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Baru (Dipteryx alataVogel) is a native fruit of the Brazilian savanna that provides a nutritive oil, which also hasmedicinal properties.
Baru fruits were collected in central-western Brazil, and the oil was obtained by pressing the seeds.The Baru oil was heated at 110∘C
for 24 h, and its oxidative stability was investigated by using fluorescence and absorption spectroscopy. The data showed that both
absorption and fluorescence were able to precisely monitor the oil degradation induced by the thermooxidative process.The results
revealed a rapid growth of the primary compounds generation in the first 16 hours of degradation. Significant amounts of secondary
compounds began to be generated after 14 hours.

1. Introduction

Baru (Dipteryx alataVogel), known also as cumbaru, cumaru,
barujo, coco-feijão, cumarurana, emburena-brava, feijão-
coco, and pau-cumaru [1], is a native tree of the Brazilian
savanna. The pulp from its fruit is used to make jams and
jellies, and the nut is also edible, with good food value,
and rich in oil with medicinal properties, specially used as
antirheumatic agent [2]. Previous studies showed that the
high nutritional value of Baru nuts stems from their high
content of lipids, protein, fiber, and some essential minerals
such as potassium, phosphorus, magnesium, calcium, iron,
and zinc [3, 4]. Takemoto and collaborators found that Baru
seed oil is highly unsaturated due to the predominance of
oleic and linoleic acids and its 𝛼-tocopherol content [3, 5].
Based on these chemical properties, Baru oil can be used not
only for food, but also in the cosmetics and oleochemical
industries.

Recently, Baru oil was also proposed for use as an
alternative source to produce biofuels, due to its physical
and chemical characteristics [6]. Batista and coworkers, by

analyzing the peroxide number, iodine number, kinematic
viscosity, water content, relative density, saponification num-
ber, and refractive index, confirmed the high quality of Baru
oil for use as a raw material for biodiesel production [6].

The chemical and physical characteristics of the raw
material used in the preparation of biofuel are important,
as biodiesel quality is totally dependent on the physical and
chemical properties of the oil. For instance, the oxidative
stability of the vegetable oil is one of the most important
parameters governing the final quality of the biodiesel [7,
8]. The oxidative stability of biodiesel can be affected by
many factors such as exposure to UV light, heavy-metal
contamination, and temperature changes [9–11]. Although a
recent study analyzed the thermal stability of the Baru oil
by thermogravimetry [5], to the best of our knowledge, the
thermooxidative stability of this oil has not yet been evaluated
by using optical techniques.

In recent years, optical methods have been used as
analytical tools for characterizing and monitoring the sta-
bility and quality of vegetable oils, biodiesels, and biofuel
blends [12–15]. Dantas and colleagues demonstrated that
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the UV-Vis absorption technique can be used to precisely
determine the oxidative stability of vegetable oils [9]. They
showed that thermodegradation of the oil can be moni-
tored by means of the absorption peaks at around 232 and
270 nm, because light absorption in this wavelength region
is strongly affected by the primary and secondary oxidation
products generated during the thermooxidation process [9].
Additionally, Cheikhousman and coworkers have shown that
fluorescence spectroscopy can be used to investigate the
quality of vegetable oil [12]. Fluorescence spectroscopy was
successfully used to monitor the deterioration of extra virgin
olive oil during heating [12].

As Baru oil has good potential for use in the food, phar-
maceutical, cosmetic, and biodiesel industries, where thermal
stability is an essential parameter for the final product quality,
the present study analyzed the thermooxidative stability
of this oil by using UV-Vis absorption and fluorescence
spectroscopy measurements.

2. Material and Methods

Baru fruits were collected in central-western Brazil
(16∘42󸀠50󸀠󸀠S 49∘00󸀠07󸀠󸀠W), and the seeds were extracted
from the fruits. Baru oil was obtained by pressing the
seeds in a minipress compression machine (Ecirtec). After
extraction, the oil was stored in an airtight container, in a
freezer at −10∘C.

The analysis of the composition of fatty acids was per-
formed by gas chromatography according to the AOCS
method [16], using a gas chromatographer (Agilent 68650
series GC system), equipped with capillary column DB-
23 (50% cyanopropil-methylpolysiloxane 60m × 0.25mm
i.d., 0.25 𝜇m of film) and flame ionization detector (FID).
The chromatographic conditions were as follows: initial
temperature at 110∘C/5min; heating at 110–215∘C on a scale of
5∘C/5min and at 215∘C for 24min; carrier gas, helium (flowof
1 𝜇L/min); injector’s temperature, 250∘C; detector’s temper-
ature, 280∘C; and injection volume, 1 𝜇L. The identification
of the fatty acids was conducted by comparing the retention
time of the fatty acids from the sample and the standards.The
quantification was conducted by area normalization, and the
results were expressed in g/100 g of the sample.

For the thermodegradation process, the oil sample,
divided into 9 aliquots of 5mL, was placed in an oven with
air circulation (Sterilifer SXCR42) and heated at 110∘C. The
oil aliquots were removed after 2, 4, 6, 8, 10, 12, 14, 16, and
24 h.

TheUV-Vis absorptionwas characterizedwith the use of a
bench spectrophotometer (Varian Cary-50) and a quartz cell
with 10mmpath length at 22∘C.The oil was diluted in hexane
(Vetec > 99%) and the absorption was measured between
225 and 750 nm. The absorption bands with maximum
absorption at around 475 and 270 and 232 nm were analyzed
from diluted samples at concentrations of 50% (w/v) for the
absorption at 475 nm and 0.15% (w/v) in the case of the
absorptions at 270 and 232 nm.

Fluorescence spectra were collected from diluted samples
at a concentration of 50% (w/v) in the 450–750 nm range
when excited at 405 nm.Thefluorescence signal was obtained

Table 1: Composition of fatty acids in the oil from Dipteryx alata
Vogel oil. Values are expressed as a percentage in relation to total
fatty acids quantified.

Fatty acids (%) Values
Myristic C 14:0 0.06 ± 0.01

a

Palmitic C 16:0 6.37 ± 0.01

Palmitoleic C 16:1 0.07 ± 0.01
a

Margaric C 17:0 0.08 ± 0.01
a

Heptadecenoic C 17:1 0.06 ± 0.02
a

Stearic C 18:0 4.95 ± 0.01

Oleic C 18:1 47.86 ± 0.05

Linoleic C 18:2 28.91 ± 0.00

Linolenic C 18:3 0.18 ± 0.00

Arachidic C 20:0 1.29 ± 0.00

Eicosenoic C 20:1 2.46 ± 0.01

Behenic C 22:0 3.19 ± 0.02

Erucic C 22:1 0.26 ± 0.04

Lignoceric C 24:0 4.26 ± 0.04

∑ Saturated 20.20 ± 0.10

∑Monounsaturated 50.71 ± 0.13

∑ Polyunsaturated 29.09 ± 0.00

Equal letters on the column represent values which do not differ significantly
(𝑃 < 0.05). To compare themeans, ANOVA followed by Tukey test was used.
The values are mean ± standard deviations of duplicate analysis.

by using a portable fluorimeter (MM Optics) containing a
laser as excitation source, a monochromator for emission
collection, a Y-type optical fiber to collect the light, and a
laptop to process the data.The spectra were collected by using
front-face geometry and all measurements were carried out
using a quartz cell with 10mmpath length, with four polished
faces, at 22∘C.

3. Results and Discussion

Table 1 presents the composition of fatty acids of Baru oil. As
expected, a high degree of unsaturation was determined in
which oleic (C 18:1) and linoleic (C 18:2) acids were the most
predominant fatty acids, representing approximately 77% of
the total composition.

Figure 1 shows the absorption spectrum of the Baru oil
between 225 and 550 nm when diluted in hexane. To better
observe the absorption bands, appropriate dilutions were
chosen in the ranges of 225–350 nm (0.15%w/v) and 350–
550 nm (50%w/v). In general, the molecular absorption of
vegetable oils between 225 and 350 nm is mainly attributed
to tocopherols, although the contribution of some fatty
acids should not be ruled out [17]. Chlorophylls as well as
carotenoids may be absorbed in the 350–550 range [17];
however, in analyzing the diluted sample, our data revealed
that carotenoids are the main compounds responsible for the
observed absorption between 350 and 550 nm, as demon-
strated in Figure 2 where 𝛽-carotene absorption spectrum is
shown. In fact, it is well known that the absorption of light
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Figure 1: Baru oil absorbance spectrum collected from a diluted
sample. The oil was diluted in hexane, and a more concentrated
sample was used to better determine the absorption bands in the
350–550 nm range (see text).

by carotenoids is due to the presence of conjugated carbon-
carbon double bonds and that a typical absorbance spectrum
of a carotenoid contains three bands in the blue region of the
optical spectrum (400–500 nm) where the maxima of which
are functions of the chromophore lengths [18] as carotenoids
consist of a sequence of alternating carbon double and
single bonds (C=C and C–C bonds, resp.), with the outer
electron free to move along the chain [19]. Additionally, it
is well established that these absorption bands, which give
carotenoids their color, are due to the 1Ag

−

→ 1Bu
+ tran-

sition [20].
As previously mentioned, the thermodegradation of veg-

etable oils can be monitored by analyzing the absorption
peaks at around 232 and 270 nm, because the absorptions in
these wavelength regions are strongly affected by the primary
and secondary oxidation products generated during the
thermooxidation process [9]. Figure 3 shows the absorption
at 232 and 270 nm as a function of the degradation time.

The observed increase in absorption at 232 nm is due
to compounds generated during the primary degradation
of the oil, conjugated dienes, which show 𝜋-𝜋∗ transitions
[9]. The changes in absorption at 270 nm are related to
the formation of secondary compounds of the degradation,
such as diketones and unsaturated ketones, the absorption of
which is also due to the 𝜋-𝜋∗ transitions [9, 11]. The results
clearly show that the generation of primary compounds
increased rapidly in the first 16 hours. In contrast, the
generation of secondary compounds began to be significant
after 14 hours of thermodegradation.The relation between the
primary and secondary compounds during the degradation
as a function of the heating time can be better visualized from
the absorption ratio at 232 to 270 nm, as shown in Figure 4.

Although several studies have shown that the increase
in absorption at 232 and 270 nm can be used to mon-
itor oil degradation induced by thermooxidation, as was
also demonstrated here, the present data indicate that oil
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Figure 2: Baru oil and 𝛽-carotene absorbance between 350 and
550 nm. All samples were diluted in hexane.

absorption at around 475 nm can also be effectively used to
monitor oil degradation. As shown in Figure 5, the absorp-
tion bands between 350 and 550 nm decrease as a function
of the degradation time. A linear decrease in absorption at
475 nm was observed during the first 8 hours, with a slope
of −0.069 and a correlation coefficient of 0.989, and almost
no absorption was detected after that. This suggests that
carotenoids are almost totally degraded in the first hours of
thermal treatment. This is possible because carotenoids are
highly unsaturated molecules with many conjugated double
bonds, making them susceptible to degradation [21, 22].
Henry and coworkers have demonstrated rapid thermod-
egradation (thermooxidation) of all-trans 𝛽-carotene, 9-cis
𝛽-carotene, lycopene, and lutein in safflower seed oil heated at
75, 85, and 95∘C [21].They also found that only trace amounts
of carotenoids remained after 5, 12, and 24 h when the oil was
heated at 95, 85, and 75∘C, respectively.

In addition to the absorption analyses, fluorescence
spectroscopy was applied to characterize the emissions from
the Baru oil, as well as to investigate the potential of the
fluorescence technique as an alternative method to evaluate
the oil degradation. Figure 6(a) shows the typical emission
spectrum of Baru oil when excited at 405 nm. The fluo-
rescence data revealed that 𝛽-carotene and chlorophyll are
the main fluorophores responsible for the emission between
450 and 750 nm, when excited at 405 nm, as presented in
Figure 6(b) [17, 18]. In fact, it is well know that different oil
constituents such as 𝛽-carotene, 𝛼-tocopherol, oleic acid, and
chlorophyll may fluoresce in this range when excited by blue
radiation (at around 450 nm) [18, 21].

Our results also revealed that the overall fluorescence
signal between 550 and 750 nm was reduced in response
to the thermodegradation. As presented in Figure 7, the
observed decreases in fluorescence at 568 and 675 nm over
the degradation period are mainly attributed to thermod-
egradation of the carotenoids and chlorophylls, respectively.
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Figure 3: Baru oil absorbance at 232 and 270 nm as a function of the heating time. The oil samples were heated at 110∘C.
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Figure 4: Baru oil absorption ratio at 232 to 270 nm as a function of the heating time.

However, a fluorescence increase at around 500 nm during
the first 8 hours was detected, as also shown in Figure 7,
in which this emission is a contribution of the oxidation
products [23]. As recently demonstrated by Magalhães et al.,
conjugated tetraenes were identified in the degraded samples,
presenting a fluorescent emission in the 350–500 nm range, in
which the conjugated tetraenes molecules were formed from
the degradation of unsaturated molecules [24].

In summary, our results indicate that carotenoid and
chlorophyll degradation in the oil can be used as an indicator
to monitor the overall oil degradation, by both fluorescence
and absorption analyses. Therefore, the results showed that
fluorescence spectroscopy has great potential to be accurately
applied for monitoring the oxidative stability of vegetable oils
by using a low cost and portable device.

4. Conclusion

In conclusion, we investigated the thermal stability of Baru
oil by analyzing the optical features of the samples. The
results strongly suggest that carotenoids and chlorophylls
were almost completely degraded during the thermal treat-
ment and that primary (conjugated dienes) and secondary
(diketones and unsaturated ketones) oxidation products were
generated during the thermooxidation process. In summary,
our data showed that fluorescence as well as absorption
can be potentially used to detect oxidative degradation
of this oil, by monitoring the carotenoid and chlorophyll
degradation. In general, as it is possible to obtain a rapid,
precise, and noninvasive analysis using a portable device by
optical methods, our results indicate that fluorescence and
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Figure 5: (a) Decrease in absorption over the degradation period. (b) Absorbance at 475 nm as a function of the heating time.
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Figure 6: Fluorescence spectrum of (a) Baru oil and (b) 𝛽-carotene
and chlorophyll.

absorption spectroscopy can be applied to develop alternative
methods for assessing oil quality. However, aiming to develop
a robust method for oil analysis, it is needed to evaluate
different oils produced from different rawmaterials as well as
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Figure 7: Fluorescence intensity at 500, 568, and 675 nm, when
excited at 405 nm, as a function of the heating time.

characterize the oil degradationwhen exposed to the different
environments (e.g., light, heat, metal-containing).
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