2024-01-042024-01-042017IGNATOVA, Nina et al. Infrared-pump-x-ray-probe spectroscopy of vibrationally excited molecules. Physical Review A, [s. l.], v. 95, n. 4, e042502, 2017. DOI: 10.1103/PhysRevA.95.042502. Disponível em: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.042502. Acesso em: 13 dez. 2023.e- 2469-99342469-9926https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.042502We develop a theory of infrared (IR)-pump–x-ray-probe spectroscopy for molecular studies. We illustrate advantages of the proposed scheme by means of numerical simulations employing a vibrational wave packet technique applied to x-ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of the water molecule vibrationally excited by a preceding IR field. The promotion of the vibrationally excited molecule to the dissociative 1a−1 1 4a1 and bound 1a−1 1 2b2 core-excited states with qualitatively different shapes of the potential energy surfaces creates nuclear wave packets localized along and between the OH bonds, respectively. The projection of these wave packets on the final vibrational states, governed by selection and propensity rules, results in spatial selectivity of RIXS sensitive to the initial vibrationally excited state, which makes it possible to probe selectively the ground state properties along different modes. In addition, we propose to use RIXS as a tool to study x-ray absorption from a selected vibrational level of the ground state when the spectral resolution is sufficiently high to resolve vibrational overtones. The proposed technique has potential applications for advanced mapping of multidimensional potential energy surfaces of ground and core-excited molecular states, for symmetry-resolved spectroscopy, and for steering chemical reactions.engAcesso RestritoInfrared-pump–x-ray-probe spectroscopy of vibrationally excited moleculesArtigo10.1103/PhysRevA.95.042502