
Martins et al. BMC Bioinformatics 2013, 14:324
http://www.biomedcentral.com/1471-2105/14/324

SOFTWARE Open Access

SUNPLIN: Simulation with Uncertainty for
Phylogenetic Investigations
Wellington S Martins1*, Welton C Carmo1, Humberto J Longo1, Thierson C Rosa1 and Thiago F Rangel2

Abstract

Background: Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to
study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling,
which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular
phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding
missing species to random locations within their clade. The information contained in the topology of the resulting
expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for
further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to
estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden
required, unless this procedure is efficiently implemented, the analyses are of limited applicability.

Results: In this paper, we present efficient algorithms and implementations for randomly expanding and processing
phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be
conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance
matrices. We made available the source code, which was written in the C++ language. The code may be used as a
standalone program or as a shared object in the R system. The software can also be used as a web service through the
link: http://purl.oclc.org/NET/sunplin/.

Conclusion: We compare our implementations to similar solutions and show that significant performance gains can
be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and
ecological analyses of large datasets.

Background
Phylogenetic trees are hypothetical statements about the
evolutionary relationship among species. The methods
to generate the most probable evolutionary hypothesis
are usually based on search algorithms that try to maxi-
mize the fit between tree topology and the data, given a
model of evolution [1]. Although biologists increasingly
aim to take phylogeny into account in their studies (e.g.
[2]), phylogenetic uncertainty is routinely ignored. An
important source of phylogenetic uncertainty arises when
biologists use incomplete phylogenetic data to make infer-
ences about evolutionary mechanisms that supposedly
affect a group of species [3,4]. In particular, phyloge-
netic uncertainty may arise from three distinct sources:

*Correspondence: wellington@inf.ufg.br
1Institute of Informatics, Federal University of Goiás, Goiânia, Brazil
Full list of author information is available at the end of the article

(1) weak empirical support for hypothesized relationships
among species in a given clade, (2) errors associated with
tree topology and branch lengths, and (3) incomplete and
unrepresentative sampling of known species. Biologists
have employed different strategies to deal with phylo-
genetic uncertainty. The first approach is to focus only
on clades for which complete phylogenies are available,
but this strategy restricts studies to a very small number
of groups and can undermine assemblage-level studies if
only certain species can be included. A second and more
radical strategy is to ignore the species that are absent
from the available phylogeny, therefore assuming that evo-
lutionary processes captured by sampled species can be
extrapolated to the missing species [5]. Finally, the most
common approach consists in assembling supertrees from
small overlapping trees, assigning unknown evolutionary
relationships among species as polytomies (nodes with

© 2013 Martins et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://purl.oclc.org/NET/sunplin/
http://creativecommons.org/licenses/by/2.0

Martins et al. BMC Bioinformatics 2013, 14:324 Page 2 of 11
http://www.biomedcentral.com/1471-2105/14/324

more than two derived branches). Clearly, these strate-
gies are sub-optimal, as they hide or ignore phylogenetic
uncertainty.
Neglecting phylogenetic uncertainty may seriously

affect inference of evolutionary processes that drive bio-
logical patterns. Incomplete phylogenies composed of
biased samples of species can potentially provide empir-
ical evidence towards an incorrect evolutionary model,
therefore misleading biological inference. For example,
one of the goals of Conservation Biology is to design a
network of conservation units that maximize the pro-
tection of biodiversity. However, given a biased and
incomplete phylogeny the estimate of biodiversity across
regions may support the creation of a biological reserve
in a locality that harbors sub-maximum phylogenetic
diversity.
Even in the total absence of genomic information about

a species, morphological, behavioral and ecological char-
acters can provide important clues about the evolutionary
relationship with other species [6]. In general, these non-
genetic sources of information are not accurate, as they
are insufficient to indicate the closest species or phyloge-
netic distances between species. However, such additional
sources of information can be reliably used in evolution-
ary studies provided that the statistical uncertainty can
be properly estimated [3,6]. One of the most accepted
strategies to account for uncertainty in statistical anal-
ysis is Monte Carlo simulation, which rely on repeated
random sampling to model phenomena with substantial
uncertainty in the input data [5,6].
The advantage of estimating statistical error associated

with inference based on uncertain data comes at the cost
of highly replicated computations. The computational
demands required to replicate statistical analyses that rely
on phylogenetic information have prevented biologists to
fully employ simulation methods in large-scale ecologi-
cal and evolutionary studies. Few notable exceptions are
available in the literature. For example, [7] used simula-
tion of incomplete phylogenetic information to estimate
rates of diversification of fishes, and [8] developed like-
lihood approaches to infer the effect of trait on diversi-
fication rates, testing their new method using simulated
phylogenies with varying degree of resolution. Finally, [9]
employed the method described in this paper to study the
consequences of extinction of endangered frogs to the bio-
diversity, indicating regions across the New World where
biodiversity is significantly threatened. The tools devel-
oped in this study have the potential to enable biologists to
expand the scale of biodiversity analysis while accounting
for uncertainty in the available phylogenetic information.
Potential applications of this method are unlimited, rang-
ing for the study of evolution of species traits, distribution
of biodiversity in time and space, and designing network
of reserves to protect biodiversity.

To account for phylogenetic uncertainty in statistical
analyses using simulation, one would have to build a large
set of phylogenetic trees, in which Phylogenetic Uncer-
tain Taxa (PUT) would be randomly assigned to partially
known trees (e.g. built from molecular data). However,
as some phylogenetic knowledge about PUT is usually
available, the insertion point for each PUT should not be
totally random across the phylogeny. Hence, for each PUT
one must determine the Most Derived Consensus Clade
(MDCC) that unequivocally contains the PUT. This is
done using all available biological information and, when
necessary, classification based on the best available taxon-
omy. Thus, a MDCC defines the sub-tree that is known to
include the species, and constrains the scope of random
allocation of the PUT. This repeated insertion of PUTs in
the partially known tree produces expanded trees that can
be used in statistical analyses required for the simulation
process.
The information contained in the topology of the phy-

logenetic trees is of maximum interest to biologists, as
inferences of evolutionary processes are derived from the
phylogenetic relationship between species. This relation-
ship can be captured by the pairwise phylogenetic distance
between species and, when multiple species are included
in the analysis, such information can be conveniently
stored in a squared distance matrix [5], the so called
Patristic Distance Matrix (PDM). A patristic distance is
the sum of the lengths of the branches that link two
species in a tree. Some of the statistical methods used to
study evolutionary processes require the raw or standard-
ized patristic distance matrix (e.g. estimate phylogenetic
diversity), whereas other methods require the transfor-
mation of the distance matrix into a variance-covariance
matrix (e.g. linear regression analysis). In any case, if there
is uncertainty in the relationship among species, simula-
tions can be used to estimate the phylogenetic uncertainty
by generating multiple random phylogenetic trees with
phylogenetic uncertain species inserted into the main
tree. Thus, in addition to the computational burden of
inserting PUT into a tree, one must compute a pairwise
distance matrix for each randomly expanded phylogenetic
tree. Of course, the next step in the phylogenetic compar-
ative analysis consists in the replication of the statistical
methods using each phylogenetic distance matrix. The
averaged phylogenetic measure across replicates of the
analysis captures the best estimate of the true parameter
(e.g. phylogenetic diversity of species), whereas the vari-
ance of the phylogenetic measure combines the error due
to sampling size (number of species) and phylogenetic
uncertainty in the statistical analysis.
There have been some proposals to integrate non-

molecular phylogenetic information into incomplete
molecular phylogenies in order to conduct phylogenetic
comparative analyses. Two main approaches have been

Martins et al. BMC Bioinformatics 2013, 14:324 Page 3 of 11
http://www.biomedcentral.com/1471-2105/14/324

proposed for the analyses of diversification. A skeletal
tree approach [8], that works by collapsing the under
sampled clades and producing a complete but terminally
unresolved tree, and an expanded tree approach that cre-
ates a complete and terminally resolved tree by randomly
inserting missing taxa along the branches belonging to its
likely clade. The former approach was implemented in the
diversitree R package [10], whereas the latter approach
was implemented in [7] as an R script using APE func-
tions [11]. In this work we use the expanded tree approach
since many statistical methods used to study evolution-
ary processes require a complete and terminally resolved
tree. Our approach involves an algorithm for randomly
expanding trees that performs a single tree traversal for
each tree being expanded.
As for the calculation of patristic distance matrices,

there are many software tools that provide this function-
ality, e.g. [11-13]. However, most implementations were
not meant to support simulation studies and thus are not
prepared to deal efficiently with a large number of trees.
To calculate each matrix element, i.e. the pairwise phylo-
genetic distance between species, an efficient method has
to be used to sum up all branch lengths connecting them.
Otherwise, too much time is spent recalculating distances
along the branches. This situation is aggravated in a sce-
nario containing a large number of trees. We use a heavy
chain decomposition (see Subsection Distance computa-
tion) to structure the expanded trees and thus produce a
fast solution to the pairwise distance matrix calculation.
The work presented in this paper aims at contributing

to conduct large-scale phylogenetic comparative simu-
lation that take uncertainty into account. We present
efficient algorithms and implementations to generate ran-
dom expanded trees, with the insertion of phylogenetic
uncertain taxa (PUT), and to calculate patristic distance
matrices, both commonly used in large-scale statistical
analyses. The rest of the paper is organized as follows. In
the next section we present the algorithms proposed. The
experimental results are shown in the following section,
together with a comparative analysis with respect to well-
known tools. Finally in the last section we present the
conclusions and future works.

Implementation
In this paper we present a computational tool named
SUNPLIN (Simulation with Uncertainty for Phylogenetic
Investigations) that allows one to use an existing phylo-
genetic tree, along with a list of species to be inserted,
and to produce randomly expanded versions of the input
tree as well as distance matrices for the corresponding
trees. The input phylogenetic tree is assumed to be in the
Newick format [14], one of the most widely used tree for-
mats, while the species to be inserted should be in a plain
file containing one species per line. The most derived

consensus clade (MDCC) must be indicated following the
species name, separated by a space.
In this section we use the terminology given by the

following definitions:

• Species and ancestors in a phylogenetic tree are both
named nodes;

• The descendants of a node u are all nodes in the
subtree rooted at u but not including u;

• The term tree is used as abbreviation of the term
phylogenetic tree;

• Nodes without descendants (species) in the tree are
referred to as leaf nodes;

• Ancestor nodes are named internal nodes;
• The internal node without ancestors is the root node

of the tree;
• The direct ancestor of a node u is referred to as the

parent node of u;
• If a node p is an ancestor node, each of its direct

descendants is a child node of p;
• A line connecting a parent node p to one of its child

node c is a branch or an edge;
• Each branch has a length which is a real number;
• A node u and all its descendants form a subtree with

u as root node;
• A path in the tree from node u to a node u′ is the

sequence 〈v0, v1, . . . , vt〉 of nodes such that, u = v0,
u′ = vt and there is a branch connecting vi to vi+1,
for 0 ≤ i ≤ t − 1.

Figure 1 illustrates an example tree with numbered
nodes. The root of the tree is node 1. Nodes 3, 4, 6, 9, 10,
12 and 13 are leaf nodes. For the sake of simplification, the
tree is made binary and all branch lengths are assigned the
value 1.

1

1

1

1

1

1

1

1

1

1

1

1

Species MDCC

16 7
18 9
20 11
22 2
24 2

Figure 1 (Left) Phylogenetic tree and (top right) the species to
be inserted. Input data representation. Phylogenetic tree and the
species to be inserted.

Martins et al. BMC Bioinformatics 2013, 14:324 Page 4 of 11
http://www.biomedcentral.com/1471-2105/14/324

In the following subsections, we present the tree expan-
sion problem and the distance computation problem. This
follows a detailed description of the proposed algorithms,
auxiliary functions, examples and a complexity analysis.

Tree expansion
The tree expansion problem has as input the following
data:

a) A phylogenetic tree T0;
b) An integer number m;
c) A set S = {〈s1, v1mdcc〉, . . . , 〈s|S|, v|S|

mdcc〉}, where each
pair 〈si, vimdcc〉 in S is composed by a species si to be
inserted in the subtree with root vimdcc in copies of T0.

The tree expansion problem consists in making m
copies of the original tree T0 and inserting all the species
of S in each of the copied trees. The insertion of a species
si from S must occur in a place randomly chosen in
the subtree with root in node vimdcc. Thus, a solution
to the problem produces m expanded trees T1, . . . ,Tm.
Each one of the expanded trees contains the same nodes
(nodes in the original tree and nodes corresponding to the
inserted species), however they are different from each
other, because each species si in S was inserted randomly
in distinct positions in the subtree with root vimdcc in each
tree Tj, 1 ≤ j ≤ m.
In this work, we consider two possible random insertion

methods: the node-based method and the branch-based
method. The first method chooses randomly a node p in
the subtree with root in theMDCC and inserts the species
as a child of p. In this case, the chance of receiving a
new species is equal for all nodes. For example, consider
a copy T1 of the tree in Figure 1. The insertion of species
16 in MDCC 7 involves choosing randomly one node
among the nodes 7, 8, 9, 10, 11, 12 or 13 as the insertion
point.
The branch-based method is characterized by giving

to long branches a higher chance of being split due to
the insertion of a new species. This is obtained by ran-
domly choosing a number between zero and the sum
of branch lengths below the MDCC. This number cor-
responds to the accumulated lengths of a sequence of
branches ordered according to a depth-first traversal in
the subtree with the MDCC as root. For example, let
us consider the insertion of species 16. The sum of the
lengths of branches in the subtree with root in node 7 (the
MDCC) equals to 6. We choose randomly a real num-
ber between 0 and 6; let us say 4.2. A depth-first walk in
subtree with 7 as root reaches the branches in the follow-
ing order: (7,8), (8,9), (8,10), (7,11), (11,12) and (11,13).
We follow the branches in that order accumulating their
lengths while this accumulated value is less than or equal
to 4.2. Thus, this procedure stops when we reach branch

(11,12). Consequently, node 12 is chosen as the insertion
point.
Efficient implementation of both insertion methods is

crucial to solve the tree expansion problem. An obvious
but inefficient solution is to perform a traversal in the sub-
tree with root in the MDCC. During this traversal, nodes
are collected, in the case of the node-based method, or
branches are collected, in the case of the branch-based
method, and the insertion point is chosen randomly in
each case. This is inefficient because we have to perform
a walk for every subtree and every species to be inserted.
Also, the MDCC for some species to be inserted might
be located too high in the tree, next to the root, which
would imply that almost the whole tree would have to be
traversed.
In this article, we propose a method that allows for

deciding the insertion point, in both node-based and
branch-basedmethods, with only one depth-first traversal
of the original tree T0. This traversal occurs in a pre-
processing phase of the algorithm and computes for each
node in the tree some information used to define the
insertion point. Our insertion algorithm relies on a num-
bering of the nodes of T0 with numbers assigned in an
increasing order, starting with number 1 that is assigned
to the root of T0. The numbers are assigned to the nodes
through a depth-first search (DFS), following a post-order
traversal. In Figure 1, the number of each node is shown
just at the right of the node.
The preprocessing phase is performed by the func-

tion PreProcessExpansion(). During this phase, the fol-
lowing information is computed for each node u of the
tree T0:

• The number of descendant nodes of node u. This
counting is represented by the array descendants[u]
in the function.

• The sum of the lengths of branches on the DFS
traversal of the tree starting at the root and ending at
node u. This value is represented by the variable
sumLengths[u] in the function.

Martins et al. BMC Bioinformatics 2013, 14:324 Page 5 of 11
http://www.biomedcentral.com/1471-2105/14/324

For example, consider the tree shown in Figure 1. The
number of descendants of node 2 (descendants[2]) equals
to two, while descendants[5] equals to seven. The follow-
ing branches are reached through a DFS traversal starting
at the root node and ending at node 7: (1,2), (2,3), (2,4),
(1,5), (5,6), (5,7). The sum of the lengths of these branches
(sumLengths[7]) equals to six. Analogously, sumLengths[9]
equals to eight.
The tree expansion method is described in algorithm

TreeExpansion. The algorithm receives as input the phy-
logenetic tree T0, the numberm of expanded trees, the set
S of species to be inserted and the method of insertion to
be used.

Figure 2 shows how the tree in Figure 1 could be
expanded by the insertion of the species 16, 18, 20, 22 and
24 using 7, 9, 11, 2 and 2 as the respective MDCCs, that is,
S = {〈16, 7〉, 〈18, 9〉, 〈20, 11〉, 〈22, 2〉, 〈24, 2〉}.
The TreeExpansion algorithm starts by activating the

function PreProcessExpansion() to compute the values of
variables descendants[u] and sumLengths[u] for each node
u in T0. Next, at each iteration i ≤ m, the algorithmmakes
a copy Ti of T0 and for each pair 〈s, vmdcc〉 of S it chooses
randomly an insertion point p in the subtree with root in
vmdcc to insert the species s. This choosing is done using
only information of the original tree T0, computed during
the preprocessing phase. The preprocessing phase takes
timeO(|T0|) to execute, because it has to traverse through

0.2

0.8

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.8

0.7

0.7

0.3

0.5

0.5

0.5

0.9

0.9

0.1

0.4

0.4

0.6

Figure 2 A possible expanded tree. A possible final expanded tree
where branches connecting inserted species are shown by dashed
lines.

all nodes and branches of the tree T0 to compute the num-
ber of descendants and the sum of branch lengths for each
node.
If the insertion method is node-based, a random node

must be chosen among all nodes in the subtree with root
in node vmdcc. However, because of the numbering strat-
egy used to number nodes in the tree and the previous
computation of the number of descendants of each node,
the random insertion point can be easily and efficiently
computed as shown in line seven of the algorithm. For
instance, to insert species 16 in MDCC 7, the algorithm
chooses randomly a number in the interval [7, descen-
dants[7] + 7], that is, [7, 13]. This interval comprises all
node numbers in the subtree with root in node 7 (See
Figure 1). The random choosing of the insertion point
takesO(1), however it is repeated for each of the |S| species
to be inserted. Thus, the total time spent by the node-based
method to insert all the |S| species is O(|T0| + |S|).
If the insertion method is branch-based, the sum

σ of lengths of branches in the subtree with root
in vmdcc can be easily computed without traversing
the tree. It is given by the computation in line 9 of
Algorithm TreeExpansion. For example, the sum of
branch lengths in the subtree with root in node 7 is given
by sumLengths[descendants[7]+ 7] − sumLengths[7]=
sumLengths[6 + 7]− sumLengths[7]= 12 − 6 = 6.

Martins et al. BMC Bioinformatics 2013, 14:324 Page 6 of 11
http://www.biomedcentral.com/1471-2105/14/324

In line 10 of the algorithm, a random value between
0 and the sum σ is obtained. In line 11 of the algo-
rithm, the random value obtained is added to the value
of sumLengths[vmdcc] and assigned to δ. The point of
insertion is the node p such that sumLengths[p] is most
similar to δ. The algorithm has to search for such p
among the subtree rooted at vmdcc that is, it has to search
in the interval [sumLengths[vmdcc], sumLengths[vmdcc +
descendants[vmdcc]]. Once the insertion point p has been
found, the algorithm TreeExpansion inserts (see line 13)
species s at node p of the copied tree Ti, taking time O(1)
independently of the insertion method used.
The good news is that values in vector sumLengths[] are

ordered, thus a binary search can be used to find such
node p, in timeO(log(descendants[vmdc])). The worst case
occurs when the MDDC for a species is the root of the
tree. In this case, the binary search has to be applied in the
whole vector that has size |T0|. This operation takes time
O(log |T0|). Since the binary search has to be applied for
each of the |S| species, in the worst case the branch-based
mode has execution time O(|T0| + |S|· log |T0|).

Distance computation
In this section we present the more generic problem of
computing distances between nodes in a phylogenetic tree -
node-to-node distance problem. The case of computing
distances between only leaf nodes (patristic distance) can
be seen as a subproblem of node-to-node distance prob-
lem in which we discard the computation for nodes that
are not leaves. We show an efficient solution to the node-
to-node distance problem that can be easily adapted to
compute the patristic distance, as is explained at the end
of this section.
The node-to-node distance problem consists in com-

puting for each pair (u, v), where u and v are nodes of a
phylogenetic tree T, the distance between u and v in T.
The distance between u and v corresponds to the sum of
branches lengths in the path that connects u to v in T. For
example, in Figure 1, the distance between nodes 6 and 13
is the accumulated lengths of branches connecting both
nodes, which equals to four.
The objective of the problem is to compute a distance

matrix Dist of dimension |T | × |T |, where |T | is the num-
ber of nodes in T. This matrix is symmetric, with zeros
in the main diagonal, so we only need to calculate half of
the elements of the matrix. However, to calculate a sin-
gle distance between a pair of nodes we need to sum up
the lengths of all branches connecting the nodes. In the
worst case, we have a tree whose internal nodes form a list
and each internal node has a single leaf node, except the
last one which has two leaves (Monophyly). In this case, if
one of the elements of a pair is the deepest leaf node and
the other is the root of the tree, the computation of the

distance of nodes in the pair takes time O(|T |) to com-
plete. However, the computation of the distance between
two nodes is repeated (|T |2 − |T |)/2 times, thus the time
complexity of the distance matrix calculation becomes
O(|T |3).
We propose an algorithm that avoids traversing entire

paths repeatedly and thus reduces this complexity to
O(|T |2 · log |T |). Our solution first calculates the dis-
tance of every node to the root of the tree. This is done
in a preprocessing phase executed by function PrePro-
cessDistance(). The array distRoot[] keeps the distance
between each node u and the root of the tree. This func-
tion also computes for each node u in the tree the number
of descendants of u. This information is kept in array
descendants[].

Once the distances between the root and the other
nodes in the tree has been computed, the distance
between any two nodes u and v can be computed by
first finding the Lowest Common Ancestor (LCA) of
u and v, i.e., the deepest node in the tree that has
both nodes as descendants. The distance between
the pair of species is then calculated by summing
the distances of each node to the root minus twice
the distance of the LCA to the root, i.e., Dist[u, v]=
distRoot[u]+ distRoot[v]−2 · distRoot[LCA(u, v)]. For
example, let us consider Figure 1 again. The LCA for
nodes 6 and 13 is node 5. The Dist[6, 13] can be com-
puted as distRoot[6]+ distRoot[13]−2·distRoot[5], which
is equal to 2 + 4 − 2. Thus, Dist[6, 13]= 4.
Since the LCA calculation has to be repeated for each

pair of species, this computation has to be performed effi-
ciently. We propose a method to find the LCA of any two
nodes in the tree that performs a decomposition of the
tree into chains of nodes. Our method is based on the
Heavy Light Decomposition, a method that was introduced
by Sleator and Tarjan [15]. Our solution is named Heavy
Chain Decomposition.
To explain the heavy chain decomposition we first need

to present some definitions. A chain from node u to one
of its descendant node u′ is the sequence 〈v0, v1, . . . , vt〉 of
nodes such that, u = v0, u′ = vt and vi is the parent node

Martins et al. BMC Bioinformatics 2013, 14:324 Page 7 of 11
http://www.biomedcentral.com/1471-2105/14/324

of vi+1, for 0 ≤ i ≤ t − 1. There is a chain from each
node u to itself, because in this case the chain is the uni-
tary sequence 〈u〉. We refer to node u as the leader node
of the chain from u to any of its descendant or to itself,
because it is the first node of the chain. We define the cost
of a chain C = 〈v0, v1, . . . , vt〉 as:

Cost(C) =
∑

v∈C
descendants[v] (1)

That is, Cost(C) is the accumulated number of descen-
dants of nodes belonging to chain C. We define the heavy
chain for a node u as the chain C that contains u as its
leader and conforms to the following conditions:

• The last node in C must be a leaf node;
• C is the chain with the highest cost among every

chain from u to leaf nodes.

For example, consider the tree in Figure 3. The value
between parentheses besides the number of a node rep-
resents the number of descendants of that node (i.e. the
value of descendants[] for that node). The cost of the chain
from node 1 to node 9 is given by the following sum:
22 + 14 + 12 + 6 + 2 + 0 which, equals to 56. This chain
is the heavy chain for node 1 since there is no other chain
from node 1 to another leaf node which, has a higher cost.

(2)

(0)

(0)

(0)

(2)

(0)

(0)

(0)

(2)

(2)

(0)

(0)

(0)

(0)

(0)

(2)

(0)

(12)

(14)

(6)

(22)

(6)

(4)

Figure 3 Heavy chain decomposition. The previously expanded
tree after the heavy chain decomposition. The chains produced are:
[1-5-7-8-17-9], [2-23-3], [11-19-20], [21-4], [15-10], [24], [22], [6], [18],
[16], [12], [13].

Given an internal node u, let children[u] be the set of
child nodes of u. We say that a node v ∈ children[u] is the
heaviest child of node u, if for every node x ∈ children[u],
descendants[v]≥ descendants[x] (i.e. the number of
descendants of v is the greatest among the children of u).
One way of obtaining the heavy chain for a node u is to
construct a chain recursively, starting with node u, then
inserting in the chain the heaviest child of u, say v, as the
second node of the chain, then inserting the heaviest child
of v and so forth, until a leaf node is reached. For instance,
the heavy chain of node 1 in Figure 3 can be obtained by
inserting node 1 in the chain. Next, inserting its heaviest
child which is node 5, then inserting the heaviest child of
node 5 which is node 7 and continuing this way until we
reach node 9.
The heavy chain decomposition aims at partitioning the

input tree into a collection of disjoint heavy chains. It is
a recursive procedure that starts by obtaining the heavy
chain for the root of the tree. Whenever it reaches a leaf
node in a heavy chain C it goes back in C. For each node x
in the way back in C, the procedure obtains the next heavy
child of x that has not been inserted previously in any
heavy chain. It then makes this heaviest child the leader
of a new heavy chain and starts constructing the new
heavy chain of this node. Function HeavyChainDecompo-
sition() describes precisely the heavy chain decomposition
method. If there is a tie for the heaviest child of a node,
any node with the greatest number of descendants is
chosen.

Figure 3 shows the result of applying the function
HeavyChainDecomposition() to the tree of Figure 2.
Observe that the twelve heavy chains produced are high-
lighted and that there are heavy chains with only one leaf
node. Also note that every node is associated with one and
only one heavy chain.
Once the heavy chain decomposition is obtained, the

LCA for any two nodes can be found efficiently as

Martins et al. BMC Bioinformatics 2013, 14:324 Page 8 of 11
http://www.biomedcentral.com/1471-2105/14/324

described in function LCA(). This allows us to cal-
culate the LCA in O(log |T |) time, by skipping over
chains rather than considering each branch in the chain
individually.

The whole computation of the distance matrix calcula-
tion is shown in algorithmDistanceMatrixComputation().
The algorithm starts by activating function preProcess-
Distance() which computes for each node u the distance
from u to the root and the number of descendants of u.
This involves traversing the tree T in time O(|T |). Then,
the algorithm invokes function HeavyChainDecomposi-
tion(), which also executes in time O(|T |). Next, the dis-
tance matrix is finally computed. The computation of the
distance matrix (lines 5 to 7 of the algorithm) involves
determining the LCA for each pair of nodes. The time of
this computation is O(|T |2) multiplied by the time neces-
sary to obtain the LCA for each pair of nodes. We have
that the worst case for function LCA() occurs when the
tree is a balanced tree, that is, a treeT with |T | nodes orga-
nized in such a way that T has the smallest height among
all possible organizations of trees with |T | nodes. In this
case, depending on which heavy chain each node of a pair
is, it is possible that function LCA() iterates through nodes
along the height of the tree. Consequently, the execution
time of function LCA() in the worst case corresponds to
the height of the balanced tree which is O(log |T |). Thus,
the total execution time of the distance matrix computa-
tion isO(|T |) +O(|T |) +O(|T |2· log |T |), which equals to
O(|T |2 · log |T |).
Most applications in phylogeny involve computing only

the distance between species that correspond to leaf
nodes in the phylogenetic tree. The distance matrix
containing only leaf nodes is referred to as patristic
distance matrix. Algorithm DistanceMatrixComputation
can be easily adapted to compute patristic distancematrix.
All that is needed is an additional condition in the
test of line 5 of the algorithm, requiring that both a
and b is leaf nodes. If we consider |T�| as the num-
ber of leaf nodes in a phylogenetic tree T with |T |

nodes then, the execution time of algorithm Distance-
MatrixComputation to compute the patristic distance
matrix is O(|T�|2 · log |T |).

Results and discussion
The experiments were conducted using an AMD Phe-
nom II x4 925 2.85 GHz, 4 GB RAM, and the Linux
(Ubuntu 12.04) operating system. Our algorithms were
implemented using the C++ programming language (gcc
4.6.3). We report execution times in seconds, with the
reported numbers being the average of 100 indepen-
dent runs. The execution times consider only processing
time and do not take into account any input/output file
operation. The following phylogenies were used in the
experiments: Phyllostomidae (bats) [16] with 126 species,
Carnivora (mammals) [17] with 209 species, Humming-
birds [18] with 304 species, and Amphibia (amphibians)
[19] with 419 and 510 species (obtained by pruning the
original phylogeny given in [19]).
We do not know of any other tree-expanding tool, as

described in this paper, except for the AddTips R script
used in [7]. Since AddTips uses APE functions [11] on
top of the R environment, there is an expected over-
head due to the use of an interpreted environment. For
the sake of comparison, we generated a shared object
that encapsulates our C++ compiled program so that it
can be dynamically loaded and called from within the R
environment.
Tables 1, 2 and 3 show the execution times, in sec-

onds, when varying the number of species |Tl|, the num-
ber m of trees to be expanded, and the number |S| of
species to be inserted, respectively. The reported times
were obtained with the branch-based insertion method.
We noticed hardly any difference in the results produced
by the node-based insertion method.
While AddTips takes tens of minutes as the number

of species to be inserted increases (Table 1), our solu-
tion takes only a few seconds in the R environment and
a fraction of a second with the standalone C++ version.

Martins et al. BMC Bioinformatics 2013, 14:324 Page 9 of 11
http://www.biomedcentral.com/1471-2105/14/324

Table 1 Tree generation time (seconds) for |S| = 128,
|T�| = (126, . . . , 510) andm = 1, 000

|T�| SUNPLIN-C++ SUNPLIN-R AddTips

126 0.32 4.25 806.80

209 0.36 4.69 1,021.49

304 0.42 5.93 1,691.40

419 0.47 7.35 2,253.90

510 0.52 7.86 2,730.90

Time in seconds for generatingm = 1000 expanded trees, each one receiving
|S| = 128 new species, for different input trees with |T�| = (126,. . . , 510) species
(Phyllostomi, Carnivora, Hummingbirds and Amphibia phylogenies).

Inserting 128 species on a 304 species tree (Table 2) can
take hours using the AddTips script, if the number of gen-
erated trees is high. On the other hand, the same task
can be done in a few seconds with our C++ implementa-
tion and in less than a minute if our R version is used. As
can be seen in Table 3, our implementations can handle
an increase in the number of species to be inserted more
smoothly than the AddTips script.
The distance matrix computation time for real data

phylogenies is shown in Tables 4 and 5, for different
number |T�| of species and number m of trees to be
expanded, respectively. We compare our implementa-
tions (C++ and R) to the APE [11] and Phylocom [13]
tools. APE is a package written in R for the analysis of
phylogenetics and evolution. We used its function cophe-
netic.phylo to calculate the patristic distance matrices.
Phylocom is a well-known open source software (written
in C) for the analysis of phylogenetic community structure
and trait evolution. It calculates various metrics, includ-
ing the patristic distance matrix (option -phydist). The
execution times for APE and Phylocom were obtained
by repeatedly calling their distance matrix calculation
functions.
To calculate the distance matrices associated to 1,000

trees (Table 4), our C++ implementation is at least 20×
faster than APE and 4× faster than Phylocom. When
called from within the R environment our solution is still
competitive, being approximately 10× faster than APE

Table 2 Tree generation time (seconds) for |S| = 128,
|T�| = 304 andm = (1, . . . , 10, 000)

m SUNPLIN-C++ SUNPLIN-R AddTips

1 0.00 0.01 1.75

10 0.02 0.06 17.44

100 0.05 0.59 174.20

1000 0.42 5.93 1,739.80

10000 4.21 59.86 17,412.06

Time in seconds for generating a varying numberm = (1, . . . , 10,000) of
expanded trees, given a single input tree containing |T�| = 304 species
(Hummingbirds phylogeny) and |S| = 128 species to be inserted.

Table 3 Tree generation time (seconds) for
|S| = (32, . . . , 512), |T�| = 304 andm = 1, 000

|S| SUNPLIN-C++ SUNPLIN-R AddTips

32 0.23 5.46 457.21

64 0.31 5.60 856.80

128 0.42 5.93 1,739.80

256 0.70 6.48 3,839.10

512 1.23 7.56 9,487.30

Time in seconds for generatingm = 1000 expanded trees, given a single input
tree containing |T�| = 304 species (Hummingbirds phylogeny) and a varying
number |S| = (32, . . . , 512) of species to be inserted.

and 2× faster than Phylocom. As we increase the num-
ber of trees to be analyzed, the APE implementation can
take tens of minutes (see last row of Table 5), while our
C++ implementation takes less than 1 minute. Phylocom
also shows a good performance but is still 4× slower
than our C++ implementation and 2× slower than our R
solution.
If we consider a large-scale simulation consisting of the

generation of 10,000 expanded trees (last row of Table 2)
and the corresponding distance matrices calculations for
a 304-species tree (last row of Table 5) in the R environ-
ment, the current tools would take hours to complete,
while our solution is able to get the job done in approxi-
mately 2 minutes. The total time can be further improved
if the C++ code is used directly, i.e., without being called
from the R environment.
We also generated random trees to study the behav-

ior of the algorithms with increasing number of taxa.
The computation time in seconds for the C++ code is
shown in Tables 6 and 7 for randomly generated phylo-
genies. The results for expanding and calculating distance
matrices of random trees with 100, 250, 500, 750 and
1,000 species are shown in Table 6. For each tree, 100
species are inserted and the resulting expanded trees are
used in the distance computation algorithm. This pro-
cess is repeated 1,000 times, that is, 1,000 copies are
produced for each input tree. The results are similar to
those using real data phylogenies (see Tables 1 and 4).

Table 4 Distance computation time (seconds) for
|T�| = (126, . . . , 510) andm = 1, 000

|T�| SUNPLIN-C++ SUNPLIN-R APE Phylocom

126 0.55 2.05 39.92 1.33

209 1.58 3.41 90.40 4.06

304 3.85 6.97 150.90 15.89

419 7.89 15.58 211.32 36.49

510 12.11 25.31 289.15 51.69

Time in seconds for the computation ofm = 1000 distance matrices, for
different input trees with |T�| = (126, . . . , 510) species (Phyllostomi, Carnivora,
Hummingbirds and Amphibia phylogenies).

Martins et al. BMC Bioinformatics 2013, 14:324 Page 10 of 11
http://www.biomedcentral.com/1471-2105/14/324

Table 5 Distance computation time (seconds) for
|T�| = 304 andm = (1, . . . , 10, 000)

m SUNPLIN-C++ SUNPLIN-R APE Phylocom

1 0.00 0.01 0.15 0.02

10 0.04 0.08 1.50 0.18

100 0.39 0.70 15.05 1.64

1,000 3.85 6.97 150.90 16.47

10,000 38.51 69.69 1,519.00 164.69

Time in seconds for the computation of a varying numberm = (1, . . . ,10,000) of
distance matrices, each one associated with a |T�| = 304 species (Hummingbirds
phylogeny) expanded tree.

For the 1,000-species tree (last row of Table 6), the gen-
eration of 1,000 expanded (1,100 species) trees takes less
than a second, and when the distance matrix computa-
tion is taken into account, the overall time is less than
a minute. The performance of the algorithms for a vary-
ing number of expanded trees is reported in Table 7. An
input 500-species tree is expanded with 100 species and
the process is repeated 1, 10, 100, 1,000 and 10,000 times.
The distance computation algorithm then processes the
resulting expanded trees, each one containing 600 species.
The results follow the same pattern as shown in Tables 2
and 5, with the distance computation taking much longer
than the expansion phase, as predicted by our complex-
ity analysis. The generation of 10,000 expanded trees
(last row of Table 7) takes less than 5 seconds, while
the distance matrix computations requires no more than
2.5 minutes.

Conclusions
In this article, we proposed a new computational tool
to conduct large-scale phylogenetic comparative simula-
tions that take uncertainty into account. We presented
efficient algorithms and implementations to generate ran-
dom expanded trees and to calculate patristic distance
matrices, both commonly used in large-scale statistical

Table 6 Tree generation and distancematrix computation
time (seconds) for SUNPLIN-C++ using different randomly
generated phylogenies

Tree expansion Distance matrix

|T�| for |T�| for |T�| + |S|
100 0.25 1.98

250 0.32 6.00

500 0.44 14.45

750 0.56 28.12

1,000 0.67 44.80

Time in seconds for generatingm = 1,000 expanded trees and to calculate
distance matrices. The input trees contain |T�| = (100, . . . , 1,000) species
(randomly generated phylogenies) and each one is expanded with the insertion
of |S| = 100 species.

Table 7 Tree generation and distancematrix computation
time (seconds) for SUNPLIN-C++ using a randomly
generated phylogeny

Tree expansion Distance matrix

m for |T�| = 500 for |T�| = 500 + |S|
1 0.01 0.02

10 0.02 0.15

100 0.06 1.43

1,000 0.44 14.45

10,000 4.27 144.27

Time in seconds for generating a varying numberm = (1, . . . ,10,000) of
expanded trees and to calculate distance matrices. The input tree contains
|T�| = 500 species (randomly generated phylogeny) and is expanded with the
insertion of |S| = 100 species.

analyses. The algorithm proposed for generating ran-
dom expanded trees performs a single tree traversal for
each tree being expanded, inserting the provided phy-
logenetic uncertain taxa (PUT) randomly into the par-
tially known tree. The calculation of the patristic distance
matrices is performed using a heavy chain decomposi-
tion, which structures the expanded trees in a way that
avoids some of the calculations along the branches of the
tree. These strategies were implemented using C++ lan-
guage and in R system through loadable shared objects,
and compared to some of the current tools used for sim-
ilar tasks. Our experimental evaluation showed that the
tree expansion proposed could be done in only a few sec-
onds, which is at least three orders of magnitude faster
than the other tool analyzed. Our results also showed
that the distance matrix calculation of our implementa-
tion could be up to one order of magnitude faster than
the other similar tools. Given the wide adoption of the
R package by the biology community, our implemen-
tations allow one to take uncertainty into account in
their analyses, and seamlessly use a number of additional
statistical analyses available in R. Overall, our results
showed that the proposed algorithms and implementa-
tions can play an important role in helping biologists
conduct their comparative phylogenetic simulations with
uncertainty.

Availability and requirements
Project name: SUNPLIN.
Homepage: https://sourceforge.net/projects/sunplin/.
Webserver: http://purl.oclc.org/NET/sunplin/.
Operating system(s): Linux, MacOS and Windows.
Programming language: C++.
Other requirements: sunplin-r requires R.
Windows users need also the Rtools.
License: GNU General Public License version 2.0 (GPLv2).
Any restrictions to use by non-academics: none.

https://sourceforge.net/projects/sunplin/
http://purl.oclc.org/NET/sunplin/

Martins et al. BMC Bioinformatics 2013, 14:324 Page 11 of 11
http://www.biomedcentral.com/1471-2105/14/324

Abbreviations
PUT: Phylogenetic uncertain taxa; MDCC: Most derived consensus clade; PDM:
Patristic distance matrix; LCA: Lowest common ancestor; DFS: Depth first
search.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WSM and TFR conceived the project and contributed to the writing of the
manuscript. WSM and WCC designed the algorithms. WCC implemented and
carried out all computational experiments. TCR and HJL formalized the
algorithms and provided feedback on the software development and
manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the anonymous reviewers for their helpful
comments that greatly contributed to improving the final version of the
paper. They would also like to thank Fabricio Villalobos for useful discussion,
comments and suggestions. WCC thanks CNPq for his PIBIC scholarship. TFR is
supported by CNPq, grants 564718/2010-6, 474774/2011-2, 310117/2011-9.

Author details
1Institute of Informatics, Federal University of Goiás, Goiânia, Brazil.
2Department of Ecology, Federal University of Goiás, Goiânia, Brazil.

Received: 7 June 2013 Accepted: 5 November 2013
Published: 15 November 2013

References
1. Holder M, Lewis PO: Phylogeny estimation: traditional and Bayesian

approaches. Nature Rev Genet 2003, 4(4):275–284.
2. Huelsenbeck JP, Rannala B: Detecting correlation between characters

in a comparative analysis with uncertain phylogeny. Evolution 2003,
57(6):1237–1247.

3. Losos JB: An approach to the analysis of comparative data when a
phylogeny is unavailable or incomplete. Syst Biol 1994, 43:117–123.

4. Rannala B, Huelsenbeck JP, Yang Z, Nielsen R: Taxon sampling and the
accuracy of large phylogenies. Syst Biol 1998, 47(4):702–710.

5. Felsenstein J: Confidence limits on phylogenies: an approach using
the bootstrap. Evolution 1985, 39(4):783–791.

6. Housworth EA, Martins EP: Random sampling of constrained
phylogenies: conducting phylogenetic analyses when the
phylogeny is partially known. Syst Biol 2001, 50(5):628–639.

7. Day JJ, Cotton JA, Barraclough TG: Tempo andmode of diversification
of Lake Tanganyika cichlid fishes. PloS one 2008, 3(3):e1730.

8. FitzJohn RG, Maddison WP, Otto SP: Estimating trait-dependent
speciation and extinction rates from incompletely resolved
phylogenies. Syst Biol 2009, 58(6):595–611.

9. Batista MCG, Gouveia SF, Rangel TF: Spatially explicit analyses
highlight idiosyncrasies: species extinctions and the loss of
evolutionary history. Diversity and Distributions in press.

10. FitzJohn RG: Diversitree: comparative phylogenetic analyses of
diversification in R.Methods Ecol Evol 2012, 3(6):1084–1092.

11. Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and
evolution in R language. Bioinformatics 2004, 20(2):289–290.

12. Fourment M, Gibbs MJ: PATRISTIC: a program for calculating patristic
distances and graphically comparing the components of genetic
change. BMC Evolutionary Biol 2006, 6:1.

13. Webb CO, Ackerly DD, Kembel SW: Phylocom: software for the analysis
of phylogenetic community structure and trait evolution.
Bioinformatics 2008, 24(18):2098.

14. Olsen G: “Newick’s 8:45” Tree Format Standard. 1990. [http://
evolution.genetics.washington.edu/phylip/newick_doc.html]

15. Sleator DD, Endre Tarjan R: A data structure for dynamic trees.
J Comput Syst Sci 1983, 26(3):362–391.

16. Datzmann T, von Helversen O, Mayer F: Evolution of nectarivory in
phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera:
Mammalia). BMC Evol Biol 2010, 10:165–179.

17. Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer
R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of
present-day mammals. Nature 2007, 446(7135):507–512.

18. McGuire JA, Witt CC, Altshuler DL, Remsen J: Phylogenetic systematics
and biogeography of hummingbirds: Bayesian andmaximum
likelihood analyses of partitioned data and selection of an
appropriate partitioning strategy. Syst Biol 2007, 56(5):837–856.

19. Alexander Pyron R, Wiens JJ: A large-scale phylogeny of Amphibia
including over 2800 species, and a revised classification of extant
frogs, salamanders, and caecilians.Mol Phylogenet Evol 2011,
61(2):543–583.

doi:10.1186/1471-2105-14-324
Cite this article as: Martins et al.: SUNPLIN: Simulation with Uncertainty for
Phylogenetic Investigations. BMC Bioinformatics 2013 14:324.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Tree expansion
	Distance computation

	Results and discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

