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Multipartite entanglement is very poorly understood despite all the theoretical and experimental
advances of the last decades. Preparation, manipulation, and identification of this resource is crucial for
both practical and fundamental reasons. However, the difficulty in the practical manipulation and the
complexity of the data generated by measurements on these systems increase rapidly with the number of
parties. Therefore, we would like to experimentally address the problem of how much information about
multipartite entanglement we can access with incomplete measurements. In particular, it was shown that
some types of pure multipartite entangled states can be witnessed without measuring the correlations
[M. Walter et al., Science 340, 1205 (2013)] between parties, which is strongly demanding experimentally.
We explore this method using an optical setup that permits the preparation and the complete tomographic
reconstruction of many inequivalent classes of three- and four-partite entangled states, and compare
complete versus incomplete information. We show that the method is useful in practice, even for nonpure
states or nonideal measurement conditions.
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I. INTRODUCTION

According to quantum mechanics, the state of a system
can be represented by a linear combination of different
eigenstates of an observable. This fact, known as the
superposition principle, prevents us from constructing a
representation of physical reality based on our classical
intuition. When applied to composite systems, this principle
leads to the fundamental concept of entanglement.
Essentially, when quantum objects interact, they can no
longer be described by individual independent states. Rather,
they are instead a superposition of tensor product states. In
other words, entangled parties cannot be treated as inde-
pendent systems with well-defined physical properties [1].
On a fundamental level, entanglement is a geometric

consequence of the replacement of the classical phase space
by the quantum projective Hilbert space, presenting a richer
structure whose complexity grows exponentially with the

number of parties [1]. Even for the simplest case of a bipartite
system, inwhichwell-definedmeasures of entanglement and
its relation with information-processing tasks arewell under-
stood, the theory still exhibits some puzzles, such as the
phenomenon of entanglement locking [2]. For the multipar-
tite case, several new difficulties arise. For instance, many
inequivalent classes of entanglement are possible [3–5].How
to theoretically identify and experimentally distinguish such
classes is one of the fundamental problems in this field.
Another issue is related to the fact that the number of
measurements, measurement time, and computational effort
for processing the tomographic data of a multipartite state
scales exponentially with the number of qubits.
The present work contributes to the understanding of

these problems considering three points. First, we provide a
practical photonic scheme, based on the entanglement
between two different degrees of freedom of photon pairs
to prepare and measure genuinely entangled states of three
and four qubits in a controlled way. This setup allows us to
compare the local and the global information obtained from
the same set of measurements. Second, we test the limits of
validity of a witness for multipartite entanglement [6] in a
real laboratory scenario, in contrast to the ideal case of pure
states. We test this requirement experimentally and show
that in our data, the criteria remain useful to study the
properties of different kinds of entanglement, even under
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moderate noise. In practice, witnessing multipartite entan-
glement and being able to tell the class of a given state
might find direct application to quantum information
protocols that require specific types of entanglement.
Third, we observe that this approach outperforms exper-
imental methods that obtain complete tomographic infor-
mation of the quantum state. It is important to note here that
we still need an upper bound on the purity of the global
state in order to be confident about the witness, but this still
requires less resources than the full quantum state tomog-
raphy (see Ref. [6] and Appendix C for more information).
This improvement is not only related to the reduced number
of measurements but also to the reduced sensitivity to
imperfections like nonunity detection efficiency.

II. THEORY

Motivation for this approach arises from a typical
scenario in quantum information processing, when several
parties share a global quantum state and they are allowed
to locally act on each individual system and to
communicate classically (local operations and classical
communications—LOCC). Among several actions, they
could wish to transform the total entangled state into
another. This kind of situation leads to natural ways of
defining distinct equivalence classes of entanglement.
Considering only a single copy, two pure quantum states
can be obtained from each other through LOCC only if they
are related by local unitaries, which leads to an infinite
amount of equivalence classes of entanglement, even for
the bipartite case (we need continuous parameters to label
all the classes) [7]. For instance, one pure nonmaximally
entangled state can be converted into another state with the
same amount of entanglement using LOCC (if the entan-
glement decreases, which is possible with LOCC, we
cannot revert the operation and both states would not
belong to the same class), and this defines one class of
entanglement. Because the coefficients of a nonmaximally
entangled state are continuous parameters, we have an
infinite amount of states, each one defining an equivalence
class of entanglement. A coarse-grained classification
defines that two states are equivalent—in the sense that
they posses the same kind of entanglement—if they can be
converted to each other by LOCC with a finite probability
of success [3,4]. Mathematically, two pure quantum states
jϕi and jψi are equivalent if and only if there exist
invertible local operators fOigNi¼1 such that jϕi ¼ O1 ⊗
� � � ⊗ ON jψi [4]. These operators are the so-called sto-
chastic LOCC, or SLOCC [8], and lead to a finite
classification of multipartite systems into distinct families
of entanglement. It is also convenient from the experimen-
tal point of view due to the fact that states belonging to the
same class are suitable for performing the same task
(although the probability of success may differ). In
Ref. [6], a new classification scheme based on the geometry
of the eigenvalue space and local measurements on the

subsystems was proposed. This new classification defines
different classes of entanglement, always being finite.
The scheme introduced byWalter et al. [6] is based on the

solution of the quantum marginal problem [9,10]. For
instance, let us consider a multipartite state ρ describing
the state of N qubits. One can ask which set of single-party
density matrices are compatible with ρ. By compatible, we
mean that there exist reduced one-party density matrices ρi
such that ρi ¼ TrīðρÞ, where Trī is the trace over all but the
ith part. This is known as the quantummarginal problem [9],
which has been completely solved in Ref. [11] for the case of
N qubits, given that the global state is pure. The solution of
this problem in the general case is practically intractable
[12]. For the case of an N-qubit pure state considered here,
the spectrum of the reduced density matrices must satisfy the
so-called polygon inequalities [11]

λk ≥
XN

i¼1
i≠k

λi − ðN − 2Þ; ð1Þ

where λk ∈ ½1=2; 1� is the maximum eigenvalue of ρk. Note
that these inequalities determine the complete set of all
possible reduced one-party density matrices since the
maximum eigenvalue completely characterizes the reduced
2 × 2 density matrix of each qubit (assuming normalization).
It was recognized that all possible sets of solutions of the

quantum marginal problem

Λ ¼ ðλ1;…; λNÞ ð2Þ
form a convex polytope [13,14]. For the cases where the
global state is (almost) pure, these local eigenvalues contain
considerable information about the entanglement of ρ. The
set of possible Λ’s associated with global states restricted to
a given entanglement class also forms a convex polytope,
the so-called entanglement polytope. Therefore, if Λρ does
not belong to a given entanglement polytope ΔC, then ρ
cannot belong to the associated entanglement class C:

Λρ∈ΔC ⇒ ρ∈ C: ð3Þ

Note that it is not always possible to determine two states as
belonging to two inequivalent classes. This is due to the
fact that the entanglement classes form a natural hierarchy,
with one class contained inside the other, as discussed in
more detail below (see also Appendix A). It is important to
state here that we still have to deal with infinitely many
entanglement classes (except for the simple cases of
N ≤ 3). However, the result of Ref. [6] shows that, despite
this fact, we always have a finite number of entanglement
polytopes. Exploiting the convexity of these polytopes, the
authors of Ref. [6] arrived to a witness criterion (see the
Appendixes for more details).
We analyze three- and four-qubit cases, and show that

identification of genuine entanglement is possible even in the
presence of moderate noise. We will discuss the role of the
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purity of the states in this method from the perspective of our
experimental realizationbelow. For clarity, in themain part of
the text, we describe the experimental procedure and the
results for three qubits, leaving the four-qubit case, which is
longer thought analogous, to Appendix B.

A. The polytopes for three qubits

For three qubits, we have six different entanglement
classes, two of them containing genuine three-partite
entanglement [4] (see also Appendix A). Recalling that
we are dealing with initial pure states, these classes are
defined as follows.
(1) The fully separable states (S).—These states can be

represented, in the computational basis, by
jψiS ¼ j000i. Therefore, any fully separable state
can be converted into jψiS by means of a convenient
SLOCC protocol. In this case, all the reduced states
are also pure, and we must have

ΛS ¼ ð1; 1; 1Þ: ð4Þ
That is, the entanglement polytope is a single point,
the upper vertex of the tetrahedron of Fig. 1(a). All
the reduced local density operators are represented
by rank-one matrices.

(2) Biseparable states (BS).—Apart from permutations
of the parties and local unitaries, these three classes
can be represented, for instance, by the state
jψiBS ¼ j0iðαj00i þ βj11iÞ, with jαj2 þ jβj2 ¼ 1.
Considering only one of these cases (the other two
are obtained by simple permutation of the labels), the
possible set of eigenvalues is then given by

ΛBS ¼ ð1; λ2; λ3Þ; ð5Þ
with λ2; λ3 ∈ ½0.5; 1Þ. This leads us to the entangle-
ment polytope defined by 2 ≤ 1þ λ2 þ λ3 ≤ 3.
Moreover, in order to satisfy Eqs. (1), we must have
λ2 ¼ λ3. These entanglement polytopes are repre-
sented by the thick straight lines of Fig. 1(a), the ones
originating in the upper vertex. In other words, if one

finds that one of the local measured eigenvalues is
equal to 1, by the witness criteria (3), the global state
does not present genuinemultipartite entanglement—
whether the state is fully separable or it is biseparable.
From the above relations, we can see that if all the
local eigenvalues are smaller than 1, we must have
genuine multipartite entanglement, which is divided
into two inequivalent classes.

(3) The W states.—These can be represented by

jψiW ¼ 1ffiffiffi
3

p ðj001i þ j010i þ j100iÞ; ð6Þ

and the associated polytope is determined by the
relation

λ1 þ λ2 þ λ3 ≥ 2; ð7Þ

together with Eqs. (1), and is shown in Fig. 1(b) (the
blue tetrahedron).

(4) The GHZ states.—These can be represented by

jψiGHZ ¼ 1ffiffiffi
2

p ðj000i þ j111iÞ: ð8Þ

The GHZ polytope is the entire polytope [blue plus
red tetrahedrons in Fig. 1(c)]. However, according to
the definition of entanglement polytopes, if, for a
given state, its local maximum eigenvalues respect
the relation

λ1 þ λ2 þ λ3 < 2; ð9Þ

together with the constraints imposed by Eq. (1), we
are sure that this state belongs to the GHZ class.
This inequality determines the polytope illustrated in
Fig. 1(c) (the red tetrahedron). Thus, to determine
that a given state contains indeed GHZ-type en-
tanglement, the experimental point must not be
located inside any other polytope.

(a) (b) (c)

FIG. 1. Entanglement polytopes for the three-qubit case. (a) Polytope for the biseparable and separable cases (BS and S states). There
are three axes for the eigenvalues λ1, λ2, and λ3, and the other three lines represent the BS polytopes. Each line corresponds to one
polytope. These lines converge to a point, which represents the polytope of the full separable states. (b) Polytope for the W states,
represented by the blue tetrahedron, a 3D representation. (c) Polytopes for the W states (the blue tetrahedron) and the polytope for the
GHZ states (the entire polytope). Points inside the red tetrahedron are guaranteed to belong to the GHZ class.
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It is a mathematical consequence of the definition of the
equivalence classes of entanglement adopted in Ref. [6]
that these entanglement polytopes respect a natural
hierarchy:

ΔS ⊆ ΔBS ⊆ ΔW ⊆ ΔGHZ : ð10Þ

Geometrically, the relation ΔX ⊆ ΔY tells us that states
from class X can be arbitrarily approximated by states in
the class Y using SLOCC. This can be seen in Fig. 1. If the
experimental set of eigenvalues lies, for instance, inside the
blue tetrahedron, we cannot conclude whether the asso-
ciated global state belongs to the W or to the GHZ class,
but we know that it contains genuine three-partite entan-
glement. However, if the experimental point is located
inside the lower tetrahedron of Fig. 1(c), we can safely say
that the corresponding state must contain genuine GHZ
entanglement.

III. EXPERIMENT AND RESULTS

A. Experimental setup

The experimental setup is similar to the one used in the
investigation of entanglement dynamics in Refs. [15,16].
First, we will be restricted to the creation and measurement
of different inequivalent classes of three-qubit states. The
case of four qubits follows a similar procedure and it is
presented in Appendix B. The main idea is to use twin
photons, which are entangled in the polarization degree of
freedom (represented by a subindex p in the text), and to
perform some operations to entangle this degree of freedom
with the spatial mode (represented by the subscript s in the
text) of one or both photons, to produce three- or four-
partite entangled states, respectively.
A simplified scenario can be seen in the circuit diagram

on the top of Fig. 2. We begin with all the qubits initialized
in the state j0̄ii, with i ¼ Ap;Bp;As. (This represents a
general initial state and not necessarily the usual computa-
tional basis employed throughout the text.) In step 1, we
implement a Hadamard (H) and a controlled- NOT (CNOT)
gate in qubits Ap and Bp producing a global state that is
entangled in the ApBp partition and separable with respect
to As. In step 2, a unitary operation U is applied to qubits
ApAs with the purpose of creating entanglement between
all the three qubits. In step 3, we modify the entanglement
class by applying the unitary transformation UC on qubits
Ap and As. At the output, depending on the parameters
defining UC, we can create states of all the inequivalent
classes of three qubits [4]. Step 4 is the measurement step.
We perform quantum state tomography of the local states,
thus reconstructing the individual reduced matrices ρj
(incomplete information) or of the global state ρ (complete
information).

The implementation of this quantum circuit in the optical
system is depicted in the bottom of Fig. 2. The four steps
are as follows.
Step 1.—With a 325-nm laser, we pump two crossed-

axis type-I β-barium borate (BBO) crystals and create
photons in a state close to [17]

jΨi ¼ ðαj0iAp
j0iBp

þ βj1iAp
j1iBp

Þj0siAs
; ð11Þ

where j0iBp
(j1iBp

) is the horizontal (vertical) polarization
of photon B. j0siAs

represents the initial state of the spatial
degree of freedom of photon A. The values of the
amplitudes α and β can be controlled by manipulating
the polarization of the pump laser. This was done by
changing the angle γh of a half-wave plate (HWP). A
quarter-wave plate (QWP) γq was also used to assure linear
polarization of the pump laser in the BBO crystal. Thus,
α ¼ sinð2γhÞ (see Fig. 2). Photon A is directed to a nested
interferometer that implements all operations described in
the circuit diagram. Photon B is sent to a polarization
analysis, which happens at step 4.
Step 2.—The first unitary operation U is applied by the

beam displacer (BD), which implements the transforma-
tions j0iAp

j0siAs
→ j0iAp

j0siAs
and j1iAj0siB→ j1iAp

j1siAs
.

After this operation, the global state can be written as

FIG. 2. Experimental setup. The top panel shows the quantum
circuit employed in our experiment. In the main text, we give a
complete description of each step in this circuit as well as its
implementation in the optical scenario, shown in the bottom panel
of the figure. The parameters α and β appearing in Eq. (B1) can be
controlled by the half-wave (γh) and quarter-wave (γq) plates
located before the BBO crystals. The MBD, in contrast with the
ordinary BD, transmits the horizontal polarization and deflects
the vertical one. Physically, it is implemented by placing a BD
between two half-wave plates, which are not shown in the figure.
The ϕ and φ plates are used to ensure identical path lengths in the
interferometers. Hi and Qi are half- and quarter-wave plates used
in the tomographic process, as explained in the text, and the
symbol & represents coincidence counting.
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jΨi ¼ αj0iAp
j0iBp

j0siAs
þ βj1iAp

j1iBp
j1siAs

; ð12Þ

which, by choosing α ¼ β ¼ 1=
ffiffiffi
2

p
, is the GHZ state of

Eq. (8), genuinely entangled in all the qubits [18].
Step 3.—A unitary operation UC is implemented by a set

of HWPs and a modified beam displacer (MBD) (see the
bottom panel of Fig. 2). The complete transformations can
be written as

j0iAp
j0siAs

→ j0iAp
j0siAs

j1iAp
j1siAs

→ cos 2ϕj1iAp
j0siAs

− sin 2ϕðcos 2φj0iAp
j1siAs

− sin 2φj1iAp
j1siAs

Þ; ð13Þ

where ϕ and φ are the rotation angles of the HWPs shown
in Fig. 2. Both the HWP and Hc do not introduce rotations
in the polarization and are used to compensate the optical
length of the different paths. The global state of the system
can be written as

jΨiApBpAs
¼ αj000si þ βfcosð2ϕÞj110si
− sinð2ϕÞ½cosð2φÞj011si − sinð2φÞj111si�g:

ð14Þ

We can see from Eq. (14) that, by choosing different values
in the set M ¼ ½θ; γp;φ;ϕ�, we are able to construct states
of three qubits with different types of entanglement. For
instance, two different biseparable states are obtained when
M ¼ ½π=4; 0; 0; 0� and M ¼ ½π=4; 0; π=4; 0�. By choosing
M ¼ ½π=6; 0; π=8; 0�, we obtain the state 1=

ffiffiffi
3

p ðj000siþ
j110si þ j011siÞ, which corresponds to the state of Eq. (6)
with the second qubit flipped. To obtain states similar to the
one in Eq. (6), we simply apply a rotation on qubit Bp using
a HWP (not shown). Finally, a state that corresponds to the
GHZ class is obtained when M ¼ ½π=4; 0; π=4; π=4�.
Step 4.—After the engineering of distinct entanglement

classes, we make projective measurements in the different
degrees of freedom. The BD has two important tasks. On
the one hand, together with the H and Q, it is used to make
projective measurements on the polarization degree of
freedom. In this sense, the BD is used as a polarizer. On
the other hand, the BD coherently combines the spatial
modes j0si and j1si [15,16]. Using this, we were able to
perform complete tomographic measurements of the whole
tripartite system as well as of the states of the individual
systems. After the projection in the polarization and spatial
mode, the photons are detected in DA and DB and
coincidence counts are registered. In this way, states
belonging to the six different classes of entanglement
can be measured.

B. Experimental results

We performed quantum state tomography on every local
qubit for different configurations of M. The local density
matrices were reconstructed using the maximum likelihood
method, and the largest eigenvalues were discovered [19].
The results of this procedure are shown in Fig. 3. As
described before, the entire shaded region represents the
GHZ polytope, the black lines represent the polytopes of
the biseparable states, and the upper blue region corre-
sponds to theW polytope. The red shaded area corresponds
to the region where only the GHZ entanglement class can
be found. In addition, we performed full quantum state
tomography of each state for comparison, obtaining purities
higher than 0.87 in all cases (see Appendix C for the purity
of all the prepared states).
By choosingM¼ ½π=2;0;0;0� andM¼ ½π=2;0;π=4;0�,

we create two different biseparable classes experimentally.
By tomographic reconstruction of the global state, we can
confirm that these states are indeed biseparable (by
comparing the reconstructed state with the theoretical
prediction). The local eigenvalues are obtained from the
local density matrices alone and are represented by the
black dots in Fig. 3. We can see that these states are close to
the lines corresponding to the biseparable polytopes.
We also produce different states of the W entanglement

class. This was done by choosing four distinct values of the
set M ¼ ½π=3; 0;φ; 0�. Using the full density matrices
obtained from full quantum state tomography, we calculate
fidelities higher than 0.87 with respect to theW states given
in Eq. (6). This is sufficient to confirm the presence of

FIG. 3. Full polytope for three qubits. The blue region is theW
polytope, while the light red one represents all the GHZ states
that cannot contain theW kind of entanglement (see also Fig. 1).
The blue, red, and black symbols represent, respectively, the W,
GHZ, and BS states. The error bars are inside each point (see
Appendix C).
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multipartite entanglement of the W class [20]. The exper-
imental results of the local eigenvalues are plotted with blue
dots in Fig. 3. We can see that these points are in the lower
limiting area of the W polytope. For these states, we can
guarantee the presence of genuine multipartite entangle-
ment. However, we cannot confirm whether it is of the W
or GHZ type. This is a property of the witness (3) and not
caused by experimental imperfections.
By selecting M ¼ ½π=2; 0; π=4; π=4�, we measure states

in the GHZ class. The results obtained from the local
tomography are plotted with red dots. Note that both points
are located in the light red area, assuring the presence of
multipartite entanglement of the GHZ class. Note that the
these points are close to the ðλ1; λ2; λ3Þ ¼ ð1=2; 1=2; 1=2Þ,
which corresponds to the pure GHZ state. To confirm
this local information, we reconstruct the global density
matrix, obtaining a fidelity with respect to the GHZ state
higher than 0.85, proving the presence of genuine GHZ
entanglement [20].
As mentioned above, the witness analyzed in Fig. 3

presupposes pure global states, which is a very strong
assumption. However, it was shown [6] that this witness
should be robust against low levels of noise. Let us describe
now how the experimental errors are taken into account
and analyze the confidence of the witness with respect to
the purity of the experimental states. In the presence of
noise, the entanglement polytopes are transformed in a
simple manner. For instance, Eq. (9) changes to
λ1ðρÞ þ λ2ðρÞ þ λ3ðρÞ < 2 − ε, where ε depends directly
on the purity of the global state ρ, as described in
Appendix C. Reconstructing the complete density matrices,
we obtain that the purity of all the experimental global W
states (we are interested in distinguishing genuine three-
partite from biseparable entanglement) are higher than
0.87. In this case, the value of ε is around 0.15, changing
the position of the theoretical border ∂W (as shown in
Fig. 4). To better visualize this, in Fig. 4, we project the
three-dimensional polytopes in a plane. The blue region
corresponds to the W polytope, the GHZ polytope corre-
sponds to the entire shaded area, and the black line
corresponds to the biseparable polytope. The mixedness
creates the white area, restricting the region of exclusive
GHZ states. One can prove that, as the mixedness
increases, the size of this region also increases, making
the identification of GHZ states more difficult using local
measurements alone [6]. Note that the completely mixed
state has the same eigenvalues as the GHZ state, but in
this case, the red region collapses to the point
ðλ1 þ λ2; λ3Þ ¼ ð1; 1=2Þ, making the identification of the
GHZ class of states impossible. Nevertheless, this is not the
case of our experimental states, implying that we have
genuine entanglement of the GHZ class. Furthermore, the
W states are on the pure state border, meaning that these
states possess genuine entanglement. The biseparable states
are on the black line that corresponds to the biseparable

polytope. Note that the polytope corresponding to the
biseparable states also possesses an associated error region
related to the impurity of the states that is represented by the
dashed line marked with ∂εBS in Fig. 3.

C. Four-qubit analysis

In this section, we study the entanglement polytopes for
four-qubit states. The experimental setup to create and
measure inequivalent states of four qubits is similar to the
one shown in Fig. 2. The central difference is that we
introduce another nested interferometer in the path of
photon B. A detailed explanation of this setup can be
found in Appendix B. In this case, there are 13 entangle-
ment classes, 7 of which contain genuine four-partite
entanglement (being, therefore, full dimensional). We have
prepared representatives of the states shown in Table I
employing the notation of Ref. [5] which is also defined in
Appendix B. Unfortunately, we cannot draw the complete

FIG. 4. Projected eigenvalue space. The red region represents
the GHZ polytope, and the blue region the W polytope. The
black line represents the BS polytopes. The vertical axis contains
a sum of two eigenvalues. For the case of the BS states, it always
contain the maximum eigenvalue, which is close to 1, in such a
way that all three classes of BS states are projected onto the same
line. As in Fig. 3, the blue dots are theW states while the red and
black ones represent the GHZ and BS states, respectively. The
white region between the GHZ and W polytopes (whose
theoretical border ∂W was obtained considering pure states) is
the error region εW , which is a function of the purity of the
experimental density matrix (see Appendix C for details). The
border for mixed states is represented by ∂εW. The same pattern is
applied to the border between the BS and W polytopes (dashed
line). To compute the size of this region, we choose the lowest
purity among all the prepared states.
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polytope, which is the convex hull of 12 vertices [6,21]:
(i) the vertex corresponding to the product state (1,1,1,1);
(ii) six vertices corresponding to two-partite entangled
states, which, apart from permutations, can be represented
by (0.5,0.5,1,1); (iii) four vertices of the genuine three-
partite GHZ entanglement, which are the permutations
of (0.5,0.5,0.5,1); (iv) four vertices of the genuine three-
partite W entanglement, which are the permutations of
(0.66,0.66,0.66,1); and (v) an image of the four-partite
GHZ entangled state, the vertex (0.5,0.5,0.5,0.5). Note that
this last vertex does not imply that the state is genuinely
four-partite entangled. To witness this kind of entangle-
ment, we must make sure that the given state does not
belong to any other lower-dimensional polytope corre-
sponding to biseparable states.
As we can see from Table I, we can identify the fully

separable states (family Labc2), the bipartite entangled state
(family La2b2). We also have two states that present some
form of three-partite genuine entanglement (families
La203⊕1

and L03⊕1̄03⊕1
). However, to say that theses states

belong to theW or GHZ classes, we need further analysis.
For this case, we just need to check to which three-
dimensional polytope each state belongs. For instance,
for the case of the family L03⊕1̄03⊕1

, we have

λ1 þ λ2 þ λ3 ¼ 1.699ð7Þ < 1.74; ð15Þ

which tells us that the state contains a genuine three-partite
GHZ kind of entanglement while being separable in the
other partition. The value 1.74 was obtained by subtracting
from the boundary two the associated value of ε, equal to
0.26 in this case. The other state (family La203⊕1

) belongs to
the border of the W and GHZ classes. Therefore, we can
safely say that it presents genuine three-partite entangle-
ment, but we cannot tell apart the class. Through complete
quantum state tomography, we see that it belongs to the
W class.
There is a four-dimensional polyhedron (in completely

analogy with the three-qubit case) given by the inequality

λ1 þ λ2 þ λ3 þ λ4 < 3; ð16Þ
which determines the four-partite GHZ states. Considering
the state Gabcd that we prepare, we have

λ1 þ λ2 þ λ3 þ λ4 ¼ 2.12ð1Þ < 2.5; ð17Þ

where, again, the bound is computed using the purity of the
state. Therefore, we conclude that the global state has the
four-partite entanglement GHZ kind. Regarding our last
state (family Lab3), we have that (once again in analogy
with the three-qubit case)

λ1 þ λ2 þ λ3 þ λ4 ¼ 2.989ð8Þ > 2.5: ð18Þ

So, our state is on the border of the four-partite W and
GHZ entanglement classes. Although we know through the
witness criteria that this state contains genuine multipartite
entanglement, we cannot say what kind of entanglement
that may be. By means of the complete quantum state
tomography, we verify that we have indeed a four-partite
entangled W state.

IV. EFFICIENCY

Let us call the method introduced by Ref. [6] and
experimentally investigated here, the local polytope method
(LPM). Even though it does not allow determination of all
types of multipartite entanglement, it provides useful infor-
mation about the entanglement class to which the state may
belong. Furthermore, in the case of almost pure states in
which it is applicable, it can present some important practical
advantages when compared to other entanglement charac-
terization procedures. Its applicability can be checked by
making only local measurements [22,23] and obtaining a
lower bound for the purity of the multipartite state.
Entanglement characterization methods can be divided into
twomain types: those that are tomographic in nature and those
that are witnesses, providing some limited information about
the entanglement in the state.
Let us first compare the LPM with the tomographic

methods. In this case, the practical benefit of the LPM [6] is
the reduced number of measurements due to the fact that
correlations are not measured. In this regard, the LPM
requires only independent local measurements, used for
determination of the local eigenvalues. For standard
tomography [19], the number of independent local tomo-
graphic measurements on N qubits is MLPM ¼ 4N. This
represents an exponential gain when compared to full
quantum state tomography (FQST) of an N-qubit system,
which requires MFQST ¼ 4N . In the case of pure states,
there are more efficient methods, such as compressed
sensing and variational techniques that can be used for
state tomography (CSQST) [24,25]. For these methods, the
number of measurements required for N qubits is of the
order of rN22N , where r is the rank of the density matrix.

TABLE I. Four-qubit entanglement classes: The first column
specifies the distinct families, while the second one accounts for
the local maximum eigenvalues of the reduced density matrices
using the notation of Ref. [5]. Some of these families present an
infinite number of classes. Therefore, we are referring here to just
one of the classes in the family.

Family Local eigenvalues of the prepared state

Gabcd [0.532(6), 0.521(9), 0.524(6), 0.542(8)]
Labc2 [0.9967(6), 0.9986(5), 0.9934(7), 0.9905(8)]
La2b2 [0.9922(8), 0.961(1), 0.551(3), 0.552(4)]
Lab3 [0.696(4), 0.805(3), 0.757(4), 0.731(5)]
La203⊕1

[0.682(3), 0.970(1), 0.645(3), 0.689(3)]
L03⊕1̄03⊕1

[0.594(3), 0.943(1), 0.572(3), 0.533(5)]
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Thus, for pure states, the number of measurements is
MCSQST ≈ N22N . In comparison, the LPM is still exponen-
tially more efficient. A second advantage is that there is also
an exponential gain in terms of the measurement statistics.
For example, let us suppose that a source emitsN entangled
particles with rate R, and are detected by N different
devices. Because of losses and nonunitary efficiency, each
particle is detected with an efficiency η with 0 < η < 1.
Then, the totalN-partite count rate for each measurement in
the full or compressed-sensing tomographic techniques is
CN ¼ ηNR. For local measurements, the local count rate
used for local tomographic reconstruction of each local
density matrix is Clocal ¼ ηR. This represents an exponen-
tial increase in the measurement statistics for η < 1. For
example, for the reasonable value of η ¼ 1=4 and the
focusing on the special case N ¼ 4, the local method is
43 ¼ 64 times more efficient in terms of registered events.
Of course, the tomographic techniques can provide all the
information about the density matrix. Still, if the task is to
characterize multipartite entanglement of almost pure
states, the LPM could provide a considerable decrease in
the number of measurements required.
Entanglementwitnesses aremore similar to theLPM, since

they typically require fewer measurements and return only a
limited amount of information about the state. In this regard,
the LPM is a multipartite entanglement witness for quasipure
N-qubit states. In fact, as far as we know, it is the only witness
that requires only local independent measurements.
When compared to entanglement witnesses, the LPM is

interesting in that it may require fewer measurements and
may be more efficient when lossy detection systems are
used. That is, if the single-qubit detection efficiency is η,
then measuring m-party correlations brings a reduction in
efficiency of ηm. Even if the correlations are measured
among fewer systems than available ðm < NÞ, such as in
Refs. [26,27], the LPM may be advantageous, depending
on the number of measurements required for the entangle-
ment witness. That is, the minimum size correlator is
m ¼ 2, and η2 < η if η < 1. Of course, entanglement
witnesses may be applicable even in the case of mixed
states, whereas the LPM is not. On the other hand,
correlation measurements necessarily require the commu-
nication of the measurement results of each run, so that the
correlation functions can be calculated. All measurements
in the LPM are independent.
Let us quantify this comparison a little further. We can

define a resource overhead O as

O ¼ number of measurements
efficiency of measurements

: ð19Þ

For the LPM, we haveOLPM ¼ 4N=η. Let us compare with
two types of genuine entanglement witnesses for multi-
partite systems. To detect genuine multipartite entangle-
ment, one must test the correlations between all the qubits.

This can be done in a number of ways. We will choose two
extreme cases of witnesses using local measurements:
(a) those requiring as few as two correlation measurements
on all N qubits (see several examples in Ref. [26]) and
(b) those requiring only pairwise correlation measurements
on all pairs of systems, giving NðN − 1Þ pairwise mea-
surements in total, such as in Refs. [26–28]. We see that if
applicable, the LPM is already advantageous compared to
type (b), since the latter requires about N2 measurements.
For entanglement witness type (a), we have overhead
OðaÞ ¼ 2η−N and for type (b) we have OðbÞ ¼
NðN − 1Þη−2. Comparing these overheads, one can find
a critical detection efficiency for which the LPM is
advantageous. For example, for N ¼ 4 qubits, the LPM
requires less overhead than witness type (a) when η < 1=2,
and less than witness type (b) when η < 3=4. For N ¼ 8,
the LPM is more efficient than type (a) when η < 0.67 and
always more efficient than type (b). In fact, it has less
overhead than type (b) when N > 5.
Performing correlation measurements does not require

additional quantum resources as compared to the local
measurements. However, they also require a critical classical
resource, which is the synchronization of the measurement
bases. For instance, for the polarization of light, one needs to
calibrate common vertical and horizontal axes for all parties,
and it is impossible to obtain a perfect calibration. (It is an
asymptotic limit.) Effort has been made to overcome this
difficulty, using an additional quantum resource in the formof
an expanded Hilbert space to encode alignment-free qubits
[29]. In the multipartite case, we note that in some cases,
entanglement can be lower bounded using reference-frame-
independent correlation tensor norms [28].

V. CONCLUSION

In conclusion, we have generated and analyzed several
types of three- and four-partite states using local tomography
and a purity bound. We used a recently introduced tool
considering incomplete information to characterize these
states according to a hierarchy of entanglement classes. We
show that it is possible to determine genuine three- and four-
partite entanglement with this method even in real laboratory
conditions, in the presence of small levels of noise.
Even though this scheme does not allow determination of

all kinds of multipartite entanglement, it has the great
advantage of providing an exponential reduction in the
number of measurements required in comparison to full
tomographic reconstruction. Moreover, it also provides an
exponential gain in terms of measurement statistics, when
measurements are performed with detectors with less than
100% efficiency. Since it is based on local tomography alone,
it also requires no common reference frame between users.
Weillustrate theusefulnessof themethodwithphotons, and

we use 2 degrees of freedom of the same photon to produce
different types of multipartite entanglement. However, the
speed-up obtained in the identification of multipartite
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entanglement does not depend on the physical system or on
the degree of freedom used. Therefore, the results obtained
here are immediately extended to other systems like ions,
superconducting qubits, and atoms, for instance.

ACKNOWLEDGMENTS

Financial support was provided by Brazilian agencies
CNPq, CAPES, and FAPERJ and the Instituto Nacional de
Ciência e Tecnologia de Informação Quântica. We thank
David Gross, Michael Walter, and Matthias Christandl for
insightful comments on the first version of the manuscript
and Renata Montenegro for helping with the figures.
L. C. C. greatly appreciates the warm hospitality of the
Universidade Federal do Rio de Janeiro in several visits
during the development of this project.

APPENDIX A: ENTANGLEMENT CLASSES

In this Appendix, for completeness, we briefly review the
definition of equivalence classes of entanglement aswell as of
the entanglement polytopes and the related witness. Our
intention here is not to be exhaustive, and we refer the reader
to Refs. [4–6] for a deeper treatment of the subject.

1. Classification of entanglement under SLOCC

Two pure density matrices are said to belong to the same
class (i.e., they posses the same kind of entanglement) if
they can be obtained from each other through invertible
local operations and classical communications with a finite
probability of success (invertible SLOCC). This sort of
classification naturally divides the space of (pure) states in
different equivalence classes.
In the case of three qubits, this classification leads to six

distinct classes, the two genuinely three-partite entangled
GHZ and W classes, the three biseparable BS classes

(entangled in the partition AB and separable in C, AB − C,
and the analogously defined AC − B and BC −A), and the
fully separable one. See the main text for the representa-
tives of all the classes. To see that all of these classes are
inequivalent, we just need to remember two facts. First, the
minimum product decompositions of the GHZ and W
states are two and three, respectively, which implies that
there is no SLOCC protocol to convert one into the other
[4]. Second, as we are dealing with pure global states, the
ranks of the reduced density matrices are different in each
class (see Table II) and, as invertible SLOCC cannot change
the ranks of these matrices, we readily see that all the
classes are also inequivalent. Note that if we include
noninvertible SLOCC (i.e., at least one of the local
operators must have rank one), it is possible to move from
a higher class to a lower one, which defines the following
hierarchy among the classes [4]:

ΔS ⊆ ΔBS ⊆ ΔW ⊆ ΔGHZ :

The case of four qubits is much more complicated,
presenting nine (up to permutations) equivalence families
under SLOCC, whose representatives are [5]

Gabcd ¼
aþ b
2

ðj0000i þ j1111iÞ þ a − d
2

ðj0011i þ j1100iÞ þ bþ c
2

ðj0101i þ j1010iÞ þ b − c
2

ðj0110i þ j1001iÞ;

Labc2 ¼
aþ b
2

ðj0000i þ j1111iÞ þ a − b
2

ðj0011i þ j1100iÞ þ cðj0101i þ j1010iÞ þ j0110i;
La2b2 ¼ aðj0000i þ j1111iÞ þ bðj0101i þ j1010iÞ þ j0110i þ j0011i;

Lab3 ¼ aðj0000i þ j1111iÞ þ aþ b
2

ðj0101i þ j1010iÞ þ a − b
2

ðj0110i þ j1001iÞ

þ iffiffiffi
2

p ðj0001i þ j0010i þ j0111i þ j1011iÞ;

La4 ¼ aðj0000i þ j0101i þ j1010i þ j1111iÞ þ ij0001i þ j0110i − ij1011i;
La203⊕1

¼ aðj0000i þ j1111iÞ þ j0011i þ j0101i þ j0110i;
L05⊕3

¼ j0000i þ j0101i þ j1000i þ j1110i;
L07⊕1̄

¼ j0000i þ j1011i þ j1100i þ j1110i;
L03⊕1̄03⊕1

¼ aðj0000i þ j1111iÞ þ j0011i þ j0101i þ j0110i;

TABLE II. Three-qubit entanglement classes: The first column
specifies the distinct classes, while the second one accounts for
the rank of the reduced density matrices using the notation
[rankðρAÞ; rankðρBÞ; rankðρCÞ].

Class Rank

GHZ (2,2,2)
W (2,2,2)(2,2,2)
AB − C (2,2,1)(2,2,2)
AC − B (2,1,2)(2,2,2)
BC −A (1,2,2)(2,2,2)
S (1,1,1)(2,2,2)
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where we have employed the notation of Ref. [5], in which
the subindexes of each family are related to the Jordan
decomposition of the state and the continuous complex
parameters a, b, c, and d (which are the eigenvalues of a
complex symmetric matrix) characterize each family. It is
important to observe here that some of these families
contain an infinite number of SLOCC classes, none of them
accessible in an experiment. This is what happens in
general for more than three qubits. In contrast, the develop-
ments put forward by Walter et al. [6] establish a coarse-
grained classification, always presenting a finite number of
entanglement classes, which respect a natural hierarchy
based on the geometric structure of the entanglement
polytopes. Although it is, in general, very difficult to tell
apart each one of these classes, it is possible to check for the
presence of genuine multipartite entanglement, which is
very useful for several applications, especially in quantum
information protocols and quantum many-body systems.

2. Entanglement witness

SLOCC is equivalent to the existence of local invertible
operations, which are represented by matrices of unity
determinant, acting on the state space H, naturally con-
stituting a Lie group G, the special linear group (see
Ref. [3]). Knowing that the orbit G · ρ of an element ρ ∈
H relative to the group G is the subset of H containing the
elements to which ρ can be transformed by the action of G,
the entanglement class containing ρ is then just
G · ρ ¼ fg · ρjg ∈ Gg. In other words, two density oper-
ators ρ and ρ0 are equivalent if and only if there exists an
element g ∈ G such that g · ρ ¼ ρ0. An important property
of this definition is that every element of H belongs to one
and only one equivalence class, i.e., given two equivalence
classes or they are equal or disjoint. This is a consequence
of the fact that two orbits do not overlap.
As said in the main text, the proposed witness [6] is

based on the solution of the quantum marginal problem.
The set of all possible local eigenvalues compatible with the
global state

Λ ¼ ðλ1;…; λN Þ

forms a convex polytope [13,14]. (λi represents the maxi-
mum eigenvalue of the partite i reduced density matrix.)
The authors of Ref. [6] noted that, for the cases where the
global state is pure, these local eigenvalues contain con-
siderable information about the entanglement of ρI . They
found that the set of possible Λ associated with a global
state, restricted to a given entanglement class, also forms a
convex polytope, the so-called entanglement polytope. This
fact led the authors to conclude that if Λρ (the set of
eigenvalues of the one-partite reduced density matrix
associated with ρ) does not belong to a given entanglement
polytope ΔC, then ρ cannot belong to the associated
entanglement class C:

Λρ ∈ΔC ⇒ ρ∈ C:

The computation of the entanglement polytopes ΔC is
based on algebraic geometry and the theory of group
representation [6]. First, the connection of the SLOCC
operations with local invertible operators (Lie group) acting
on the projective Hilbert allowed the computation of the
covariants (irreducible subspaces) of such action. Then, by
applying the tools from group representation theory, the
authors of Ref. [6] were able to relate these covariants with
the eigenvalues of the reduced density matrices of the
subsystems, thus connecting the entanglement polytopes
with the quantum marginal problem. From the fact that the
covariants form a finitely generated algebra, it was possible
to show that the entanglement polytopes are convex. (See
Ref. [6] for the details of the proof and Ref. [30] for
alternative ways to compute the entanglement polytopes.)

APPENDIX B: EXPERIMENTAL SETUP
FOR FOUR QUBITS

For the study of the entanglement polytopes in an
experimental context for the case of four qubits, we use
a experimental setup similar to the one used in Ref. [31]. A
simplified scenario can be seen in the circuit diagram at the
top of Fig. 5. We begin with all the qubits initialized in the
state j0̄i. In step 1, we implement Hadamard (H) and CNOT

gates in the qubits Ap and Bp, entangling these qubits. (As

and Bs are still separable.) In step 2, two identical unitary
operation U are applied, one on qubits Ap and As and the
other one on Bp and Bs. These operations create entangle-
ment between all four qubits. In the third step, we modify
the class of entanglement by applying two unitary trans-
formations UA and UB. In the output, depending on the
parameters defining UA and UB, we can obtain states that
are contained in seven of the inequivalent classes of four-
qubit states [5]. In the fourth and last step, we perform
projective measurements and reconstruct the individual
reduced matrices ρj or the global state ρ. We will see later
that, with this recipe, we can create and measure states in
the class Labc2 , La2b2 , L03⊕1̄03⊕1̄

, La203⊕1̄
, Lab3 , andGabcd [5].

Step 1.—The experimental setup can be seen in the bottom
of Fig. 2. With a laser, we pump two cross-axis type-I BBO
crystals and create photons in a state close to [17]

jΨi ¼ ðαj0iAp
j0iBp

þ βj1iAp
j1iBp

Þj0siAs
j0siBs

; ðB1Þ

where j0iAp
(j1iAp

) arehorizontal (vertical) polarizationof the
photon A. j0siBs

represent the spatial degree of freedom of
photon B. As before, the values of the probability amplitudes
α and β can be chosenwith the half-wave plate γh and quarter-
wave plate γq. Both photons (A andB) are directed to a nested
interferometer, which implements all operations described in
the circuit diagram.
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Step 2.—The two identical unitary operations are applied
by the beam displacers BDA and BDB, which transform
j0iip j0iis → j0iip j0iis and j1iip j0iis → j1iip j1iis , where i
can be either A or B. After the BDs, the state of the photons
can be written as

jΨiApBpAsBs
¼ αj0ij0ij0ij0i þ βj1ij1ij1ij1i: ðB2Þ

We can see that when choosing α ¼ β ¼ 1=
ffiffiffi
2

p
, the state

above is a Greenberger-Horne-Zeilinger (GHZ) state [18],
which is genuinely entangled in all the qubits.
Step 3.—We now implement the unitary operations UA

and UB using a set of HWPs and a MBDi. The trans-
formation for each photon is written in Eq. (14). As before,
the HWPs Hc are used to ensure identical path lengths
in the interferometers. As we have two interferometers now,
the set of angles is extended to M ¼ ½γh;φ1;ϕ1;φ2;ϕ2�,
where different classes of entanglement are obtained for
different values of these angles.

Let us now analyze which states we can create for the
different choices of the setM. Suppose that the pump laser
is horizontally polarized (φh ¼ 0), which is parallel with
the axis of one of the BBO crystals. By choosing
M ¼ ½0; 0; 0; 0; 0; 0�, the states are completely separable
belonging to the Labc2 class. For the case
M ¼ ½π=4; 0; 0; 0; 0; 0�, we obtain a Bell state in the
polarization and separable states in the spatial degree of
freedom, as given in Eq. (B1). After BDA and BDB, the
photons are in the GHZ state. Since no rotation is applied in
the following steps, all the photons exit the first interfer-
ometer in the spatial mode 0ti . Since there is a coherent
superposition of 0si and 1si at MBDi, the state is still a Bell
state in the polarization and separable in the spatial degrees
of freedom at an output of Ui. This state is part of the La2b2
class of entanglement. For M ¼ ½π=4; π=4; 0; π=4; 0�, as
before, a Bell state is created in the polarization in the step
1. Since ϕA ¼ π=4, all the photons in mode 1sA go out the
interferometer in the mode 1tA . Note that φA is also equal to
π=4 rotating the polarization of the photons in this mode to
j1iAp

; see Eq. (14). Since ϕB ¼ 0, all the photons B are
coherently combined in the mode 0tB . In this case, the
photons are in a jGHZiAppBtA j0itB at the detection step. This
state belongs to the family L03⊕1̄03⊕1̄

. For M ¼
½π=3; π=8; 0; 0; 0�, α ¼ ffiffiffiffiffiffiffiffi

1=3
p

and β ¼ ffiffiffiffiffiffiffiffi
2=3

p
at the initial

step. Since ϕA is π=8, part of the photons of mode 1sA go
out the interferometer in the mode 0tA and the other part in
1tA . Since no rotations are implemented in the latter modes,
the state at the detection step is jWiAppBtA j0itB0 , where

jWi ¼ ffiffiffiffiffiffiffiffi
1=3

p ðj001i þ j010i þ j100iÞ, defined in Ref. [4].
This state is part of the family La203⊕1̄

. Following the
same procedure, we can demonstrate that for M ¼
½π=2; π=8; π=8; 0; 0�, the state is jWAppBtAtBi ¼
1=2ðj0001i þ j0010i þ j0100i þ j1000iÞ, which corre-
sponds to the family Lab3. M¼ ½π=4;π=4;π=4;π=4;π=4�
is a GHZ state such as the one defined in Eq. (B2).
This state belongs to the family Gabcd. Finally, for
M ¼ ½π=4; π=4; π=4; π=4; 0�, the emergent state is part
of the family L05⊕3̄

of Ref. [5].
Step 4.—After the engineering of different entanglement

classes, we make projective measurements in the different
degrees of freedom. For this, in every photon, we put a set
composed of a BD, two QWPs, two HWPs, and a polarized
beam splitter (PBS). We me make tomographic measure-
ment of the spatial degree of freedom of both photons using
the Hti and Qti . After the projection in the polarization and
spatial mode, the photons are detected in DetA and DetB.

APPENDIX C: ERROR ANALYSIS

1. State preparation

To compute the errors bars of the eigenvalues and of the
purity, we assume that the coincidence counts are distributed

FIG. 5. Experimental setup for the case of four qubits. The top
panel shows the quantum circuit describing our experiment. In
the main text, we give a complete description of each step in this
circuit as well as of its implementation in the optical scenario,
showed in the bottom panel of the figure. The parameters α and β
appearing in Eq. (B1) can be controlled by the half-wave (γh) and
quarter-wave (γq) plates located before the BBO crystals. The
MBD, in contrast with the common BD, transmits the horizontal
polarization and deflects the vertical one. Physically, it is
implemented by putting a BD between two half-wave plates,
which are not shown in the figure. The θ plates are used to ensure
identical path lengths in the interferometers. Hi and Qi are half-
and quarter-wave plates used in the tomographic process, as
explained in the text, and the symbol & represents coincidence
counting.
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according to a Poissonian distribution. We then apply
Monte Carlo simulation to obtain a distribution of negativ-
ities, taking the standard deviation as the error. We attribute
the small error bars to the high number of coincidence
counts. Note that the Poissonian count statistics is not the
main error concerning the application of the witness. The
value of ε depends on the fidelity of the prepared state
relative to a given theoretical pure state. The procedure
employed to compute this error is explained below.

2. The value of ε

The witness investigated here is based on the assumption
that we have a pure global state. If the global state is mixed,
then any set of local density matrices would be possible and
we could not expect to extract global information of the
total state from local information of the parts. However, as
commented in the main text, this witness is robust against
some levels of noise. Here, we explain how we computed
the confidence boundary shown in Fig. 4.
Denoting by p the purity of the prepared state, it was

shown in Ref. [6] that the vectors of the local eigenvalues of
a pure state differ from those of the prepared one by at most
Nð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p − 1
p Þ, as long as p > 1=2 (N is the number of

parties). This was proved by analyzing the trace norm
between both sets of eigenvalues. For the case of qubits (in
which a variation of the maximum eigenvalue must be
accompanied by an opposite variation of the other one), this
bound can be further improved, resulting in the boundary
shown in the main text:

ε ¼ N
2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p − 1

p
Þ: ðC1Þ

Note that we need to know the value of the purity of the
global state. This is a nonlinear function of ρ and therefore
cannot be obtained by means of local measurements.
However, it is possible to get a lower bound on this
quantity if more copies of ρ are available [22]. Figures 6
and 7 show the purity for our three and four prepared states,

respectively. These values are reasonably high, showing
that our scheme is suitable not only for the verification of
the entanglement witness but also to be employed in
situations far beyond the present work.
Remember that we choose the worst value of the purity

among all the prepared states to compute the value of ϵ.
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