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ABSTRACT. SpotWhatR is a user-friendly microarray data analysis
tool that runs under awidely and freely available R statistical language
(http://www.r-project.org) for Windows and Linux operational systems.
The aim of SpotWhatR is to help the researcher to analyze microarray
databy providing basic toolsfor datavisualization, normalization, deter-
mination of differentially expressed genes, summarization by Gene On-
tology terms, and clustering analysis. SpotWhatR allows researchers
who are not familiar with computational programming to choose the most
suitable analysis for their microarray dataset. Along with well-known
procedures used in microarray dataanaysis, we haveintroduced astand-
alone implementation of the HTself method, especially designed to find
differentially expressed genesin low-replication contexts. Thisapproach
ismore compatible with our local reality than the usual statistical meth-
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ods. We provide several examples derived from the Blastocladiella
emersonii and Xylella fastidiosa Microarray Projects. SpotWhatR is
freely availableat http://blasto.ig.usp.br/~tkoide/SpotWhatR, in English
and Portuguese versions. In addition, the user can choose between “single
experiment” and “batch processing” versions.

Key words. Microarray data analysis, Data vizualization, Clustering,
Normalization, User-friendly system, Gene Ontology

INTRODUCTION

There are many different technologies that allow usto measure gene expression at the
transcriptional and trand ational levelsin ahigh-throughput framework. DNA microarrayshave
been widely used and have become very popular among scientists to measure gene expression
or to perform genomic comparative studies. The principle of thistechnique is competitive hy-
bridization between acontrol and atest sample, |abeled with different fluorophores, Cy3 or Cy5,
performed on a glass slide containing DNA fragments representing thousands of genes. In
recent years, this technology has been improved in all steps: microarray construction, cONA
labeling, hybridization, fluorescence detection, aswell asdataacquisition and analysis (Bowtell,
1999; Holloway et a., 2002).

Microarray construction can be performed by robots (spotters) that deposit the DNA
onaglassslide (Cheunget a., 1999) or by photolithography (Lipshutz et a., 1999). Initialy, the
DNA fragments immobilized on the slides were double-stranded PCR products; nowadays,
most of them contain immobilized oligonuclectides, and there are a so slides that present a 3-
dimensional structure (Ramakrishnan et al., 2002). Labeling procedures have also improved to
overcome differential incorporation rates of fluorophores (Holloway et al., 2002). There are
various types of scanners available for fluorescence detection, some use lasers, and others use
CCD cameras coupled to specific wavelength filters. Once the images have been acquired,
there are numerous image analysis softwares that perform segmentation and spot fluorescent
intensity quantification (Yang et a., 2001). In addition, there is also an increasing number of
tools available for microarray data analysis, ranging from simple ones to more elaborate ones
that involve neural networks (Narayanan et al., 2002) and Bayesian analysis(Yang et al., 2004).
Theinclusion of all these stepsin microarray experimentsincreasesthe potential and reliability
of thistechnique.

We present SpotWhatR, a user-friendly, freely available microarray data visualization
and analysis system that dispenseswith the need for programming skills. It isimplemented using
thefreely available R statistical language (http://www.r-project.org), and it can beeasily used in
Windows operational systems, using interactive menus. SpotWhatR offers graphical optionsto
visualize the data, normalization procedures, methodsto find differentially expressed genes, and
clustering agorithms.

Weimplemented in SpotWhatR tools that were successfully used and tested on micro-
array datasets of the phytopathogen Xylella fastidiosa (Koide et al., 2004; Pashalidis et d.,
2005) and the primitive fungus Blastocladiella emersonii (Ribichich et al., 2005). Many of the
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data analysis scripts have also been used in microarray data from sugar cane (Papini-Terzi et
al., 2005) and Trypanosoma cruz (Baptista et al., 2004), as we have rewritten the R scriptsto
fulfill the need for auser-friendly interface. Theaim of devel oping SpotWhatR wasto facilitate
the data analysis procedure for those who are not familiar with computational programming. It
allowstheresearcher to test and use various analysis procedures without the need for extensive
programming. Moreover, sinceit is an open-source software, new tools can be easily added to
SpotWhatR, giving researcherstheflexibility to implement or compl ete the software, according
to their own needs.

MATERIALAND METHODS
R scripts

The scripts were written in R statistical language (http://www.r-project.org) using the
cluster library. In order to build the user-friendly interface, we used thetcltk library for the Linux
version and the functions winDialog and winMenuAdd for the Windows version.

Microarray construction, labeling, hybridization, and detection

The microarrays used as examples were derived from the Blastocladiella emersonii
and Xyldllafastidiosa Microarray Projects. They were constructed by immobilizing PCR products
on type 7 glass dides (GE Healthcare) spotted at least in duplicate. Total RNA was isolated
using TriZol (Invitrogen) and was reverse transcribed and label ed using a CyScribe Post-1abel -
ing kit (GE Healthcare). The labeled targets were applied on the microarray slides, covered
with a24 x 60-mm cover slip (Corning), hybridized at 42°C for 16 h and washed in increasing
stringency conditions. Microarray slides were scanned with a Generation 111 DNA Scanner
(Molecular Dynamics). Fluorescence mean intensity and surrounding mean background from
each spot were obtained with the software Array Vision, version 6.0 (Imaging Research, Inc.).
Unreliable spots were manually flagged.

RESULTS
SpotWhatR facilities

In this section, we describe the tools available in SpotWhatR, showing examples and
graphical outputs provided by the program.

Data visualization

The raw data that result from a common two-color microarray experiment are a set of
two monochromatic images, one for each dye, usually a.TIF file. The fluorescence intensities
are codified in a grey scale, from 2° to 216, although there are other proprietary codification
schemes. The resolution and image quality depend on the scanner performance. Thisraw data
have to be analyzed by software capable of delimiting the spot boundaries, and of quantifying
the intensity of the spot and background. Since various programs can be used, this step of data
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extraction from the images is the first one for data analysis (Yang et al., 2001; Hirata et al.,
2002; Saeed et a., 2003). Once the microarray image has been acquired and quantified by an
image analysis program, it isimportant to choose agraphical output style to visualize the data.
When using SpotWhatR, one may have already extracted the intensity data from images.

SpotWhatR offers the user three different kinds of data visualization: the traditional
Cy3x Cyb scatter plot, thetraditional M x A plot and the Q x P plot. The user hasto upload the
non-normalized or the normalized dataand click on the graphic option desired.

Besides the classical scatter plot, which shows the fluorescent intensity of Cy3 versus
Cy5 channels (Figure 1, left panels), there are other plots that allow us to perform a richer
visualization of microarray data. These graphicsusually show thelog ratio on they-axisversus
an overall measure of spot fluorescenceintensity onthe x-axis (Figure 1, right panels). Thiskind
of visualization allows usto see eventual non-linear dependence between ratios and fluorescent
intensities, which may indicate that by using only theratio valuesto classify agene asdifferen-
tially expressed may not be sufficient. For example, in the graph shown in Figure 1, gene X
shows a 3-fold differenceinratio values; however, the spot intensity isvery weak. Thiskind of
result isunreliable, since hybridization intensity isweak, and it can lead to the classification of
the gene as differentially expressed. Since the estimation of the microarray expression ratio
does not depend on the strength of the hybridization signal, but on the biological meaningful
signal, these plots are aso useful to determine the kind of normalization procedure to be per-
formed on the data.

The graph used by Roberts et al. (2000) is one such example. The plot shows the
logarithm of the expression ratio versusthelogarithm of the mean intensity. Another useful and
very common graphical display isthe M x A plot, where M is defined asthelog2(ratio) and A =
l0g2(Cy3)/2 + 10g2(Cy5)/2 is the average of the logarithm of the spot intensities (Yang et al.,
2002). Asshown inthe example below (Figure 1), itispossibleto visualizethe non-linear depend-
ence of the spot intensities with the ratio values. SpotWhatR helps the user to see the system-
atic dependence of theratio on intensity values. It can also help the user to determine the most
suitable normalization procedure.

When we compare two popul ationsin microarray experiments, there may be asituation
inwhich aparticular geneis not expressed in one condition, and thus the ratio val ues cannot be
defined. One of the measured intensitiesisthus zero, and the usual ratios cannot be determined
(e.g., Cy3/0 or Cy5/0isnot defined), yielding M = infinite value, which cannot be mathemati-
cally treated to compare data sets, and A = -infinity, which cannot be visualized in any graphical
display.

To overcome this inconvenience, the data can be expressed in terms of two variables
that represent the spot total intensity Q = Cy3 + Cy5 or itslogarithm S =10g2(Cy3/2 + Cy5/2)
and the proportion of the hybridization of each target to aparticular probe P=1/(1 + 1/(normal-
ized ratio)). In thiskind of plot, we are already using the normalized ratio, since the raw ratio
value would not be informative. The value of Pisanon-linear transformation of the hybridiza-
tion ratios, making these values limited to the 0 to 1 interval. To convert the variable P to the
normalized ratio R, a simple algebraic manipulation is employed, where R = P/(1 - P). In the
situation where onetarget is present in one of the channels and absent in the other, P=1/(1 + 1/
0)=0o0r P=2/(1 + 0/1) = 1, avoiding infinite values. Without this adaptation, it would be
impossible to visualize such absence/presence cases, which could be of major interest in prac-
tice.
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Figure 1. Visualizations for Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray data. Interactive scatter
plot and M x A plot, where M = log,(Cy5/Cy3) and A = log,(Cy3)/2 + log,(Cy5)/2, i.e., the average of the logarithm of the
spot intensities. Note that in A, there is a clear dependence of the log ratios on the spot intensity values when we visualize
the data on an M x A plot (intensity-dependent feature). The scatter plot does not alow the visualization of this feature.
Note the gene X highlighted in panel A, which could be classified as differentially expressed if one does not pay attention
to the intensity-dependent feature of the data.

Inaddition to thefour different kinds of plots, there are also some other useful visualiza-
tion tools, such as zooming, identifying points on the graph by a given property and showing a
specific fold-change value. Thesetools help with datamining procedures, linking the graphical
output with the rapid and practical identification of the points of interest, within adesired fold-
change. In Figure 2, we show an exampl e of theidentification of some candidate outlier experi-
mental pointsinan M x A plot.

Normalization

The two-color microarray technology is based on the fluorescence of two different
dyes, resulting in several typesof imbalances, such asdifferent incorporation efficiencies, wave-
length detection and dye brightness. To overcome these problems, the data acquired from an
image analysis program have to be normalized. There are various ways to normalize the data
(Quackenbush, 2002; Yang et al., 2002), and it is up to the user to define the best method for
each data set. SpotWhatR allows the user to choose between three different normalization
procedures: global normalization, LOWESS and dye swap.
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Figure 2. Screen shot of tools that allow interactive zoom and identification of experimental points by a given property,
showing the desired fold change cutoff. In the example above, the property chosen was the spot localization, indicated as
subarray: row-column.

The hypothesis behind the first two procedures is that most genes should not change
their expression value; the mean of the ratio values should be 1 (or log ratio = 0). However,
depending on the biological context, thishypothesis may not hold. As shown by van de Peppel et
al. (2003), under some experimental conditionsthereisaglobal shift of theratio distribution, i.e.,
most genes may decrease or increase their expression by a constant value. This information
would belost if one assumes that there is no global change in gene expression. In these cases,
it isbetter to use the dye-swap normalization procedure. SpotWhatR allowsthe user tofilter the
data before normalizing by determining a saturation cutoff and/or using a column labeled as
FLAG, whichisusually provided by theimage analysis programsto mark low quality spots. We
describe each available method:

» Global mean normalization

One of the easiest waysto perform normalization isto find a constant factor to correct
all the spotsin the data set, the so-called global normalization procedures. They correspondto a
tranglation in the log-ratio values, in order to balance the two channel intensities. One example
isto assumethat thetotal intensity in the Cy3 channel should be equal to thetotal Cy5intensity.
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Another exampleisto assume that the whole mean intensities should be equal. With this proce-
dure, al the spots are corrected by a constant factor (Quackenbush, 2001). Figure 3 illustrates
the global mean normalization for two different microarray datasets. Thegreen lineistheglobal
mean value.
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Figure 3. Global mean normalization procedure of Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray
data. Note that, in A, this procedure did not adequately normalize the data. The main graphic shows the normalized data
inan M x A plot, where M = log,(Cy5/Cy3) and A = log,(Cy3)/2 + log,(Cy5)/2. The upper right graphics show the scatter
plot of Cy3 (x-axis) x Cy5 (y-axis). The points in yellow are the spots that were flagged by the user (low intensity or of
low quality) and the saturated points, which were discarded before normalizing the data. The lower right graphics show the
M x A plot of the non-normalized data and the green line is the global mean value.

* LOWESS

When there is a systematic non-linear dependence between ratios and spot intensity
values, it is appropriate to perform anormalization procedure that takes this systematic feature
into account. Thisbehavior can bevisuaized intheM x A (seethe section on datavisualization).
Assuming that all the imbalances can be approximated by multiplicative factors that are con-
tained in just one normalization constant that depends non-linearly on signal intensities, we
can perform the LOWESS fitting on an M x A and obtain the normalization constant in an
intensity-dependent framework (Yang et al., 2002). Figure 4 illustrates the LOWESS nor-
malization procedure; the green lineisthe LOWESS fit on the non-normalized data; all the
observed points are in orange, which are corrected to lead the fitted green pointsto M = 0. We
observed that the LOWESS fitting normalized the Xylella fastidiosa dataset better than the
globa mean normalization (Figure 4A), since there was a clear intensity-dependent feature of
the data, while both methods worked equivalently with the Blastocladiella emersonii dataset
(Figure 4A and B).

* Dye-swap

Since the normalization procedures are necessary due to differences in incorporation
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Figure 4. LOWESS normalization of Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray data. Note that,
in A, the log ratio values are clearly intensity dependent, i.e., there is a systematic non-linear dependence of the spot
intensities with the ratio values. The main panel shows the normalized data in an M x A plot, where M = log,(Cy5/Cy3)
and A = log,(Cy3)/2 + log,(Cy5)/2. The upper right panels show the scatter plot of Cy3 x Cy5. The points in yellow show
the spots that were flagged by the user and saturated points, which were filtered out before normalizing the data. The lower
right panels show the M x A plot with the LOWESS fitting in dark green.

and dye brightness, the dye-swap procedure attemptsto minimizethiseffect by labeling sasmple
A with Cy3, B with Cy5 and also, in aseparate experiment, A with Cy5 and B with Cy3. These
hybridizations can be done as a control alone, or they can also be used to normalize the data.
The dye swap normalization procedure consists of calculating the following ratio, using the
results from dye swapped microarrays: R? = A%/B? = (Cy3/Cy5*k)/(k* Cy3/Cy5),, ., (Yang et
al., 2002). One needs two experiments in order to obtain a single-expression ratio result. The
advantage of thismethod isthat thereis no need to assume that most of the genes do not change
their expression levels, which can beamore realistic approximation of the condition under test.
The drawback is that one needs to perform all experiments in duplicate, preferably technical
duplicates, to assure that the normalization constants k are in fact the same, and thus cancel
each other out in the ratio equation above. It is prudent to perform at |east some dye-swapping
experiments, even if the normalization chosen is not the dye-swap procedure, to avoid artifacts
inthe differential expression detection procedure. Figure 5illustrates the dye-swap normaliza-
tion for Blastocladiella emersonii microarray data, performed by SpotWhatR.

Finding differentially expressed genes

When analyzing a microarray dataset, a major question is how to classify a gene as
differentially expressed. To answer this question, it is necessary to set a cutoff level for hybrid-
ization intensity ratios that permit one to decide whether a gene is differentially expressed or
not. In mathematical terms, this step consistsin testing the null hypothesisH : “the spot has no
differential hybridization between the two probed samples’. SpotWhatR allowsthe user to find
intensity-dependent cutoffs, by using self-self experimentsor by determining outlier genes. This
method was designed to provide astatistical analysis alternative to alow-replication dataset in
which more elaborated known statistical methods, such as SAM (Tusher et al., 2001), are not
recommended.
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Figure 5. Dye-swap normalization of Blastocladiella emersonii microarray data. The main panel shows the normalized
datain an M x A plot, where M = log,(Cy5/Cy3) and A = log,(Cy3)/2 + log,(Cy5)/2. The right upper panel shows the scatter
plot of Cy3 (x-axis) x Cy5 (y-axis). The light green spots refer to the microarray slide where the control was labeled with
Cy3 and the test sample with Cy5. The dark green spots show the microarray slide where the control was labeled with Cy5
and the test sample with Cy3.

* HTself

Self-self experiments are performed by abeling the samebiological materia with either
Cy3or Cy5 dyesand hybridizing them simultaneously on the same microarray slide. Thisstrat-
egy has been used to derive intensity-dependent cutoffs to classify a gene as differentialy
expressed (Papini-Terzi et a., 2005; Pashalidiset a., 2005) or divergent in comparative genomic
hybridization studies (Koide et al., 2004). The comparative analysis of constant fold change
cutoffs and intensity-dependent ones has been extensively discussed, showing a superior per-
formance of the intensity-dependent strategy. SpotWhatR provides the user with the HTself
method (Vencio and Koide, 2005). Based on self-self experiments, the user can defineintensity-
dependent cutoffswith the desired credibility interval and obtain listsof differentially expressed
genes. Figure 6 shows the self-self curve and its application to find differentially expressed
genes using SpotWhatR.

SpotWhatR could be considered as a stand-al oneimplementation of the HTself method.
We refer the interested reader to the original work (Vencio and Koide, 2005) for a detailed
explanation on thismethod.

 QOutliers

Since microarray self-self experiments are not always performed, we also made avail-
ableamethod to find the outlier geneswithin an experiment. By defining the credibility interval
using the data being examined, the user can find the genes that are more distant from the
distribution than most, which can be useful to find differentially expressed genes. Therationale
introduced by SpotWhatR issimilar, where the genesthat show the greatest fold changerelative
to the control are considered differentially expressed. For example, one could select the top
20% genes ranked by their fold change (the top 10% up-regulated plus the top 10% down-
regulated), regardless of the magnitude of the fold change obtained. However, thissimple rule
could be very biased, due to the non-linear intensity dependence of the fold change with the

Genetics and Molecular Research 5 (1): 93-107 (2006) www.funpecrp.com.br



T. Koide et al. 102

File Histoy Resize Windows Ed Microsoft Excel - Blasto_HT self_application_result

|E] arquvo Editer Esbir Inser Formstar Ferrsmentss Dados Janels Ajuda =18]x|
e e oo 1 [ 1 AR
o . TI5 | =0

Type 'license()' or 'licence()' for distribution de A l Kl I 0 P [ @ ‘ RS [T U ‘ v | H
11D total wsed x.median xmean xmad xsd  up down inside p.up p.=

R is a collaborative project with many contributors 2' genel B B 082 074 0.27 0.36 0 5 1 0

'-I'Y[:‘!E '?EIII’.F:-I!JutU.IS(J L fm? mDEE 1nt0'n'mar.1m.1 and 1 genez 5 1 .0.94 094 0.00 0 1 0 0

[ R Graphics: Device 2 (ACT! VE] =lolx|| |4 |gene3 6 B -0.36 046 015 028 0 2 4 0

s 5 |gened 6 3] 0.13 014 017 052 o 2 4 o

L | B |genes 6 B -0.88 093 138 091 o] 4 2 0

$ = &% | 7 |geneb 6 3 013 019 021 022 1 0 5 0.167

B |gene? 6 53 -0.45 089 044 092 0 4 2 a

| 9 |gened 6 5] 0.39 036 008 008 3 0 3 0s

10 |gened 6 1 -0.47 -0.47 000 1] 0 1 a

at| 11 |genel0 6 5 -0.49 0.91 05 097 0 4 2 0

12 |genell 6 B -0.32 048 032 04 o 2 4 ]

(13 6 ] 0.1 015 017 02 1] 1] B 0

14 6 53 011 012 015 026 0 1 5 0

115 | 6 5] -0.21 018 010 012 EII D-l B i)

(16| 6 6 -0.31 019 024 032 a 1 5 a

NiFd 6 5 021 015 019 024 0 0 5 0

18 6 5 -2.37 .79, 025 113 o] 4 1 0

19| 6 2 -0.48 048 033 032 1] 1 1 ]

20 6 B 0.25 018 023 024 1 0 5 0.167

21 6 2 -0.03 003 013 012 0 0 2 0

(22| 6 5] 0.15 014 010 0.6 1] 0 B il

(23 6 5} 0.17 016 013 0.2 a 0 B a

24 6 5 -0.44 092 020 086 0 4 2 0

(25 6 5] 0.23 o 027 023 3 0 3 05

(26 | 6 ] -0.02 009 D24 D040 1 1 4 0.167

27 6 5 0.69 070 025 023 4 0 1 08

(28 | 6 5] -0.45 096 025 082 1] 5 1 o
(29 6 5] 0.19 008 028 035 1 1 4 0.167
- - PR —— 'MHJJ

(¥ Thplant (Pl e /. T4l
|Desentar = Iy & | augromes- N NOCE 4@ &-2-A-==504.
Pronto [ s i . e i

[ Graphics
Hniciar | | & 5 A & B || 5)Esploendo-Dados sivia | glblestoiquepbr-PuTTY | [ G |[EMicrosomt Excel - Blas... [ e

Figure 6. Self-self experimentally derived curve from Blastocladiella emersonii microarray data. The dark line delimits
the 98% credibility interval. By uploading a file containing the microarray data under test, the user receives as output a list
of genes which are outside the defined credibility intervals, shown in the screen shot as an Excel spreadsheet.

fluorescence intensity, as discussed earlier. Therefore, the SpotWhatR outlier detection proce-
dure works in an intensity-dependent framework, similar to the HTself method but using the
dataitself to define the cutoff curve, instead of the self-self curve. This procedure works aswe
selected the 20% greatest fold changes for each A interval in asliding window (Figure 7). This
percentage designation isasimplification, since the procedureisin fact more sophisticated: for
example, as mentioned previously, it calculates the 80% credibility interval, which is different
from simply sorting the fold changes and harvesting the top 20% genes.

This procedure can be applied to non-normalized datasets, aslong asthe order of rela-
tionsinsideasmall intensity window is maintained before and after the normalization process. In
other words, in agiven small intensity range, the genesthat suffer the greatest fold changes are
expected to be the same after normalization, since the outlier finding does not consider the
numeric ratio obtained, but rather, the information of which gene appearsfirst in an ordered list
of genes. Multiplicative or additive operations do not changethelist order.

Summary by Gene Ontology terms

A bioinformaticsmethodol ogy that isbecoming commonly used in microarray dataanaysis
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Figure 7. Finding outlier genes in a Blastocladiella emersonii microarray dataset. The 90% credibility interval was
defined using the data under test, which defined a list of outlier genes.

isthe categorization of theresult in ontology terms. Thelarge outputs of high-throughput meth-
ods, such as lists of differentially expressed genes or cluster elements could be much more
useful to biologistsif summarized in ontology terms. The most common kind of term analyzedis
the classification in gene categories, where the preferred scheme is the one proposed by the
Gene Ontology (GO) Consortium (Ashburner et al., 2000).

In SpotWhatR, we have implemented a tool that summarizes a list of genes by GO
termsor any other functional categorization familiar to theresearcher. It allowsthe user to build
aGO-to-genetable from agene-to-GO table and to have GO statistics. It isvery useful, mainly
to those working with organismsthat are not implemented in most of the on-linetoolsavailable
(seealist of toolsin http://www.geneontol ogy.org/GO.tool s.shtml). Since the user usually hasa
gene-to-GO table, SpotWhatR receivesit asan input and buildsa GO-to-genetable. SpotWhatR
summarizes the data by giving the number of genesin each functional category; it also calcu-
lates the association measurement between “ being differentially expressed” and “belongingto a
given GO category” . Thisassociation measurement is cal cul ated as described by Goodman and
Kruskal (1954). Values near 1 indicate strong association. The output is a tab-delimited file
(-txt), which can be easily manipulated in Excel spreadsheets.

Clustering

Clustering analysis is often performed to group genes that present similar expression
patterns. Thistool isvery useful to explore the gene expression data, especially when it turns
into a temporal series data set, allowing data visualization and the identification of patterns.
There are plenty of clustering algorithms, and the choice of the most suitable oneis still gener-
ally made in an empirical manner (Datta 2003). We believe that it is necessary to test different
methods and choose one that helps the researcher to understand the biological processes under
study. Moreover, the method should present a principle coherent with the structure of the data
under analysis.
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Clustering algorithms receive as input asimilarity matrix, i.e., amatrix containing the
distance between the vectors. In microarray data analysis, the similarity matrix contains the
distance between gene expression profiles. We have implemented two different distance meas-
uresin SpotWhatR: the classical Euclidean distance and a distance that takes into account the
replication measurements. The latter distance measure allows the user to incorporate the repli-
cation measurements to perform the clustering analysis, which will probably result in a more
realistic dataanalysis (Yeung et al., 2003).

To perform the clustering analysis in SpotWhatR, the user must input a table with n
lines (number of genes) and p columns, containing the gene names and the respective expres-
sion ratios. To use the distance measure that takes into account the replication, the user must
also input another matrix containing the gene names and the respective error measurement, for
example, standard deviation or median absolute deviation. Once the distance measurement is
chosen, one of the following clustering methods can be performed: hierarchical agglomerative
clustering, K-means, and DIANA. Our clustering algorithms are performed on the dataset with
complete profilesto avoid errorsthat arise from datainput, aclassical and complex problemin
clustering analysis (Troyanskayaet al., 2001). Since the clustering algorithms must have all the
time points, many programs substitute them for constant values or means, which can influence
the final result. The user can perform such an input process outside of SpotWhatR using his
preferred tool and input this modified datainto it for the clustering analysis. We prefer to work
only with thereliable and compl ete time-series.

» Hierarchical agglomerative clustering

In thisalgorithm, the initial number of clustersis equal to the number of genes. Genes
with similar expression profiles are successively grouped. Once a gene has been assigned to a
particular group, thereisno more mobility between groups and the distanceis cal cul ated rel ative
to the group formed.

* DIANA

Thisisadivisivehierarchical clustering (DIvisive ANAlysis Clustering). In contrast to
the agglomerative clustering, all thegenesareinitially assigned to asingle group. At each step of
the algorithm, the group is successively divided to form groups. The cluster with the highest
dissimilarity isdivided in each step, and the gene presenting the highest dissimilarity isidentified
to begin anew cluster. A gene can be moved from one cluster to another if the similarity with a
new cluster is greater.

e K-means

This is an iterative clustering algorithm, where the number of clusters is one of the
inputs of the algorithm. The user can define the number of groups. They are represented by
centroids, the group center. The algorithm minimizes the sum of the distances of each object to
the corresponding centroid. In each iteration, each gene is designated to the nearest centroid
and new centroids are computed based on the gene distribution. These steps are repeated until
there is no more mobility of the genes between the different clusters.
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The output is a .txt file containing the gene name, description, the expression profile,
and the number of the group.

SpotWhatR allows the user to visualize the cluster generated by the algorithms hierar-
chical and DIANA; one should click on the dendrogram display, select acluster to be displayed
enlarged and savethelist of genesasa.txt file, asshown in Figure 8. Thisoption isvery useful
to analyze the dataand allow the user to have meaningful biological insights. For example, this
list can be uploaded in the option Summarize by GO terms, allowing the researcher to see if
there is an association between the genes in a cluster and their functional categorization. In
addition, SpotWhatR allows gene expression profilevisualization, asshownin Figure 9. Cluster-
ing a gorithmsrequire many cal culations, thus, depending on the computer configuration and the
number of genes, this option may take considerable time to be performed.
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Figure 8. Clustering visualization of Blastocladiella emersonii microarray data. The dendrogram shows all the 150 genes
that were clustered using hierarchical agglomerative cluster (complete). The region highlighted in red is shown enlarged
and the list of genes was saved as a .txt file.

Script availability

To use SpotWhatR, oneshouldfirst install R for Windows (http://Img.esal g.usp.br/CRAN/)
and download SpotWhatR at (http://blasto.iq.usp.br/~tkoide/SpotWhatR/). In the R environ-
ment, click “upload file”, and choose the spotwhat.R script file. Then, there will be anew item
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Figure 9. K-means clustering visualization of Blastocladiella emersonii microarray data. A list of 924 genes was clustered
in 10 different groups. In this figure, we show the gene expression profile of 4 groups, where the y-axis shows the M values
(M = log,(Cy5/Cy3) and the x-axis corresponds to the time points. In SpotWhatR, the user has to generate one figure at
a time by uploading a file containing the list of genes of which profiles he/she wants displayed.

in the menu called SpotWhatR, which allows the utilization of our tool. The user can perform
microarray data analysis by choosing the appropriate option in the interactive menu. Further
detailed information and examples are availablein the “ SpotWhatR User Guide” in the supple-
mental web site.

DISCUSSION

Complex and high-throughput microarray datasets require data analysis tools capable
of handling all the procedures necessary for an adequate analysis. Although the features of
SpotWhatR are variants of existing methods, various are not easily available elsewhere. For
example, the intensity-dependent outlier finding is a useful application that derived from the
HTself method (Vencio and Koide, 2005). The clustering process considering the experimental
replication is based on Yeung et a. (2003); however, their software does not allow an arbitrary
and unbalanced number of experimental replicatesfor the different pointsintime series. There-
fore, we implemented such an improvement.

SpotWhatR fulfills the need for a user-friendly interface for microarray data analysis.
The scriptsimplemented in SpotWhatR were successfully used in various microarray datasets,
such as Trypanosoma cruz, sugar cane, Xylella fastidiosa, and Blastocladiella emersonii.
However, we had to run scripts and alter some parameters manually, posing some difficultiesto
those not familiar with computational programming, impairing thetest of different dataanalysis
procedures that could be more suitable for the dataset. By implementing a user-friendly inter-
face for Windows, we hope that other research groups can use thistool to analyze their micro-
array data. Moreover, since it is an open-source software, new tools can be easily added to
SpotWhatR, giving researcherstheflexibility to implement or compl ete the software, according
to their needs.
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