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In this work, we investigate the behavior of the microcanonical and canonical averages of the two-dimensional
Ising model during the Wang-Landau simulation. The simulations were carried out using conventional Wang-
Landau sampling and the 1/t scheme. Our findings reveal that the microcanonical average should not be
accumulated during the initial modification factors f, and they outline a criterion to find this limit, which we
define as fmicro. We show that updating the density of states only after every L2 spin-flip trials leads to a much
better precision. We present a mechanism to determine for the given model up to what final modification factor
ffinal the simulations should be carried out. Altogether these small adjustments lead to an improved procedure
for simulations with much more reliable results. We compare our results with 1/t simulations. We also present
an application of the procedure to a self-avoiding homopolymer.
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I. INTRODUCTION

In recent years, Wang-Landau sampling (WLS) [1,2] has
been applied to many systems and has become a well-
established Monte Carlo algorithm. The heuristic idea of the
method is based on the fact that if one performs a random
walk in energy space with a probability proportional to the
reciprocal of the density of states, a flat histogram is generated
for the energy distribution. Since the density of states produces
huge numbers, instead of estimating g(E), the simulation
is performed for S(E) ≡ ln g(E), and a histogram H (E) is
accumulated during the simulations to control the frequency
of visits to the energy levels. At the beginning of the simulation,
we set S(E) = 0 for all energy levels. The random walk in the
energy space runs through all energy levels from Emin to Emax

with a probability

p(E → E′) = min ( exp [S(E) − S(E′)],1), (1)

where E and E′ are the energies of the current and the new pos-
sible configurations. Whenever a configuration is accepted, we
update H (E′) → H (E′) + 1 and S(E′) → S(E′) + F , where
F = ln f (f is the so-called modification factor). The initial
modification factor is taken as f = f0 = e = 2.718 28 . . . . If
the trial configuration is not accepted, then the currents H (E)
and S(E) are updated again. The flatness of the histogram
is checked after a number of Monte Carlo (MC) steps, and
usually the histogram is considered flat if H (E) > 0.8〈H 〉 for
all energies, where 〈H 〉 is an average over the energies. If
the flatness condition is fulfilled, we update the modification
factor to a finer one by setting fi+1 = √

fi and reset the
histogram H (E) = 0. Simulations are in general halted when
ln f ∼ 10−8. Having in hand the density of states, one can
calculate the canonical average of any thermodynamic variable
as

〈X〉T =
∑

E〈X〉Eg(E)e−βE

∑
E g(E)e−βE

, (2)

where 〈X〉E is the microcanonical average accumulated during
the simulations and β = 1/kBT , kB is the Boltzmann constant,
and T is the temperature. One of the interesting features of the

method is that it can also access some quantities, such as the
free energy and entropy, which are not directly available from
conventional Monte Carlo simulations.

As described above, the convergence of the method depends
on both the flatness criterion and the final f when the simulation
is interrupted, but the best choice of each is not obvious for
each model to be studied.

Recently, some authors have asserted that although achiev-
ing a flat histogram is the initial motivation of the WLS, the
flatness is not a necessary criterion to reach convergence [3–6].
They argue that in the conventional WLS, the error saturates
to a constant, while if ln f decreases as 1/t , where t is
a normalized Monte Carlo time, the error would decrease
monotonically as well. The 1/t algorithm is divided into
two steps. Initially the conventional WLS is followed, starting
from S(E) = 0 and then constructing S(E) using a histogram
updated in every new accepted configuration. S(E) is updated
as in the conventional WLS, S(E) = S(E) + Fi , with the
initial value F0 = 1. After a number of moves (e.g., 1000 MC
sweeps), we check H (E) to verify whether all the levels were
visited by the random walker at least once and then update
Fi = Fi/2 and reset H (E) = 0. (The flatness criterion is not
required, even in this first stage.) Simulation is performed
while Fi � 1/t = N/j , where j is the number of trial moves
and N is the number of energy levels. In the remainder of the
simulation, Fi is updated every new configuration as Fi = 1/t

up to a final chosen precision Ffinal.
The efficiency, convergence, and limitations of the WLS

have been quantitatively studied [7,8]. In the present work, we
perform a practical, computational study on the convergence
and the accuracy of the method.

In this paper, we investigate the behavior of the maxima of
the specific heat,

C = 〈(E − 〈E〉)2〉/T 2, (3)

and the susceptibility,

χ = L2〈(m − 〈|m|〉)2〉/T , (4)
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where E is the energy of the configurations and m is the
corresponding magnetization per spin during the conventional
WLS and the 1/t algorithm simulations for the Ising model
on a square lattice [9]. We observe (as in [4–6,10]) that a
considerable part of the conventional Wang-Landau simulation
is not very useful because the error saturates. We propose some
strategies to improve the efficiency of the WLS and compare
our results with exact calculations [11]. Our findings lead to a
new way of performing the WLS simulations.

II. A NEW PROCEDURE FOR SIMULATIONS

In order to test how far the simulations should go, during
the WLS, beginning from f17, we calculate the specific heat
and the susceptibility defined in Eqs. (3) and (4), as well as
the energy and the magnetization at some fixed temperatures.
We use the current g(E), and from this time on these mean
values are updated whenever we check the flatness of the
histogram. Figure 1 shows the evolution of the temperature
of the maximum of the specific heat calculated for L = 32 for
eight independent runs as a function of the Monte Carlo sweeps
(MCS) [12] and compares these results with the value obtained
using the exact data of Ref. [11] [Tc(L = 32) = 2.293 929 79].
The dots label the MCS when the modification factor was
updated, the leftmost in each run corresponding to f17. One
can see that around ln f23 = 1.1921 × 10−7, all the curves
become stabilized in values displaced close to the exact value.
Any further computational effort for ln f < ln f23 does not
lead to a better convergence.

In order to investigate how these results are displaced
around the exact value, we performed 100 000 independent
runs of WLS for L = 8 using the 80%- and the 90%-flatness
criteria and built up histograms using bins of width 0.001.
In Fig. 2, we show that the histograms form nice Gaussians
centered close, but not precisely in the exact value. In Fig. 3, we
show the same evolution for the temperature of the maximum
of the susceptibility. One can see that in this case the curves
do not flow to steady values.

FIG. 1. (Color online) Evolution of the temperature of the
extremum of the specific heat during the WLS, beginning from f17,
for eight independent runs using the 80%-flatness criterion. The dots
show where the modification factors were updated and the straight
line is the result obtained using the exact data from Ref. [11].

FIG. 2. (Color online) Histograms of the locations of the peak of
the specific heat for the 2D Ising model during the WLS, using the
80%- and 90%-flatness criteria, each for 100 000 independent runs,
along with their best-fit Gaussians. The central line corresponds to
the exact temperature of the maximum of the specific heat obtained
with data from Ref. [11].

A strategy to improve the precision of the WLS is to
update the density of states periodically (i.e., after every p

trial configuration), instead of updating S(E) every spin-flip
trial. In order to investigate how this change affects the final
result, we performed 100 000 independent runs (L = 8) using
the 80%-flatness criterion and constructed again histograms
of the locations of the peak of the specific heat. We tested the
WLS with different values for p. Figure 4 shows the Gaussian
best fits for p = 1 (conventional WLS), p = L, and p = L2.
The vertical line indicates the exact value using Ref. [11].
One can see that the higher the values of p, the narrower are
the Gaussian curves. Defining the relative error ε(X) for any

FIG. 3. (Color online) Evolution of the temperature of the
extremum of the susceptibility during the WLS, beginning from f17,
for eight independent runs using the 80%-flatness criterion. The dots
show where the modification factors were updated and the straight
line is the result obtained using the exact data from Ref. [11].
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FIG. 4. (Color online) Best-fit Gaussians for the histograms of the
temperatures of the peak of the specific heat for the 2D Ising model
during the WLS up to ln f = 10−4, using the 80%-flatness criterion,
each for 100 000 independent runs with the density of states being
updated every p spin-flip trial. The central line corresponds to the
exact temperature obtained with data from Ref. [11].

quantity X by

ε(X) = |Xsim − Xexact|
Xexact

, (5)

we obtain the relative errors of the simulated mean values
with respect to the result using Ref. [11] for p = 1, L, and
L2 as 0.000 43, 0.000 19, and 0.000 13, respectively. These
results suggest that one would obtain even higher accuracy
for p > L2, but the consumption of CPU time would be
prohibitive. Therefore, one should update the density of states
only after L2 trial moves since it leads to more accurate results
[13,14]. In other words, adopting the Monte Carlo step (L2

trial moves), as is conventional in the METROPOLIS algorithm,
is also convenient in the Wang-Landau algorithm.

FIG. 5. (Color online) Evolution of the temperature of the
extremum of the specific heat during the WLS, beginning from f9,
for eight independent runs. The density of states was updated after
every L2 trial move and the flatness criterion was 80%. The dots show
where the modification factor was updated and the straight line is the
result obtained using the exact data from Ref. [11].

FIG. 6. (Color online) Evolution of the microcanonical average of
the magnetization for the 2D Ising model for L = 32 at E = −1024
and −1536 during the simulations over 1000 independent runs for
each flatness stage.

In Fig. 5, we show the evolution of the location of the
maximum of the heat capacity during WLS in which the
density of states was updated only after every L2 spin-flip
trial, beginning from f9. We see that now the curves flow
to steady values around ln f = ln f13 = 1.2208 × 10−4 and
simulations with higher orders of the modification factor are
unnecessary. One can see that if the simulations adopting
the Monte Carlo step become longer, the canonical averages
converge to constant values much earlier.

Before investigating the behavior of the peak of the suscep-
tibility during the simulations, we turn our attention to another
important detail. What is the behavior of the microcanonical
averages 〈M〉E and 〈M2〉E during the sampling process?
We have also evaluated the microcanonical averages during
the simulations. In order to estimate the mean value of the

FIG. 7. (Color online) Evolution of the temperature of the
extremum of the susceptibility during the WLS, beginning from f9,
for eight independent runs. The density of states was updated after
every L2 trial move and the flatness criterion was 80%. The dots
show where the modification factor was updated and the straight line
is the result obtained using the exact data from Ref. [11] with the
microcanonical average accumulated from ln f = ln f7.
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FIG. 8. (Color online) Evolution of the temperature of the
extremum of the susceptibility during the WLS, beginning from f9,
for eight independent runs, using a common microcanonical average
in 24 independent runs. The density of states was updated after every
L2 trial move and the flatness criterion was 80%. The dots show where
the modification factor was updated and the straight line is the result
obtained using the exact data from Ref. [11] with the microcanonical
average accumulated from ln f = ln f7.

magnetization during each flatness stage, we carried out 1000
independent runs and calculated 〈M〉E for each fi with i =
0,1,2, . . . ,26. In Fig. 6, we show these results for two energy
levels and see that they flow to relatively stable values around
fmicro = f7. We therefore conclude that the microcanonical
averages should not be accumulated before ln f � ln fmicro =
ln f7 = 7.843 × 10−3 for the 2D Ising model.

In Fig. 7, we show the evolution of the maximum of
the susceptibility during the simulations beginning from
f9, updating the density of states after every L2 spin-flip
trial and accumulating the microcanonical averages only for
ln f � ln fmicro = ln f7. We observe that even for ln f =
ln f26 ≈ 10−8, we do not obtain stable values like those
of Fig. 5. However, if one takes the mean value of the
microcanonical averages in 24 independent runs and uses
this result for calculating the canonical averages during the
simulations, the averages do flow to stable values, as shown in
Fig. 8. Since the mean values obtained from each independent
run are well distinct from each other, one can define ffinal

on the very beginning of the straight line that occurs in each
case. The results shown in Figs. 5 and 8 define, therefore, that
the simulations should be continued only up to ffinal = f13 for
the 2D Ising model. The evolution of the canonical averages
of the energy and the magnetization at a given temperature
yields evidently patterns similar to those of Figs. 5 and 8 with
the same limit modification factors.

By applying the method to a new model, one should take
a representative size and find out when the corresponding
canonical averages obtained from a few independent runs
would come to steady values, defining, therefore, ffinal for
the given model. We would like to stress that all modification
factors defined above using the canonical and microcanonical
averages during the simulations apply to the 2D Ising model,
and it is important to perform studies similar to those of Figs. 5,
6, and 8 before adopting this new procedure to other models

FIG. 9. (Color online) Evolution of the temperature of the
extremum of the specific heat during the 1/t simulations for eight
independent runs beginning from the second stage. The straight line
is the result obtained using the exact data from Ref. [11]. Simulations
were halted when the CPU time matched the mean time of WLS.

to be sure about where to halt the simulations and where to
begin accumulating the microcanonical averages.

In view of the above observations, we propose the following
new procedure for simulations:

(i) Instead of updating the density of states after every
spin-flip, we ought to update it after each Monte Carlo sweep.

(ii) WLS should be carried out only up to ln f = ln ffinal

defined by the canonical averages during the simulations.
(iii) The microcanonical averages should not be accumu-

lated before ln f � ln fmicro defined by the microcanonical
averages during the simulation.

III. COMPARISON WITH 1/T SIMULATIONS

Figure 9 shows the evolution of the maxima of the specific
heat during the simulations using the 1/t scheme, beginning
from the second stage and halting the simulations when the
CPU time matched up the mean time of the simulations of
Fig. 5.

In order to compare these results, we performed 100 000
independent runs of WLS for L = 8 up to ln ffinal = ln f13

using 80%- and 90%-flatness criteria (WL.f13.80% and
WL.f13.90%) and built up the histograms. Next we carried
out similar simulations using the 1/t algorithm, halting the
simulation when the CPU time matched up those of WL.f13

(1/t80% and 1/t90%). In Fig. 10, we show the best-fit
Gaussians of the histograms. One can see that they are not
really centered around the exact value. The relative errors of the
simulated mean values with respect to the result using Ref. [11]
yield 0.000 41 and 0.000 36, respectively, for WL.f13.80% and
WL.f13.90%, and 0.0017 and 0.000 81 for 1/t80% and 1/t90%,
with final Fk reaching 5.1 × 10−7 and 2.4 × 10−7. We see that
although the widths of the 1/t curves are smaller, their centers
are farther apart from the exact value than those of WLS,
revealing a biased estimation effect in the 1/t method.

046702-4



WANG-LANDAU SAMPLING: IMPROVING ACCURACY PHYSICAL REVIEW E 85, 046702 (2012)

FIG. 10. (Color online) Best-fit Gaussians for the histograms of
the temperatures of the peak of the specific heat for the 2D Ising model
during the WLS up to ffinal = f13, using the 80%- and 90%-flatness
criteria, each for 100 000 independent runs. The 1/t simulations were
carried out within the same CPU time. The central line corresponds
to the exact temperature obtained with data from Ref. [11].

IV. FINITE-SIZE SCALING

According to finite-size scaling theory [15–17] from the
definition of the free energy one can obtain the zero-field scal-
ing expressions for the magnetization and the susceptibility,
respectively, by

m ≈ L−β/νM(tL1/ν), (6)

χ ≈ Lγ/νX (tL1/ν). (7)

We see that the locations of the maxima of these functions
scale asymptotically as

Tc(L) ≈ Tc + aqL
−1/ν, (8)

FIG. 11. (Color online) Size dependence of the locations of the
extrema in the specific heat and the susceptibility for conventional
WLS (top) and using our procedure (bottom) assuming ν = 1.

FIG. 12. (Color online) Log-log plot of the size dependence of
the finite-lattice susceptibility at Tc(L) with 80%-flatness criterion
for conventional WLS (top) and using our procedure (bottom).

where aq is a quantity-dependent constant, allowing then the
determination of Tc.

In order to compare the efficiency of the conventional WLS,
the 1/t scheme, and our procedure, we performed simulations
with L = 32, 36, 40, 44, 48, 52, 56, 64, 72, and 80, taking
N = 24, 24, 20, 20, 20, 16, 16, 16, 12, and 12 independent
runs for each size, respectively.

Using these scaling functions, we estimated the critical
temperature and the critical exponents β and γ . Taking a
microcanonical average including all independent runs was
important to reveal in Fig. 8 that for quantities that involve
the magnetization, the simulations can also be carried out only
up to ffinal = f13, but such a procedure does not lead to better
results for the estimation of the canonical averages.

Assuming ν = 1, we can use Eq. (11) to determine Tc as the
extrapolation to L → ∞ (L−1/ν = 0) of the linear fits given

FIG. 13. (Color online) Log-log plot of the size dependence
of the finite-lattice magnetization with 80%-flatness criterion for
conventional WLS at Tc = 2.266 99 (top) and using our procedure
at Tc = 2.269 34 (bottom).
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TABLE I. Finite-size scaling results for the critical temperature and the critical exponents β and γ . The CPU times are expressed in terms
of the time spent by the conventional WLS with 80% flatness.

Case Tc β γ CPU time

Exact 2.269 185 3 . . . 0.125 1.75
1/t

1 × 10−6 2.262 1(11) 0.197(14) 1.943(35) 0.15
5 × 10−7 2.264 2(11) 0.147 9(84) 1.846(18) 0.30
1 × 10−7 2.268 48(35) 0.129 7(31) 1.7833(46) 1.51
5 × 10−8 2.269 04(25) 0.125 9(21) 1.7708(23) 3.03
1 × 10−8 2.269 44(11) 0.126 47(94) 1.7616(17) 15.13

Conventional WLS
80% 2.266 99(55) 0.129 5(45) 1.7812(63) 1.00
90% 2.268 29(33) 0.138 6(51) 1.7899(87) 1.75

Our procedure
80% 2.269 34(23) 0.127 0(16) 1.7631(27) 9.78
90% 2.269 16(12) 0.124 94(68) 1.7555(32) 22.21

by the locations of the maxima of the specific heat and the
susceptibility defined by Eqs. (3) and (4). In Fig. 11, we show
the linear fits that converge to Tc at L−1/ν = 0 for conventional
WLS and the new procedure, both using the 80%-flatness
criterion. The final estimate for Tc was taken as the mean
value obtained from both fits.

Since Tc is now estimated, we can calculate the critical
exponents β and γ . According to Eq. (7), the maximum of the
finite-lattice susceptibility defined by Eq. (4) is asymptotically
proportional to Lγ/ν . In Fig. 12, we show these results
for the conventional WLS and our procedure, both using
the 80% criterion of flatness. In the vicinity of the critical
temperature, the magnetization scales as L−β/ν . We can use
Eq. (6) at the critical point to calculate the exponent β

directly from the slope of the log-log graph and find β. In
Fig. 13, we show again the results for conventional WLS
and our procedure for this exponent. One can see that in all
cases our procedure is more accurate than the conventional
WLS.

For the conventional WLS and the new procedure proposed
here, simulations were carried out using 80%- and 90%-
flatness criteria, and for the 1/t scheme the simulations
were halted for ln f = 10−6,5 × 10−7,10−7,5 × 10−8, and
10−8. In Table I, we show the results for the 1/t sim-
ulations, the conventional WLS, and our procedure along
with the exact values. The 1/t results become accurate only
when ln f ∼ 5 × 10−8, and for lower values of ln f they
become worse, giving the impression that they are already
fluctuating around the true value. The conventional WLS
displays problems of accuracy, while our results are adequately
accurate for both 80%- and 90%-flatness criteria. It is worth
mentioning that we have obtained high-resolution values
using the 90%-flatness criterion, which should be compared
with the erratic behavior of the 1/t simulations for ln f <

5 × 10−8, but such a stringent level of flatness is difficult
to apply to other systems [14,18–20], resulting sometimes in
nonconvergence or even more inaccurate values. Moreover, the
90%-flatness criterion simulations are very time consuming.
We conclude, therefore, that the widely adopted 80%-flatness
criterion is indeed the best guess, since it is applicable to all
systems.

V. APPLICATION TO A SELF-AVOIDING
HOMOPOLYMER

In this section, we apply to a homopolymer the initial tests
to determine up to which modification factor ffinal one should
continue the WLS and from which fmicro the microcanonical
averages should be accumulated. We consider a homopolymer
consisting of N monomers which may assume any self-
avoiding walk (SAW) configuration on a two-dimensional
lattice.

Assuming that the polymer is in a bad solvent, there is an
effective monomer-monomer attraction in addition to the self-
avoidance constraint representing excluded volume. For every
pair of nonbonded nearest-neighbor monomers, the energy of
the polymer is reduced by ε. The Hamiltonian for the model
can be written as

H = −ε
∑

〈i,j〉
σiσj , (9)

FIG. 14. (Color online) Evolution of the microcanonical
average of the mean-square end-to-end distance for N = 50 at
E = −6 and −30 during the simulations over 100 independent runs
for each flatness stage.
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where σ = 1 (0) if the site i is occupied (vacant), and the sum
is over nearest-neighbor pairs [21]. (The sum is understood to
exclude pairs of bonded segments along the chain.) We used the
so-called reptation or “slithering snake” move, which consists
of randomly adding a monomer from one end of the chain and
removing a monomer from the other end, maintaining the size
of the polymer constant. We define one Monte Carlo step as
N attempted moves.

In this model, besides the energy, another quantity of
interest is the mean-square end-to-end distance given by

〈R2〉 = 〈[(xN − x0)2 + (yN − y0)2]〉. (10)

As prescribed in Sec. II, we updated the density of states
and the histogram only after each Monte Carlo step. In order to
define from which modification factor to begin accumulating
the microcanonical averages, we estimated 〈R2〉E for each fi

during the simulations for several energy levels. In Fig. 14,
we show these results for E = −6 and −30 (the ground state
of the N = 50 homopolymer is Emin = −36). One can see
that the microcanonical averages should be accumulated from
fmicro = f10. On the other hand, to estimate ffinal for halting
the simulations, we calculated the canonical average of the
energy and the mean-square end-to-end distance during the
simulations for five fixed temperatures, namely, T = 0.5, 1.5,
2.5, 3.5, and 4.5. In Fig. 15, we show the behavior of the energy
at T = 1.5, and in Fig. 16 we show the behavior of the mean-
square end-to-end distance at T = 4.5. All the graphs we have
constructed for these quantities for the temperatures mentioned
above have a similar performance. We see, therefore, that for
this model the simulations should be carried out up to ffinal =
f18.

Other more elaborate models, such as the HP model of
protein folding [22] or continuous (off-lattice) models of
polymers [23,24], will require a test similar to the one made
in this section that may point to different values for fmicro

and ffinal. Notwithstanding that, our results suggest that this
final modification factor will occur far before f26 ≈ 1 + 10−8,
leading to considerable CPU time savings.

FIG. 15. (Color online) Evolution of the energy at T = 1.5 during
the WLS for eight independent runs beginning from f12. The straight
line is the mean value obtained from 100 independent runs.

FIG. 16. (Color online) Evolution of the mean-square end-to-end
distance at T = 4.5 during the WLS for eight independent runs
beginning from f12. The straight line is the mean value obtained
from 100 independent runs.

VI. CONCLUSIONS

We have demonstrated that the conventional WLS presents
problems of accuracy. However, with very few changes in
the implementation of the method—namely, updating the
density of states only after each Monte Carlo step, halting
the simulations for ln f < ln ffinal, with ffinal determined
by the canonical averages during the simulations, and accumu-
lating the microcanonical averages only for ln f < ln fmicro,
where fmicro is found from the behavior of the microcanonical
averages in each modification factor—it becomes quite accu-
rate. Adopting the Monte Carlo step to update the density of
states and delaying the start of the microcanonical averaging
are changes that lead to an improved accuracy of the algorithm,
while the proper definition of when to stop the simulation
(ffinal) saves a lot of CPU time.

It should be pointed out that a direct comparison of the
density of states with exact calculations, although pictorially
very impressive, is not a good test for algorithms that estimate
the density of states. The canonical and microcanonical
averages during the simulations are a more adequate checking
parameter for convergence. Another important conclusion
is that no single simulation in particular tends to the ex-
act value. One can obtain results as close as possible to
the exact value by increasing the number of independent
runs.

The great advantage of our findings is that all existing codes
using WLS can be promptly adapted to this new procedure just
adding a few lines to the computer program.
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