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Table 1. Mathematical models applied to drying curves. 
 

Model Model description 

Approximation RX = a ∙ exp (- k ∙ t) + (1 - a) ∙ exp (- k ∙ b ∙ t) 
Two-term RX = a ∙ exp (- k0 ∙ t) + b ∙ exp (- k1 ∙ t) 
Two- term exponential RX = a ∙ exp (- k ∙ t) + (1 - a) ∙ exp (- k ∙ a ∙ t) 
Handerson & Pabis RX = a ∙ exp (- k ∙ t) 
Logarítmo RX = a ∙ exp (- k ∙ t) + c 
Midilli RX = a ∙ exp (- k ∙ tn) + b ∙ t 
Newton RX = exp (- k ∙ t) 
Page RX = exp (- k ∙ tn) 
Thompson RX = exp ((- a - (a2 + 4 ∙ b ∙ t)0,5)/2 ∙ b) 
Verma RX = a ∙ exp (- k ∙ t) + (1 - a) ∙ exp (- k1 ∙ t) 
Wang & Singh RX = 1 + a ∙ t + b ∙ t2 

 

Where, t: drying time, h; k, ko, k1: drying constants h-1, and a, b, c, n: model coefficients. 
 
 
 

To meet Pequi market during the offseason, the 
conservation of Pequi pulp is basically by freezing and in 
the form of acidified canned products. The use of other 
conservation techniques such as dehydration/drying can 
provide other ways of use and application, preserving the 
pulp and increasing the life of the product, in addition to 
promoting the development of differentiated products 
(Lewicki, 2006). 

Dried fruits and vegetables have gained commercial 
importance and its growth on a commercial scale has 
become an important sector of the agricultural industry. 
The lack of adequate treatment causes considerable 
damage and waste of seasonal fruits in many countries, 
which is estimated at 30-40% in developing countries. It 
is necessary to remove the moisture content of the fruit to 
a certain level after harvest to prevent the growth of mold 
and bacterial action (Azharul Karim and Hawlader, 2005). 

Oven drying is an inexpensive process, but often leads 
to degradation of labile compounds and/or oxidizable 
substrates such as carotenoids and lipids. To overcome 
these limitations, drying is generally carried out at 
moderate temperature (40-60°C) (Durante et al., 2014). 

The drying process consists of the removal of most of 
the moisture content of a product, causing unfavorable 
conditions for the continuity of metabolic activity and 
growth of microorganisms (Martinazzo et al., 2007). The 
study on the required parameters of drying kinetics is 
important in order to improve the drying process and 
obtain a quality product that meets consumer demands 
(Cano-Chauca et al., 2004). 

The use of mathematical models for the representation 
of the drying process is crucial, considering that the 
information generated is of great value for designing, 
development and improvement of processes and equip-
ment, as well as for the prediction of drying times. 
 
 
MATERIALS AND METHODS 
 
Pequi fruits were purchased  from local market of Rio Verde,  Goiás 

State, Brazil, and transported to the Laboratory of Fruits and 
Vegetables - Federal Institute Goiás - Rio Verde Campus, Goiás, 
Brazil. In the laboratory, they were received and sanitized in 150 
ppm chlorine solution for 15 min and subsequently dried. Then, 
Pequi fruits were sliced with an average thickness of 2.33 mm, 
vacuum packaged, and stored in low-density polyethylene bags 
until time of drying in oven. 
 
 
Drying the Pequi pulp  
 
Pequi samples were dried in a Marconi oven model MA 035 - 
Piracicaba - Brazil, with forced air ventilation and air flow rate of 
7.728 kg.(m2s)-1 at three temperature conditions: 40, 50 and 60°C. 
During drying in perforated trays, samples were weighed from 20 to 
20 min up to obtaining water content of 0.111 (decimal, db), 
determined at 105 ± 1°C for 24 h (AOAC, 2000). The entire drying 
process was carried out in three replicates. 

Temperature and relative humidity of the environment external to 
the drying chamber were monitored using a thermohygrometer, and 
the internal temperature was monitored by a thermometer placed 
inside the drying chamber. The relative humidity inside the drying 
chamber was obtained by means of the basic psychrometric 
principles, using the GRAPSI software. 
 
 
Drying kinetics 
 
The following expression was used to determine the moisture 
content in the Pequi pulp during drying: 
 

RX ൌ
X െ Xୣ
X୧ െ	Xୣ

 

 
Where, RX is the humidity ratio, dimensionless; X is the moisture 
content at time t, decimal dry basis (kg water, kg-1 dry matter); Xe is 
the equilibrium water content of the product, decimal dry basis (kg 
water, kg-1 dry matter); and Xi is the initial moisture content, decimal 
dry basis (kg water, kg-1 dry matter). 

The modeling is intended to adjust one or more models 
throughout the studied range of this variable (Corrêa et al., 2010). 
The experimental drying data of Pequi pulp were fitted to 
mathematical models often used to represent the drying of 
agricultural products, as presented in Table 1. 

The liquid diffusion model for flat plate geometry with known 
thickness  (Fick's law  and eight-term  approximation  equation) was 



 
 
 
 
fitted to experimental Pequi pulp drying data in accordance with the 
following expression: 
 

    



 







 



2

22
t

0N t
2

ei

e

4L

t
Dπ12Nexp

12N

1

π

8

XX

XX
RX

t

 

 
Where, N is the number of terms; Deff is the liquid diffusion 
coefficient, m2s-1, and L is the half the sample thickness, m. 

The relationship between the effective diffusion coefficient and 
the increase in the drying air temperature was described by the 
Arrhenius equation. 
 

௘௙௙ܦ ൌ ଴ܦ exp ൬െ
௔ܧ
ܴܶ

൰ 

 
Where, Do is the pre-exponential factor; Ea is the activation energy, 
kJ.mol-1; R is the universal gas constant, 8.134 kJ.kmol-1.K-1, and T 
is the absolute temperature, K. 
 
 
Thermodynamic properties 
 
The thermodynamic properties of Pequi pulp drying process were 
obtained by the method described by Jideani and Mpotokwana 
(2009). 
 

∆H ൌ	Eୟ െ RT 
 

∆S ൌ R	ሺlnA଴ െ ln ൬
k୆
h୔
൰ െ lnTሻ 

 
∆G ൌ 	∆H െ T∆S 

 
Where, ∆H = enthalpy, J mol-1; ∆S = entropy, J mol-1; ΔG = Gibbs 
free energy, J mol- 1; kB = Boltzmann constant, 1.38 x 10-23 J K- 1, 
and hp = Planck's constant, 6.626 x 10-34 J s - 1. 
 
 
Statistical analysis 

 
Mathematical models were fitted using nonlinear regression by the 
Gauss-Newton method using a statistical program. Determination of 
the investigated components was carried out in three replicates. 
The models were selected considering the magnitude of the 
determination coefficient (R2), relative mean error (P) and estimated 
mean error (SE). Relative mean error values lower than 10% were 
considered as a criterion for the selection of models, according to 
Mohapatra and Rao (2005). 
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Where, Y is the value experimentally observed; Ŷ is the value 
estimated by the model; N is the number of experimental 
observations; GLR is the degrees of freedom of the model (number 
of experimental observations minus the number of coefficients of 
the model). 
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RESULTS AND DISCUSSION 
 
Drying kinetics 
 
Pequi pulp showed initial water content of 1.25 dry basis 
(decimal db) when submitted to the three drying 
temperatures that promoted relative humidities of 25.96; 
15.30 and 9.80%, respectively. Table 2 shows the R², SE 
and P values for each model considered in this study for 
different drying temperatures. 

The determination coefficient R² is one of the main 
criteria for choosing the model that best fits the drying 
process; however, besides R², parameters SE and P are 
used for determining the adjustment quality (Doymaz, 
2012). The choice of the most appropriate model was 
given by R² > 98 %, SE < 10 % values (decimal) and 
lower P values. 

It was observed that for all temperatures, the models 
were satisfactory to describe the drying process, except 
for the model of Wang and Singh. At 60°C, the model of 
Midilli (RX = a exp (- k tn) + b t) showed satisfactory R², 
SE and P values, so, based on the results obtained for 
other temperatures, this model was chosen to represent 
the drying process of Pequi pulp. 

Radunz et al. (2011), in his work with carqueja, found 
that the model of Midilli et al. presented adequate fit to 
the experimental data for the entire temperature range 
studied (40-90°C). Lima et al. (2007) dried facheiro pulp 
and concluded that among the models fitted to the drying 
kinetics data, the equation of Midilli showed the highest 
determination coefficient and the lowest mean squared 
deviation values, corroborating this work. Resende et al. 
(2010) recommends the model of Midilli for drying 
processes for presenting simple mathematical 
operations. 

 Figure 1 shows the moisture content versus Pequi pulp 
drying time curves studied at different temperatures (40, 
50 and 60°C) in oven drier with air circulating. 

The longest drying time was at temperature of 40°C, 
about 5.67 h, while for temperature of 50°C, the drying 
time was around 5.33 h and at 60°C, it was 4.67 h. The 
drying curves were well-defined, that is, without floating 
point throughout the process, indicating homogeneity in 
the dryer. 

It was observed that increased temperatures decrease 
the drying time of Pequi pulp, since it results in rapid 
evaporation of water present in the solid. Silva et al. 
(2009) reported that the increase in temperature causes 
an increase of the drying rate, which suggests the 
moisture diffusion from within the product to its surface as 
the physical mechanism predominant throughout the 
drying process, with no periods of constant drying rate. 
Silva et al. (2014) concluded that the drying of whole 
bananas also occurred exclusively during the period of 
decreasing rate for all temperatures evaluated. Togrul 
and Pehlivan (2004) found no periods of constant rate 
throughout the drying process of apricots, grapes, figs,

 
GLR

ŶY
SE

2 

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Table 2. Values of the determination coefficient (R²), estimated mean error (SE), relative mean 
error (P) for mathematical models used in the drying of Pequi pulp (Caryocar brasiliense 
Cambess) at 40, 50 and 60°C. 
 

Model description R2 (%) SE (decimal) P (%) 

40°C 
Approximation 99.96 0.0062 2.3054 
Two-term 99.96 0.0064 2.3154 
Two- term exponential 99.94 0.0070 2.5640 
Handerson & Pabis 99.90 0.0092 3.0179 
Logarithmic 99.93 0.0076 2.5614 
Midilli 99.96 0.0062 2.3031 
Newton 99.84 0.0110 3.9719 
Page 99.96 0.0059 2.3253 
Thompson 99.94 0.0069 2.4894 
Verna 99.96 0.0062 2.3054 
Wang & Singh 98.31 0.0371 14.23 

  

50°C 
Approximation 99.97 0.005092 1.3392 
Two-term 99.98 0.004905 1.2547 
Two- term exponential 99.95 0.006570 2.4539 
Handerson & Pabis 99.88 0.010360 5.6170 
Logarithmic 99.98 0.004828 1.0532 
Midilli 99.98 0.004393 1.5906 
Newton 99.87 0.010176 5.8201 
Page 99.91 0.008733 3.9863 
Thompson 99.95 0.006792 2.5855 
Verna 99.97 0.005092 1.3393 
Wang & Singh 98.54 0.035443 16.267 

 
60°C 

Approximation 98.78 0.0321 7.8128 
Two-term 99.91 0.0092 3.3070 
Two- term exponential 99.86 0.0103 3.4578 
Handerson & Pabis 99.30 0.0234 4.7387 
Logarithmic 99.42 0.0221 5.7471 
Midilli 99.93 0.0080 2.3108 
Newton 98.78 0.0297 7.8126 
Page 99.76 0.0138 5.1096 
Thompson 99.52 0.0193 6.6302 
Verna 99.91 0.0088 3.3069 
Wang & Singh 96.31 0.0537 17.911 

 
 
 
peaches and plums, confirming the drying curve obtained 
in this work. 

To maintain the microbiological safety level of the 
product, that is, to reduce the risk of contaminants, it is 
desirable to dry the product to obtain moisture ratio less 
than 0.15 (decimal db) (Krokida and Philippopoulos, 
2005). 

Figure 1 shows that constant k of the model of Midilli 
increases in absolute values with increasing temperature, 

since higher temperatures lead to higher drying rates; 
however, the other coefficients of the model of Midilli (a, n 
and b) did not show a clear trend as a function of drying 
temperatures. Reis et al. (2012) also reported increased 
k constant with increasing temperature when drying basil 
leaves. 

The use of kinetic models is a way to predict the drying 
process at different temperatures, making mathematical 
models an interesting tool to be used during the kinetic 
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Table 4. Values of the enthalpy and entropy variation and the Gibbs free energy for the drying 
process of Pequi pulp (Caryocar brasiliense Cambess) at temperatures of 40, 50 and 60°C. 
 

Thermodynamic properties 
Temperature (°C) 

40 50 60 

Enthalpy (J.mol-1) 5091.41 5008.27 4925.13 
Entropy (J.mol-1.K-1) -251.01 -250.38 -250.05 
Gibbs free energy (J.mol-1) 83693.70 85919.44 88229.35 

 
 
 
activation energy for agricultural products ranged from 
12.7 to 110 kJ mol-1. In the present work, the activation 
energy value found was lower; however, it was higher 
than that reported by Faria et al. (2012), for the drying of 
crambe (4.97 kJ mol-1). 

Thermodynamically, activation energy is defined as 
how easy water molecules overcome the energy barrier 
during migration within the product (Corrêa et al., 2007). 
It is noteworthy that for drying processes, the lower the 
activation energy, the higher the water diffusivity within 
the product (Faria et al., 2012), indicating a facilitated 
drying process. 
 
 
Thermodynamic characteristics 
 
Table 4 shows the values of the enthalpy and entropy 
variation and the Gibbs free energy. The calculation of 
these energies is relevant, since entropy and enthalpy 
result in Gibbs free energy, which is a thermodynamic 
state function representing the maximum amount of 
energy released in a process occurring at constant 
temperature and pressure that is free to perform the 
useful work (Ascheri et al., 2009). 

This study shows lower enthalpy values for higher 
temperatures during the drying process, indicating a 
smaller amount of energy required for the drying to occur 
at higher temperatures, that is, enthalpy decreases with 
increasing temperature. Oliveira et al. (2010) explained 
that lower enthalpy values indicate lower energy required 
by the drying process to remove water within the product. 

In absolute scale, entropy decreased with increasing 
temperature. Reduced entropy values can be explained 
by the fact that when the product is being dehydrated, 
there is a reduction in the moisture content and the 
movement of water molecules in the product becomes 
more difficult (Corrêa et al., 2011). Moreira et al. (2008) 
explained that negative entropy values are assigned to 
the existence of chemical adsorption and / or structural 
modifications of the adsorbent. 

Positive values for the Gibbs free energy mean that the 
drying phenomenon is not a spontaneous process, that 
is, it requires an energy source for the process to occur. 
This was expected, since the samples were in an 
environment with higher humidity (harvest), being subse-
quently submitted to a process to reduce the humidity 

values. Corrêa et al. (2011) dried corn cobs and obtained 
the same trend of increased Gibbs free energy values 
with increasing process temperature, also observed in 
this study, which indicates a greater amount of energy 
with increasing temperature. 
 
 
Conclusion 
 
Based on experimental data, it was concluded that the 
removal of water from Pequi pulp occurred during periods 
of decreasing rate for all temperatures. Among the 
models investigated in this study, the model of Midilli 
showed satisfactory data to explain the drying process of 
Pequi pulp. The constant k of the model of Midilli 
increases with increasing temperature, as also observed 
for the diffusion coefficient. 

In the drying of Pequi pulp, enthalpy decreases with 
increasing temperature. The entropy was negative for the 
entire temperature range studied. The Gibbs free energy 
was positive for all temperatures, and increased with 
increasing temperature. 
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