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ABSTRACT. SpotWhatR is a user-friendly microarray data analysis
tool that runs under a widely and freely available R statistical language
(http://www.r-project.org) for Windows and Linux operational systems.
The aim of SpotWhatR is to help the researcher to analyze microarray
data by providing basic tools for data visualization, normalization, deter-
mination of differentially expressed genes, summarization by Gene On-
tology terms, and clustering analysis. SpotWhatR allows researchers
who are not familiar with computational programming to choose the most
suitable analysis for their microarray dataset. Along with well-known
procedures used in microarray data analysis, we have introduced a stand-
alone implementation of the HTself method, especially designed to find
differentially expressed genes in low-replication contexts. This approach
is more compatible with our local reality than the usual statistical meth-
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ods. We provide several examples derived from the Blastocladiella
emersonii and Xylella fastidiosa Microarray Projects. SpotWhatR is
freely available at http://blasto.iq.usp.br/~tkoide/SpotWhatR, in English
and Portuguese versions. In addition, the user can choose between “single
experiment” and “batch processing” versions.

Key words: Microarray data analysis, Data vizualization, Clustering,
Normalization, User-friendly system, Gene Ontology

INTRODUCTION

There are many different technologies that allow us to measure gene expression at the
transcriptional and translational levels in a high-throughput framework. DNA microarrays have
been widely used and have become very popular among scientists to measure gene expression
or to perform genomic comparative studies. The principle of this technique is competitive hy-
bridization between a control and a test sample, labeled with different fluorophores, Cy3 or Cy5,
performed on a glass slide containing DNA fragments representing thousands of genes. In
recent years, this technology has been improved in all steps: microarray construction, cDNA
labeling, hybridization, fluorescence detection, as well as data acquisition and analysis (Bowtell,
1999; Holloway et al., 2002).

Microarray construction can be performed by robots (spotters) that deposit the DNA
on a glass slide (Cheung et al., 1999) or by photolithography (Lipshutz et al., 1999). Initially, the
DNA fragments immobilized on the slides were double-stranded PCR products; nowadays,
most of them contain immobilized oligonucleotides, and there are also slides that present a 3-
dimensional structure (Ramakrishnan et al., 2002). Labeling procedures have also improved to
overcome differential incorporation rates of fluorophores (Holloway et al., 2002). There are
various types of scanners available for fluorescence detection, some use lasers, and others use
CCD cameras coupled to specific wavelength filters. Once the images have been acquired,
there are numerous image analysis softwares that perform segmentation and spot fluorescent
intensity quantification (Yang et al., 2001). In addition, there is also an increasing number of
tools available for microarray data analysis, ranging from simple ones to more elaborate ones
that involve neural networks (Narayanan et al., 2002) and Bayesian analysis (Yang et al., 2004).
The inclusion of all these steps in microarray experiments increases the potential and reliability
of this technique.

We present SpotWhatR, a user-friendly, freely available microarray data visualization
and analysis system that dispenses with the need for programming skills. It is implemented using
the freely available R statistical language (http://www.r-project.org), and it can be easily used in
Windows operational systems, using interactive menus. SpotWhatR offers graphical options to
visualize the data, normalization procedures, methods to find differentially expressed genes, and
clustering algorithms.

We implemented in SpotWhatR tools that were successfully used and tested on micro-
array datasets of the phytopathogen Xylella fastidiosa (Koide et al., 2004; Pashalidis et al.,
2005) and the primitive fungus Blastocladiella emersonii (Ribichich et al., 2005). Many of the
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data analysis scripts have also been used in microarray data from sugar cane (Papini-Terzi et
al., 2005) and Trypanosoma cruzi (Baptista et al., 2004), as we have rewritten the R scripts to
fulfill the need for a user-friendly interface. The aim of developing SpotWhatR was to facilitate
the data analysis procedure for those who are not familiar with computational programming. It
allows the researcher to test and use various analysis procedures without the need for extensive
programming. Moreover, since it is an open-source software, new tools can be easily added to
SpotWhatR, giving researchers the flexibility to implement or complete the software, according
to their own needs.

MATERIAL AND METHODS

R scripts

The scripts were written in R statistical language (http://www.r-project.org) using the
cluster library. In order to build the user-friendly interface, we used the tcltk library for the Linux
version and the functions winDialog and winMenuAdd for the Windows version.

Microarray construction, labeling, hybridization, and detection

The microarrays used as examples were derived from the Blastocladiella emersonii
and Xylella fastidiosa Microarray Projects. They were constructed by immobilizing PCR products
on type 7 glass slides (GE Healthcare) spotted at least in duplicate. Total RNA was isolated
using TriZol (Invitrogen) and was reverse transcribed and labeled using a CyScribe Post-label-
ing kit (GE Healthcare). The labeled targets were applied on the microarray slides, covered
with a 24 x 60-mm cover slip (Corning), hybridized at 42°C for 16 h and washed in increasing
stringency conditions. Microarray slides were scanned with a Generation III DNA Scanner
(Molecular Dynamics). Fluorescence mean intensity and surrounding mean background from
each spot were obtained with the software Array Vision, version 6.0 (Imaging Research, Inc.).
Unreliable spots were manually flagged.

RESULTS

SpotWhatR facilities

In this section, we describe the tools available in SpotWhatR, showing examples and
graphical outputs provided by the program.

Data visualization

The raw data that result from a common two-color microarray experiment are a set of
two monochromatic images, one for each dye, usually a .TIF file. The fluorescence intensities
are codified in a grey scale, from 20 to 216, although there are other proprietary codification
schemes. The resolution and image quality depend on the scanner performance. This raw data
have to be analyzed by software capable of delimiting the spot boundaries, and of quantifying
the intensity of the spot and background. Since various programs can be used, this step of data
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extraction from the images is the first one for data analysis (Yang et al., 2001; Hirata et al.,
2002; Saeed et al., 2003). Once the microarray image has been acquired and quantified by an
image analysis program, it is important to choose a graphical output style to visualize the data.
When using SpotWhatR, one may have already extracted the intensity data from images.

SpotWhatR offers the user three different kinds of data visualization: the traditional
Cy3 x Cy5 scatter plot, the traditional M x A plot and the Q x P plot. The user has to upload the
non-normalized or the normalized data and click on the graphic option desired.

Besides the classical scatter plot, which shows the fluorescent intensity of Cy3 versus
Cy5 channels (Figure 1, left panels), there are other plots that allow us to perform a richer
visualization of microarray data. These graphics usually show the log ratio on the y-axis versus
an overall measure of spot fluorescence intensity on the x-axis (Figure 1, right panels). This kind
of visualization allows us to see eventual non-linear dependence between ratios and fluorescent
intensities, which may indicate that by using only the ratio values to classify a gene as differen-
tially expressed may not be sufficient. For example, in the graph shown in Figure 1, gene X
shows a 3-fold difference in ratio values; however, the spot intensity is very weak. This kind of
result is unreliable, since hybridization intensity is weak, and it can lead to the classification of
the gene as differentially expressed. Since the estimation of the microarray expression ratio
does not depend on the strength of the hybridization signal, but on the biological meaningful
signal, these plots are also useful to determine the kind of normalization procedure to be per-
formed on the data.

The graph used by Roberts et al. (2000) is one such example. The plot shows the
logarithm of the expression ratio versus the logarithm of the mean intensity. Another useful and
very common graphical display is the M x A plot, where M is defined as the log2(ratio) and A =
log2(Cy3)/2 + log2(Cy5)/2 is the average of the logarithm of the spot intensities (Yang et al.,
2002). As shown in the example below (Figure 1), it is possible to visualize the non-linear depend-
ence of the spot intensities with the ratio values. SpotWhatR helps the user to see the system-
atic dependence of the ratio on intensity values. It can also help the user to determine the most
suitable normalization procedure.

When we compare two populations in microarray experiments, there may be a situation
in which a particular gene is not expressed in one condition, and thus the ratio values cannot be
defined. One of the measured intensities is thus zero, and the usual ratios cannot be determined
(e.g., Cy3/0 or Cy5/0 is not defined), yielding M = infinite value, which cannot be mathemati-
cally treated to compare data sets, and A = -infinity, which cannot be visualized in any graphical
display.

To overcome this inconvenience, the data can be expressed in terms of two variables
that represent the spot total intensity Q = Cy3 + Cy5 or its logarithm S = log2(Cy3/2 + Cy5/2)
and the proportion of the hybridization of each target to a particular probe P = 1/(1 + 1/(normal-
ized ratio)). In this kind of plot, we are already using the normalized ratio, since the raw ratio
value would not be informative. The value of P is a non-linear transformation of the hybridiza-
tion ratios, making these values limited to the 0 to 1 interval. To convert the variable P to the
normalized ratio R, a simple algebraic manipulation is employed, where R = P/(1 - P). In the
situation where one target is present in one of the channels and absent in the other, P = 1/(1 + 1/
0) = 0 or P = 1/(1 + 0/1) = 1, avoiding infinite values. Without this adaptation, it would be
impossible to visualize such absence/presence cases, which could be of major interest in prac-
tice.
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In addition to the four different kinds of plots, there are also some other useful visualiza-
tion tools, such as zooming, identifying points on the graph by a given property and showing a
specific fold-change value. These tools help with data mining procedures, linking the graphical
output with the rapid and practical identification of the points of interest, within a desired fold-
change. In Figure 2, we show an example of the identification of some candidate outlier experi-
mental points in an M x A plot.

Normalization

The two-color microarray technology is based on the fluorescence of two different
dyes, resulting in several types of imbalances, such as different incorporation efficiencies, wave-
length detection and dye brightness. To overcome these problems, the data acquired from an
image analysis program have to be normalized. There are various ways to normalize the data
(Quackenbush, 2002; Yang  et al., 2002), and it is up to the user to define the best method for
each data set. SpotWhatR allows the user to choose between three different normalization
procedures: global normalization, LOWESS and dye swap.

Figure 1. Visualizations for Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray data. Interactive scatter
plot and M x A plot, where M = log

2
(Cy5/Cy3) and A = log

2
(Cy3)/2 + log

2
(Cy5)/2, i.e., the average of the logarithm of the

spot intensities. Note that in A, there is a clear dependence of the log ratios on the spot intensity values when we visualize
the data on an M x A plot (intensity-dependent feature). The scatter plot does not allow the visualization of this feature.
Note the gene X highlighted in panel A, which could be classified as differentially expressed if one does not pay attention
to the intensity-dependent feature of the data.

A Xylella fastidiosa

B Blastocladiella emersonii
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The hypothesis behind the first two procedures is that most genes should not change
their expression value; the mean of the ratio values should be 1 (or log ratio = 0). However,
depending on the biological context, this hypothesis may not hold. As shown by van de Peppel et
al. (2003), under some experimental conditions there is a global shift of the ratio distribution, i.e.,
most genes may decrease or increase their expression by a constant value. This information
would be lost if one assumes that there is no global change in gene expression. In these cases,
it is better to use the dye-swap normalization procedure. SpotWhatR allows the user to filter the
data before normalizing by determining a saturation cutoff and/or using a column labeled as
FLAG, which is usually provided by the image analysis programs to mark low quality spots. We
describe each available method:

• Global mean normalization

One of the easiest ways to perform normalization is to find a constant factor to correct
all the spots in the data set, the so-called global normalization procedures. They correspond to a
translation in the log-ratio values, in order to balance the two channel intensities. One example
is to assume that the total intensity in the Cy3 channel should be equal to the total Cy5 intensity.

Figure 2. Screen shot of tools that allow interactive zoom and identification of experimental points by a given property,
showing the desired fold change cutoff. In the example above, the property chosen was the spot localization, indicated as
subarray: row-column.
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Another example is to assume that the whole mean intensities should be equal. With this proce-
dure, all the spots are corrected by a constant factor (Quackenbush, 2001). Figure 3 illustrates
the global mean normalization for two different microarray datasets. The green line is the global
mean value.

A B

Figure 3. Global mean normalization procedure of Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray
data. Note that, in A, this procedure did not adequately normalize the data. The main graphic shows the normalized data
in an M x A plot, where M = log

2
(Cy5/Cy3) and A = log

2
(Cy3)/2 + log

2
(Cy5)/2. The upper right graphics show the scatter

plot of Cy3 (x-axis) x Cy5 (y-axis). The points in yellow are the spots that were flagged by the user (low intensity or of
low quality) and the saturated points, which were discarded before normalizing the data. The lower right graphics show the
M x A plot of the non-normalized data and the green line is the global mean value.
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•  LOWESS

When there is a systematic non-linear dependence between ratios and spot intensity
values, it is appropriate to perform a normalization procedure that takes this systematic feature
into account. This behavior can be visualized in the M x A (see the section on data visualization).
Assuming that all the imbalances can be approximated by multiplicative factors that are con-
tained in just one normalization constant that depends non-linearly on signal intensities, we
can perform the LOWESS fitting on an M x A and obtain the normalization constant in an
intensity-dependent framework (Yang et al., 2002). Figure 4 illustrates the LOWESS nor-
malization procedure; the green line is the LOWESS fit on the non-normalized data; all the
observed points are in orange, which are corrected to lead the fitted green points to M = 0. We
observed that the LOWESS fitting normalized the Xylella fastidiosa dataset better than the
global mean normalization (Figure 4A), since there was a clear intensity-dependent feature of
the data, while both methods worked equivalently with the Blastocladiella emersonii dataset
(Figure 4A and B).

•  Dye-swap

Since the normalization procedures are necessary due to differences in incorporation
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and dye brightness, the dye-swap procedure attempts to minimize this effect by labeling sample
A with Cy3, B with Cy5 and also, in a separate experiment, A with Cy5 and B with Cy3. These
hybridizations can be done as a control alone, or they can also be used to normalize the data.
The dye swap normalization procedure consists of calculating the following ratio, using the
results from dye swapped microarrays: R² = A²/B² = (Cy3/Cy5*k)/(k*Cy3/Cy5)

swap 
(Yang et

al., 2002). One needs two experiments in order to obtain a single-expression ratio result. The
advantage of this method is that there is no need to assume that most of the genes do not change
their expression levels, which can be a more realistic approximation of the condition under test.
The drawback is that one needs to perform all experiments in duplicate, preferably technical
duplicates, to assure that the normalization constants k are in fact the same, and thus cancel
each other out in the ratio equation above. It is prudent to perform at least some dye-swapping
experiments, even if the normalization chosen is not the dye-swap procedure, to avoid artifacts
in the differential expression detection procedure. Figure 5 illustrates the dye-swap normaliza-
tion for Blastocladiella emersonii microarray data, performed by SpotWhatR.

Finding differentially expressed genes

When analyzing a microarray dataset, a major question is how to classify a gene as
differentially expressed. To answer this question, it is necessary to set a cutoff level for hybrid-
ization intensity ratios that permit one to decide whether a gene is differentially expressed or
not. In mathematical terms, this step consists in testing the null hypothesis H

0
: “the spot has no

differential hybridization between the two probed samples”. SpotWhatR allows the user to find
intensity-dependent cutoffs, by using self-self experiments or by determining outlier genes. This
method was designed to provide a statistical analysis alternative to a low-replication dataset in
which more elaborated known statistical methods, such as SAM (Tusher et al., 2001), are not
recommended.

A B

Figure 4. LOWESS  normalization of Xylella fastidiosa (A) and Blastocladiella emersonii (B) microarray data. Note that,
in A, the log ratio values are clearly intensity dependent, i.e., there is a systematic non-linear dependence of the spot
intensities with the ratio values. The main panel shows the normalized data in an M x A plot, where M = log

2
(Cy5/Cy3)

and A = log
2
(Cy3)/2 + log

2
(Cy5)/2. The upper right panels show the scatter plot of Cy3 x Cy5. The points in yellow show

the spots that were flagged by the user and saturated points, which were filtered out before normalizing the data. The lower
right panels show the M x A plot with the LOWESS fitting in dark green.
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Figure 5. Dye-swap normalization of Blastocladiella emersonii microarray data. The main panel shows the normalized
data in an M x A plot, where M = log

2
(Cy5/Cy3) and A = log

2
(Cy3)/2 + log

2
(Cy5)/2. The right upper panel shows the scatter

plot of Cy3 (x-axis) x Cy5 (y-axis). The light green spots refer to the microarray slide where the control was labeled with
Cy3 and the test sample with Cy5. The dark green spots show the microarray slide where the control was labeled with Cy5
and the test sample with Cy3.
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•  HTself

Self-self experiments are performed by labeling the same biological material with either
Cy3 or Cy5 dyes and hybridizing them simultaneously on the same microarray slide. This strat-
egy has been used to derive intensity-dependent cutoffs to classify a gene as differentially
expressed (Papini-Terzi et al., 2005; Pashalidis et al., 2005) or divergent in comparative genomic
hybridization studies (Koide et al., 2004). The comparative analysis of constant fold change
cutoffs and intensity-dependent ones has been extensively discussed, showing a superior per-
formance of the intensity-dependent strategy. SpotWhatR provides the user with the HTself
method (Vencio and Koide, 2005). Based on self-self experiments, the user can define intensity-
dependent cutoffs with the desired credibility interval and obtain lists of differentially expressed
genes. Figure 6 shows the self-self curve and its application to find differentially expressed
genes using SpotWhatR.

SpotWhatR could be considered as a stand-alone implementation of the HTself method.
We refer the interested reader to the original work (Vencio and Koide, 2005) for a detailed
explanation on this method.

•  Outliers

Since microarray self-self experiments are not always performed, we also made avail-
able a method to find the outlier genes within an experiment. By defining the credibility interval
using the data being examined, the user can find the genes that are more distant from the
distribution than most, which can be useful to find differentially expressed genes. The rationale
introduced by SpotWhatR is similar, where the genes that show the greatest fold change relative
to the control are considered differentially expressed. For example, one could select the top
20% genes ranked by their fold change (the top 10% up-regulated plus the top 10% down-
regulated), regardless of the magnitude of the fold change obtained. However, this simple rule
could be very biased, due to the non-linear intensity dependence of the fold change with the
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fluorescence intensity, as discussed earlier. Therefore, the SpotWhatR outlier detection proce-
dure works in an intensity-dependent framework, similar to the HTself method but using the
data itself to define the cutoff curve, instead of the self-self curve. This procedure works as we
selected the 20% greatest fold changes for each A interval in a sliding window (Figure 7). This
percentage designation is a simplification, since the procedure is in fact more sophisticated: for
example, as mentioned previously, it calculates the 80% credibility interval, which is different
from simply sorting the fold changes and harvesting the top 20% genes.

This procedure can be applied to non-normalized datasets, as long as the order of rela-
tions inside a small intensity window is maintained before and after the normalization process. In
other words, in a given small intensity range, the genes that suffer the greatest fold changes are
expected to be the same after normalization, since the outlier finding does not consider the
numeric ratio obtained, but rather, the information of which gene appears first in an ordered list
of genes. Multiplicative or additive operations do not change the list order.

Summary by Gene Ontology terms

A bioinformatics methodology that is becoming commonly used in microarray data analysis

Figure 6. Self-self experimentally derived curve from Blastocladiella emersonii microarray data. The dark line delimits
the 98% credibility interval. By uploading a file containing the microarray data under test, the user receives as output a list
of genes which are outside the defined credibility intervals, shown in the screen shot as an Excel spreadsheet.

P = 0.98
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is the categorization of the result in ontology terms. The large outputs of high-throughput meth-
ods, such as lists of differentially expressed genes or cluster elements could be much more
useful to biologists if summarized in ontology terms. The most common kind of term analyzed is
the classification in gene categories, where the preferred scheme is the one proposed by the
Gene Ontology (GO) Consortium (Ashburner et al., 2000).

In SpotWhatR, we have implemented a tool that summarizes a list of genes by GO
terms or any other functional categorization familiar to the researcher. It allows the user to build
a GO-to-gene table from a gene-to-GO table and to have GO statistics. It is very useful, mainly
to those working with organisms that are not implemented in most of the on-line tools available
(see a list of tools in http://www.geneontology.org/GO.tools.shtml). Since the user usually has a
gene-to-GO table, SpotWhatR receives it as an input and builds a GO-to-gene table. SpotWhatR
summarizes the data by giving the number of genes in each functional category; it also calcu-
lates the association measurement between “being differentially expressed” and “belonging to a
given GO category”. This association measurement is calculated as described by Goodman and
Kruskal (1954). Values near 1 indicate strong association. The output is a tab-delimited file
(.txt), which can be easily manipulated in Excel spreadsheets.

Clustering

Clustering analysis is often performed to group genes that present similar expression
patterns. This tool is very useful to explore the gene expression data, especially when it turns
into a temporal series data set, allowing data visualization and the identification of patterns.
There are plenty of clustering algorithms, and the choice of the most suitable one is still gener-
ally made in an empirical manner (Datta 2003). We believe that it is necessary to test different
methods and choose one that helps the researcher to understand the biological processes under
study. Moreover, the method should present a principle coherent with the structure of the data
under analysis.

Figure 7. Finding outlier genes in a Blastocladiella emersonii microarray dataset. The 90% credibility interval was
defined using the data under test, which defined a list of outlier genes.
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Clustering algorithms receive as input a similarity matrix, i.e., a matrix containing the
distance between the vectors. In microarray data analysis, the similarity matrix contains the
distance between gene expression profiles. We have implemented two different distance meas-
ures in SpotWhatR: the classical Euclidean distance and a distance that takes into account the
replication measurements. The latter distance measure allows the user to incorporate the repli-
cation measurements to perform the clustering analysis, which will probably result in a more
realistic data analysis (Yeung et al., 2003).

To perform the clustering analysis in SpotWhatR, the user must input a table with n
lines (number of genes) and p columns, containing the gene names and the respective expres-
sion ratios. To use the distance measure that takes into account the replication, the user must
also input another matrix containing the gene names and the respective error measurement, for
example, standard deviation or median absolute deviation. Once the distance measurement is
chosen, one of the following clustering methods can be performed: hierarchical agglomerative
clustering, K-means, and DIANA. Our clustering algorithms are performed on the dataset with
complete profiles to avoid errors that arise from data input, a classical and complex problem in
clustering analysis (Troyanskaya et al., 2001). Since the clustering algorithms must have all the
time points, many programs substitute them for constant values or means, which can influence
the final result. The user can perform such an input process outside of SpotWhatR using his
preferred tool and input this modified data into it for the clustering analysis. We prefer to work
only with the reliable and complete time-series.

•  Hierarchical agglomerative clustering

In this algorithm, the initial number of clusters is equal to the number of genes. Genes
with similar expression profiles are successively grouped. Once a gene has been assigned to a
particular group, there is no more mobility between groups and the distance is calculated relative
to the group formed.

•  DIANA

This is a divisive hierarchical clustering (DIvisive ANAlysis Clustering). In contrast to
the agglomerative clustering, all the genes are initially assigned to a single group. At each step of
the algorithm, the group is successively divided to form groups. The cluster with the highest
dissimilarity is divided in each step, and the gene presenting the highest dissimilarity is identified
to begin a new cluster. A gene can be moved from one cluster to another if the similarity with a
new cluster is greater.

•  K-means

This is an iterative clustering algorithm, where the number of clusters is one of the
inputs of the algorithm. The user can define the number of groups. They are represented by
centroids, the group center. The algorithm minimizes the sum of the distances of each object to
the corresponding centroid. In each iteration, each gene is designated to the nearest centroid
and new centroids are computed based on the gene distribution. These steps are repeated until
there is no more mobility of the genes between the different clusters.



SpotWhatR: a user-friendly microarray data analysis system 105

Genetics and Molecular Research 5 (1): 93-107 (2006) www.funpecrp.com.br

The output is a .txt file containing the gene name, description, the expression profile,
and the number of the group.

SpotWhatR allows the user to visualize the cluster generated by the algorithms hierar-
chical and DIANA; one should click on the dendrogram display, select a cluster to be displayed
enlarged and save the list of genes as a .txt file, as shown in Figure 8. This option is very useful
to analyze the data and allow the user to have meaningful biological insights. For example, this
list can be uploaded in the option Summarize by GO terms, allowing the researcher to see if
there is an association between the genes in a cluster and their functional categorization. In
addition, SpotWhatR allows gene expression profile visualization, as shown in Figure 9. Cluster-
ing algorithms require many calculations, thus, depending on the computer configuration and the
number of genes, this option may take considerable time to be performed.

Figure 8. Clustering visualization of Blastocladiella emersonii microarray data. The dendrogram shows all the 150 genes
that were clustered using hierarchical agglomerative cluster (complete). The region highlighted in red is shown enlarged
and the list of genes was saved as a .txt file.

Dendrogram of agnes (x = y, diss = TRUE, method = “complete”)

Script availability

To use SpotWhatR, one should first install R for Windows (http://lmq.esalq.usp.br/CRAN/)
and download SpotWhatR at (http://blasto.iq.usp.br/~tkoide/SpotWhatR/). In the R environ-
ment, click “upload file”, and choose the spotwhat.R script file. Then, there will be a new item
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in the menu called SpotWhatR, which allows the utilization of our tool. The user can perform
microarray data analysis by choosing the appropriate option in the interactive menu. Further
detailed information and examples are available in the “SpotWhatR User Guide” in the supple-
mental web site.

DISCUSSION

Complex and high-throughput microarray datasets require data analysis tools capable
of handling all the procedures necessary for an adequate analysis. Although the features of
SpotWhatR are variants of existing methods, various are not easily available elsewhere. For
example, the intensity-dependent outlier finding is a useful application that derived from the
HTself method (Vencio and Koide, 2005). The clustering process considering the experimental
replication is based on Yeung et al. (2003); however, their software does not allow an arbitrary
and unbalanced number of experimental replicates for the different points in time series. There-
fore, we implemented such an improvement.

SpotWhatR fulfills the need for a user-friendly interface for microarray data analysis.
The scripts implemented in SpotWhatR were successfully used in various microarray datasets,
such as Trypanosoma cruzi, sugar cane, Xylella fastidiosa, and Blastocladiella emersonii.
However, we had to run scripts and alter some parameters manually, posing some difficulties to
those not familiar with computational programming, impairing the test of different data analysis
procedures that could be more suitable for the dataset. By implementing a user-friendly inter-
face for Windows, we hope that other research groups can use this tool to analyze their micro-
array data. Moreover, since it is an open-source software, new tools can be easily added to
SpotWhatR, giving researchers the flexibility to implement or complete the software, according
to their needs.

Figure 9. K-means clustering visualization of Blastocladiella emersonii microarray data. A list of 924 genes was clustered
in 10 different groups. In this figure, we show the gene expression profile of 4 groups, where the y-axis shows the M values
(M = log

2
(Cy5/Cy3) and the x-axis corresponds to the time points. In SpotWhatR, the user has to generate one figure at

a time by uploading a file containing the list of genes of which profiles he/she wants displayed.
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