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Abstract 

 In the following paper we examine falsity preservation phenomena for natural 

deduction and axiomatic logical systems. We start with Syllogistics and end with a very 

interesting form o Peano Arithmetic for Refutability in which Gödel’s Incompleteness 

Theorems hold. The paper presents valid syllogistic moods of falsity preservation based on 

valid moods for truth preservation and also valid rules of falsity preservation in natural 

deduction. That such systems can be defined is surprising, but that they resemble truth 

preservation system is remarkable. That put us in front of an important question: what 

means do we have to distinguish truth and falsity from a logical point of view?  
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I) Aristotelian Syllogistic - Syllogisms Preserving Falsity 

The following is based on a very simple concept: the concept of contradictory 

opposition. In the square of oppositions, for each categorical sentence, there corresponds 

only one categorical sentence which is its contradictory. If we assume that from two 

contradictories one being true the other should be false, then for each valid syllogism, i.e., 

for each syllogistic form preserving truth, it corresponds a syllogistic form preserving 

falsity. 

Let's consider BARBARA schema and its corresponding falsity preservation form. 

It is possible to state a system for falsity preservation having “valid moods”. So, 

corresponding to BARBARA we have a falsity preservation form BORBORO: 
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Some M is not P (O) 

Some S is not M (O) 

⎯⎯⎯⎯⎯⎯⎯⎯ 

Some S is not P (O) 

 

BORBORO is such that, in case both premises are false, the conclusion must be false. Jus 

notice that having two false categorical sentences of form Some M is not P (O) and Some S 

is not M (O), then, by the square of oppositions, we’ll have two true categorical sentences 

of form All M is P (A) and All S is M (A), respectively. Next, as BARBARA is a valid truth 

preservation form, then All S is P (A) must be true and, again, by the square of oppositions, 

Some S is not P (O) must be false. Therefore, BORBORO is a valid falsity preservation 

form.  

The above schema also applies to the any other valid syllogistic form: 

Figure 1 Barbara Celarent Darii Ferio   

Figure 2 Cesare Camestres Festino Baroco   

Figure 3 Darapti Disamis Datisi Felapton Bocardo Ferison 

Figure 4 Bramantip  Camenes Dimaris Fesapo Fresison  

 

i.e.: 

Figure 1 Borboro Cilorint Doree Firea   

Figure 2 Cisori Comistris  Fistena Boraca   

Figure 3 Doropte Desomes Dotese Filoptan Bacorda Firesan 

Figure 4 Bromontep  Cominis Demores Fisopa Frisesan  

 

are valid falsity preservation forms.  

The basic idea is so clear and so easily presentable that its absence from most of 

logic manuals is surprising. It seems that Aristotle and the tradition never considered those 

falsity preservation forms. A good reason why those forms were not apparently considered 

is that the main stream of occidental thinking always had in mind another project: the 

project of Second Analytics. It is, in some sense, a narrow epistemological project: to 
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establish what is a science, what is to know the truth in a organized fashion, axiomatic 

fashion. We say narrow, because it can be argued that to know falsities in a domain is an 

expressive part of an epistemological project. Of course, let's make ourselves clear, we are 

not blaming Aristotle for not having examined these new forms, if he really didn’t. He had 

reasons to be interested in truth preservation. 

Incidentally, if Lukasiewicz in his Aristotle’s Syllogistic (1951) were correct about 

Syllogistic as a theory of valid conditional statements, then there would be conditionals 

which originate from the above new forms that would also be valid. In other words, for 

BORBORO case, the conditional of form Some S is not P ⊃ Some M is not P ∨ Some S is 

not M is valid (always true).  

Let’s use a notation to represent each categorical form, borrowing it from Corcoran 

(1974): for All x is y, Axy; for No x is y, Nxy; for Some x is y, Sxy; and for Some x is not y, 

$xy. Having in mind that Aristotle himself was not a formalist and that his Syllogistic is not 

a formal system, we can, nonetheless, observe certain interesting properties. Substitution, in 

each categorical form, of the logical expression A for $, $ for A, N for S and S for N, we’ll 

give us two syntactical indiscernible systems of valid forms, one preserving truth the other 

preserving falsity. So, from a formalistic point of view, preservation of truth and 

preservation of falsity are structurally similar, in regard of Syllogistic moods. In other 

words, it is impossible to distinguish preservation phenomena (truth preservation and 

falsity preservation), not, at least, from a syntactical point of view. As we certainly can 

distinguish truth and falsity, this fact seems to imply that those concepts require another 

level of conceptualization to be distinguished, maybe a semantical level. But, we are not 

even sure of that. At this moment, we just can say that we know what our syntactical 

system means because we intend it to mean that and, somehow, we are able to 

communicate such intention. 

 

I) Negation, First Order Logic and First Order Peano Arithmetic 

 

Certainly the idea of opposite contradiction involves the concept of negation. 

Usually, by means of negation in logical formulas, i.e. ¬A, we intend to express opposite 
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contradiction, i.e. the contradictory of A. Also, usually we assume an intimate connection 

between negation and falsity. Negation and falsity are most of the time treated as a couple, 

in mathematics and philosophy of mathematics. Heyting (1956, pp. 18 and 19), for 

example, says that: 
Strictly speaking, we must well distinguish the use of "not" in mathematics from 
that in explanations which are not mathematical, but which are expressed in 
ordinary language. In mathematical assertions no ambiguity can arise: "not" has 
always the strict meaning. "The proposition p is not true", or "the proposition p is 
false" means "If we suppose the truth of p, we are led to a contradiction". 

 

Therefore, if logical systems are envisaged as elucidation of logical relations connecting 

mathematical propositions, negation and falsity will appear as intimately related. However, 

we asks ourselves, is it correct that negation inside logical syntactic systems express falsity 

of a proposition?  

In what follows we state a formal system for falsity preservation. Traditionally, 

proofs in logical systems should preserve truth. Notwithstanding, there is no reason to 

reject preservation of falsity as an interesting criteria to be met when we want to elucidate 

logical relations.  The following system is advanced having such criteria in mind. It is 

structurally identical with First Order Peano Arithmetic and its statement follows closely 

that of Kleene (1952, p. 82): 
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 Peano Arithmetic for Provability Peano Arithmetic for Refutability 
Pr

op
os

iti
on

al
 

1a. A⊃(B⊃A) 

1b. (A⊃B)⊃((A⊃(B⊃C))⊃(A⊃C)) 

2. A, A⊃B 

         B 

3. A⊃(B⊃(A&B)) 

4a. A&B⊃A 

4b. A&B⊃B 

5a. A⊃A∨B 

5b. B⊃A∨B 

6. (A⊃C)⊃((B⊃C)⊃(A∨B⊃C)) 

7. (A⊃B)⊃((A⊃¬B)⊃¬A) 

8. ¬¬A⊃A 

1a. A⊄(B⊄A) 

1b. (A⊄B)⊄((A⊄(B⊄C))⊄(A⊄C)) 

2. A, A⊄B 

         B 

3. A⊄(B⊄(A∨B)) 

4a. A∨B⊄A 

4b. A∨B⊄B 

5a. A⊄A&B 

5b. B⊄A&B 

6. (A⊄C)⊄((B⊄C)⊄(A&B⊄C)) 

7. (A⊄B)⊄((A⊄∼B)⊄∼A) 

8. ∼∼A⊄A 

Pr
ed

ic
at

io
na

l 

9.   C⊃A(x)  . 

    C⊃∀xA(x) 

10. ∀xA(x)⊃A(t) 

11. A(t)⊃∃xA(x) 

12.   A(x)⊃C   . 

      ∃xA(x)⊃C 

9.   C⊄A(x)  . 

    C⊄∃xA(x) 

10. ∃xA(x)⊄A(t) 

11. A(t)⊄∀xA(x) 

12.   A(x)⊄C  . 

      ∀xA(x)⊄C 

A
rit

hm
et

ic
al

 

13. A(0)&∀x(A(x)⊃A(x´))⊃A(x) 

14. a´=b´⊃a=b 

15. ¬a´=0 

16. a=b⊃(a=c⊃b=c) 

17. a=b⊃a´=b´ 

18. a+0=a 

19. a+b´=(a+b)´ 

20. a.0=0 

21. a.b´=(a.b)+a 

13. A(0)∨∃x(A(x)⊄A(x´))⊄A(x) 

14. a´≠b´⊄a≠b 

15. ∼a´≠0 

16. a≠b⊄(a≠c⊄b≠c) 

17. a≠b⊄a´≠b´ 

18. a+0≠a 

19. a+b´≠(a+b)´ 

20. a.0≠0 

21. a.b´≠(a.b)+a 
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Each formula and each rule in each line on in both columns are structurally similar. Their 

difference lies on the logical constants used. However, it follows a pattern. Each of them 

results from the other by substitution of logical constants inside pairs of duals: [∧,∨]; 

[⊃,⊄]; [∀,∃]; [⊥,T]; [¬,~] and [=, ≠]. We used a second symbol for negation in the new 

system because we are not sure if we could ascribe to it the same meaning in both systems. 

The “desimplication” (⊄) can be defined: A⊄B≡df¬(B⊃A). Its truth table is: 

 
A B A⊄B 

V V F 

V F F 

F V V 

F F F 

 

Also, we observe that “≠” can be seen as a basic predicate, so basic as “=”. Actually, it 

seems that we don’t need any notion of negation in order to acquaint the falsity of 1≠1 or 

the truth of 1≠2. 

 All these “new axioms” are false (refutable) and that all rules preserve falsity. A 

way of realizing that is of looking into the corresponding First Order Natural Deduction 

System. Also, this kind of system shows more intuitively the falsity preservation 

phenomena.  

So, making the same substitutions based on pairs of duals we made before, we 

obtain a system where all rules preserve falsity1. The system bellow is structurally similar 

to the Intuitionist Natural Deduction System2: 

                                                 

 
1 In case the system for truth preservation was formulated using falsum, ⊥, the system for falsity will be 

formulated with verum, T. 
2 We follow Gentzen’s and Prawitz’s convention of using two kinds of variables: x, y, z … which are used 

only bounded; a, b, c … which are used as individual parameters, not bounded by any quantifier. Top-

formulas surrounded by braces are being discharged by the rule having the same index. Other braces of form 

[α/β] indicate a syntactical substitution of β in place of α. We use t to indicate a term. 
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            A1          A2 

            ————— ∨fi 
                A1∨A2 

 
                Γ, [A1]i 

                    
                  A2 

            ————i ⊄ fi 
              A1⊄A2 

                                                * 
                     Γ 
                      
                     A 
               ———— ∃fi 
                ∃xA[a/x] 

In
tro

du
ct

io
ns

 

 
      A1                    A2 

——— l∧fi        ——— r∧fi 
  A1∧A2              A1∧A2 

  
                 A[a/t] 
               ———— ∀fi 
               ∀xA[a/x] 
 

       
 
  A1∨A2             A1∨A2 

——— l∨fe      ——— r∨fe 
       A1                    A2 

 
 
           A1    A1⊄A2 

           ————— ⊄fe 
                   A2 

 
              ∃xA[a/x] 
            ————— ∃fe 
                A[a/t] 

El
im

in
at

io
ns

 

 
            Γ1 , [A1]i  Γ2 , [A2]i 

                              

  A1∧A2     C           C 
—————————i ∧fe 
                  C 

 
 
 
                    T 
                  —— Te 
                    A 

                                               * 
                          Γ , [A]i 

                             

          ∀xA[a/x]   C 
         ——————i ∀fe 
                    C 
 

 

All rules in this system should be read in the same way we would use for truth preservation. 

We would say that there is falsity preservation when it is guaranteed that the conclusion is 

false if all subsidiary derivations preserve falsity3, but only in case open top formulas are 

all false. In order to apply rule ∃ fi we should verify a restriction before. Individual 

parameter a must not occur in Γ. Rule ∀ fe also has a restriction, parameter a must not 

occur in Γ neither C. There are no introduction or elimination rules for implication, but 

introduction and elimination rules for desimplication. The introduction rule establishes that 

                                                 

 
3 In this context, when we say that falsity is preserved from suppositions to immediate premises it means that 

if all suppositions were false, then it is guaranteed that the conclusion of subsidiary derivations will be false. 

Anyway, premises that are not conclusion of a subsidiary derivation can be regarded, conventionally, as 

subsidiary derivations of one formula. Finally, we notice, it is problematic to say that there is preservation of 

falsity for ∃ fi as much as it is to say that there is preservation of truth for ∀i, because the immediate premise 

is a propositional function, in these cases. 
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desimplication A1⊄A2 is false just in case falsity is preserved from Γ,A1 to A2 and all 

formulas in Γ are false. 

Regarding syntactical structure, rules in the system for falsity are identical to the 

rules in the system for truth preservation. Conjunction and disjunction exchanged places, 

universal and existential too. Rules for implication (⊃) and for desimplication (⊄), as well 

as falsum (⊥) and verum (T), are structurally similar. In this way, any valid structural 

property for truth preservation also applies to falsity preservation4, in particular 

“consistency”. Just consider that, strictly speaking, we can’t distinguish what is conjunction 

from what is disjunction looking only at the structure of the rules without knowing if the 

system preserves truth or falsity. 

The above falsity system would not count with intuitionist agreement, excepting its 

propositional chunk, because ∀ fe would not be regarded as valid5. However, such a 

rejection is surprising since the rule is structurally identical with ∃e, which is admissible by 

intuitionists standards of the concept of canonical proof generally defined by means of the 

inversion principle6. We observe that ∀ fi seems to be a good description of the conditions 

under which a universal proposition is false. In other terms, while universal introduction 

seems to be non-objectionable, the elimination rule is objectionable from the intuitionistic 

point of view, even if both rules are in agreement, at least if we follow a certain reading of 

the inversion principle. 

 The classical system is obtained from the above system adding an indirect proof 

principle. It could be an axiom, corresponding to the translation of the excluded middle (in 

this case the translation is A∧~A)7 or one of the following rules corresponding to the so 

called Consequentia Mirabilis8: 

                                                 

 
4 We are refereeing here, above all, to the normalization and confluence theorems and all its derived 

corollaries. See Prawitz (1965). 
5 The reason is that there is no guarantee that we can show for some term t  that the falsum would follow from 

A[a/t] when it follows from ∀xA[a/x]. 
6 See Prawitz (1965). 
7 Negation can be define as ¬A≡dfA⊃⊥ (truth preservation) / ¬A≡dfA⊄T (falsity preservation) or stay as a 

primitive. 
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   Γ , [A⊄T]i

       
     A 
   ——i  
    A

   Γ , [~A]i

       
     A 
   ——i  
    A

 

With this rule it is not difficult to derive the formula A∧~A, from zero hypothesis, aided by 

other rules in the falsity system. Also, as we have completeness and soundness for classical 

first order logic system for truth preservation, then they should also be valid for falsity 

preservation. 

 Well, all rules and formulas of predicate calculus for falsity preservation, in 

Kleene’s style system given above, are derivable from natural deduction rules for falsity. 

Moreover, all Peano Arithmetic proper axioms for refutability can be easily perceived as 

false, with one exception. The exception, where intuition suffers more, is the induction 

axiom. The natural deduction rule corresponding to this axiom in the system for truth 

preservation is identical, structurally speaking, to a rule in the system for falsity 

preservation: 
              [A[a/b]]i 

                     
A[a/0]     A[a/b’] 
———————i  
            A 

 

Basically, if A(0) were false and from A(b) to A(b’) there were preservation of falsity, then 

A(a) would be false, where a is an individual parameter and could be substituted by any 

number, but it cannot occur in open hypotheses. So, by applying five natural deduction 

rules preserving falsity, the induction axiom for falsity can be derived, from zero 

hypotheses: 

                                                                                                                                                     

 
8 Depending on if negation is taken as defined or primitive. 
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                                                       [A(0)∨∃x(A(x)⊄A(x´))]2 

                                                      —————————— e∨f 

                                                              ∃x(A(x)⊄A(x´))               
                                                              ——————— e∃f 
[A(0)∨∃x(A(x)⊄A(x´))]2         [A(b)]1     A(b)⊄A(b´) 

—————————— e∨f   ————————— e⊄f         
             A(0)                                     A(b´) 
            —————————————— 1 indf 

                                    A(a) 
                 ————————————2 i⊄ 
                  A(0)∨∃x(A(x)⊄A(x´))⊄A(x) 

 

 In the end, to guarantee correctness for the new axiomatic system, it would suffice 

to certify that each natural deduction rule preserves falsity, task which we leave for the 

readers.  

 Therefore, axiomatic Peano Arithmetic for Refutability seems correct. For each 

derivable formula, there will be another formula, structurally similar, derivable in the 

axiomatic system for provability, and vice-versa.  

In a precise sense, truth and falsity are not syntactically distinguishable, in regard of 

the systems examined. Actually, also, the use of conjunction or of disjunction by means of 

syntactical rules cannot establish the entire meaning of them or the meaning we intuitively 

attach to them. The same happens with other logical constants and its duals: [⊃,⊄]; [∀,∃]; 

[⊥,T]; [¬,~] and [=, ≠]. Negation could be an exception, since the rules are structurally 

equal on both systems. However, we are not sure if negation means the same in both 

systems. 

 

III) De Morgan’s Laws and Incompleteness 

  

 Let’s define in what follows a syntactic operation over formulas. Operation * 

consists in the substitution of logical constants and basic predicates for its duals. 

Refutability and provability systems are structurally identical and, by means of 

operation *, as there is a Godelian sentence G in the system for provability, there will be a 

Godelian sentence G* in the system for refutability such that neither G*  nor its negation 

will be derivable in the system for refutability, under hypothesis of “consistency”. If the 
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refutability system is “consistent”, neither G* nor its negation are derivable in the system. 

Otherwise, if there were a derivability sequence for G* in the refutability system, then there 

would be a corresponding sequence mimicking it in the provability system, consisting of 

formulas obtained by means of operation *. We observe that for any formula F, F**=F. 

Thus, in that case, there would be a derivability sequence of G in the provability system, 

because G**=G. But that is impossible, if the provability system is consistent. However, 

supposing the refutability system “consistent”, the provability system must also be 

consistent, because, otherwise, there would be derivability sequences for every formula in 

the refutability system, contrary to the assumption. 

Usually, we interpret sentence G as saying: I’m not derivable inside the system for 

provability. A worthwhile investigation is that of what G* would mean. Does it mean I’m 

not derivable in the system for refutability? Well, a priori it sounds …. but not! It means 

I’m derivable in the system for refutability. As G* is not derivable in the refutability 

system, then what it says - I’m derivable in the system for refutability - is false and the 

system, thus, doesn’t derive a falsity, which it should if it were complete, but it cannot. 

What operation * does over formulas corresponds closely to the content of De 

Morgan’s Laws. Actually, we can devise an extension of De Morgan’s Laws for the 

complete set of first order logical constants. In order to formulate the following theorem, 

let’s regard all logical constants as belonging to one and same language and use only one 

negation symbol (¬).9 

 

Theorem I: Let A be a formula in a language where each basic predicate P has a dual basic 

predicate Q such that for any n-tuple of terms t1,…,tn,  P(t1,…,tn)⇔¬Q(t1,…,tn),  then 

A*⇔¬A.10 

Proof: By induction in the logical degree of A. If A is a basic formula, easy. If A is a 

conjunction or a disjunction, we obtain the stated equivalence proving it by means of 

                                                 

 
9 The object language equivalence constant can be defined from the others. 
10 We use ⇔ to express metalingüistic logical equivalence. It can be regarded as semantic equivalence or 

deductive equivalence. 
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natural deduction rules, because by induction hypothesis B*⇔¬B and C*⇔¬C, so 

A*≡(¬B*∨¬C*)⇔ ¬(B∧C)≡¬A.11 If A≡⊥, then A*≡¬T, immediate. If A≡T, similar to the 

precedent case. If A≡(B⊃C), then A*≡(B*⊄C*), but by induction hypothesis B*⇔¬B and 

C*⇔¬C, so A*≡(¬B⊄¬C)⇔¬(¬C⊃¬B)⇔¬(C∨~B)⇔¬(B⊃C)≡¬A. If A≡(B⊄C), similar. 

If A≡∀xB[b/x], then A*≡∃x(B*[b/x]), but by induction B*⇔¬B, so 

A*≡∃x¬B[b/x]⇔¬∀xB[b/x]≡¬A. If A≡∃xB[b/x], similar. QED 

 

The above theorem was heuristically suggested by the intuition that a formula A in 

one of the axiomatic systems, be it for truth or for falsity, can be put in correspondence 

with A* in the other system. Therefore, if one of the formulas is true, the other should be 

false. Thus, one of them must be equivalent to the negation of the other. 

We can extend the operation * in order to obtain a more general theorem. Let’s 

define ° as the operation which is similar to *, but, in case of basic predicates or 

propositional variables, it adds a negation in front of the formula, instead of changing it by 

its dual as before.  

 

Theorem II:  A°⇔¬A. 

Proof: Similar to the proof of theorem I. 

 

Corollary: De Morgan’s Laws are valid for the complete set of first order logical constants: 

{¬, ∧, ∨, ⊃, ⊄, ∀, ∃}. 

Proof: Using theorem II and substitution of equivalences of form ¬¬A⇔A for atomic 

formulas. 

 

It is amazing that, after all, we can relate incompleteness and De Morgan’s Laws. 

Because of the above theorem G*⇔¬G, i.e., Gödel first incompleteness theorem can be 

restated by saying that there is a formula G such that neither G nor the equivalent of G* are 

derivable in the system, be it a system for provability or for refutability.  

                                                 

 
11 We are using the symbol ≡ to express syntactical equivalence. 
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Thus, if our interpretations are correct, there is a pair of dual formulas – G and G*, 

in one hand, ¬G and ¬G*, by the other – such that in each pair one is true and the other 

false, but none of them is derivable in both systems, under hypothesis of consistency.  For 

each pair of duals, derivability of one of them, in some system, implies derivability of the 

other. Any proof in one of those systems corresponds to another proof in the other by 

means of * operation. 

 If we agree that to be provable means to be true and that to be refutable means to be 

false, then, since we can’t distinguish provability and refutability, from a classical point of 

view, it seems we can’t distinguish truth and falsity. In the end the distinction between truth 

and falsity is not expressible syntactically and, thus, there must be some faculty in the 

interpreter of language that allows them to distinguish cases, unless the malign genius 

really make us to take the true by the false and vice-versa. However, it is clear that in some 

way we convey the intended meaning of our systems, only is not done syntactically. How is 

it done? This a good question. 

Coming back to the issue about negation, it usually is understood as representing 

falsity of a proposition, in mathematical propositions. However, it should represent truth in 

the system for refutability, because any provable negated formula is false and the 

proposition being negated must be true. As the systems are syntactically indistinguishable – 

it is only a matter of convention to say that “∧” means “and” etc. –, we can’t say without 

further ado that negation represents falsity more than truth, at least not without making 

explicit our intentions with the proposed system: preservation of truth or preservation of 

falsity. Nonetheless, someone could claim that when we examine mathematical assertions 

we are certainly dealing with truth. That is correct, but we could then ask: apart of using 

formal systems to capture the truth, if we observe that they could capture falsity, what else 

would allow us to distinguish truth and falsity? 
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