
Journal of Communication and Computer 11 (2014) 339-346

doi: 10.17265/1548-7709/2014.04 002

Parallel Implementation of the BiCGStab(2) Method in

GPU Using CUDA and Matlab for Solution of Linear

Systems

Lauro Cassio Martins de Paula and Anderson da Silva Soares

Institute of Informatics, Federal University of Goias (UFG), Goias 74001-970, Brazil

Abstract: This paper presents a parallel implementation of the hybrid BiCGStab(2) (bi-conjugate gradient stabilized) iterative

method in a GPU (graphics processing unit) for solution of large and sparse linear systems. This implementation uses the

CUDA-Matlab integration, in which the method operations are performed in a GPU core using Matlab built-in functions. The goal is

to show that the exploitation of parallelism by using this new technology can provide a significant computational performance. For

the validation of the work, we compared the proposed implementation with a BiCGStab(2) sequential and parallelized

implementation in the C and CUDA-C languages. The results showed that the proposed implementation is more efficient and can be

viable for simulations being carried out with quality and in a timely manner. The gains in computational efficiency were 76x and 6x

compared to the implementation in C and CUDA-C, respectively.

Key words: Matlab, GPU, CUDA, BiCGStab(2).

1. Introduction


A linear system is a linear equations finite set

applied in a variable finite set. Sparse and large linear

systems may appear as results of the modeling of

various computer science and engineer problems [1].

To solve such systems, iterative methods are more

indicated and efficient than exact methods [2].

Iterative methods use less memory space and reduce

rouding errors in computer operations [3]. Such

methods perform successive approximations in each

iteration to obtain a more precise solution for the

system.

Classical iterative methods such as Jacobi and

Gauss-Seidel are considered easily to deploy and use

[4]. Nevertheless, despite this feature, both may have

a slow convergence or even not converge for large

systems [2]. Another disadvantage is that when the

coefficient matrix is not square (number of rows equal

Corresponding author: Lauro c. m. de Paula, M.Sc.,

professor, research fields: computational mathematics. Email:
lauropaula@inf.ufg.br.

to the number of columns), these two methods can not

guarantee the linear system convergence. As a

consequence, the research and implementation of

computational methods are considered important tasks

in various areas of science, particularly those that

involve the solution of large linear equations systems

[5].

There are several methods for solution of linear

systems. Some of them are considered good in

relation to the computational cost. However, the

computational performance may be affected if the size

of the system is large. Some cases in which the linear

systems to be solved are very large, the computational

processing may last too many days and the methods

solution speed difference is significant. Consequently,

the implementation of efficient and robust methods

such as the hybrid BiCGStab(2) that becomes

important and often necessary for the simulations are

performed with quality in a short time [6]. The

BiCGStab(2) is an iterative method developed for

D
DAVID PUBLISHING

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

340

solving large and sparse linear systems and is

considered as a good one [5].

Several studies have used the computational

resources of GPU (graphics processing unit) to solve

large and sparse linear systems. For instance, Bowins

[6] presented a comparison of computational

performance between the Jacobi method and the

BiCGStab method. In that work, both methods were

implemented in two versions: sequential and

parallelized. Based on the results obtained, he showed

that as the size of the system increases, the parallel

implementation outperforms the sequential in terms of

computational efficiency.

Weber et al. [6] presented GPU data structures and

algorithms to efficiently solve sparse linear systems

that are typically required in simulations of

multi-body systems and deformable bodies. Their

solving method results in a speedup factor of up to 13

in comparison to other sequential and GPU methods.

More recently, Paula et al. [5] proposed a

parallelization of the BiCGStab(2) method for solving

linear systems using CUDA (compute unified device

architecture) and compared the computational

performance between the sequential and parallelized

versions of the method. They showed that from the

computational point of view, the parallel version of

BiCGStab(2) method is more efficient.

In this context, this paper presents a parallel

implementation of the BiCGstab(2) method, which

uses the CUDA-Matlab technology in a GPU for

solving linear systems. The goal was showing that the

proposed implementation can be more appropriate and,

through its use, it is possible to enable the efficient

solution of large and sparse linear systems. For

increasingly complex (larger) systems, it can be

solved in a timely manner. To achieve this goal, we

performed a comparison with the implementation of

the BiCGStab(2) method proposed by Paula et al. [5]

in the solution of linear systems of varying sizes. The

results showed that the computation time can be

significantly reduced with the implementation

proposed in this paper. It was possible to obtain

speedup gains of 76x and 6x compared with the

sequential and parallelized implementation proposed

in Ref. [5], respectively.

The remainder of this paper is organized as follows:

The BiCGStab(2) iterative method is detailed in

Section 2; Section 3 describes the CUDA and its

integration with Matlab; the materials and methods

used to achieve the objective of the work are

described in Section 4; the results are presented and

discussed in Section 5; finally, Section 6 contains the

conclusions.

2. BiCGStab(2)

The solution of a linear equations system Ax = b,

where, An n is the coefficient matrix and bn 1 the vector

of independent terms, may require a huge

computational effort especially when A is very large.

For example, to solve a linear system, one can use an

iterative method. Iterative methods perform

successive approximations in each iteration to obtain a

more accurate solution and are recommended for large

linear systems with sparse matrices [8].

Iterative methods are classified into two groups:

stationary and non-stationary methods [5]. The

stationary methods use the same information at each

iteration, i.e., the results of one iteration are used for

the next iterations [1]. In non-stationary methods, the

information used may change with each iteration. The

non-stationary methods are difficult to implement but

may provide a faster convergence for the system and

are more suitable even when the coefficient matrix is

dense (non-sparse) [8].

The BiCGStab(2) is a non-stationary iterative

method developed by Van der Vorst and Sleijpen [8].

This method combines the advantages of BiCGStab

and GMRES (generalized minimum residual) method

[9]. Consequently, the BiCGStab(2) is considered as a

robust method with convergence guarantee superior to

BiCGStab, suitable for solution of linear systems

generated in the solution of differential equations of

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

341

fluid flow [2].

Algorithm 1 shows a snippet of pseudocode for the

algorithm of BiCGStab(2) method. A full pseudocode

can be obtained in Ref. [5]. Some adjustments were

made naming comparing with the original algorithm.

In the Algorithm 1, the Greek letters represent scalars,

lowercase letters represent vectors expressed in matrix

form, capital letters represent matrices, and

parentheses with comma separated vectors represent

scalar products between vectors.

In step 38 of the method, so that the vector xi+2 is

sufficiently precise, the higher value corresponding to

the difference between the results of each term of the

vector x in two consecutive iterations, divided by the

result of the term in the current iteration, should be

less than a given accuracy as, for example:

)
)1(

max(
ix

xixi
＜10

5

Algorithm 1: snippet of pseudocode for the

algorithm of BiCGStab(2) method.

r0 = b - Ax0

r^0 = r0

= = !1 = !2 = 1

v = w = p = 0

for i = 0, 2, 4, ... do

^ = -!2

Even BiCGStab step: from step 7 to 16

= ri
T
 r^0 ...

xi = xi + p

Odd BiCGStab step: from step 17 to 27

= s
T
 r^0 ...

t = As

GMRES(2)-part: from step 28 to 38

!1 = r
T
 s ...

xi+2 = xi + p + !1r + !2s

ri+2 = ri - !1s - !2t

If xi+2 is accurate, stop.

end for

3. Compute Unified Device Architecture

[10]. CUDA is supported by all graphics cards

from NV IDIA
R
, which are extremely parallel, having

many cores with many memories and a memory cache

shared by all cores. The CUDA code is an extension

of the C computer language (CUDA-C), where a few

keywords are used to label the parallel functions

(kernels) and their data structures [11].

Since its inception, several studies have used

CUDA to parallelization of various types of problems.

For instance, Yldirim and Ozdogan [12] presented an

algorithm as a clus-tering approach based on wavelet

transform for parallelization on GPU using CUDA-C.

Fabris and Krohling [13] proposed an algorithm of

evolution implemented in CUDA-C for solving

optimization problems. Atasoy et al. [8] presented a

eliminating method implemented in CUDA-C using

Gauss-Jordan to solve systems of linear equations.

Paula et al. [5] used CUDA-C to parallelize the

BiCGStab(2) method for solving linear systems of

varying sizes. Finally, Paula et al. [14] proposed a

parallelization strategy for phase 2 of the successive

projections algorithm using CUDA-C.

In order to help programmers, the MathWorks has

developed a plugin able to do integration between

CUDA and Matlab. Make use of Matlab to GPU

computing can enable applications to be more easily

accelerated. GPUs can be used with Matlab using the

PCT (parallel computing toolbox). The PCT provides

an efficient way to speedup codes in Matlab language,

running them on a GPU [15]. For this, the

programmer must change the data type to input a

function to use the commands (functions) in Matlab

that were overloaded (GPUArray). Through

GPUArray function, one can allocate memory in the

GPU and make calls to various functions of Matlab,

which are performed on the GPU’s processing cores.

Additionally, developers can make use of the PCT

CUDA kernel interface to integrate their code in

CUDA-C with Matlab [15].

The development of applications running on the

GPU using the PCT is usually easier and faster than

using CUDA-C language [15]. According to Little and

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

342

Moler [15], this is because aspects of exploitation of

parallelism are implicitly performed by the PCT itself,

freeing the programmer from many inconveniences.

However, the organization and the number of threads

to be executed on the GPU cores cannot be managed

manually by the programmer. Still, it is important to

emphasize that in order to be used, the PCT requires a

graphics card from NVIDIA.

After CUDA-Matlab integration, few studies have

used this technology. For example, the NVIDIA [17]

released a book that demonstrates how programs

developed in Matlab can be accelerated using GPUs

[18]. Simek and Asn [19] presented an

implementation in MATLAB with CUDA for

compression of medical images. Kong et al. [20]

accelerated some functions in Matlab for image

processing on GPUs. Reese and Zaranek [15]

developed a manual programming GPUs using Matlab.

More recently, Paula et al. [18] proposed a parallel

implementation of the firefly algoritm using

CUDA-Matlab for variable selection in a multivariate

calibration problem. Based on the results of these

works, we note that, in future, the PCT may be more

used due to the fact of allowing a code in Matlab can

be easily parallelized. Therefore, instead of

implementing a kernel function and set the amount

and organization of threads blocks, the programmer

must only identify which parts of your code are

parallelizable and make use of the built-in Matlab

functions [21].

4. Experimental

The GPU was initially developed as a flow-oriented

technology, optimized for calculations of

data-intensive applications, where many identical

operations can be performed in parallel on different

data [10]. Unlike a CPU, which executes only a few

threads in parallel, the GPU was designed to run

thousands of them [18].

As previously mentioned, one can explore

parallelism in GPUs using the PCT plugin, which

provides an efficient way to speedup codes in Matlab

language invoking functions that are overloaded to

run in the cores of a GPU from NVIDIA. Thus, this

paper presents an implementation of the BiCGStab(2)

method in Matlab, which uses this technology. The

proposed implementation is analogous to Algorithm 1.

Initially, the data are transferred to the GPU memory.

Soon after, the method begins execution and all

operations are performed in the GPU’s processing

cores for threads that are created and managed

implicitly by the PCT.

All the linear systems used in this paper were

generated using Matlab (Version R2013a) built-in

functions. The coefficient matrix (A) of each system

was generated randomly using the function gallery

(
'
dorr

'
, n), which returns a square matrix of dimension

n, sparse and diagonally dominant. The diagonal

dominant characteristic indicates that the sum of all

elements in a row is not greater than the main

diagonal element of the matrix. The vector of

unknowns (x) was randomly generated by random (n,

1) function, which returns a vector of n rows and 1

column. The vector of independent terms (b) was

generated by multiplying the matrix A and vector x.

For each system generated was passed to BiCGStab(2)

only the matrix A and the vector b which, after

attempting convergence system, returned vector x.

To evaluate the computational gain obtained by

implementing the parallelized method, it was recorded

the time spent on each iteration of the BiCGStab(2)

algorithm.

The purpose of this paper was not to compare the

differences between Matlab and solution methods, but

only use Matlab to generate the random systems and

compare the speed of calculation of the methods in the

solution of several linear systems.

4.1 Computational Setup

All calculations were carried out by using a desktop

computer with an Intel Core i7-2600 (3.40 GHz), 8

GB of RAM memory and a NV IDIA
R
 GeForce GTX

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

343

550Ti graphics card with 192 CUDA cores and 2 GB

of memory configure. The Matlab R2013a software

platform was employed throughout.

5. Results and Discussion

The results obtained with the BiCGStab(2)

parallelized method were compared with its sequential

implementation, in order to verify the computational

gain obtained with parallelized implementation.

Additionally, a comparison was made with

implementations (sequential and parallelized) of

BiCGStab(2) proposed by Paula et al. [5]. The

comparative graphs of processing time (in seconds) of

different linear systems solved with the BiCGStab(2)

method (sequential and parallelized) in Matlab are

shown in Figs. 1 and 2.

Fig. 1 shows that the sequential implementation

may be more efficient for linear systems with

dimensions ranging from 10 to 1,000. This is due to

the fact that the algorithm of the method contains

inherently sequential operations. For example, the

scalar products running sequentially on the CPU,

depending on the size of the system, which may have

a significantly reduced computational time compared

to the same time of execution in cores of the GPU.

Likewise, the operations between scalars (steps 8, 13

and 34, etc.) cannot be divided between multiple

threads, consequently, this may result in poor

performance when executed by a single GPU thread.

Further-more, due to the existence of an overhead

associated with the parallelization of tasks in GPU,

the size of the system to be solved must be taken into

consideration [11].

On the other hand, Fig. 2 shows that for systems

with dimension greater than 1,500, the parallelized

BiCGStab(2) exceeds the sequential implementation.

In this case, in comparison of computational

efficiency, the speedup gain obtained was

approximately 2.59 x. Therefore, the implementation

that uses the GPU would be more appropriate since

the size of the system used is greater than 1,500.

Fig. 3 shows a comparison between the proposed

sequential implementation and the sequential

implementation proposed by Paula et al. [5]. The

BiCGStab(2) implemented in Matlab is much higher

Fig. 1 Comparison of calculation speed for systems with dimension between 10 and 1,000.

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

344

Fig. 2 Comparison of calculation speed for systems with dimension between 1,500 and 4,000.

Fig. 3 Comparison of calculation speed for systems with dimension between 1,500 and 4,000 between sequential

implementations of the BiCGStab(2) in Matlab and C.

compared to the same implementation in C

language. It is observed that the time for

implementation proposed by Paula et al. [5] requires a

computational effort which increases approximately

exponentially with the size of the system, while the

time for implementation in Matlab is less pronounced.

The speedup gain provided by the sequential

implementation in Matlab was approximately 76.75x.

Consequently, the use of the method implementation

in Matlab can provide a more significant gain of

computational performance.

Fig. 4 shows a comparison between the proposed

parallelized implementation and the parallelized

implementation proposed by Paula et al. [5]. As in the

previous case, it is possible to note the superiority of

the parallelized BiCGStab(2) using CUDA-Matlab

integration in the solution of the treated systems. It can

be seen that the time for implementation in CUDA-C

also requires a computational effort approximately

exponentially in that the size of the system increases.

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

345

Fig. 4 Comparison of calculation speed for systems with dimension between 1,500 and 4,000 between parallelized

implementations of the BiCGStab(2) in CUDA-Matlab and CUDA-C.

In this case, the speedup obtained was approximately

6.12x. Therefore, compared to the parallelized

implementation proposed in Ref. [5], the parallelized

BiCGStab(2) in Matlab can be a more appropriate

choice of the computational point of view.

6. Conclusion

In this work, We have implemented and used a

computer code in Matlab of the BiCGStab(2) iterative

method for solution of large and sparse linear systems.

The method was implemented on a fully sequential

version as well as in a parallelized version using a

GPU with CUDA-Matlab integration. The purpose of

this paper was to present a new implementation of

BiCGStab(2) to enable the rapid solution of linear

systems and compare the computational performance

with the sequential implementation. Additionally, a

comparison was made with the sequential and

parallelized implementation proposed in Ref. [5].

For the systems evaluated here, it was found a

superiority of the parallelized implementation with

CUDA-Matlab regarding the computational time

spent in the calculation of each system. It was possible

to obtain a speedup gain of around 76x and 6x

compared to the sequential and parallelized

implementation presented in Ref. [5], respectively.

Compared to the sequential implementation in Matlab,

the parallelized BiCGstab(2) was faster only for

systems with dimension greater than 1,500 and the

speedup was approximately 2.5x. Therefore, it was

concluded that the implementation of the method that

performs in the GPU, compared to implementations

proposed by Paula et al. [5], would be a more suitable

and appropriate implementation to obtain a significant

computational performance.

Future works in this same line of research may

solve linear systems with larger dimensions than this

paper. The systems generated in the simulations of

fluid flow problems studied in the computational fluid

dynamics may be solved. Techniques for efficient

exploitation of parallelism in scalar product between

vectors operations can also be applied in an attempt to

further increase the computational performance.

Furthermore, alternatives to CUDA-Matlab

integration such as OpenCL [22] may be investigated

for comparative studies.

Acknowledgment

The authors thank the research agencies CAPES

and FAPEG for the support provided to this research.

Parallel Implementation of the BiCGStab(2) Method in GPU Using CUDA and
Matlab for Solution of Linear Systems

346

References

[1] Sleijpen, G., and Vorst, H. A. V. 1995. “Hybrid

Bi-conjugate Gradient Methods for CFD Problems.”

Computational Fluid Dynamics REVIEW : 457-76.

[2] Vorst, H. A. V. 1992. “Bi-cgstab: A Fast and Smoothly

Converging Variant of Bi-CG for the Solution of

Non-symmetric Linear Systems.” SIAM Journal of

Scientific and Statistical Computing 13: 631-44.

[3] Saad, Y. 2003. Iterative Methods for Sparse Linear

Systems. Siam.

[4] Sleijpen, G., and Vorst, H. A. V. 2000. “A

Jacobi-Davidson Iteration Method for Linear Eigenvalue

Problems.” SIAM Review 42: 267-93.

[5] Lauro Cassio Martins de Paula, and Anderson da Silva

Soares, 2014. “Parallelization of an Iterative Method for

Solving Large and Sparse Linear Systems using the

CUDA-Matlab Integration.” In Int. Conf. on Parallel and

Distributed Processing Techniques and Applications,

556- 560.

[6] Bowins, E. C. 2012. “A Comparison of Sequential and

GPU Implementations of Iterative Methods to Compute

Reach Ability Probabilities.” In Proceedings of First

Workshop on GRAPH Inspection and Traversal

Engineering.

[7] Weber, D., Bender, J., and Schnoes, M. 2012. Efficient

GPU Data Structures and Methods to Solve Sparse

Linear Systems in Dynamics Applications. Computer

Graphics Forum, Wiley Online Library.

[8] Atasoy, N. A., Sen, B., and Selcuk, B. 2012. “Using

Gauss-Jordan Elimination Method with CUDA for Linear

Circuit Equation Systems.” Procedia Technology 1: 31-5.

[9] Saad, Y., and Schultz, M. 1986. “Gmres: A Generalized

Minimal Residual Algorithm for Solving Non-Symmetric

Linear Systems.” SIAM Journal on Scientific and

Statistical Computing 7: 856-69.

[10] NVIDIA CUDATM, Nvidia Cuda C Programming Guide,

5.0 ed., NVIDIA Corporation, 2701 San Tomas

Expressway Santa Clara, CA 95050, 2013.

[11] N. CUDATM, Nvidia Cuda C Programming Best Practices

Guide, NVIDIA Corporation, 2701 San Tomas

Expressway Santa Clara, CA 95050, 2009.

[12] Yldirim, A. A., and Ozdogan, C. 2011. “Parallel

Wavelet-Based Clustering Algorithm on GPUs Using

CUDA.” Procedia Computer Science 3: 396-400.

[13] Fabris, F., and Krohling, R. A. 2012. “A Co-evolutionary

Differential Evolution Algorithm for Solving Min-Max

Optimization Problems Implemented on GPU Using

C-CUDA.” Expert Systems with Applications 39: 10324-33.

[14] Lauro Cassio Martins de Paula, Anderson da Silva Soares,

Telma W. Soares, Wellington Santos Martins, Arlindo

Rodrigues Galvao Filho, and Clarimar Jose Coelho. 2013.

“Partial Parallelization of the Successive Projections

Algorithm Using Compute Unified Device Architecture.”

In International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA),

737-741.

[15] Little, J., and Moler, C. 2013. “Matlab Gpu Computing

Support for Nvidia Cuda Enabled Gpus.”

http://www.mathworks.com/discovery/matlab-gpu.html.

[16] Reese, J., and Zaranek, 2011. “S. GPU Programming in

Matlab.”http://www.mathworks.com/company/newsletter

s/articles/gpu-programming-in-matlab.html.

[17] NVIDIA Corp, CUDATM, Accelerating Matlab with Cuda,

NVIDIA Corporation, 2007.

[18] Martins de Paula, L. C., Aa Silva Soares, A., Soares, T.

W., Delbem, A. C. B., Coelho, C. J., and Filho, A. R. G.

2014. “Parallelization of a Modified Firefly Algorithm

Using GPU for Variable Selection in a Multivariate

Calibration Problem.” International Journal of Natural

Computing Research 4: 31-42.

[19] Simek, V., and Rakesh, R. 2008. “ASN: GPU

Acceleration of 2d-Dwt Image Compression in Matlab

with CUDA.” Presented at the 2nd UKSIM European

Symposium on Computer Modeling and Simulation.

[20] Kong, J. F., Dimitrov, M., and Yang, Y. 2010.

“Accelerating Matlab Image Processing Toolbox

Functions on GPUs.” In Proceedings of the 3rd

Workshop on General-Purpose Computation on Graphics

Processing Units.

[21] Liu, X. W., Cheng, L. Z., and Zhou, Q. 2013. “Research

and Comparison of CUDA GPU Programming in Matlab

and Mathematica.” In Proceedings of 2013 Chinese

Intelligent Automation Conference, Springer.

[22] Tsuchiyama, R., Nakamura, T., and Iizuka, T. 2010.

The Opencl Programming Book. Fixstars.

View publication statsView publication stats

http://www.mathworks.com/discovery/matlab-gpu.html
https://www.researchgate.net/publication/272041084

