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Abstract

Because of inadequate knowledge and funding, the use of biodiversity indicators is often suggested as a way to support
management decisions. Consequently, many studies have analyzed the performance of certain groups as indicator taxa.
However, in addition to knowing whether certain groups can adequately represent the biodiversity as a whole, we must
also know whether they show similar responses to the main structuring processes affecting biodiversity. Here we present an
application of the metacommunity framework for evaluating the effectiveness of biodiversity indicators. Although the
metacommunity framework has contributed to a better understanding of biodiversity patterns, there is still limited
discussion about its implications for conservation and biomonitoring. We evaluated the effectiveness of indicator taxa in
representing spatial variation in macroinvertebrate community composition in Atlantic Forest streams, and the processes
that drive this variation. We focused on analyzing whether some groups conform to environmental processes and other
groups are more influenced by spatial processes, and on how this can help in deciding which indicator group or groups
should be used. We showed that a relatively small subset of taxa from the metacommunity would represent 80% of the
variation in community composition shown by the entire metacommunity. Moreover, this subset does not have to be
composed of predetermined taxonomic groups, but rather can be defined based on random subsets. We also found that
some random subsets composed of a small number of genera performed better in responding to major environmental
gradients. There were also random subsets that seemed to be affected by spatial processes, which could indicate important
historical processes. We were able to integrate in the same theoretical and practical framework, the selection of biodiversity
surrogates, indicators of environmental conditions, and more importantly, an explicit integration of environmental and
spatial processes into the selection approach.
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Introduction

Planning for biodiversity monitoring and conservation strategies

is challenging, not only because biodiversity is threatened by

multiple factors (e.g., habitat fragmentation, climate change, and

invasive species [1]), but also because biodiversity itself is

maintained by multiple factors [2]. Therefore, conservation

strategies should ideally be based on information derived from

varying levels of complexity. However, due to the paucity of funds,

time, and knowledge, and because it is not possible to survey the

distribution of all organisms, the use of biodiversity indicators and

surrogates is often suggested as a way to reconcile these opposing

forces of complexity and practicality [3].

The use of biological indicators is essential in tropical regions,

where estimates of species richness are uncertain. Also, these

regions are plagued by the lack of knowledge of species’ identity

and geographical distribution, the so-called Linnean and Walla-

cean shortfalls, respectively [4,5]. The rationale for using

indicators is to reduce the complexity associated with biodiversity

into practical, less costly, and more quickly obtainable measures

that can be used for biodiversity conservation and monitoring.

This approach is mainly based on two key assumptions: (i) that an

indicator group represents a major component of the entire

biodiversity of an area [6], and (ii) that an indicator responds to the

same ecological processes that generate and maintain overall

biodiversity [7]. To date, most studies on the performance of

surrogacy approaches have addressed the first assumption, and

have analyzed the effectiveness of using the species richness of

certain groups as indicators of overall biological diversity and

environmental changes [8]. Within these groups, several have

been regarded as good indicators, including butterflies, some

aquatic insects, birds, and primates [9–11]. However, indicator-

species richness is not informative about patterns of community

composition within and between assemblages [12]. Thus, there has

been a shift toward the use of multiple indicators [13],

complementarity-based analyses [14], and more recently, multi-

variate methods aiming to measure patterns of community

concordance among different taxonomic groups [15,16]. Com-
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munity concordance (or congruence) exists when two or more

groups of taxa exhibit similar spatial patterns of variation in

community structure. When a strong pattern of congruence is

found, one can use a given group as a surrogate for others. The

resources saved could then, for example, be used to increase the

spatial coverage of a biodiversity inventory program [17].

One fundamental problem of all these surrogacy approaches is

the lack of information on whether indicator taxa respond

similarly to the main processes that structure overall biodiversity.

A recent synthesis suggested the use of the metacommunity

framework to study these structuring processes [18]. A metacom-

munity consists of groups of local communities that are linked by

dispersal of multiple, potentially interacting species, and are

structured by both environmental and spatial processes [19].

Metacommunity theory is organized in the following four

frameworks, depending on the relative influence of these processes

on community structure: species sorting, patch dynamics, neutral

model, and mass effects [18]. These frameworks, however, may

represent processes that act simultaneously in some communities,

and cannot be viewed independently of each other, but rather as

points along a continuum [20]. At one extreme, it is assumed that

individuals are identical in their fitness, and that variation in

community composition is driven mainly by stochastic processes

(the neutral model [21]); and at the other extreme, variation in the

metacommunity is determined by the responses of different species

to environmental gradients. The other two frameworks can be

seen as special cases of the species sorting framework [22]. In

patch dynamics, the interacting species differ from each other in

their abilities as either good competitors or good colonizers within

a uniform environment [18]. Within a heterogeneous environ-

ment, strong priority effects caused by dispersal limitation can lead

to different and stable communities. For the mass effects

framework, intensive dispersal allows species to exist at sites that

are normally considered marginal or outside of their environmen-

tal range [18]. Following this reasoning, one could hypothesize

that some communities are composed of groups of species that

conform to environmental processes, and others are more

influenced by spatial processes (e.g., [23,24]). Despite the recent

interest in empirical tests of metacommunity theory (see review by

Logue [25]), there is still unexploited potential for the metacom-

munity approach to inform conservation approaches [26]. We

argue that beyond analyzing whether certain taxonomic groups

can be used as indicators of overall biological diversity, we need to

know whether indicator taxa also show similar responses to the

main structuring processes affecting the entire metacommunity.

In this study, we evaluated the effectiveness of indicator taxa in

representing spatial variation in the macroinvertebrate community

composition in Atlantic Forest streams, and the processes that

drive this variation. We focused on analyzing whether some

groups respond better to environmental factors and others are

more influenced by spatial processes, and on how this can help in

deciding which indicator taxa should be used in biomonitoring

programs. We specifically investigated (i) whether indicator taxa

are good surrogates of the variation in community composition of

entire metacommunities. More importantly, we also investigated

(ii) whether indicator taxa respond congruently to structuring

processes affecting the entire metacommunity, and (iii) whether the

performance of an indicator taxon depends on its identity or on

the amount that it contributes to the completeness of the dataset.

This is worthwhile because previous studies suggested that, after

controlling for the effect of species richness, random subsets of

species may perform better than indicator taxa [27]. Therefore,

comparing the performance of predetermined indicators against

random subsets of taxa in representing biological diversity is

a necessary step toward the acceptance of their effectiveness [28].

Finally, if random subsets perform better than classical indicator

taxa, we would be able to (iv) define potential indicator groups by

choosing those subsets that best respond to environmental

gradients.

Methods

Study Area and Dataset Analyzed
The dataset that we used was extracted from the ‘‘Macro-

invertebrate database’’ compiled by the research group in aquatic

entomology of the Universidade Federal de São Carlos, Brazil (see

details in [11,29,30]). Thirty-nine sites located in the Atlantic

Forest (state of São Paulo; see [31] for a discussion on the

ecological importance and high level of threat of this biome) were

selected. Of these, 20 were located in protected areas and 19 in

areas fragmented by agricultural activities.

This dataset includes information on abundances of genera,

together with local and landscape environmental variables.

Sampling and measured environmental variables are detailed

elsewhere [11]. Although several studies have focused on how local

and landscape environmental factors influence the distribution and

abundance of macroinvertebrates in streams [11,32], there is no

consensus about which scales and factors are the most influential,

especially for tropical streams [30,33]. Therefore, we included

predictors from different scales to increase the probability that at

least some variables might account for different species’ niche

requirements. Within each scale (i.e., local, landscape or regional),

these variables are considered important determinants of aquatic

macroinvertebrate distribution in streams [34,35]. Examples

include physical (water temperature, stream depth and width)

and chemical (pH, dissolved oxygen, electrical conductivity)

variables, as well as sediment texture (percentage of silt, sand

and gravel), landscape characteristics (percentage of the watershed

covered by forest or sugar cane) and regional variables (altitude,

rainfall; details in Table S1). Most specimens were identified to

genus level, bearing in mind the limited taxonomic knowledge

available for Neotropical fauna. Although we used genus-level

data, many studies on stream macroinvertebrates have demon-

strated that general community patterns hold for different

taxonomic resolutions (e.g., species, genus, and family levels:

[36] and references therein). The reliability of the higher-taxa

approach to detect general ecological patterns depends on how

species within higher taxa respond to environmental gradients. If

congeners are ecologically similar to one another, ecological

patterns can be detected using genus-level resolution [37]. In

general, we believe that our results would be qualitatively similar if

we had utilized species-level data (see also [20,38]).

From the full dataset, which contained 242 genera, we chose

five taxa to be used as predetermined indicator groups in our

analyses: chironomids (non-biting flies; 52 genera), ephemeropter-

ans (mayflies; 26 genera), trichopterans (caddisflies; 34 genera),

and coleopterans (beetles; 54 genera). For different reasons, these

taxa are usually regarded as reliable indicators in biomonitoring of

freshwater ecosystems [39]. The remaining taxa include mainly

odonates, lepidopterans, plecopterans, other dipterans, and

annelids. Although chironomids are one of the most speciose

groups in any tropical aquatic environment, they also require

difficult and time-consuming analysis for identification to genus

level or lower. Also, there is much debate on the importance of

including chironomid data in biomonitoring and conservation

programs [40]. On the other hand, ephemeropterans, trichopter-

ans, and coleopterans are believed to be good indicators of water

quality, and are more easily and quickly identified [39]. Although

Effectiveness of Indicator Taxa in Metacommunities
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stoneflies (Plecoptera) are also used as indicator taxa in many

studies, we did not consider this group individually in our analyses

because of the low number of genera (7) in our dataset. We

performed our analyses with these groups individually, and also

with some of them combined: EPT (ephemeropterans, plecopter-

ans and trichopterans; 67 genera) and EPTC (ephemeropterans,

plecopterans, trichopterans, coleopterans; 120 genera). These

groups, especially EPT, have been used extensively in biomonitor-

ing programs in North America, Europe and Australia [39,41].

Spatial Predictors
We created spatial variables following Borcard et al. [42]. This

approach, formerly called Principal Coordinates of Neighbor

Matrices (PCNM), is similar to other spatial eigenfunction analyses

that are now called MEM (Moran’s Eigenvector Maps [43]).

MEM were based on a Euclidean distance matrix between

sampling sites. This distance matrix was then submitted to

a Principal Coordinates Analysis, in which axes (eigenvectors)

are linearly uncorrelated [44]. From the entire set of eigenvectors,

we selected those associated with positive eigenvalues and with

significant Moran’s I because they represent positive spatial

autocorrelation [44]. These eigenvectors (from now on termed

spatial variables) were used as explanatory variables in our

analyses (see [42] for further detail). Spatial variables associated

with high eigenvalues represent broad-scale patterns of relation-

ships among sampling sites, whereas those associated with low

eigenvalues represent fine-scale patterns [44]. There has been

recent criticism on the use of MEM in canonical ordinations,

especially regarding using them as a direct representation of

dispersal limitation [45,46]. Thus, although we estimated both

pure environmental and spatial components in variation partition-

ing (see details below), our main intention was to use spatial

variables as a way to control for inflated type I error in assessing

the environmental component. That is why we used MEM and

interpreted pure spatial components cautiously.

Statistical Analysis
Hypothesis 1: Indicator taxa are reliable surrogates of the

entire metacommunity composition. To evaluate the con-

gruence (similarity in patterns of community composition) between

predetermined indicator taxa and the entire metacommunity, we

computed two Principal Coordinates Analyses (PCoA), one for the

indicator taxa and another for the entire metacommunity. All

PCoAs were computed using the Bray-Curtis dissimilarity as the

distance measure. The configurations of the site scores on the

ordination axes represent the main patterns in community

composition. We then compared the ordination patterns generat-

ed by a given indicator taxa and the entire metacommunity with

a Procrustes rotation analysis ([47]; see step 1 in Figure S1). In

Procrustes analysis, a rotational-fit algorithm is used to minimize

the sum of squared residuals between the pair of matrices under

comparison [48]. The resultant statistic, called m2, was trans-

formed into the r statistic (r= square-root of 1-m2) and this last

statistic is a measure of the level of community congruence,

indicating the strength of the match between ordinations. For this

comparison, we used the first three PCoA axes, which accounted

for a substantial proportion of the variation in the data (Table S2).

The statistical significance of each r statistic was assessed by

randomization tests (999 permutations [48]).

Hypothesis 2: Indicator taxa respond to the same factors

that affect the entire metacommunity. We evaluated

whether the response matrices, defined either for the metacom-

munity or for each of the predetermined indicator groups, were

correlated similarly with environmental and spatial predictors. For

this task, we also used Procrustes analysis, but instead of using site

scores derived from a PCoA, we computed two-dimensional site

scores that are associated with (or constrained by) ‘‘pure

environmental’’ [E/S], and ‘‘pure spatial’’ [S/E] components

from a partial redundancy analysis (pRDA [49]). Whereas with the

PCoA we obtained the main patterns in community composition

for this metacommunity, with the RDA scores we obtained the

main patterns in community composition constrained by either

environmental or spatial variables (step 2 in Figure S1).

A second way to measure the congruence among patterns

associated with structuring processes is to examine the relative

importance of environmental and spatial variables in driving

variation in community composition, of either the entire

metacommunity or the indicator taxa. We used variation

partitioning [50,51] to estimate and test the fractions of total

variation explained purely by environmental variables, and purely

by spatial variables (step 3 in Figure S1). Partial RDA is

a multivariate extension of multiple linear regression with

corresponding R2 that measures the amount of variation that

can be attributed exclusively to each set of explanatory variables

included in a RDA model. The different resulting components are:

total explained variation [E+S], environmental variation [E],

spatial variation [S], environmental variation without a spatial

component [E|S], and spatial variation without the environmental

component [S|E] (for details see [51]). For this analysis, the

response variables were the biological composition, and the

explanatory groups of variables were the environmental and

PCNM variables. We transformed the compositional matrices

using Hellinger transformation [52] prior to analyses. The results

of the variation partitioning were based on adjusted fractions of

variation [51]. Significance levels were computed by randomiza-

tion tests (999 permutations [49]).

Hypothesis 3: The performance of indicator taxa depends

on the amount that they contribute to the completeness of

the community data. To investigate whether the performance

of a predetermined indicator taxon depends more on its intrinsic

indicator ability than on the number of genera that it possesses (for

instance, an indicator taxon can be regarded as a good indicator

simply because its number of genera approaches the total number

of genera in the entire metacommunity), we repeated the above

analyses using null models. In these null models, we created 1,000

subsets by selecting a given number of genera (from 10 to 240 with

intervals of 10) at random from the metacommunity (see the total

number of possible combinations in Table S3). Thus, for each of

the 1,000 datasets generated for each number of genera (with sites

on the lines, and a given number of randomly selected genera from

the genus pool in the columns), we repeated the analysis of

congruence described above (i.e., PCoA followed by Procrustes

analysis). Also, we compared the Procrustes r obtained with the

analysis of a particular indicator taxon matrix (e.g., ephemer-

opterans with 26 genera, trichopterans with 34, and so on for the

other groups) with the distribution of 1,000 r-values obtained with

the Procrustes analysis of the random subsets with the same genus

richness (Figure S1). Similarly, we used the same random subsets

as response matrices in a partial RDA. Thus, we analyzed the

1,000 datasets (for each genus richness) with a partial RDA, and

used the estimated fractions to create the reference distributions

(one for each fraction). These analyses allowed us to test the

surrogacy power and the responsiveness to environmental

gradients of particular indicator taxa when compared to random

subsets with the same number of genera.

The above analyses can be interpreted, in general, as follows.

Although Procrustes’ r may be statistically significant, it may not

represent the highest value of congruence that can be obtained

Effectiveness of Indicator Taxa in Metacommunities
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within a community. Similarly, although a pure environmental

component [E/S] may be statistically significant, indicating the

importance of environmental gradients, other subsets with the

same number of genera may respond more strongly than the

indicator taxon to these environmental gradients. However, these

analyses do not indicate that a certain predetermined indicator

taxon is not able to represent the ordination patterns that are

generated by the entire metacommunity, or that this group is

unrelated to environmental gradients. The analyses do indicate

that this group may be the best possible compared to other subsets

from the metacommunity. All analyses were performed in the R-

language environment [53].

Results

Some groups (e.g., chironomids) showed higher congruence in

community similarity with the entire metacommunity (i.e., the full

dataset) than others (e.g., ephemeropterans), but all correlations

were higher than 0.5 (Figure 1A). Except for trichopterans and

chironomids, most random subsets had a higher correlation with

the entire metacommunity than with indicator taxa with exactly

the same number of genera (Figure 2). An interesting finding here

was that by using a relatively small number of genera, for example

70 genera chosen randomly from 242 (less than 1/3 of the total), in

general, we would have a strong chance of reaching a correlation

higher than 0.8, and in most cases higher than the congruence of

the predetermined indicator taxon (Figure 1A).

The analysis of constrained ordination axes (resulting from

pRDA) yielded similar results to those found in the previous,

unconstrained analysis (Figure 1B–1C). Except for Trichoptera

and Ephemeroptera, most random subsets had a higher correla-

tion with the entire metacommunity than did the indicator taxon

with an equivalent number of genera (Figure 3). In other words,

the constrained ordination scores obtained with the use of random

subsets were more closely correlated with the constrained

ordination scores obtained with the use of the entire metacom-

munity as a response matrix, than with those scores derived from

a particular indicator taxon.

Adjusted coefficients of determination (R2
adj) resulting from

pRDA varied from 0 to almost 0.6 for the pure environmental

component, and from 0 to around 0.4 for the pure spatial

component (Figure 4A–4B). We found the highest amounts of

variation explained for trichopterans: R2
adj = 0.31 for the pure

environmental component [E/S] and R2
adj = 0.24 for the pure

spatial component [S/E]. Also, Trichoptera had a higher corre-

lation with the entire metacommunity than most random sets with

an equivalent number of genera (Figure 5). Two general patterns

emerged when we used the random subsets as response matrices in

variation partitioning. First, the average amount of variation

explained (ca. 20% for [E/S] and 10% for [S/E]) was unrelated to

the number of genera, and similar to that obtained for the

metacommunity as a whole (Figure 4A–4B). Second, for random

subsets with fewer genera, especially 10 (4.12% of the total

number of genera), we found the highest amount of variation

explained, but the results were also more variable.

Considering this result, we decided to scrutinize in detail the

1,000 random subsets composed of 10 genera (first boxplot in

Figure 4A). We found that in 340 random subsets (of 1,000), the

variation in community composition was not significantly

explained by the pure environmental component [E/S]. We also

found that in 78 subsets (of 1,000), the amount of variation in

community composition significantly explained by the pure

environmental component [E/S] was higher than 40% (ranging

from 40 to 58%). These subsets are potentially the best ones for

use as indicators (hereafter called species sorting sets), as their

composition varied widely according to the environmental

gradients.

What aspects make those 78 random subsets good indicators?

Was it because of the presence of certain genera, from one of the

predetermined taxonomic groups? To answer these questions, we

used a Kruskal-Wallis analysis to test whether the number of times

in which a given genus was classified as belonging to species

sorting sets depended on the taxonomic group (chironomids,

ephemeropterans, plecopterans, trichopterans, coleopterans, or

others). We found that whether a subset could be characterized as

a species sorting set did not depend on the taxonomic group

(Kruskal-Wallis’ H=2.33; P=0.802). The use of different subsets

of taxa from the metacommunity inevitably altered the number of

local communities used in the analyses. However, we found no

relationship between the number of sites (of subsets composed of

the fewest genera) and the adjusted R2 values (r=20.007;

P=0.879). Therefore, we believe that our results were robust for

the spatial structures of local communities used in the analyses.

Finally, we also evaluated whether patterns of commonness and

rareness influenced these results, by inspecting the rank-abun-

dance plots of, for example, 20 species sorting sets (Figure S2). We

verified that these subsets well represented the general pattern

found elsewhere, where many taxa were rare and few taxa were

common. These results indicate, first, that higher taxonomic

groups that are usually used as ecological indicators did not

predominate in any of the subsets (as indicated by the Kruskal-

Wallis test); and second, our inferences are not biased toward

common taxa.

Discussion

Due to severe human-induced impacts, ideally, all existing

species in these environments should be regarded as targets for

conservation and monitoring actions. The Brazilian Atlantic

Forest is one of the most emblematic examples of this challenge,

as this biome ranks among the top five biodiversity hotspots in the

world. Taking our dataset as an example, if there were no

financial, practical or personal constraints, we could recommend

to decision-makers that all the 242 macroinvertebrates that we

analyzed here should be monitored across these streams. However,

this is not feasible because of the shortage of time, money, and

personnel with taxonomic skills. Opportunely, our results indicate

that highly diverse groups can be monitored using a few selected

groups. A relatively small subset (a number between 1/4 and 1/3

of the total) would represent around 80% of the total variation in

metacommunity composition. By using this subset, we would also

obtain similar environmental and spatial models to those obtained

by using the entire metacommunity. Surprisingly, this subset does

not have to be composed of certain predetermined (in general,

taxonomically defined) indicator taxa; on the contrary, it could be

defined with an intensive computational search. Moreover, we

show that certain random subsets composed of even fewer genera

(around 5% of the total richness) could perform much better in

responding to environmental (species sorting sets) and spatial

gradients than the indicator taxa.

The number of taxa is expected to influence the effectiveness

of indicator groups [28]. In order to avoid analytical artifacts

when selecting bioindicators, it is important to evaluate the

performance of indicator groups by taking the number of taxa

into account. For example, except for Trichoptera, all

commonly used indicator taxa showed levels of concordance

with the entire metacommunity that were lower than or similar

to (chironomids) random subsets, after controlling for the effect

Effectiveness of Indicator Taxa in Metacommunities
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of genus richness. The performance of indicator groups will

depend on the patterns of ecological complementarity between

species. Therefore, groups composed of taxa that differ in their

ecological requirements are expected to perform better than

others. A high performance of Trichoptera can be explained by

its restricted ecological niches in terms of feeding types [54] and

Figure 1. Congruence between predetermined indicator taxa and random subsets with the entire metacommunity. (A) In the main
patterns in community composition; (B) Constrained by environmental variables; (C) Constrained by spatial variables. Gray triangle: ephemeropterans;
gray square: trichopterans; inverted gray triangle: chironomids; black triangle: coleopterans; black square: EPT; inverted black triangle: EPTC.
doi:10.1371/journal.pone.0043626.g001

Effectiveness of Indicator Taxa in Metacommunities
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Figure 2. Congruence in community composition between each predetermined indicator taxon (indicated by the arrow) and
between the 1,000 random subsets with the entire metacommunity. Random subsets have the same genus richness as the predetermined
indicator taxon under comparison.
doi:10.1371/journal.pone.0043626.g002

Effectiveness of Indicator Taxa in Metacommunities
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Figure 3. Congruence in environmentally constrained ordination axes (extracted from a pRDA) between each predetermined
indicator taxon (indicated by the arrow) and between the 1,000 random subsets with the entire metacommunity. Random subsets
have the same genus richness as the predetermined indicator taxon under comparison. Results regarding the congruence in spatially constrained
ordination axes were very similar to that shown in this figure, and are not presented because of considerations of space.
doi:10.1371/journal.pone.0043626.g003

Effectiveness of Indicator Taxa in Metacommunities
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adaptations to environmental gradients [55]. The group has

been suggested to reflect the intensity of different stressors on

aquatic ecosystems, and has been used as indicators in many

biomonitoring programs around the world [54]. Moreover,

trichopterans have other features that make them reliable

biological indicators (good implementation characteristics). For

example, the taxonomy of tropical Trichoptera is relatively well

resolved (Trichoptera Checklist Coordinating Committee: Tri-

choptera World-Checklist; http://entweb.clemson.edu/

database/trichopt/), and a relatively high number of trichop-

teran species is likely to be present per stream [56].

The responses of the entire metacommunity, indicator taxa, and

random subsets to environmental and spatial gradients were

partially similar to the results discussed above. Random subsets

performed better in representing the constrained ordinations of the

entire metacommunity than did the indicator taxa with similar

numbers of genera. This was unexpected, because EPTC includes

taxa that are believed to be good indicators of water quality, and

are extensively used in biomonitoring programs in North America,

Europe and Australia [39,41]. These findings reinforce our view

that it is the combination of certain taxa, independent of their

taxonomic group, which makes a good indicator group. An ideal

indicator group for environmental monitoring should have the

potential to discriminate human impacts from different levels of

natural variability. It is unlikely that any given taxonomic group

will satisfy all these requirements in different threat scenarios. For

instance, the streams that we investigated are impacted by

conversion of the natural habitat for different uses, such as

Eucalyptus and sugar-cane plantations and cattle ranching. Because

close relatives tend to be ecologically similar [57] and because we

were dealing with a broad taxonomic representation, as we

increased the number of genera in a random subset, we also

increased the probability of including genera from different

taxonomic groups, with different environmental requirements

and, therefore, more responsive to different environmental

gradients. These random subsets with a larger number of less

closely related genera would also be the most complementary

subsets, showing the highest levels of concordance with the entire

metacommunity. Future studies should investigate whether high

concordance between the entire metacommunity and random

Figure 4. Adjusted canonical coefficients of determination associated with the ‘‘pure effects’’ of predictors on the predetermined
indicator taxa and random subsets. (A) Pure environmental fraction; (B) Pure spatial fraction. Gray triangle: ephemeropterans; gray square:
trichopterans; inverted gray triangle: chironomids; black triangle: coleopterans; black square: EPT; inverted black triangle: EPTC.
doi:10.1371/journal.pone.0043626.g004
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Figure 5. Adjusted canonical coefficients of determination associated with the ‘‘pure effects’’ of environmental predictors on each
predetermined indicator taxon (indicated by the arrow) and random subsets. Random subsets have the same genus richness as the
predetermined indicator taxon under comparison. Results regarding ‘‘pure effects’’ of spatial predictors were very similar to the one shown in this
figure, and are not presented because of considerations of space.
doi:10.1371/journal.pone.0043626.g005
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subsets also appear in datasets with a narrow taxonomic

representation.

Understanding the response of biodiversity to environmental

and spatial gradients is fundamental for planning sound biological

monitoring programs and for the establishment of protected areas.

We showed that more than 30% of the variation in community

composition of trichopterans was explained by environmental

factors and 24% by spatial variables; whereas for the entire

metacommunity and other indicator taxa, these values were

around 20% and 10% respectively. Although, on the one hand,

these findings only reinforce the view that both deterministic and

stochastic processes drive variation in community composition

[25], on the other hand, these findings suggest the possibility of

using groups of taxa that better respond to these processes for

monitoring and conservation purposes. The analysis of the

random subsets composed of 10 genera showed that some subsets

had a pure environmental component close to 60% (species sorting

sets), whereas others showed no response to the environmental

gradient. The theoretical scope that underpins the use of indicators

was derived from a deterministic view of ecology, particularly

based on the niche concept. Among current metacommunity

frameworks, the species sorting model represents this deterministic

view, in which metacommunity structure is determined by species’

responses to environmental factors; whereas the neutral model

represents the other extreme, in which metacommunity structure

is mainly determined by dispersal limitation, speciation and

ecological drift, rather than by ecological differences among

species [20]. Integrating these ideas into the scope of environ-

mental monitoring, we suggest that in a continuum between

environmental and spatial processes, the closer to the environ-

mental extreme, the better the indicator. However, our approach

can be refined further by searching for taxa – within the species

sorting sets – that have specific relationships with one or another

environmental variable, as this search can be informative when

one is interested in selecting indicators for a particular impact. At

the moment, it is important to emphasize that these subsets are

composed of both common and rare taxa, and that there is no

predominance of any particular higher taxon.

On the other hand, the message becomes less clear when we

move to a discussion about indicators and spatial variables.

Although the recognition of dispersal limitation as a fundamental

process in structuring metacommunities has contributed to a better

understanding of biodiversity patterns [25] and species extinctions

after habitat loss [58], there is still limited discussion about the

implications of this process for management, conservation and

biomonitoring [26,59]. Moreover, the only available method to

include space in canonical ordinations (Moran’s Eigenvector Maps

– MEM [43]), either as a way to understand spatial related

processes or as a way to filter out spatial variation, has been the

focus of recent criticism [45,46]. We suggest three implications

that need careful investigation, bearing in mind the current

limitations of MEM. First, if the random subsets that did not

respond to the environmental gradient are mainly affected by

dispersal limitation, then they may be very susceptible to the

spatial configuration of habitat patches (spatial component per se

[26]). In that case, these sets would provide a powerful indication

that, although different parts of the landscape are environmentally

equivalent, due to historical, regional, or random processes, they

support unique community compositions, and this uniqueness in

itself could be a reason for conservation. Second, when one is

interested in selecting indicators of habitat conditions, then

monitoring these subsets (i.e., those unrelated to environmental

gradients) is unnecessary, as they only introduce noise into the

analysis of community-environment relationships. Although we

cannot exclude the possibility that the lack of relationship between

these groups and the environmental gradient may simply reflect

the fact that some environmental variables are missing, from our

experience in working with Atlantic Forest streams

[11,24,29,30,33] and based on reviews on the subject [34,35],

most of the important environmental variables were measured.

Third, spatial processes can further negatively affect the perfor-

mance of indicators. For example, intense dispersal (i.e., mass

effects) can mask the influence of environmental factors on species

distribution (e.g., [60]). The mass-effects paradigm assumes that

frequent dispersal from a source habitat enhances the persistence

of a species in a sink habitat from which it would otherwise be

absent [20]. In short, although mass effects are mainly documen-

ted in experimental systems (but see [61]), their occurrence could

lead to inaccurate use of indicator taxa in a biomonitoring

program.

Previous attempts to use subsamples in biomonitoring were

based on counting a minimum number of specimens [39] –

a laboratory procedure in which one counts and identifies only

a random subsample taken from the entire sample during the

sorting process. Our method focuses on a random subset of taxa

taken from the entire metacommunity. Thus, all genera had the

same chance of being chosen. Although it could be initially time-

consuming, because it involves the identification of the entire

metacommunity before establishing the best subsets, it has the

advantage of avoiding phylogenetic autocorrelation and capturing

complex information about variation in community composition

(i.e., beta-diversity). The numbers that we found in our study –1/4

of the entire metacommunity for biodiversity surrogacy and

random subsets of 10 genera for environmental assessment – are

not cutoff points for any biomonitoring program. Each program

should run its own analysis, because the output will be dependent

on the regional pool. Thus, to apply the strategy that we are

proposing, one should first perform a comprehensive biological

survey of the region of interest. Second, after running the protocol

described above, one can select the subset of taxa that best fulfills

one of the objectives targeted in this paper (i.e., subsets

representing ordination patterns depicted by the entire metacom-

munity or responding to major environmental gradients). Setting

clear objectives is a fundamental step in the development of an

effective monitoring program [62]. For instance, let us suppose

that a high level of community congruence is required (i.e., the

relationship between an indicator group and the entire metacom-

munity should be close to 1.0). According to our protocol, one

should select approximately 120 genera, and because different

combinations of 120 genera are possible, one can select, for

surrogacy purposes, the combination (i.e., a genera list) that

maximizes the match with the entire metacommunity. Interest-

ingly, our approach offers flexibility in terms of choosing the best

subset, because different combinations of taxa might be similarly

effective in representing the entire community. We must

emphasize that the use of our protocol, besides the inevitable

work of sorting and counting samples, comes with the extra

(computational) cost of searching for the best subsets. We envisage

that in the long term this cost can be rewarding, given the small

amount of time and expertise needed to analyze the samples. We

advise, however, that from time to time a new complete evaluation

should be carried out to assess the effectiveness of a particular

subset, considering that as new data become available the goals of

monitoring programs might change [62]. Thus, in terms of

rationality and implementation, our approach seems to be

adequate to accomplish the purpose of selecting bioindicators –

it can be considered an effective method. However, studies of cost-

effectiveness and cost-efficiency are necessary to know whether it
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performs in the best possible way and with acceptable financial

and personnel costs in comparison with other approaches [63]. In

addition, it would be highly desired, especially considering the

transferability of our approach, if we could perform a temporal

verification of the whole procedure using the same landscape.

In conclusion, the approach that we propose here, exemplified

by macroinvertebrates in Atlantic Forest streams, places in the

same theoretical and practical framework the selection of

surrogates of biodiversity, indicators of environmental conditions,

and, more importantly, it explicitly incorporates environmental

and spatial processes into the selection approach. It recognizes that

both the existence and lack of community-environment relation-

ships, and relationships with spatial variables are relevant because

they provide different information about the phenomenon of

interest. Also, our work adds to the growing efforts [25] to apply

the theoretical foundations of the metacommunity perspective.
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Figure S1 Diagram showing the step-by-step statistical
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ephemeropterans, trichopterans, coleopterans, EPT or EPTC; R
represents a matrix of genera randomly selected from M. B
represents a matrix computed using the Bray-Curtis dissimilarity

as the distance measure for each of the previous matrices BM, BI,

BR. PCoA: Principal Coordinates Analysis. Step 2: E represents

a matrix of environmental predictors; RDA: redundancy analysis.
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components: [a] unique fraction of variation explained by

environmental predictors, [c] unique fraction of variation

explained by spatial predictors, [b] the common fraction of
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residual fraction of variation.
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