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Abstract: This paper presents a parallel implementation of the hybrid BiCGStab(2) (bi-conjugate gradient stabilized) iterative 

method in a GPU (graphics processing unit) for solution of large and sparse linear systems. This implementation uses the 

CUDA-Matlab integration, in which the method operations are performed in a GPU core using Matlab built-in functions. The goal is 

to show that the exploitation of parallelism by using this new technology can provide a significant computational performance. For 

the validation of the work, we compared the proposed implementation with a BiCGStab(2) sequential and parallelized 

implementation in the C and CUDA-C languages. The results showed that the proposed implementation is more efficient and can be 

viable for simulations being carried out with quality and in a timely manner. The gains in computational efficiency were 76x and 6x 

compared to the implementation in C and CUDA-C, respectively. 
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1. Introduction

 

A linear system is a linear equations finite set 

applied in a variable finite set. Sparse and large linear 

systems may appear as results of the modeling of 

various computer science and engineer problems [1]. 

To solve such systems, iterative methods are more 

indicated and efficient than exact methods [2]. 

Iterative methods use less memory space and reduce 

rouding errors in computer operations [3]. Such 

methods perform successive approximations in each 

iteration to obtain a more precise solution for the 

system. 

Classical iterative methods such as Jacobi and 

Gauss-Seidel are considered easily to deploy and use 

[4]. Nevertheless, despite this feature, both may have 

a slow convergence or even not converge for large 

systems [2]. Another disadvantage is that when the 

coefficient matrix is not square (number of rows equal 
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to the number of columns), these two methods can not 

guarantee the linear system convergence. As a 

consequence, the research and implementation of 

computational methods are considered important tasks 

in various areas of science, particularly those that 

involve the solution of large linear equations systems 

[5]. 

There are several methods for solution of linear 

systems. Some of them are considered good in 

relation to the computational cost. However, the 

computational performance may be affected if the size 

of the system is large. Some cases in which the linear 

systems to be solved are very large, the computational 

processing may last too many days and the methods 

solution speed difference is significant. Consequently, 

the implementation of efficient and robust methods 

such as the hybrid BiCGStab(2) that becomes 

important and often necessary for the simulations are 

performed with quality in a short time [6]. The 

BiCGStab(2) is an iterative method developed for 
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solving large and sparse linear systems and is 

considered as a good one [5]. 

Several studies have used the computational 

resources of GPU (graphics processing unit) to solve 

large and sparse linear systems. For instance, Bowins 

[6] presented a comparison of computational 

performance between the Jacobi method and the 

BiCGStab method. In that work, both methods were 

implemented in two versions: sequential and 

parallelized. Based on the results obtained, he showed 

that as the size of the system increases, the parallel 

implementation outperforms the sequential in terms of 

computational efficiency. 

Weber et al. [6] presented GPU data structures and 

algorithms to efficiently solve sparse linear systems 

that are typically required in simulations of 

multi-body systems and deformable bodies. Their 

solving method results in a speedup factor of up to 13 

in comparison to other sequential and GPU methods. 

More recently, Paula et al. [5] proposed a 

parallelization of the BiCGStab(2) method for solving 

linear systems using CUDA (compute unified device 

architecture) and compared the computational 

performance between the sequential and parallelized 

versions of the method. They showed that from the 

computational point of view, the parallel version of 

BiCGStab(2) method is more efficient. 

In this context, this paper presents a parallel 

implementation of the BiCGstab(2) method, which 

uses the CUDA-Matlab technology in a GPU for 

solving linear systems. The goal was showing that the 

proposed implementation can be more appropriate and, 

through its use, it is possible to enable the efficient 

solution of large and sparse linear systems. For 

increasingly complex (larger) systems, it can be 

solved in a timely manner. To achieve this goal, we 

performed a comparison with the implementation of 

the BiCGStab(2) method proposed by Paula et al. [5] 

in the solution of linear systems of varying sizes. The 

results showed that the computation time can be 

significantly reduced with the implementation 

proposed in this paper. It was possible to obtain 

speedup gains of 76x and 6x compared with the 

sequential and parallelized implementation proposed 

in Ref. [5], respectively. 

The remainder of this paper is organized as follows: 

The BiCGStab(2) iterative method is detailed in 

Section 2; Section 3 describes the CUDA and its 

integration with Matlab; the materials and methods 

used to achieve the objective of the work are 

described in Section 4; the results are presented and 

discussed in Section 5; finally, Section 6 contains the 

conclusions. 

2. BiCGStab(2) 

The solution of a linear equations system Ax = b, 

where, An n is the coefficient matrix and bn 1 the vector 

of independent terms, may require a huge 

computational effort especially when A is very large. 

For example, to solve a linear system, one can use an 

iterative method. Iterative methods perform 

successive approximations in each iteration to obtain a 

more accurate solution and are recommended for large 

linear systems with sparse matrices [8]. 

Iterative methods are classified into two groups: 

stationary and non-stationary methods [5]. The 

stationary methods use the same information at each 

iteration, i.e., the results of one iteration are used for 

the next iterations [1]. In non-stationary methods, the 

information used may change with each iteration. The 

non-stationary methods are difficult to implement but 

may provide a faster convergence for the system and 

are more suitable even when the coefficient matrix is 

dense (non-sparse) [8]. 

The BiCGStab(2) is a non-stationary iterative 

method developed by Van der Vorst and Sleijpen [8]. 

This method combines the advantages of BiCGStab 

and GMRES (generalized minimum residual) method 

[9]. Consequently, the BiCGStab(2) is considered as a 

robust method with convergence guarantee superior to 

BiCGStab, suitable for solution of linear systems 

generated in the solution of differential equations of 
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fluid flow [2]. 

Algorithm 1 shows a snippet of pseudocode for the 

algorithm of BiCGStab(2) method. A full pseudocode 

can be obtained in Ref. [5]. Some adjustments were 

made naming comparing with the original algorithm. 

In the Algorithm 1, the Greek letters represent scalars, 

lowercase letters represent vectors expressed in matrix 

form, capital letters represent matrices, and 

parentheses with comma separated vectors represent 

scalar products between vectors. 

In step 38 of the method, so that the vector xi+2 is 

sufficiently precise, the higher value corresponding to 

the difference between the results of each term of the 

vector x in two consecutive iterations, divided by the 

result of the term in the current iteration, should be 

less than a given accuracy as, for example: 

)
)1(

max(
ix

xixi
＜10

5
 

Algorithm 1: snippet of pseudocode for the 

algorithm of BiCGStab(2) method. 

r0 = b - Ax0  

r^0 = r0  

=   = !1 = !2 = 1  

v = w = p = 0  

for i = 0, 2, 4, ... do  

^ = -!2  

Even BiCGStab step: from step 7 to 16 

= ri
T
 r^0 ...  

xi = xi + p  

Odd BiCGStab step: from step 17 to 27 

= s
T
 r^0 ...  

t = As  

GMRES(2)-part: from step 28 to 38 

!1 = r
T
 s ...  

xi+2 = xi +  p + !1r + !2s  

ri+2 = ri - !1s - !2t  

If xi+2 is accurate, stop.  

end for  

3. Compute Unified Device Architecture 

[10]. CUDA is supported by all graphics cards 

from NV IDIA 
R
, which are extremely parallel, having 

many cores with many memories and a memory cache 

shared by all cores. The CUDA code is an extension 

of the C computer language (CUDA-C), where a few 

keywords are used to label the parallel functions 

(kernels) and their data structures [11]. 

Since its inception, several studies have used 

CUDA to parallelization of various types of problems. 

For instance, Yldirim and Ozdogan [12] presented an 

algorithm as a clus-tering approach based on wavelet 

transform for parallelization on GPU using CUDA-C. 

Fabris and Krohling [13] proposed an algorithm of 

evolution implemented in CUDA-C for solving 

optimization problems. Atasoy et al. [8] presented a 

eliminating method implemented in CUDA-C using 

Gauss-Jordan to solve systems of linear equations. 

Paula et al. [5] used CUDA-C to parallelize the 

BiCGStab(2) method for solving linear systems of 

varying sizes. Finally, Paula et al. [14] proposed a 

parallelization strategy for phase 2 of the successive 

projections algorithm using CUDA-C. 

In order to help programmers, the MathWorks has 

developed a plugin able to do integration between 

CUDA and Matlab. Make use of Matlab to GPU 

computing can enable applications to be more easily 

accelerated. GPUs can be used with Matlab using the 

PCT (parallel computing toolbox). The PCT provides 

an efficient way to speedup codes in Matlab language, 

running them on a GPU [15]. For this, the 

programmer must change the data type to input a 

function to use the commands (functions) in Matlab 

that were overloaded (GPUArray). Through 

GPUArray function, one can allocate memory in the 

GPU and make calls to various functions of Matlab, 

which are performed on the GPU’s processing cores. 

Additionally, developers can make use of the PCT 

CUDA kernel interface to integrate their code in 

CUDA-C with Matlab [15]. 

The development of applications running on the 

GPU using the PCT is usually easier and faster than 

using CUDA-C language [15]. According to Little and 
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Moler [15], this is because aspects of exploitation of 

parallelism are implicitly performed by the PCT itself, 

freeing the programmer from many inconveniences. 

However, the organization and the number of threads 

to be executed on the GPU cores cannot be managed 

manually by the programmer. Still, it is important to 

emphasize that in order to be used, the PCT requires a 

graphics card from NVIDIA. 

After CUDA-Matlab integration, few studies have 

used this technology. For example, the NVIDIA [17] 

released a book that demonstrates how programs 

developed in Matlab can be accelerated using GPUs 

[18]. Simek and Asn [19] presented an 

implementation in MATLAB with CUDA for 

compression of medical images. Kong et al. [20] 

accelerated some functions in Matlab for image 

processing on GPUs. Reese and Zaranek [15] 

developed a manual programming GPUs using Matlab. 

More recently, Paula et al. [18] proposed a parallel 

implementation of the firefly algoritm using 

CUDA-Matlab for variable selection in a multivariate 

calibration problem. Based on the results of these 

works, we note that, in future, the PCT may be more 

used due to the fact of allowing a code in Matlab can 

be easily parallelized. Therefore, instead of 

implementing a kernel function and set the amount 

and organization of threads blocks, the programmer 

must only identify which parts of your code are 

parallelizable and make use of the built-in Matlab 

functions [21]. 

4. Experimental 

The GPU was initially developed as a flow-oriented 

technology, optimized for calculations of 

data-intensive applications, where many identical 

operations can be performed in parallel on different 

data [10]. Unlike a CPU, which executes only a few 

threads in parallel, the GPU was designed to run 

thousands of them [18]. 

As previously mentioned, one can explore 

parallelism in GPUs using the PCT plugin, which 

provides an efficient way to speedup codes in Matlab 

language invoking functions that are overloaded to 

run in the cores of a GPU from NVIDIA. Thus, this 

paper presents an implementation of the BiCGStab(2) 

method in Matlab, which uses this technology. The 

proposed implementation is analogous to Algorithm 1. 

Initially, the data are transferred to the GPU memory. 

Soon after, the method begins execution and all 

operations are performed in the GPU’s processing 

cores for threads that are created and managed 

implicitly by the PCT. 

All the linear systems used in this paper were 

generated using Matlab (Version R2013a) built-in 

functions. The coefficient matrix (A) of each system 

was generated randomly using the function gallery 

(
'
dorr

'
, n), which returns a square matrix of dimension 

n, sparse and diagonally dominant. The diagonal 

dominant characteristic indicates that the sum of all 

elements in a row is not greater than the main 

diagonal element of the matrix. The vector of 

unknowns (x) was randomly generated by random (n, 

1) function, which returns a vector of n rows and 1 

column. The vector of independent terms (b) was 

generated by multiplying the matrix A and vector x. 

For each system generated was passed to BiCGStab(2) 

only the matrix A and the vector b which, after 

attempting convergence system, returned vector x. 

To evaluate the computational gain obtained by 

implementing the parallelized method, it was recorded 

the time spent on each iteration of the BiCGStab(2) 

algorithm. 

The purpose of this paper was not to compare the 

differences between Matlab and solution methods, but 

only use Matlab to generate the random systems and 

compare the speed of calculation of the methods in the 

solution of several linear systems. 

4.1 Computational Setup 

All calculations were carried out by using a desktop 

computer with an Intel Core i7-2600 (3.40 GHz), 8 

GB of RAM memory and a NV IDIA 
R
 GeForce GTX 
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550Ti graphics card with 192 CUDA cores and 2 GB 

of memory configure. The Matlab R2013a software 

platform was employed throughout. 

5. Results and Discussion 

The results obtained with the BiCGStab(2) 

parallelized method were compared with its sequential 

implementation, in order to verify the computational 

gain obtained with parallelized implementation. 

Additionally, a comparison was made with 

implementations (sequential and parallelized) of 

BiCGStab(2) proposed by Paula et al. [5]. The 

comparative graphs of processing time (in seconds) of 

different linear systems solved with the BiCGStab(2) 

method (sequential and parallelized) in Matlab are 

shown in Figs. 1 and 2. 

Fig. 1 shows that the sequential implementation 

may be more efficient for linear systems with 

dimensions ranging from 10 to 1,000. This is due to 

the fact that the algorithm of the method contains 

inherently sequential operations. For example, the 

scalar products running sequentially on the CPU, 

depending on the size of the system, which may have 

a significantly reduced computational time compared 

to the same time of execution in cores of the GPU. 

Likewise, the operations between scalars (steps 8, 13 

and 34, etc.) cannot be divided between multiple 

threads, consequently, this may result in poor 

performance when executed by a single GPU thread. 

Further-more, due to the existence of an overhead 

associated with the parallelization of tasks in GPU, 

the size of the system to be solved must be taken into 

consideration [11].    

On the other hand, Fig. 2 shows that for systems 

with dimension greater than 1,500, the parallelized 

BiCGStab(2) exceeds the sequential implementation. 

In this case, in comparison of computational 

efficiency, the speedup gain obtained was 

approximately 2.59 x. Therefore, the implementation 

that uses the GPU would be more appropriate since 

the size of the system used is greater than 1,500. 

Fig. 3 shows a comparison between the proposed 

sequential implementation and the sequential 

implementation proposed by Paula et al. [5]. The 

BiCGStab(2)  implemented  in Matlab  is much  higher 

 

 
Fig. 1  Comparison of calculation speed for systems with dimension between 10 and 1,000.  
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Fig. 2  Comparison of calculation speed for systems with dimension between 1,500 and 4,000.  
 

 
Fig. 3  Comparison of calculation speed for systems with dimension between 1,500 and 4,000 between sequential 

implementations of the BiCGStab(2) in Matlab and C.  
 

compared to the same implementation in C 

language. It is observed that the time for 

implementation proposed by Paula et al. [5] requires a 

computational effort which increases approximately 

exponentially with the size of the system, while the 

time for implementation in Matlab is less pronounced. 

The speedup gain provided by the sequential 

implementation in Matlab was approximately 76.75x. 

Consequently, the use of the method implementation 

in Matlab can provide a more significant gain of 

computational performance. 

Fig. 4 shows a comparison between the proposed 

parallelized implementation and the parallelized 

implementation proposed by Paula et al. [5]. As in the 

previous case, it is possible to note the superiority of 

the parallelized BiCGStab(2) using CUDA-Matlab 

integration in the solution of the treated systems. It can 

be seen  that the  time for  implementation in  CUDA-C 

also requires a computational effort approximately 

exponentially in that the size of the system increases. 
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Fig. 4  Comparison of calculation speed for systems with dimension between 1,500 and 4,000 between parallelized 

implementations of the BiCGStab(2) in CUDA-Matlab and CUDA-C.  
 

In this case, the speedup obtained was approximately 

6.12x. Therefore, compared to the parallelized 

implementation proposed in Ref. [5], the parallelized 

BiCGStab(2) in Matlab can be a more appropriate 

choice of the computational point of view. 

6. Conclusion 

In this work, We have implemented and used a 

computer code in Matlab of the BiCGStab(2) iterative 

method for solution of large and sparse linear systems. 

The method was implemented on a fully sequential 

version as well as in a parallelized version using a 

GPU with CUDA-Matlab integration. The purpose of 

this paper was to present a new implementation of 

BiCGStab(2) to enable the rapid solution of linear 

systems and compare the computational performance 

with the sequential implementation. Additionally, a 

comparison was made with the sequential and 

parallelized implementation proposed in Ref. [5]. 

For the systems evaluated here, it was found a 

superiority of the parallelized implementation with 

CUDA-Matlab regarding the computational time 

spent in the calculation of each system. It was possible 

to obtain a speedup gain of around 76x and 6x 

compared to the sequential and parallelized 

implementation presented in Ref. [5], respectively. 

Compared to the sequential implementation in Matlab, 

the parallelized BiCGstab(2) was faster only for 

systems with dimension greater than 1,500 and the 

speedup was approximately 2.5x. Therefore, it was 

concluded that the implementation of the method that 

performs in the GPU, compared to implementations 

proposed by Paula et al. [5], would be a more suitable 

and appropriate implementation to obtain a significant 

computational performance. 

Future works in this same line of research may 

solve linear systems with larger dimensions than this 

paper. The systems generated in the simulations of 

fluid flow problems studied in the computational fluid 

dynamics may be solved. Techniques for efficient 

exploitation of parallelism in scalar product between 

vectors operations can also be applied in an attempt to 

further increase the computational performance. 

Furthermore, alternatives to CUDA-Matlab 

integration such as OpenCL [22] may be investigated 

for comparative studies. 
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