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Bruno J. Neves1,2, Rodolpho C. Braga1,3, José C. B. Bezerra2, Pedro V. L. Cravo2,4, Carolina H. Andrade1,2*
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Abstract

Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because
praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new
schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs
that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of
these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases:
Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a
combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space
analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly
predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not
yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine,
gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and
focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds
for the design of new drugs against schistosomes.
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Introduction

Schistosomiasis is one of the main neglected tropical diseases

affecting humans. It is caused by flatworms of the genus

Schistosoma (S. mansoni, S. japonicum, S. haematobium, S.
intercalatum and S. mekongi) [1–3]. This parasitic disease ranks

second only after malaria in terms of its public health importance

[4] because of its chronic and debilitating characteristics that result

in a substantial burden on human health [5,6]. Recent estimates

suggest that more than 249 million people were infected in 78

endemic countries located in sub-Saharan Africa, the Middle East,

the Caribbean, and South America, resulting in 200,000 deaths

annually [7].

Schistosomes have complex life cycles that involve vertebrate

(often a mammal) and invertebrate (aquatic snail) hosts, in which

sexual and asexual reproductive phases occur, respectively.

Mammalian definitive hosts are infected via skin penetration by

cercariae, which lose their bifurcated tail and become schistosom-

ula [8,9]. After 5–7 days, schistosomula migrate from the lungs to

the hepatic portal system via the blood stream and transform into

adult worms. Male and female worms pair in the hepatic portal

system and migrate to the mesenteric veins (except S. haemato-
bium, which migrates to the urogenital system) to lay nearly 300

eggs per day. These eggs either pass into the gut lumen to be

voided in the faeces and continue the life cycle or pass through the

mesenteric veins and lodge in the liver, where they can cause

granulomatous changes and fibrosis, both of which are key

contributors to schistosomiasis [8,10].

In the absence of a vaccine, praziquantel (PZQ) has been the

drug of choice recommended by the World Health Organization

for the treatment and control of all the major Schistosoma species

in mass drug administration programs for almost three decades

[11]. More recently, the use of artemisinin derivatives alone or in

combination with PZQ for the treatment and prevention of

schistosomiasis has shown encouraging results [12], but it is

unlikely to represent an ideal stand-alone drug-based control

strategy. Moreover, the suboptimal efficacy of PZQ against

immature worms that are present in newly acquired infections

[13] and the prospect of drug resistance indicate a need to identify
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new schistosomicidal drugs active against multiple stages of

parasite life cycle [5,14–16].

One approach that can expedite drug discovery process is to

find new uses for existing approved compounds, a practice

commonly known as drug repositioning or repurposing [17]. Drug

repositioning has proved to be an efficient way of identifying new

therapies against neglected tropical diseases. A recent example of a

repositioned drug is miltefosine, a drug that was originally

developed to treat breast cancer and is now used against visceral

leishmaniasis [18,19]. In addition to saving money and time, an

advantage of drug repositioning is that the existing drugs have

already been scrutinized in terms of pharmacokinetic and toxicity

parameters [20–22].

Over the last few decades, advances in computer technologies

have resulted in useful tools to assist early drug discovery and

development. In this context, the use of in silico tools can reduce

the cost and the time required to select the most promising

candidates for in vitro and in vivo assays [20]. Our laboratory has

been developing and applying many computer-assisted drug

discovery (CADD) strategies in the hope of discovering new drug

candidates for neglected tropical diseases [23–43].

Several in silico chemogenomic studies have demonstrated that

genome-wide gene expression data might also represent a useful

resource for identifying drugs and drug target genes that can

potentially be used for drug repositioning [44–47]. The ultimate

goal of chemogenomics is to establish the molecular relationship(s)

between ligands and drug targets. Therefore, various publicly

available databases, such as Therapeutic Target Database (TTD)

[48], DrugBank [49], and STITCH [50], which integrate

information about gene/protein–drug–disease interactions, are

useful resources to develop these strategies. Based on the concept

that ‘‘similar targets have similar ligands’’, homology-based

searching using these databases helps to identify compounds that

may act on a target for which there are no known active

compounds but that are related by homology to one or more

targets for which active compounds are known [51,52]. In such

context, S. mansoni targets with structural homology similar to

known targets of approved drugs are more likely to be susceptible

to inhibitors listed in the drug target and drug databases.

Recently, Protasio et al. [53] used transcriptomic sequencing

from four time points in the S. mansoni life cycle to refine gene

predictions and establish expression profiles in the parasite.

Consequently, a high-resolution map of the temporal changes in

the transcription of genes was produced for all intra-mammalian

life cycle stages of S. mansoni. These data have been compiled into

a searchable format within the SchistoDB (www.schistodb.net) and

GeneDB (www.genedb.org) databases [53]. Transcription profil-

ing and genome sequencing data provide important fundamental

information to support further advances in schistosome research.

In the present study, we used an in silico target-based

chemogenomics strategy, integrating S. mansoni genomics data

with drug-target database resources to predict new drugs with

potential activity against multiple life stages of S. mansoni.

Materials and Methods

Compilation of the list of S. mansoni genes
The target-based chemogenomics screening was performed on a

dataset containing 2,076 genes that are differentially expressed

among the 24 hour schistosomula vs. adult life stages obtained

from Protasio et al. [53]. We also obtained 38 S. mansoni genes

from the TDR Targets database [54] using the target search tool.

We searched for targets with ‘‘any form of validation’’, which

included ‘‘genetic’’, ‘‘pharmacological’’, and ‘‘observed pheno-

types’’ (S1 Table). We focused on searching for genes that are

expressed in ‘‘24 h schistosomula vs. adult’’ because they are intra-

mammalian stages. However, some of these genes are also

expressed in other temporal life cycle stages, such as ‘‘cercariae

vs. 3 hour schistosomula’’ and ‘‘3 h vs. 24 h schistosomula’’.

These genes are considered promising targets for prophylactic

drugs because they are involved in the penetration through the

mammalian host’s skin, host adaptation, and differentiation and

growth of the parasite. Therefore, genes were grouped according

to the following division: group I was composed of genes

differentially transcribed between ‘‘24 h schistosomula vs. adult’’

and also between ‘‘cercariae and 3 h schistosomula’’; group II was

composed of genes differentially transcribed between ‘‘24 h

schistosomula vs. adults’’ as well as between ‘‘3 h and 24 h

schistosomula’’; group III was composed of genes transcribed

between ‘‘24 h schistosomula vs. adult’’; and group IV was

composed of genes transcribed concurrently in all the life cycle

stages (Fig. 1A). Information for individual genes or gene products

(primary amino acid sequence in FASTA format, target name, and

biological process/es) was then retrieved from the GeneDB S.
mansoni genome database [55]. We then verified the annotation of

each single putative protein and corrected it, if necessary,

according to the recent updated annotations in the GeneDB

database. For convenience, the in silico target-based chemoge-

nomic pipeline is presented in Fig. 2.

Identification of putative drug targets using publicly
available drug databases

Each predicted protein from S. mansoni was used to interrogate

three different publicly available databases that provide detailed

information on drugs and their targets: TTD [48], DrugBank [49],

and STITCH [50]. The search strategy for DrugBank and TTD

was based on the principle of homology, whereby each query (S.
mansoni target) was compared for matches to known drug targets

contained in each of these databases. In cases where homologous

drug targets were identified, all proteins with an output

expectation value (E-value) of #10220 for DrugBank and TTD

were listed as ‘‘acceptable targets’’. This E-value represents the

number of hits with an alignment score ‘‘Z’’ or equal or better

than ‘‘Z’’ that would be expected by chance when searching a

database. The E-value is the expected number of times a

Author Summary

Schistosomiasis is a neglected tropical disease caused by
schistosome parasites that affects millions of people
worldwide. The current reliance on a single drug (Prazi-
quantel) for treatment and control of the disease calls for
the urgent discovery of novel schistosomicidal agents. One
approach that can expedite drug discovery is to find new
uses for existing approved drugs, a practice known as drug
repositioning. Currently, modern drug repositioning strat-
egies entail the search for compounds that act on a
specific target, often a protein known or suspected to be
required for survival of the parasite. Drug repositioning
approaches for schistosomiasis are now greatly facilitated
by the availability of comprehensive schistosome genome
data in user-friendly databases. Here, we report a drug
repositioning computational strategy that involves identi-
fication of novel schistosomicidal drug candidates using
similarity between schistosome proteins and known drug
targets. Researchers can now use the list of predicted
drugs as a basis for deciding which potential schistosomi-
cidal candidates can be tested experimentally.
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homology match will occur at random in a given set of trials.

However, the STITCH database integrates data from the

literature and various databases of biological pathways, drug–

target relationships, and binding affinities. The resultant network

can be explored interactively or used as the basis for a confidence

score ranging from 0–1. The confidence score is a set of high-

confidence interactions between drugs and targets (i.e., proteins

with shared Gene Ontology annotations) that is used as a reference

for screening results. Therefore, in the case of the STITCH

database, when significant matches were found, only targets with a

score $0.8 were considered [50]. We filtered all predicted targets

through inclusion in the list of only those proteins that were

indicated to interact with approved drugs, excluding the

nutraceutical class, as these compounds are unlikely to exhibit

schistosomicidal activity [56].

Pairwise alignment and comparison of functional regions
Predicted S. mansoni targets were aligned with their homologue

drug targets using pairwise BLAST [57]. We considered the S.
mansoni targets for further evaluation only in cases where there

was $80% overlap with the corresponding drug target. This

filtering step enhances the probability of both proteins sharing the

same active site. Subsequently, we performed the sequence

alignment and compared the functional regions among the

approved drug targets and S. mansoni targets using the ConSurf

server [58]. This procedure was used to estimate the conservation

of active sites between the proteins and the preservation of affinity

for the predicted schistosomicidal drugs. The ConSurf server [58]

is a bioinformatic tool for estimating the evolutionary conservation

of amino acid positions in a protein based on the phylogenetic

relationships between homologous sequences. Therefore, the

degree of conservation of the amino acids within the active site

of each approved drug target was estimated using 150 homologues

from other organisms with similar sequences in the UniProt

database [59]. The sequences were clustered and those presenting

high sequence similarity (.95%) were excluded using the

algorithm CD-HIT [60] to filter out redundant sequences. In

the same way, the sequences that shared less than the given

identity cutoff of ,35% were also ignored [58]. A multiple

sequence alignment (MSA) of the homologous sequences was

constructed using the MAFFT-L-INS-I method [61], and the

phylogenetic tree was built using the neighbor-joining algorithm

[62]. Position-specific conservation scores were computed using

the empirical Bayesian method [63]. Next, the functional regions

of each approved drug target were visually compared with the

corresponding S. mansoni target. The results were classified as

functional residues with high ($80%) or moderate conservation

(60–79%). In cases where the conservation between functional

residues was less than 59%, the putative targets were excluded

from further analyses.

List of drugs yet to be tested against Schistosoma species
We carried out a literature search using the PubMed, PubChem

Bioassay database, and SciFinder engines to identify approved

drugs that have not been evaluated against Schistosoma species by

querying all predicted drugs previously identified. The PubChem

BioAssay database reports the available biological screening results

for the chemical compounds described in the PubChem database,

providing searchable descriptions of each bioassay, including

descriptions of the conditions and readouts specific to that

screening procedure. SciFinder is a chemistry research application

that provides access to the world’s most comprehensive and

authoritative sources of references, chemical substances, and

reactions in chemistry and is updated daily by Chemical Abstracts

Service. Our definition of ‘‘evaluation’’ embraces biochemical or

in vitro and in vivo assessments of one or more life stages of

Fig. 1. Distribution of genes from S. mansoni and predicted targets. (A) Venn diagram represents the clustering of genes in four different
groups according to temporal life stages of the parasite. (B) Rate of druggable S. mansoni targets identified for each group using the target-based
chemogenomics approach.
doi:10.1371/journal.pntd.0003435.g001
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Schistosoma species. Therefore, if a given drug is noted as ‘‘not

tested’’, it means that no publication record was found after either

of the following search details: 1. (‘‘drug name’’ [MeSH Terms]

OR ‘‘drug name’’ [All Fields]) AND (‘‘Schistosoma’’ [MeSH

Terms] OR ‘‘Schistosoma’’ [All Fields]) and 2. (‘‘drug name’’

[MeSH Terms] OR ‘‘drug name’’ [All Fields]) AND (‘‘schistoso-

miasis’’ [MeSH Terms] OR ‘‘schistosomiasis’’ [All Fields]). It also

might mean that the studies/assays retrieved were insufficiently

informative to infer the potential usefulness of the drug as a

schistosomicidal drug or lead compound.

Chemical space analysis
We evaluated the ‘‘chemical space’’ of known active and

inactive compounds against Schistosoma. The aim in using this

strategy is to find whether predicted compounds share essential

structural and physicochemical properties with schistosomicidal

compounds. Initially, a dataset of active compounds with

enzymatic, in vitro, and/or in vivo activity data for Schistosoma
species was collected from the literature (S2 Table) using the

PubMed and PubChem Bioassay databases [64]. Because of the

differences in the experiments used for the biological activity

evaluation, compounds of our database were considered to be

active according to the specifications of each study or bioassay. In

addition, a dataset of inactive compounds was compiled from a

large dataset of non-inhibitors of the enzyme thioredoxin

glutathione reductase of S. mansoni previously reported (Pub-

Chem Bioassay AID: 485364). These compounds were assumed to

be inactive, because in the literature they were not reported to

produce any schistosomicidal activity. All aforementioned chem-

ical datasets were carefully curated and standardized according to

the protocol proposed by Fourches et al. [65]. Structural

normalization of specific chemotypes, such as aromatic and nitro

groups, was performed using ChemAxon Standardizer (v.6.1.3,

ChemAxon, Budapest, Hungary, http://www.chemaxon.com).

Duplicates (i.e., identical compounds reported several times in

the dataset) were identified using KSAR workflow (http://labmol.

farmacia.ufg.br/ksar). The dataset is unbalanced, meaning that

the size of the active and inactive classes does not match.

Therefore, we used the algorithm k-Nearest Neighbor (kNN)

developed in software R and the qsaR 1.5 package (http://labmol.

farmacia.ufg.br/chemoinformatics) to equalize the number of

compounds in different classes; this is referred to as ‘‘dataset

balancing’’. The basic principle here is to evaluate the whole active

dataset represented by the MACCS fingerprint matrix evaluating

Fig. 2. Flowchart summarizing the in silico repositioning chemogenomics strategy and corresponding results. The green boxes
represent the summarized results obtained at each stage of the study.
doi:10.1371/journal.pntd.0003435.g002
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Fig. 3. ConSurf analysis of the functional regions between an approved drug target and the corresponding S. mansoni target. (A)
ConSurf predictions demonstrated on human proteasome b type 2 (Gene ID: PSMB2), using 150 homologues obtained from the UNIPROT database.
The sequence of the query protein is displayed with the residue conservation scores at each site color-coded onto it. The color-coding bar shows the
coloring scheme; conserved amino acids are colored bordeaux, residues of average conservation are white, and variable amino acids are turquoise.
The residues of the query sequence are numbered starting from 1 to 199. The first row below the sequence lists the predicted burial status of the site
(i.e. ‘‘b’’– buried versus ‘‘e’’ – exposed). The second row indicates residues predicted to be structurally and functionally important: ‘‘s’’ and ‘‘f’’,
respectively. (B) Analysis of the functional regions conserved with the corresponding S. mansoni proteasome b type 2. The green rectangles represent
the conserved functional residues and red rectangles represent non-conserved functional residues.
doi:10.1371/journal.pntd.0003435.g003
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the Euclidean distance to the MACCS fingerprint of each inactive

compound. The compounds were reordered by nearest k-distance

of the active compounds. Thereafter, a set representing 39

descriptors accounting for physicochemical properties were

calculated using RDKit 2.4.0 [66]. The descriptor matrix was

normalized, and low variance descriptors (variance upper bound

set to 0.0) were removed before generating the model. The

chemical space analysis of predicted drugs was generated using k-

means clustering space using Principal Component Analysis (PCA)

and employing the software R v.3.0.3 [67]. All steps of dataset

balancing, processing, and chemical space analysis were imple-

mented in R and KNIME, a graphical user interface that allows

the assembly of nodes for modeling, data analysis, and visualiza-

tion (S1 Fig.).

Results

Compilation of the genes list
The dataset of S. mansoni genes was compiled from the Protasio

et al. study and the TDR Targets database, totalling 2,114 genes

(S1 Table). We focused on searching drugs with potential activity

in schistosomula and adult life cycle stages, which are all intra-

mammalian stages. For this reason, genes that do not have a

differential transcription between 24 h schistosomula and adults

were not considered. Some of the genes differentially transcribed

between these stages were also transcribed in other life cycle

stages, including the cercariae; therefore, some of these genes are

considered promising targets for drugs, as they are expected to be

involved in penetration through mammalian host skin, adaptation,

differentiation, and growth. The 2,114 genes were clustered in

four main groups (I–IV) according to transcription in each life

cycle stage (Fig. 1A). Totals of 478, 328, 1,134, and 174

transcribed genes were identified.

Identification of putative drug targets using publicly
available drug databases

The information about individual genes (primary amino acid

sequence in FASTA format, target name, and biological process)

was retrieved from the GeneDB S. mansoni genome database.

Based on the FASTA sequence information, we predicted

schistosomicidal drugs using the sequence similarity screening in

three databases (DrugBank, STITCH 3.1, and TTD). In this step,

numerical statistical probability parameters (E-value #10220 or a

score $0.8) were adopted to provide high confidence for the data.

We decided to use all three databases because each of them may

contain different drug-target datasets and, consequently, the

probability of targets and their drugs being missed is reduced.

This analysis predicted 49 targets associated with 276 approved

drugs (S3 Table).

Pairwise alignment and comparison of functional regions
Pairwise sequence alignment was used to compare the S.

mansoni targets previously identified with their approved homol-

ogous drug targets using BLAST alignment. Ten targets had less

than an 80% overlap with their corresponding approved targets

and were excluded from further analyses due to the improbability

of both proteins sharing the same active site. Next, we performed

sequence alignments and comparisons of functional regions for

approved drug targets and predicted S. mansoni targets. This step

allowed the identification of functionally relevant features and

conserved residues necessary for catalysis and residues critical for

binding. Fig. 3 shows an example of the ConSurf analysis of the

functional regions between an approved drug target (human

proteasome b type 2) and the corresponding S. mansoni target.

Fig. 3A shows the predictions demonstrated on human protea-

some b type 2 (Gene ID: PSMB2) using 150 homologues obtained

from the UniProt database. This analysis revealed that 38 residues

were predicted to be functionally important to the catalytic activity

of the human enzyme. The functional regions of the human

proteasome b type 2 were aligned to the respective S. mansoni
orthologue. This comparison demonstrated that the active site

predicted for S. mansoni proteasome b type 2 is conserved when

compared to functional regions of its respective human target

(Fig. 3B).

Compilation of the ‘‘predicted targets list’’
After running each of the S. mansoni protein sequences through

the three databases, all proteins with negative results (negative hits)

were excluded from further analyses, whilst predicted targets from

each database were compiled into a single Excel file, hereafter

called the ‘‘predicted targets list’’ (S3 Table). Each positive hit was

examined further using BLAST pairwise alignment and the

ConSurf server. This strategy resulted in a list of 39 potential

druggable S. mansoni targets (,1.8% of the interrogated targets)

that could interact with 215 approved drugs. The DrugBank,

STICH 3.1 and TTD databases exclusively predicted 120 (56.0%),

6 (2.8%), and 18 (8.3%) of the approved drugs, respectively, whilst

the remaining 71(32.9%) drugs were predicted by two or three of

these databases. Detailed information about the predicted targets

and their associated drugs are provided in S3 Table. The

distribution of the 39 identified S. mansoni targets according to

their expression group is shown in Fig. 1B. We found that 19

(48.7%) of the predicted S. mansoni targets are in group III, 7

(17.9%) are in group I, 6 (15.4%) are in group II, and 7 (17.9%)

are in group IV (Fig. 1B and S3 Table).

List of drugs yet to be tested against Schistosoma species
To investigate which of the predicted drugs have already been

tested against Schistosoma species, we undertook a literature search

of PubMed, PubChem Bioassay, and SciFinder. A total of 22

druggable targets associated with 47 drugs whose activity has been

previously evaluated against Schistosoma were identified. Exam-

ples of some of these drugs and their corresponding targets are

given in Table 1. Accordingly, we were confident that our

chemogenomic strategy for identifying new schistosomicidal drugs

is valid. Consequently, we predicted 168 drugs to be active against

33 druggable targets that have not yet been experimentally tested

against schistosomes or that have not yet required further studies.

The results are summarized in Fig. 2. The complete list of

predicted drugs, their targets, alignment parameters, and conser-

vation of the functional regions is given in S3 Table.

Chemical space analysis
Finally, we used chemical space analysis to map the 168

predicted drugs in a multidimensional space using physicochem-

ical descriptors for a dataset of active and inactive compounds

against Schistosoma reported in the literature. The chemical space

analysis is useful to refine the results and select the most promising

drugs that share essential structural and physicochemical proper-

ties with schistosomicidal compounds. Because the original dataset

was unbalanced, containing 355 active compounds vs. 331,228

inactive compounds (extracted from 101 bibliographic references,

including 87 articles from PubMed and 14 from PubChem

bioassays), it was not appropriate to build multivariate models

[33]. For this reason, a balanced dataset containing 696 chemical

structures (355 active compounds vs. 341 inactive compounds, S2

Table) was generated using the kNN method.

In Silico Repositioning Chemogenomics for New Schistosomicidal Drugs
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The chemical space mapping was performed using k-means

clustering via PCA using 39 physicochemical descriptors (Fig. 4).

According to the PCA, the first and second principal components

(PCs) explained 70.9% of the total variability of data and were

categorized into five main clusters. Most of the compounds

predicted to be active were located in regions marked in purple

and green at the upper right corner of the score plot, totaling 215

active compounds (91.8%) and 19 inactive compounds (8.2%)

(Fig. 4, clusters 3 and 5, respectively). Moreover, the inactive

compounds were mostly delimited into the blue region containing

291 inactive compounds (74.4%) and 100 active compounds

(25.6%) (Fig. 4, cluster 4). The red regions located in the center

and at the upper right corner were flagged as inconclusive, as they

contained similar proportions of both classes of compounds (Fig. 4,

clusters 1 and 2, respectively). Remarkably, 115 drugs predicted by

the proposed methodology are inside the overlapping area of the

chemical space of the active compounds (Fig. 4, clusters 3 and 5)

and are more likely to be active, whereas only 53 drugs were inside

the overlapping area of the inactive compounds and the

inconclusive clusters (Fig. 4, clusters 4, 1 and 2). Therefore, a

‘‘repurposing drug’’ located in the cluster regions 3 and 5 has a

high probability (92%) of being active.

Discussion

The main goal of this study was to identify drugs approved for

clinical use in humans that may have potential schistosomicidal

activity by performing a search of publicly available drug/target

databases. However, since most target databases are only starting

to be established, the predicted S. mansoni targets are not yet

scored for druggability. The druggability concept adds a structural

dimension and evaluates the likelihood that small drug-like

molecules can bind a given target with sufficient potency to alter

its activity [68–70]. Druggability is related to many factors,

including the size of targets, the presence of pockets, and the

overall charge and hydrophobicity of the interaction surface [68].

A number of factors were considered in this study in order to

provide both confidence for the data generated and a solid basis

from which to predict the druggability of individual S. mansoni
targets. The predicted S. mansoni targets were considered

druggable if they presented a sequence overlap $80%, a score

$0.8, or an E-value #10220 in relation to their predicted

homologous targets and the high or moderate conservation of the

functional regions. The overlapping sequences and analysis of

functional regions among approved drug targets and S. mansoni
targets revealed the importance of each position for the function of

the predicted protein and the possible preservation of affinity for

the predicted drug. Following this precondition, we were able to

identify 168 drugs with the potential to inhibit their targets known

to be transcribed in multiple life stages of S. mansoni. Moreover, in

validation of the proposed chemogenomic strategy, several drugs

previously demonstrated to be active against Schistosoma species in

experimental assays were predicted by our methodology (Table 1

and S3 Table). Consequently, we were confident that our strategy

for predicting schistosomicidal drugs is useful.

Additionally, we also evaluated the structural and physico-

chemical properties of known active and inactive schistosomicidal

compounds to map the chemical space that is accessed by the 168

predicted drugs using the chemogenomics strategy. Chemical

space is a term that is commonly used in place of ‘‘multi-

dimensional descriptor space’’, which is a region defined by a

particular choice of descriptors encompassing all the possible

compounds that could be mapped to the coordinates of this multi-

dimensional space [71,72]. This concept is closely related to the

notion of chemical diversity. The diversity of a chemical library is

a quantitative description of how different these compounds are

from each other, with similar compounds and similar biological

activities falling in the same chemical space region [73]. For this,

we used k-means clustering via PCA, a method to compute the

position of every compound in a two-dimensional coordinate

system based on a set of computed properties. The PCA reduces

high-dimensional data into a lower-dimensional space, thus

making it more manageable and comprehensible by extracting

essential information [74,75]. Indeed, PCA transforms the

original measured variables, such as physicochemical descriptors,

into new uncorrelated variables called PCs, which are a linear

combination of the original measured variables. As a result, we

found that 115 drugs predicted by this chemogenomics strategy

are inside the chemical space of active schistosomicidal

compounds, yielding a higher degree of confidence in the

predictions.

Table 1. Examples of approved drugs and their potential S. mansoni targets that were previously reported on the literature,
correctly identified by our target-based chemogenomics strategy.

Drug Drug class
S. mansoni target
(Target ID)

Biological
process

Functional
regions (%)

Activity
data

methotrexate antineoplasic dihydrofolate reductase
(Smp_175230.1)

synthesis of
nucleic acid precursors

moderate
conservation (78%)

IC50 = 7 nM
enzymatic assay [109]

flubendazole antihelminthic tubulin a chain, putative
(Smp_016780.1)

cytoskeleton
formation

high conservation
(100%)

79.5% of reduction of adult
worms 25 days after
infection (100 mg/kg) [110]

clonazepam hypnotic and sedative peripheral type benzodiazepine
receptor (Smp_102510.1)

receptor activity high conservation
(83%)

IC50 = 10 mM in adult worms
[111]

auranofin antirheumatic thioredoxin glutathione
reductase (Smp_048430.1)

cell redox homeostasis high conservation
(92%)

IC50 = 0.7 nM enzymatic
assay [112]

artesunate antimalarial Ca2+ transporting ATPase
(Smp_136710.1)

Ca2+ homeostasis high conservation
(99%)

97.1% reduction of adult
worms 30 days after
infection (30 mg/kg) [113]

nifedipine antihypertensive voltage-dependent calcium
channel (Smp_159990.1)

Ca2+ homeostasis high conservation
(88%)

Loss of motility and muscle
contraction in adult worms
(1 mg/kg) [82]

doi:10.1371/journal.pntd.0003435.t001
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A previous chemogenomics screen in S. mansoni described by

Caffrey et al. [47] identified 35 potential druggable targets for

further investigation in drug discovery programs, showing the

value of in silico approaches for drug discovery for schistosomiasis.

Interestingly, only one drug target identified in that study

(methionine aminopeptidase: Target ID = Smp_011120.1) is

present amongst our predicted targets, which is likely because the

studies differ significantly in their methodology. In addition,

Berriman et al. [53] also reported an in silico approach to predict

schistosomicidal drugs using the StARlite database and conserva-

tive parameters (#50% sequential identity and $80% overlap) for

target exclusion. Only eight predicted drugs identified in our study

(carbidopa, colchicine, dasatinib, deserpine, mycophenolate mo-

fetil, mycophenolic acid, reserpine and ribavirin) are overlapping

in both studies. This small number might relate to the different

gene datasets, different databases, and different parameters for

conservation filtering used [76].

One of our goals was to predict targets that control the muscle

function and motility of the parasite. Schistosomes depend on their

muscular systems for motility, penetration of host skin (cercariae),

and migration (schistosomules). Additionally, schistosomes use

their muscular system for pairing and mating and reproductive,

digestive, and excretory processes. These responses are essential

for the survival of the parasite. These behaviors require precise

coordination not only of the musculature that enables the

movement but also of the responses regulated by the neurotrans-

mitters needed for successful motility [77]. Drugs that disrupt one

or more of these motility functions would be expected to interfere

with the normal life of the parasite and would consequently cause

its death. It is noteworthy that PZQ, the drug of choice to treat

schistosomiasis, disrupts the muscle function and causes paralysis

of the worm [78]. Currently, the gold standard test for measuring

drug activity for S. mansoni is the in vitro assessment of worm

motility, measured visually through microscopy [79]. Further-

more, we suggest that 61 drugs have potential activity against the

muscle function and motility of the parasite because they were

predicted to interact with 4 neurotransmitter transporters

(nicotinic acetylcholine receptor a subunit, Target ID =

Smp_031680.1; Na+/Cl- dependent transporter, Target ID

= Smp_193800.1; vesicular amine transporter, Target ID =

Smp_121920.1; and Na+/Cl- dependent neurotransmitter trans-

porter, and Target ID = Smp_160360.1); 2 ion channels (Ca2+

transporting ATPase, Target ID = Smp_136710.1 and voltage-

dependent Ca2+ channel, Target ID = Smp_159990.1); and 2

indirectly related proteins (calmodulin, Target ID =

Smp_026560.2; and acetylcholinesterase, Target ID =

Smp_154600.1) (S3 Table). These drugs are attractive when

related to the study reported by Smout et al. [79] that can simply

and objectively assess anthelmintic activity by measuring parasite

motility in real time in a fully automated high-throughput

screening.

Another important aspect considered in this study has to do

with intellectual property protection of the potential schistosomi-

cidal drugs predicted by the proposed strategy, particularly for

those drugs that are off-patents. Pre-existing patents could impede

the commercialization of schistosomicidal repositioned drugs and

make them uneconomical, given that schistosomiasis predomi-

nantly affects poor populations in low- and middle-income

countries. Therefore, an extensive search was done to collect the

patent information (expiration date) of the predicted drugs using

the European Patent Office database, Google Patents, and

SciFinder. We found that 80.9% of the predicted drugs are off-

patents (S3 Table). Last, we refer specifically to six drugs that we

suggest are candidates for pre-clinical (in vitro and in vivo) studies

Fig. 4. Chemical space analysis of the schistosomicidal compounds. Purple and green regions (clusters 3 and 5, respectively) represent the
chemical space of active compounds. 115 drugs predicted by our strategy are inside this area and are more likely to be active. The blue region
(cluster 4) represents the chemical space of inactive compounds and red region (clusters 1 and 2) are inconclusive spaces. 53 predicted drugs are
inside this area and are more likely to be inactive. The first and second components explain 70.9% of the total variability.
doi:10.1371/journal.pntd.0003435.g004
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(Table 2). The remaining drugs were not discussed in detail,

because we found that pharmacokinetic and toxicity properties

may render them less suitable as schistosomicidal drugs than the

above chemicals. For example, ixabepilone and pralatrexate are

antineoplastic drugs and thus might cause severe toxicity in

humans. However, we consider that all predicted drugs identified

in this study are attractive for further analysis.

Cinnarizine is an antagonist of the histamine H1 receptor used

for the control of nausea due to motion sickness. This drug is also

considered a potent dilator of peripheral vessels because of its

ability to block Ca2+ channels [80,81]. The present study suggests

that cinnarizine may also be able to inhibit the S. mansoni voltage-

dependent L-type calcium channel subunit alpha-1S (Target ID =

Smp_159990.1; E-value = 0; functional regions = 88% conserva-

tion), which is homologous to the human enzyme. Curiously, PZQ

is considered a Ca2+ channel activator, which would allow more

Ca2+ channels to open and lead to the disruption of normal

intracellular Ca2+ levels. After exposure to PZQ, diverse effects

become apparent in adult worms, such as muscular contraction

and tegumental disruption, which subsequently leads to the

exposure of parasite antigens on the worm’s surface [78]. Despite

the activator effect of PZQ on Ca2+ channels, a recent study

demonstrated that treatment with nifedipine, a Ca2+ channel

blocker, resulted in antischistosomal activity against schistosomula

and significantly reduced their viability. Adult worms were also

affected by nifedipine and exhibited impaired motility, several

lesions on the tegument, intense contractility, and the reduction of

egg deposition [82].

Griseofulvin is a fungistatic drug that is orally administered in

the treatment of cutaneous mycoses. It was originally biosynthe-

sized from Penicillium griseofulvum in 1939 [83], but its in vivo
efficacy was first demonstrated only in 1958. Results from the

present study suggest that griseofulvin might also be able to inhibit

the S. mansoni tubulin-b chain (Target ID = Smp_192110.1; E-

value = 0; score = 0.8; functional regions = 99% conservation),

which is homologous to the Candida albicans protein and is

expected to be involved in cytoskeleton formation. Griseofulvin is

able to inhibit the growth of fungal, plant, and mammalian cells by

blocking the cells at the G2/M phase of the cell cycle [84,85]. In

fungi, griseofulvin deteriorates spindle and cytoplasmic microtu-

bules, resulting in nuclear and mitotic abnormalities followed by

distortions in hyphal morphology. Microtubules form a highly

organized cellular cytoskeleton in eukaryotic cells, and their

aggregation–disaggregation plays a key role in cell morphology

and growth [86]. The concentration of griseofulvin required to

deteriorate the spindle and cytoplasmic microtubules of fungal

cells is much lower than that required to inhibit normal healthy

mammalian cells due to its higher affinity for fungal tubulin

as compared to mammalian tubulin [87–90]. Furthermore,

griseofulvin selectively induces apoptosis in several cancer cell

lines, sparing the normal healthy cells [85,91]. Therefore, we

consider that griseofulvin has low toxicity against normal healthy

cells, which makes it highly appropriate for clinical use.

Tetrabenazine is a reversible human vesicular monoamine

transporter type 2 inhibitor. It acts within the basal ganglia and

promotes the depletion of monoamine neurotransmitters, such as

serotonin and dopamine, in nerve terminals [92]. In this study, we

suggest that tetrabenazine might also be able to block the vesicular

amine transporter of S. mansoni (Target ID = Smp_121920.1; E-

value = 3.062130; functional regions = 73% conservation). S.
mansoni also has a sophisticated nervous system that includes both

central and peripheral elements and employs a wide range of

neurotransmitter transporters. Among them, there are vesicular

amine transporters that are normally responsible for the uptake of

cytosolic biogenic amines into synaptic vesicles. Serotonin and

dopamine are largely responsible for neuromuscular signaling in

the parasite, and therefore, the carriers are expected to be

important components of the worm’s motor control system

[77,93]. It is worth noting that amine transport inhibitors have

been shown to have strong effects on the parasite, as demonstrated

in two medium-throughput drug screens of S. mansoni [94,95].

Clotrimazole is an antifungal drug commonly used to treat yeast

infections of the vagina, mouth, and skin, such as athlete’s foot,

jock itch, and body ringworm. This drug is a potent inhibitor of

14-a demethylase, resulting in increased cellular permeability. It is

also capable of inhibiting the movement of Ca2+ and K+ ions

across the cell membrane by blocking the Ca2+-activated K+

channel [96]. The present study suggests that clotrimazole might

also be able to block the S. mansoni Ca2+-activated K+ channel

(Target ID = Smp_161450.1; E-value = 1.09248; functional

regions = 80% conservation). The Ca2+-activated K+ channel is

essential for maintaining the membrane in a hyperpolarized state,

thereby regulating neuronal excitability, smooth muscle contrac-

tion, and secretion [97,98]. Thus, the blocking of Ca2+-activated

K+ channels in the muscle membranes of S. mansoni could be

intimately involved in the dysfunction of rhythmic muscle activity.

Due to its own chemical nature, clotrimazole is not well absorbed

from the gastrointestinal tract. However, since clotrimazole is

commercially available in powder form, it may be tested directly

after dilution in an appropriate vehicle in experimental models of

schistosomiasis with administration via a route other than oral,

such as intra-peritoneal.

Gentamicin is an aminoglycoside drug composed of a mixture

of related gentamicin components and is used to treat many types

of bacterial infections, particularly those caused by gram-negative

organisms. This drug binds the 30S subunit to the 16S ribosomal

RNA (rRNA) of bacteria, but its affinity to the heat shock protein

(HSP) 73 has also been well established [99]. We found that

Table 2. Examples of potential schistosomicidal drugs and their potential targets revealed in this study.

Drug Therapeutic class S. mansoni target (Target ID) Biological process Functional regions (%)

cinnarizine anti-allergic voltage-dependent calcium channel
(Smp_159990.1)

Ca2+ homeostasis high conservation (88%)

griseofulvin antifungal tubulin b chain, putative (Smp_192110.1) cytoskeleton formation high conservation (99%)

tetrabenazine antipsychotic vesicular amine transporter (Smp_121920.1) neurotransmitter transport moderate conservation (73%)

clotrimazole antifungal Ca2+-activated K+ channel (Smp_161450.1) K+ homeostasis high conservation (80%)

gentamicin antibacterial heat shock protein 73 (Smp_106930.1) protein folding high conservation (98%)

aprindine antiarrhythmic calmodulin, putative (Smp_134500.1) Ca2+ binding messenger high conservation (100%)

doi:10.1371/journal.pntd.0003435.t002
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gentamicin might be able to interfere with the heat shock protein

70 of S. mansoni (Target ID = Smp_106930.1; E-value = 0;

functional regions = 98% conservation), a homologue of the

human HSP73. HSPs are a family of proteins involved in basic

life-protecting mechanisms against harmful extracellular effects,

primarily heat shock response. Normally, the expression of these

proteins is increased in response to cellular adaptation to high

temperatures [100]. Among the HSP family, HSP70 is considered

the most predominantly conserved with intracellular chaperone

and extracellular immunoregulatory functions [101]. In S.
mansoni, it is well established that HSP70 is involved in protein

re-folding and the chaperone function as an adaptive response to

the rapid temperature rise between fresh water (, 28uC), in which

the cercariae are found, and the warmer mammalian host

(, 37uC) [53].

Last, we refer to aprindine as a candidate. This is possibly one of

the least obvious drugs to hold schistosomicidal activity because it

is not an anti-infective agent but rather an anti-arrhythmic drug.

An interesting fact is that aprindine has a binding affinity to

calmodulin [102]. Thus, we suggest that aprindine may also be

able to inhibit the S. mansoni calmodulin (Target ID =

Smp_026560.2; E-value = 4.45281; functional regions = 100%

conservation). Calmodulin is the primary sensor of intracellular

Ca2+ levels that binds to and regulates a number of diverse target

proteins involved in different functions, such as muscle contrac-

tion, apoptosis, and the immune response [103]. In S. mansoni,
selective calmodulin inhibitors are known to disrupt egg hatching

or cause miracidia to become vesiculated and die without

undergoing transformation to the sporocyst stage [104,105].

Ca2+ mobilization also plays a role in the cercarial penetration

processes, possibly by calcium regulation of protease activities

during infection [106,107]. It is important to mention that Ca2+

ions are second messengers that are crucial for many biological

functions, including muscle contraction, metabolism, and cell

motility [108]. Importantly, visual inspection of the chemical

structures allowed us to discover that aprindine is chemically

similar (two aromatic centers and one aliphatic amine) to tricyclic

drugs, a chemical class of the psychoactive drugs overactive against

schistosomula stages [94].

Besides the drugs highlighted above, 109 other drugs are

predicted to be active against S. mansoni. In all cases, we

considered the numerical parameters (overlap, conserved func-

tional regions, E-value, and score) for target homology sufficiently

significant to infer drug predictions. Moreover, we verified that

these drugs are ‘‘inside the chemical space’’ of active schistoso-

micidal compounds, making the predictions more reliable.

Therefore, all 115 predicted drugs are candidates for drug

repositioning and might be used as starting points for further in
vitro and in vivo studies and schistosomicidal drug design because

they are privileged structures and have established pharma-

cokinetic and toxicity profiles considered suitable for lead

optimization.

Conclusions
We used an in silico drug repositioning strategy based on the

concept that ‘‘similar targets have similar ligands’’ to compile a list

of drugs with potential activity against schistosomes. In doing so,

we predicted 115 such compounds that we suggest justify

evaluation as schistosomicidal drugs. We recognize that the

activity of such compounds might be affected by appropriate

chemical affinity with their predicted target. However, in addition

to previous strategies, we used the criterion of conservation of

functional residues among S. mansoni and its homologous targets

and investigated the chemical space of known schistosomicidal

compounds to further increase confidence in our predictions.

Primary in vitro screens with these drugs might provide insights

into their schistosomicidal activity. If promising activities are

discovered, they could constitute important starting points for lead

identification and optimization.
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