computed
the cross-validation 200 times, recording the size of the
smallest tree within the 1-SE threshold. The most common
size obtained in the 200 cross-validation was used to prune
the final tree. Because our dataset is very large, a huge tree
may result from the cross-validation criterion. Therefore,
our second criterion was a minimum increase in R2 of 0.01
of each split. The smallest size obtained using the two
criteria was used to prune the final tree.

Multiple regression
We also modeled patterns in beta diversity using standard
multiple-regression models (ordinary least squares, OLS).
However, since regression residuals tended to display strong
spatial autocorrelation at small distances according to
Moran’s I correlogram (Diniz-Filho et al. 2003), we also
used a spatially explicit simultaneous autoregressive (SAR)
error model. Coefficients of SAR and OLS models were
relatively similar, so that no red shifts associated with
scaling effects of predictors seemed to be affecting SAR
results in this particular case (Diniz-Filho et al. 2003,
Hawkins et al. 2007a). In the SAR error model, spatial
covariance among cells (C) is defined as

C�s2[(I�rW)T]�1 [(I�rW)]�1

where s2 is the variance of the residuals, r is the
autoregressive parameter, and I is an n�n identity matrix.
The row-standardized W matrix contains the spatial
relationship among sampling units, with elements given
by the inverse of the geographic distances (dij) among them,
expressed as 1/dij

a, where a was chosen to minimize spatially
autocorrelated residuals, measured by Moran’s I coefficients
calculated for 20 geographical-distance classes (Diniz-Filho
et al. 2003). All spatial analyses were performed using
Spatial Analysis in Macroecology (SAM) software (Rangel
et al. 2006), ver. 3.0, freely available at /<www.ecoevol.ufg.
br/sam/>.

Results

The beta diversities of birds and mammals were moderately
correlated (r�0.54, Supplementary material, Table S1).
The beta diversity of birds was slightly higher (mean�
0.0497) than that of mammals (mean�0.0393). This is
partly due to the greater dispersion of the values for birds
(min�0, max�0.422, SD�0.0514) than for mammals
(min�0, max�0.247, SD�0.0303) (Supplementary
material, Fig. S1).

Beta diversity (bsim) of birds was highest in the Andes,
particularly in cells located on slopes (Fig. 1a). However,
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low beta diversity predominated in the high plains of
southwestern Bolivia (Andean Altiplano) (Fig. 1a). A
second region of high beta diversity included the mountai-
nous parts of Central America and Mexico, particularly
along the three Sierra Madre mountain ranges (South,
Oriental and Occidental). Nevertheless, beta diversity was
low in the plateau between the Sierra Madre Oriental and
Sierra Madre Occidental. In the United States and Canada,
beta diversity tended to be higher in the mountainous west
than in the flatter regions of the east. Also, beta diversity
was relatively high along the arctic coast of Canada and
Alaska. Two regions in South America, not associated with
mountains, showed intermediate beta diversity: the narrow
strip along the main course of the Amazon River, and the
contact region between the Amazon Forest and the Cerrado
of Central Brazil. Moderate beta diversity was observed in
the coastal Atlantic Forest of Brazil (Fig. 1a).

Patterns of beta diversity for mammals were less distinct
than those for birds (Fig. 1b). Beta diversity of mammals
was generally high in the Andes, although not very different
from surrounding areas in its southern portion. The high
beta diversity of birds observed in Central America and
Mexico was similarly evident in the map for mammals.
However, in contrast to birds, areas of high beta diversity
for mammals in western North America extended over part
of the Interior Plains. Also, beta diversity of mammals
differed from that observed for birds in not showing clear
intermediate beta diversity in the Atlantic Forest, in areas
along the Amazon River, and in the contact zone of the
Amazon Forest and the Brazilian Cerrado.

The cross-validation criterion used to prune trees
resulted in large trees, with terminal nodes explaining
B1% of the total variation. We therefore opted to prune
trees to the size at which the nodes explained �1% of the
total variation (Fig. 2). This criterion resulted in trees with
8 leaves for both birds and mammals. Only 3 and 5 of the
10 predictor variables were actually used in tree construc-
tion using bird and mammal data, respectively. We admit
that, because of autocorrelation in model residuals (see
below) these results may be somewhat liberal (but see
comparison with SAR results, below).

The main factor explaining variation in bsim of birds was
difference in altitude (Fig. 3), and in the first node of the
tree this predictor explained 52% of the total variation
(Fig. 2a). Focal cells differing �618.5 m in altitude from
their adjacent cells showed the highest beta diversity (Fig.
2a). For this high beta-diversity group, cells with differences
in AET larger than 15.85 cm yr�1 usually showed the
highest beta diversity among all 4220 cells evaluated. In
contrast, cells differing B618.5 m in altitude from their
neighbors showed low or intermediate values of beta
diversity. For this last group, differences in altitude, again,
best explained variation in beta diversity, with high values of
beta diversity observed in cells differing by �275.9 m.
Similarly to that observed on the right side of the first node
of the tree, cells on the left side with large differences in
AET showed higher beta diversity than did those with low
differences. Differences in PET were also positively related
to beta diversity. Except for the first node, each remaining
node explained B6% of the total variation. The tree
containing the eight leaves explained 70% of the total
variation in beta diversity.

Similar to the tree obtained for birds, the best predictor of
beta diversity of mammals was difference in altitude (Fig. 3).
However, the tree for mammals differed from the tree for
birds in two main respects. First, the variation explained by
altitude differences in the first node was much lower in the
mammal tree (21%) (Fig. 2b). Second, the effect of
differences in altitude was dependent on other variables.
For instance, cells differing �476.5 m showed high beta
diversity only when differences in PET were larger than 5.6
cm yr�1. On the left side of the first node, high beta diversity
was positively associated with differences in AET. This node
explained 10% of the total variation. The remaining nodes
explained B3.5% of the total variation. Except for differ-
ences in altitude, in which the relationship with beta diversity
was dependent on other variables, all remaining variables
used in the tree construction were positively associated with
beta diversity. The Jaccard distance of Realms (realms.jac)
was the only biotic predictor variable selected in the tree for
mammals. The 32 cells with realms.jac larger than 0.028
showed, on average, the highest beta diversity over all the cells
studied. The total variation accounted for by the tree with 8
leaves was 42.5%.

In general, spatial modeling supported the above
conclusions. There was significant spatial autocorrelation
in OLS residuals of bsim against the predictors, mainly for
mammals (Moran’s I in the first class equal to 0.164 for
birds and 0.386 for mammals), so that SAR models were
also used. The OLS models accounted for 68 and 35% of
the variation in spatial beta-diversity patterns of birds and
mammals, whereas the full SAR model increased these
values to 86 and 64%, respectively (Table 1). The
importance rank of the coefficients of each predictor,
expressed by t-values, was similar for the two types of
models (especially for birds, considering the low levels of
residual autocorrelation in OLS).

For birds, the SAR model produced results analogous to
those obtained in the regression tree, in which difference in
altitude and AET were associated positively with beta
diversity. For mammals, the highest partial coefficients in
the OLS model were differences in humidity, AET, realm-
s.jac and ecoregions.jac; whereas in SAR the same predictors
were important in general (Table 1). However, these
coefficients in SAR were more similar, suggesting greater
uncertainty in establishing the best predictors for mammals,
and that patterns of beta diversity were less clear for this
group. The results for mammals were in partial agreement
with the tree obtained for mammals, in which most of the
best predictors were the same. However, they differed in the
order of importance. For instance, the tree regression
indicated that difference in altitude was the best predictor,
and that difference in humidity explained a very small
fraction of the total variation. In the OLS and SAR models,
the importances of these two predictors were reversed.

Discussion

Our conclusions from the tree regression results are not
based on probability values, so that residual spatial auto-
correlation is not expected to shift our interpretation
(see also Hawkins et al. 2007a). This is supported because
the results from explicit spatial regression modeling using
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Figure 1. Beta diversity of New World birds (a) and mammals (b) calculated using the average of the b-sim index among a focal cell and
all its adjacent cells. Each cell covers 1 degree of latitude and longitude.
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SAR and OLS were qualitatively similar to those from tree
regression. For birds, the rank of predictors between SAR
and tree regression was similar, but not for mammals,
although the differences in ranks of main predictors can be
easily understood by model instability generated by multi-
collinearity. Following Diniz-Filho et al. (2008), we also
made exhaustive search of all possible OLS models (i.e. with
different combinations of predictors) based on Akaike
information criterion (not shown, to conserve space).
Indeed, the predictors previously discussed were exactly
those that had the highest importance values in multi-
model inference (i.e. weighted average of several models).

Thus, the overall correspondence between main predictors
in SAR, OLS and the regression tree reinforces this issue
and indicates the robustness of the conclusions reached.

Beta-diversity values of birds and mammals were highest
in mountainous areas, where large differences in altitude and
temperature occur over short distances. Concordant with our
results obtained at the continental scale, Herzog et al. (2005)
studied elevational gradients of Andean birds and found high
turnover due to differentiation of lowland and upland faunas.
It is unlikely, however, that differences in altitude or the
correlated difference in temperature themselves directly
affect beta diversity. Instead, the two variables are surrogates

Figure 2. Regression tree analysis of beta diversity of (a) birds and (b) mammals. Vertical lines are proportional to the reduction in
residual error. The suffix ‘‘.dif’’ indicates that the predictor variable consists of the mean difference between the focal cell and all the
adjacent cells. The suffix ‘‘.jac’’ indicates that the predictor variable was obtained by calculating the mean Jaccard distance among the focal
cell and all adjacent cells. Numbers at the bottom of the tree indicate the average beta diversity and the number of cells classified at each
leaf. Alt�altitude. AET�actual evapo-transpiration. PET�potential evapo-transpiration. Humi�humidity. Realm�realms. See text
for further information on how predictors were obtained.
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for habitat differentiation (see Dufour et al. 2007 for a small-
scale example). In fact, in the study of Mourelle and Ezcurra
(1997), high beta diversity of cacti was observed in
topographically heterogeneous areas, where a number of
biogeographic provinces meet.

High beta diversity among regions implies that historical
processes of isolation are creating divergence in species
composition among these regions. In this context, variation
among cells can be directly interpreted as resulting from
differentiation of the species pool, in which the underlying
mechanistic and populational basis is geographical range
differentiation. Among the predictors used, difference in
altitude is indeed the most appropriate surrogate for this
divergence in species composition.

However, it is difficult to decouple the historical and
ecological processes that may affect the divergence of species
pools. For instance, Hawkins and Diniz-Filho (2006)
recently demonstrated the importance of altitude and
temperature, and their interactions, in explaining geogra-
phical variation in average range sizes throughout the New
World (see also Ruggiero and Hawkins 2008). Although this
study revealed that average range sizes are driven by ecological
processes, no explicit tests of historical components that
might be associated with these geographic variations were
applied. Additional approaches could be used to directly
model evolutionary processes at species level (Weir 2006,
Hawkins et al. 2007b), and could be adapted to attempt to
decouple these components in the future.

The map of beta diversity for birds (but not mammals)
showed relatively high values along the Amazon River and

in the contact region of the Amazon forest and Cerrado
savanna (see also McKnight et al. 2007). In fact, previous
studies have shown that the flooding regime of the large
rivers in the Amazon basin results in distinct vegetation
types (várzea, igapó and upland forests) in adjacent areas
(Wittmann et al. 2006). High beta diversity of birds along
the main Amazon rivers may thus be a result of habitat
specialization or the presence of range-restricted species
(Kark et al. 2007). On the other hand, large rivers (and past
marine incursions into the eastern Amazon basin) may act
as barriers to gene flow for birds and thus favor allopatric
speciation (Aleixo 2004). Despite these two potential
mechanisms to explain high beta diversity of birds along
the Amazon River, the dissimilarity in biotic units between
the focal cell and its adjacent cells was unimportant for the
explanation of variation in beta diversity of birds. This is
partially at odds with the finding of van Rensburg et al.
(2004) that high beta diversity of birds in South Africa
coincided with transition zones between biomes (see also
Williams 1996). For mammals, results from the tree
regression indicated that biotic units were unimportant,
although the OLS and SAR models indicated the opposite.
Results from van Rensburg et al. (2004) and McKnight et
al. (2007) showed that regions of highest beta diversity for
New-World mammals, birds and amphibians were corre-
lated with both mean altitude and the number of biome
boundaries. However, van Rensburg et al. (2004)
also showed that transition zones were associated with
high climatic heterogeneity, making it difficult to infer a

Figure 3. Average differences in altitude among a focal cell and all its adjacent cells, the best predictor of beta diversity of New World
birds and mammals. Each cell covers 1 degree of latitude and longitude.
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cause-and-effect relationship between beta diversity and the
heterogeneity of biotic units.

Our fitted models explained much more of the variation
in beta diversity of birds than of mammals. Also, the beta-
diversity map of mammals was less distinct, not strongly
associated with obvious environmental characteristics (e.g.
topography in the case of birds). Two points should be
considered in interpreting the differences in beta-diversity
patterns of the two groups. First, most of the total variation
in beta diversity of birds is related to a few cells that were
very different in altitude and associated with very high beta
diversity (right side of the first node of the regression tree
[Fig. 2]) (Supplementary material, Fig. S1). Accordingly,
decreasing the spatial extent of the study (e.g. excluding the
Andes) may produce models explaining proportionally less
variation. Apparently, the distinctiveness of mammal faunas
in cells that differ greatly in altitude from their neighbor-
hood is not so pronounced as that for birds. The second
possibility to explain the difference in fitness of the models
for birds and mammals stems from the finding of
Rodrı́guez and Arita (2004), that different groups of
mammals show different broad-scale beta-diversity patterns
in North America. For instance, they showed that beta
diversity of bats is not related to latitude, although a
negative latitudinal gradient in beta diversity for non-volant
mammals was present. In this context, the poor fit of our
models to the mammal data may be a consequence of the
heterogeneity in responses of its constituent groups.

Habitat heterogeneity, measured as the variability in
elevation within a region, has also been mentioned as a
good predictor of mammal species richness in high-energy
regions (PET �1000 mm yr�1) (Kerr and Packer 1997).
In this case, high values of species richness in regions with
PET�1000 mm yr�1 are likely the summed result of
alpha and beta diversities at smaller scales: abundant energy
is a predictor of species richness ‘‘within’’ habitats (alpha)
(Hawkins et al. 2003), and habitat heterogeneity is a
predictor of beta diversity among localities within a region
(Veech and Crist 2007).

Patterns of species richness in New-World and South-
American birds have been analyzed in many recent studies
(Rahbek and Graves 2001, Hawkins et al. 2003, 2007a).
Especially for South America, the effects of altitude and its
interaction with other climate data, especially an interaction

with temperature (or latitude), are usually important
predictors in all the models (see also Rahbek and Graves
2001, Hawkins and Diniz-Filho 2006). Additionally, an
important portion of variance in richness can be explained
by combined effects of energy and water availability (AET;
Hawkins et al. 2003, 2007b). However, in the Andean
region, the unexplained residual structure (i.e. higher
species richness than predicted by models of climate and
altitude) is usually attributed to greater environmental
instability and heterogeneity at lower scales, which create
barriers that, in turn, accelerate diversification events (Weir
2006). Since we are not modeling the number of species per
se, but instead we are assessing directly the distinctiveness in
species composition of each cell, the best predictors of beta-
diversity, obtained both by tree regression and SAR model,
supported this explanation for birds and partially for
mammals. This rationale is concordant with the findings
of Kerr and Packer (1997) that habitat heterogeneity at
smaller scales is a good predictor of mammal species
richness in high-energy regions, and of Veech and Crist
(2007) that both habitat (elevational range) and climate
(coefficient of variation for PET) heterogeneity are related
to beta diversity of North American birds at multiple spatial
scales.

Finally, as in any other broad-scale diversity analysis, the
patterns found may be partially affected by decisions
regarding grain size (Lennon et al. 2001). We used here a
standard grain size of 1o cell, which has been used in many
recent New World and global analyses (Orme et al. 2005,
Hawkins et al. 2007a, b, Rangel et al. 2007). However,
Hurlbert and Jetz (2007) pointed out that coarser grain
sizes might be more appropriate. Although we are aware of
these scaling problems, there are two main issues that are
important to consider and that, in our point of view,
minimize this problem. We are analyzing the data in a
spatially explicit context, so that pseudoreplication asso-
ciated with the finer grain size of 1o cell was taken into
account in SAR modeling. Second, we tested different ways
to calculate beta diversity, by increasing the neighbor size
(i.e. calculating beta diversity for the 24 and 48 cells in
second- and third-order adjacencies) and this did not
qualitatively affect the patterns described here.

Our analysis of continental patterns of beta diversity in
mammals and birds showed that heterogeneity in habitat

Table 1. Results of ordinary least squares (OLS) and simultaneous autoregression (SAR) models for beta-diversity in New World birds and
mammals, including the standardized coefficient (b) and the associated t-value for each predictor. See Methods for definition of variables.

Predictor Birds Mammals

OLS SAR OLS SAR

b t b t b t b t

AET.dif 0.23 13.26** 0.15 10.28** 0.13 5.09** 0.08 4.18**
Alt.dif 0.63 38.46** 0.59 36.81** 0.08 3.59** �0.06 3.35**
PET.dif 0.03 1.62 �0.06 �3.76** 0.15 5.80** 0.06 3.35**
NPP.dif 0.02 1.56 �0.03 �4.93** 0.01 0.71 �0.02 1.81
Preci.dif 0.06 4.71** 0.05 3.80** �0.04 2.36* 0.01 0.86
Humi.dif �0.04 �3.30 �0.02 �1.35 0.28 14.74** 0.09 4.97**
Biomes.jac 0.03 2.37* 0.02 1.99* 0.04 2.56* 0.01 0.53
Realms.jac 0.03 3.51 0.01 1.46 0.13 10.47** 0.03 2.47*
Ecoregions.jac 0.02 1.64 0.16 1.31 0.17 9.62** 0.08 5.28**
Polygons.jac �0.01 �0.84 0.02 1.39 �0.08 4.62** 0.01 0.05

*pB0.05; **pB0.01
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and climate conditions explain geographical variation in
composition among regions, independently of the amount
of richness. Although further studies are necessary to
attempt to decouple the effects of current adaptation of
species to particular environmental conditions by range
shifts or species’ divergence by vicariance, both creating
geographical structures in beta diversity, our analysis
showed how variation in species composition among
regions can be directly interpreted as resulting from
differentiation of the species pool.
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