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GENERALIZED SOLUTIONS TO THE GKDV EQUATION

MAURILIO MARCIO MELO

Abstract. In this article we study the Cauchy problem in G2((0, T )×R) (the
algebra of generalized functions, in the sense of Colombeau) for the generalized

Korteweg-de Vries equation, with initial condition ϕ ∈ G2(R), which contains

Hs(R), for s ∈ R.

1. Introduction

In [4] and [5], Biagioni and Oberguggenberger have shown that the nonlinear
theory of the generalized functions, introduced by Colombeau [9], can be used to
deal with the Cauchy problem for the nonlinear evolution equations. Following this
approach, in this article we study the Cauchy problem

ut + uxxx + a(u)ux = 0, u(0) = ϕ, (1.1)

where a(u) = u3.
Equations of the form (1.1) are known as generalized Korteweg-de Vries (gKdV),

as opposed to the ordinary KdV, when a(u) = u, and modified KdV (mKdV), when
a(u) = u2. The KdV equation was derived by Korteweg-de Vries as a model for
long waves propagating in a channel. Subsequently, the mKdV equation has been
showed relevant in a number of different physical systems. In fact, a large class of
hyperbolic models has been reduced to these equations. Another reason to study
them is their relation with inverse scattering theory.

The space chosen to deal with this problem is the Colombeau algebra G2(Ω),
Ω = (0, T )×R which we will describe in section 2. The KdV and mKdV equations
were studied in the same context in [5] and [8], respectively. The authors obtained
results of existence and uniqueness of solutions in G2(Ω) to the Cauchy problem for
these equations and initial condition in G2(R).

The KdV and mKdV equations have an infinite number of conserved quantities,
see [21]. But, in general, if a(u) 6= u, u2, this fact is not true. This property was
used in the proof of the existence of solutions to (1.1) for the cases a(u) = u, u2,
see [5] and [8].

In [17], results of existence and uniqueness of solutions were established in
G2((0, T )× R) to the Cauchy problem for the equation

ut − 30u2ux + 20uxuxx + 10uuxxx − uxxxxx = 0, (1.2)
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which belongs to the Lax hierarchy [16] for the KdV equation.
In [19], the Cauchy problem was studied for the equation

ut =
∑
α1

∂α1Gm(u), (1.3)

where α1 ∈ Nn and Gm(u) is the gradient in u of the functional Fm(u), where
Fm(u) is constant along solutions to the KdV equation in dimension n

ut = u
n∑

i=1

∂u

∂xi
+

n∑
i,j=1

∂3u

∂xi∂2xj
.

We observe that the function a(u) = u3, satisfies the one-sided growth condition

lim sup
|u|→∞

|u|−4a(u) ≤ 0, (1.4)

which allows global solutions to problem (1.1) in Hs, s > 3/2, according to [14].
If a(u) = u4 the problem (1.1), in Sobolev spaces, is considered as a critical case
by various reasons: there are no known global results in the usual Sobolev space;
for some initial condition in H1, Martel and Merle have shown in [20], the finite
time blow up; finally, the 4th power is the only one for which the problem (1.1) has
no continuous dependence on the initial condition when the time for existence of
solutions depend on L2-norm of ϕ, see [6].

In [2], [7] and [18] other evolution equations such as Benjamin-Ono (BO), Smith
(S), Cubic Schrödinger, Lax hierarchy, are studied in Colombeau’s algebras.

The paper is organized as follows: In Section 2, we introduce notation and some
definitions.

In section 3, we study problem (1.1) in the case a(u) = u3. In Lemmas 3.1 and
3.2, we establish estimates in which we use the results obtained by Kato in [14,
Lemmas 4.2 and 4.3]. These estimates will be used in the proof of Theorem 3.3, of
existence and uniqueness of solutions to the Cauchy problem (1.1) with a(u) = u3.

In Section 4, we give a sketch of the proof establishing that the solution to (1.1)
in G2((0, T ) × R), given in the Theorem 3.3, is related to the solution obtained
by Kato [14]. We also state the result of existence and uniqueness of solutions in
G2((0, T ) × R) for (1.1) with a(u) satisfying condition (1.4). Finally, in Remark
4.4, we show what a soliton described by gKdV equation leads to an example of a
nonzero solution to equation of (1.1) in the Colombeau algebra G((0, T )×R), whose
restriction to t = 0 is zero in G(R). This shows that we do not have uniqueness of
solutions to the problem (1.1) with initial condition in G(R).

2. Notation and some basic definitions

Let Ω be an open subset of Rn, s ∈ R. We denote by Hs(Ω) the usual Sobolev
space L2-type; i.e., Hs = J−sL2, with norm ‖u‖s = ‖Jsu‖0 = (Jsu, Jsu)1/2, where
J = (1−∆)1/2; ∆ is the Laplacian, ‖·‖0 is the norm in L2 and (·, ·) its inner product;
H∞(Ω) = ∩k∈ZHk(Ω), H−∞(Ω) = ∪k∈ZHk(Ω), [Js,Mu] = JsMu − MuJs is the
commutator operator, where Mu is the multiplication by u operator and D′(Ω) is
the distribution space.

Next we exhibit the algebra where we study the Cauchy problem for the gKdV
equation, the space G2(Ω) (algebra of the generalized functions type Colombeau
modeled in the space L2).
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Let I = (0, 1) and Ω ⊂ Rn be an open set. We set

E2[Ω] = (H∞(Ω))I = {û : I → H∞(Ω), ε ∈ I → ûε ∈ H∞(Ω)},
EM,2[Ω] =

{
û ∈ E2[Ω] : ∀α ∈ Nn, ∃N > 0 and C > 0,

such that ‖∂αûε‖0 ≤ Cε−N , for small ε
}
,

N2[Ω] =
{
û ∈ EM,2[Ω] : ∀α ∈ Nn and M > 0,∃C > 0,

such that ‖∂αûε‖0 ≤ CεM , for small ε
}
.

We observe that EM,2[Ω] is an algebra with partial derivatives and N2[Ω] is an
ideal of EM,2[Ω] which is invariant under derivatives.

The Colombeau’s algebra modelled in L2 is defined as the quotient space

G2[Ω] =
EM,2[Ω]
N2[Ω]

.

Its elements u, v, . . . are called generalized functions in Ω. The multiplication and
derivatives in G2[Ω] are defined on the representatives.

If in the definition of G2 we consider the space H∞ replaced by W∞,∞ =
∩k∈ZW k,∞, we obtain G (algebra of generalized functions defined by Colombeau,
see [1]).

Remark 2.1 ([5]). There is an embedding of H−∞(Rn) into G2(Rn) obtained in
the following way: we fix ρ ∈ S(Rn) such that∫

Rn

ρ(x)dx = 1,

∫
Rn

xαρ(x)dx = 0, ∀α ∈ Nn, |α| ≥ 1.

Let ι : w → (w ∗ ρε)ε, where ρε(x) = 1
εn ρ(x/ε). This defines a linear injection of

H−∞(Rn) into EM,2[Rn], which induces an embedding H−∞(Rn) into G2(Rn); so
we can see H∞(Rn) as a subalgebra of G2(Rn).

Definition 2.2. For u ∈ G2((0, T )×R), the restriction of u to {0}×R is the class of
ûε(0, ·) in G2(R), where ûε is a representative of u. We denote this class by u|{t=0}
or u(0).

Definition 2.3. We say that u ∈ G2(Rn) is associated with the distribution w ∈
H−∞(Rn) if there is a representative û of u such that ûε(·) → w in D′(Rn) as ε → 0.
We denote it by u ≈ w. We say that u, v ∈ G2(Rn) are associated if u− v ≈ 0.

Definition 2.4. We say that u ∈ G2(Ω) is of r − (log)1/j-type, 2 ≤ r ≤ ∞, j ≥ 1,
if it has a representative û ∈ EM,2[Ω] such that

‖ûε‖Lr ≤ C(| log ε|1/j), for small ε,

and r-bounded-type if

‖ûε‖Lr ≤ C, for small ε.

Remark 2.5. We also observe a nonlinear property of generalized functions: if F ∈
OM (Rl); i.e., F is a smooth function and, together with all its derivatives, grows at
most like some power of |x| as |x| → ∞, then we can define F (u1, u2, . . . , ul) ∈ G2(Ω)
for ui ∈ G2(Ω), i = 1, . . . , l, (see [1]).
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Definition 2.6. Let P (u, ∂αu) be a polynomial in u and its derivatives. We say
that u is a solution to the problem

ut = P (u, ∂αu) in G2((0, T )× R),

u|{t=0} = g in G2(R),

if for every representative û ∈ EM,2[(0, T )×R] of u and ĝ ∈ EM,2[R] of g, there are
N̂ ∈ N2[(0, T )× R] and η̂ ∈ N2[R] such that

ût = P (û, ∂αû) + N̂ in (0, T )× R,

û|{t=0} = ĝ + η̂ in R

We observe that the time interval in this definition is the same for all repre-
sentatives. Also, we observe that the problem for representatives is the classical
problem. For some properties of generalized functions see [1, 4, 9, 10, 12, 13, 22].

3. Generalized solutions

Next, in the proof of Lemma 3.1, we use the conservation laws for the equation
of (1.1) obtained by Kato in [14, Th 4.2 and eq. 27]. We note that T in this result
is independent of the initial condition.

Lemma 3.1. If uε ∈ C((0, T );Hs(R)), with s > 3/2, is the solution of the problem

ut + uxxx + u3ux = 0, u(0) = ϕε ∈ Hs(R), (3.1)

given by [14, Theorem 4.1], then

‖uε(t, ·)‖0 = ‖ϕε‖0, (3.2)

‖∂xuε(t, ·)‖0 ≤ Cm7
1(ε), for small ε, (3.3)

‖∂2
xuε(t, ·)‖0 ≤ C(m2(ε))49 exp(cT (m0(ε))5/2), for small ε, (3.4)

where mk(ε) = max{1, ‖ϕε)‖k}, k ∈ N and C = C(T ).

Proof. From [14, eq.18] we have (3.2). From [14, eq.19 and 27] we have respectively,

‖∂xuε(t, ·)‖20 − (a2(uε(t.·), 1) = ‖ϕ′ε‖20 − (a2(ϕε), 1) (3.5)

and
d

dt
[‖∂2

xuε(t, ·)‖20 −
5
3
(uε(t, ·)3∂xuε(t, ·), ∂xuε(t, ·))]

=
1
2
((∂xuε(t, ·))5, 1) + 5(uε(t, ·))5(∂xuε(t, ·))3, 1),

(3.6)

where a2(λ) = λ5/10. For the rest of this article, we omit the subscript ε and (t, ·)
in our notation. Then, from (3.5) we have

‖∂xu‖20 =
1
10

∫
u5dx + ‖ϕ′‖20 −

1
10

∫
ϕ5dx.
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Thus,

‖∂xu‖20 ≤
1
10
‖u‖3L∞‖u‖20 + ‖ϕ′‖20 +

1
10
‖ϕ‖L∞‖ϕ‖40

≤ c(‖∂xu‖
3
2
0 ‖u‖

7
2
0 + ‖ϕ′‖20 + ‖ϕ′‖

1
2
0 ‖ϕ‖

1/2
0 ‖ϕ‖40

≤ c(‖∂xu‖
3
2
0 ‖u‖

7
2
0 + ‖ϕ′‖20 + ‖ϕ′‖0 + ‖ϕ‖51)

≤ c(δ‖∂xu‖20 + c(δ)‖ϕ‖140 + ‖ϕ′‖20 + ‖ϕ′‖0 + ‖ϕ‖51),

since by Gagliardo-Nirenberg ‖u‖L∞ ≤ ‖∂xu‖1/2
0 ‖u‖1/2

0 see [11]; and by Young’s
inequalities ab ≤ δap + c(δ)bq. Taking δ = 1/(2c) we obtain (3.3). The right-hand
side of (3.6) can be estimated by

c(‖∂xu‖3L∞‖∂xu‖20 + ‖u‖5L∞‖∂xu‖L∞‖∂xu‖20)

≤ c(‖∂xu‖
7
2
0 ‖∂2

xu‖
3
2
0 + ‖u‖5/2

0 ‖∂xu‖50‖∂2
xu‖1/2

0 )

≤ c(‖∂xu‖140 + ‖∂2
xu‖20 + ‖u‖

5
2
0 (‖∂xu‖

20
3

0 + ‖∂2
xu‖20)).

Therefore,

d

dt
[‖∂2

xu‖20 −
5
3
(u3∂xu, ∂xu)]

≤ c(‖∂xu‖140 + ‖∂2
xu‖20 + ‖u‖5/2

0 (‖∂xu‖20/3
0 + ‖∂2

xu‖20))

≤ c(‖∂xu‖140 + ‖u‖50 + ‖∂xu‖40/3
0 + (1 + ‖u‖5/2

0 )‖∂2
xu‖20)).

Integrating this inequality from 0 to t ≤ T , and using (3.2) and (3.3), we obtain

‖∂2
xu‖20 −

5
3
(u3∂xu, ∂xu)

≤ ‖ϕ′′‖20 −
5
3
(ϕ3ϕ′, ϕ′) + cT (m1(ε))98 + c(1 + ‖ϕ‖5/2

0 )
∫ t

0

‖∂2
xu‖20.

This implies that

‖∂2
xu‖20 ≤ c[‖ϕ‖

3
2
0 ‖∂xu‖

7
2
0 + ‖ϕ′′‖20 + ‖ϕ‖51 + T (m1(ε))98 + (m0(ε))5/2

∫ t

0

‖∂2
xu‖20],

or

‖∂2
xu‖20 ≤ c[‖ϕ‖30 + ‖∂xu‖70 + ‖ϕ′′‖20 + ‖ϕ‖51 + T (m1(ε))98 + (m0(ε))5/2

∫ t

0

‖∂2
xu‖20],

or, using (3.3), we have the inequality

‖∂2
xu‖20 ≤ C(T )(m2(ε))98 + c(m0(ε))5/2

∫ t

0

‖∂2
xu‖20].

Then, by Gronwall’s lemma, we have (3.4). �

Next, in the proof of Lemma 3.2, we follow the idea in [3] and use the inequalities,
obtained by Kato and Ponce in [15], valid for s > 0 and 1 < p < ∞:

‖[Js,Mf ]g‖Lp ≤ c(‖∂xf‖L∞‖Js−1g‖Lp + ‖Jsf‖Lp‖g‖L∞), (3.7)

and as a consequence,

‖Js(fg)‖Lp ≤ c(‖f‖L∞‖g‖Lp + ‖f‖Lp‖g‖L∞). (3.8)
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Lemma 3.2. If uε ∈ C((0, T );Hs(R)) with s ≥ 2, is the solution of (3.1), we have

‖uε(t, ·)‖s ≤ ‖ϕε‖s exp[cT (m2(ε))35 exp cT (m0(ε))5/2]. (3.9)

Proof. Applying Js to equation of (3.1), multiplying by Jsu and integrating in R,
give

1
2

d

dt
‖u(t)‖2s = −(Js(u3∂xu), Jsu)

= −([Js,Mu3 ]∂xu + u3Js∂xu, Jsu)

≤ ‖[Js,Mu3 ]∂xu‖0‖Jsu‖0 +
3
2
|(u2∂xuJsu, Jsu)|.

Using (3.7) with f = u3, g = ∂xu and p = 2, we obtain

1
2

d

dt
‖u(t)‖2s ≤ c(‖∂xu3‖L∞‖Js−1∂xu‖0 + ‖Jsu3‖0‖∂xu‖L∞)‖Jsu‖0

+
3
2
‖u‖2L∞‖∂xu‖L∞‖Jsu‖20.

Using (3.8) with f = u, g = u2 and p = 2, we obtain

1
2

d

dt
‖u(t)‖2s ≤ c[‖3u2∂xu‖L∞‖Jsu‖0

+ c(‖u‖L∞‖u2‖0 + ‖u‖0‖u2‖L∞)‖∂xu‖L∞ ]‖Jsu‖0

+
3
2
‖u‖2L∞‖∂xu‖L∞‖Jsu‖20

≤ c[‖u‖2L∞‖∂xu‖L∞‖Jsu‖0 + (‖u‖2L∞‖u‖0
+ ‖u‖0‖u‖2L∞)‖∂xu‖L∞ ]‖Jsu‖0

+
3
2
‖u‖2L∞‖∂xu‖L∞‖Jsu‖20

≤ c‖u‖2L∞‖∂xu‖L∞‖u‖2s ≤ c‖u‖0‖∂xu‖3/2
0 ‖∂2

xu‖1/2
0 ‖u‖2s.

Therefore,

1
2

d

dt
‖u(t)‖2s ≤ c‖u‖0‖∂xu‖3/2

0 ‖∂2
xu‖

1
2
0 ‖u‖2s

≤ c‖u‖0(‖∂xu‖30 + ‖∂2
xu‖0)‖u‖2s.

Integrating from 0 to t ≤ T and using Gronwall’s lemma we have

‖u(t)‖2s ≤ ‖ϕ‖2s exp[cT‖ϕ‖0 sup
t∈[0,T ]

(‖∂xu(t)‖30 + ‖∂2
xu(t)‖0)].

Then, from (3.3) and (3.4) we have (3.9). �

Theorem 3.3. If ϕ ∈ G2(R) is such that ϕ, ϕ′, ϕ′′ are 2-(log(log))1/5-type; i.e, ϕ
have a representative ϕ̂ such that

‖Dαϕ̂ε‖0 ≤ C
(

log
(
log(1/ε)

))1/5

, for small ε, α = 0, 1, 2, (3.10)

then, for all T > 0, there is a unique solution u ∈ G2((0, T )× R) for the problem

ut + uxxx + u3ux = 0, u(0) = ϕ. (3.11)
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Proof. For ε small enough, we have (log(log(1/ε)))1/5 <
(
log(1/ε)

)1/70, thus con-
dition (3.10) on ϕ̂ ensues

‖ϕ̂ε‖2 ≤ C
(

log(1/ε)
)1/70

, (3.12)

‖ϕ̂ε‖0 ≤ C(log(log(1/ε)))1/5, for small ε. (3.13)

For each ε > 0, let ûε be the solution of (3.1) with u(0) = ϕ̂ε, given by [14, corollary
4.7]. From (3.9), (3.12) and (3.13) we have

‖uε(t, ·)‖s ≤ ‖ϕε‖s exp[cT (log(1/ε))1/2 exp cT (log(log(1/ε)))1/2].

Since (
log

(
log(1/ε)

))1/2

≥ 2cT, for ε small enough,

we get
‖u(t)‖s ≤ ‖ϕ‖sε

−N , N > 0,

which proves that (ûε)ε ∈ EM,2[(0, T ) × R]. Thus class u ∈ G2((0, T ) × R), whose
representative is (ûε)ε is, by construction, solution to problem (3.11).

For the uniqueness, let u and v in G2((0, T )×R) be two solutions of (3.11) with
respective representatives ûε and v̂ε, then, according to Definition 2.6, there exists
N̂ ∈ N2[(0, T )×R] and n̂ ∈ N2[R] such that, if w = u− v, we have (we omit ε and
hat in our notation)

wt + u3wx + (u3 − v3)vx + wxxx = N, w(0) = n. (3.14)

By changing representatives, we may assume that n = 0. By [12, proposition
3.4(ii)], see also [13], it is sufficient show that

‖w(t)‖20 ≤ Cεq, for all q. (3.15)

Multiplying (3.14) by w and integrating over R, we obtain

d

dt
‖w(t)‖20 ≤ c(‖u(t)‖2L∞ + ‖v(t)‖2L∞)(‖∂xu(t)‖L∞

+ ‖∂xv(t)‖L∞)‖w(t)‖20 + ‖N‖0‖w‖0.

Gronwall’s lemma implies that for 0 ≤ t ≤ T ,

‖w(t)‖20 ≤ ‖N‖0‖w‖0 exp[T sup
0≤t≤T

(‖u(t)‖2L∞

+ ‖v(t)‖2L∞)
(
‖∂xu(t)‖L∞ + ‖∂xv(t)‖L∞

)
].

Sobolev’s embbeding implies

‖w(t)‖20 ≤ ‖N‖0‖w‖0 exp[T sup
0≤t≤T

(‖u(t)‖2s

+ ‖v(t)‖2s)(‖∂xu(t)‖s−1 + ‖∂xv(t)‖s−1)],

or
‖w(t)‖20 ≤ ‖N‖0‖w‖0 exp[cT sup

0≤t≤T
(‖u(t)‖3s + ‖v(t)‖3s)].

Thus, from (3.3), (3.4) and (3.9) and since N ∈ N2[(0, T )×R], we obtain (3.15). �



8 M. M. MELO EJDE-2010/108

4. Other results

Remark 4.1. We observe that, following the same technique and using the result
by Kato in [14, Corollary 4.7, Lemma 3.1 and Lemma A.6] it is possible to show
that a similar result holds for problem (1.1): If ϕ ∈ G2(R) and its derivatives are
2-bounded-type; i.e, ϕ has a representative ϕ̂ such that

‖ϕ̂ε‖k ≤ C, for small ε

for all k ∈ N and a(u) satisfies (1.4), then for all T > 0, there is a unique solution
u ∈ G2((0, T )× R) of (1.1) which is also of 2-bounded-type. More precisely,

sup
t∈[0,T ]

‖ûε(t)‖k ≤ ã(‖ϕ̂ε‖k−1)‖ϕ̂ε‖k,

where ã is a monotone increasing function depending only on a. We also observe
that a(u) = ur, r < 4, satisfies (1.4).

The following result shows that the generalized solution to the Cauchy problem
(3.11), is associated with the respective classical solution v ∈ C([0, T ];Hs(R)) given
in [14, Corollary 4.7].

Proposition 4.2. If ϕ ∈ Hs(R), s ≥ 2, then the solution of problem (3.11),
with initial data ι(ϕ) ∈ G2(R) is associated with the respective classical solution
v ∈ C([0, T ];Hs(R)) given in [14, Corollary 4.7].

Sketch of proof. It is based on the fact that

‖ρε ∗ ϕ‖s = ‖Js(ρε ∗ ϕ)‖0 = ‖ρε ∗ Jsϕ‖0 ≤ ‖ρε‖L1‖ϕ‖s

is bounded independently of ε, thus we have a unique generalized solution to (3.11).
The continuous dependence theorem given by [14, Theorem 4.6] gives the associa-
tion result. �

Remark 4.3. The δ-Dirac distribution is in G2(R), (see Remark 2.1). If we replace
the embedding of H−∞(R) into G2(R) in Remark 2.1 by ι(w), whose representative
is given by ŵε = ι̂(w)ε = w ∗ ρh(ε), we obtain that the net δ̂ε = δ ∗ ρh(ε) = ρh(ε),
with δ̂ε(x) = ρh(ε)(x) = 1

h(ε)ρ( x
h(ε) ), is a representative of the generalized function

ι(δ). It is possible to choose h(ε), such that condition (3.10) holds; i.e., ‖δ̂ε‖2 ≤
C(log(log 1

ε ))1/5. Indeed, since ‖δ̂ε‖22 = ‖δ̂ε‖20 + ‖δ̂′′ε ‖20, we obtain

‖δ̂ε‖22 =
∫

R

1
h2(ε)

ρ2(
x

h(ε)
)dx +

∫
R

1
h6(ε)

[ρ′′(
x

h(ε)
)]2dx =

c1

h(ε)
+

c2

h5(ε)
.

By the Implicit Function Theorem, we can choose h(ε) such that c1
h(ε) + c2

h5(ε) =
C(log(log(1/ε)))2/5. Therefore, problem (3.11) with initial condition ϕ = ι(δ) has
a unique solution u ∈ G2((0, T )× R).

Remark 4.4. We observe that (3.11) has a solitary wave solution, see [23]:

u(t, x) = [10c sec h2(
3
2
√

c(x + x0 − ct))]1/3.

Taking c = x0 = 1
ε , as in the proof given in [5], we have that the generalized

function u with a representative given by

ûε(t, x) = [
10
ε

sec h2(
3
2

1√
ε
(x +

1
ε
− 1

ε
t))]1/3,
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is a nonzero solution of the equation of (3.11) which belongs to algebra G((0, T )×R),
as defined in [1]. The restriction of u to t = 0 vanishes in G(R), yielding the non-
uniqueness of solutions in G((0, T )×R) to problem (3.11). Indeed, introducing the
notation ξ = 3

2
1√
ε
(x + 1

ε −
1
ε t), we can check that each derivative of ûε is of the

form
∑

amnε−j sec hm+ 2
3 (ξ) tan hn(ξ), where m ≥ 0, n ≥ 1 and j ≥ 1. Then for

each r, the absolute value of the r-derivative of ûε(0, ·) is bounded by

cε−j | sec h2/3(
3
2

1√
ε
(x +

1
ε
)|,

where j = j(r) ∈ N and c = c(r) > 0. Since

| sec h2/3(
3
2

1√
ε
(x +

1
ε
)| ≤ | sec h2/3(

1√
ε
)| ≤ 22/3 exp(−2

3
1√
ε
),

for x+ 1
ε ≥

2
3 , then all derivatives of ûε(0, ·) are bounded from above by any positive

power of ε, thus u(0, ·) is zero in G(R). On the other hand, ûε(1, 0) = 3
√

10/ε →∞
as ε → 0. Therefore u is not equal to zero in G((0, T )× R), if T > 1.
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