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Abstract

By definition, the genetic effects obtained from a circulant diallel table are random. However, because of the methods
of analysis, those effects have been considered as fixed. Two different statistical approaches were applied. One
assumed the model to be fixed and obtained solutions through the ordinary least square (OLS) method. The other
assumed a mixed model and estimated the fixed effects (BLUE) by generalized least squares (GLS) and the best
linear unbiased predictor (BLUP) of the random effects. The goal of this study was to evaluate the consequences
when considering these effects as fixed or random, using the coefficient of correlation between the responses of
observed and non-observed hybrids. Crossings were made between S1 inbred lines from two maize populations
developed at Universidade Federal de Goiás, the UFG-Samambaia “Dent” and UFG-Samambaia “Flint”. A circulant
inter-group design was applied, and there were five (s = 5) crossings for each parent. The predictions were made
using a reduced model. Diallels with different sizes of s (from 2 to 5) were simulated, and the coefficients of
correlation were obtained using two different approaches for each size of s. In the first approach, the observed
hybrids were included in both the estimation of the genetic parameters and the coefficient of correlation, while in the
second a cross-validation process was employed. In this process, the set of hybrids was divided in two groups: one
group, comprising 75% of the original group, to estimate the genetic parameters, and a second one, consisting of the
remaining 25%, to validate the predictions. In all cases, a bootstrap process with 200 resamplings was used to
generate the empirical distribution of the correlation coefficient. This coefficient showed a decrease as the value of s
decreased. The cross-validation method allowed to estimate the bias magnitude in evaluating the correlation
coefficient using the same hybrids, to predict the genetic parameters and the correlation evaluation. The bias was
shown to be greater when the OLS method was used. When the correlation coefficients of the observed and
estimated hybrid means were obtained through the mixed instead of the fixed model, this decrease was less marked.
The selection of hybrids superior to the checks, in terms of grain weight, also differed in the two different approaches.
Nineteen percent of the hybrids were shown to be superior to the checks in the fixed models, while only 1.8% of them
were superior in the mixed model.
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Introduction

Nowadays, one of the major obstacles to corn breed-

ing programs which aim to develop hybrids is the high cost

of field evaluation. The strategy originally adopted in

breeding programs was to perform all possible crossings in

a group of inbred lines and then make an evaluation of the

single hybrids obtained, followed by the selection of the

most promising ones. However, as the breeding programs

became larger, thousands of inbred lines became available.

This made the development and evaluation of all possible

hybrids extremely difficult, mainly because of the high cost

of the assessment phase. So, there was an urgent need to de-

velop procedures to allow the evaluation of a large number

of inbred lines from a small sample of hybrids. The predic-

tion of non-observed hybrid performance became possible

through the use of genetic parameter estimation. Conse-

quently, estimators or predictors have been sought, in order

to maximize the correlation between estimated or predicted

genetic values and parametric genetic values. Diallel tables

have been one of the main tools for estimating genetic pa-

rameters, not only because they provide great amounts of

information, but also because of the flexibility in construct-

ing them. For predictive analysis, the scheme proposed by

Kempthorne and Curnow (1961), based on a sample of all

possible crossings between a group of parents, referred to
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as a circulant diallel cross, is noteworthy. Miranda Filho

and Vencovsky (1999), using Griffing’s model (1956), and

Reis (2000), using the model proposed by Gardner and

Eberhart (1966), adjusted the circulant design to an

interpopulation level. In order to achieve this, it was neces-

sary to obtain the hybrid combinations ps/2, where p is the

number of parents and s is the number of combining hy-

brids in each participating parent. In the second case, evalu-

ation of the parents is also required. When comparing the

complete diallel tables, the great reduction in the number of

crossings is striking, mainly when there is an increase in the

value of p.

One way of evaluating the predictive capacity of the

model, that uses the estimates from a circulant diallel table,

is by applying the Pearson correlation coefficient between

the responses of the predicted and observed hybrids.

Andrade (1995), using s = 3, found correlation coefficients

varying from 0.82 to 0.96. On the other hand, Araújo

(2000), using s = 4, found a correlation of 0.86, and Fuzatto

(2003) observed correlations between 0.685 and 0.925, us-

ing values of s from 6 to 2. The correlation increased as the

value of s decreased. All these authors evaluated ear

weight. Gonçalves (1987), using s = 3, observed correla-

tions from 0.92 to 0.86 related to the grain weight. In all

these experiments, the genetic parameters (general and spe-

cific combining ability) were estimated by using the ordi-

nary least squares (OLS) method.

On the other hand, in a circulant diallel table, there is

an interest in extrapolating the information obtained about

the observed hybrids to a reference population of non-

observed hybrids [(p/2)2-ps/2)]. As emphasized by Searle

et al. (1992), the main issue is to quantify the performance

of a non-realized random variable (non-observed hybrids),

given an observation vector (realized observation). There-

fore, in this context, according to Henderson (1986), the use

of BLUP (Best Linear Unbiased Predictor) would be the

most appropriate method to predict the genetic parameters.

The use of BLUP in plant breeding has also been advocated

by Bernardo (1994, 1995, 1996a, 1996b). In this particular

case, the error variance and the other variance components

will influence the genetic parameter estimation, making it

possible to obtain the BLUE (Best Linear Unbiased

Estimator) for fixed effects and the BLUP for random ef-

fects, which is the appropriate approach for mixed linear

models (Henderson, 1984). In this method, the known

covariances will be considered not only in the statistical

tests, but also in the assessment and prediction of effects

which directly influence the selection of the inbred lines. In

general, the corresponding estimators have lower variances

than the ones obtained through the OLS, thus resulting in

more reliable estimation (Duarte and Vencovsky, 2001).

André (1999) concluded that the BLUP provides better ac-

curacy than the OLS estimators in predicting the general

combining ability effects in different conditions of

heritability. Besides being possible when the information

about co-ancestry between the inbred lines is available, it is

also possible to consider the additive effects, the dominant

effects and the epistatic interactions. The main restriction

found to the use of this approach is its great computational

requirement, which no longer represents an obstacle.

The purpose of this paper was to evaluate the effi-

ciency of the mixed linear models methodology in analyz-

ing a partial circulant table, with varying sizes of s. This

evaluation was performed mainly by correlating the pre-

dicted and the observed values of the hybrids.

Material and Methods

Two groups of parents, 34 flint maize inbred lines S1

and 34 dent maize inbred lines S1, randomly sampled from

two populations, the UFG-Samambaia flint and the UFG-

Samambaia dent, were used as the experimental material.

These populations were developed at Universidade Federal

de Goiás (EA-UFG). The crossings were performed ac-

cording to a partial circulant diallel design, with five

crosses for each parent (s = 5) (Table 1), where 165 out of
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Table 1 - Scheme of an interpopulational circulant diallel table, with p = 34 and s = 5.

Flint inbred

lines

Dent inbred lines

1 2 3 4 5 6 7 ... 33 34

1 y1.1 y1.2 y1.3 y1.4 y1.5

2 y2.2 y2.3 y2.4 y2.5 y2.6

3 y3.3 y3.4 y3.5 y3.6 y3.7

4 y4.4 y4.5 y4.6 y4.7 ...

5 y5.5 y5.6 y5.7 ...

6 y6.6 y6.7 ...

7 y7.7 ...

M

33 y33.1 y33.2 y33.3 y33.33 y33.34

34 y34.1 y34.2 y34.3 y34.4 y34.34



170 originally predicted hybrids were obtained, represent-

ing the reference population for the 1156 possible hybrids

between these two inbred line groups. These hybrids were

evaluated through a randomized complete block design,

with four replications. The experimental plots were repre-

sented by single rows 5 m long spaced 0.9 m apart, with 25

plants per plot after thinning. The triple hybrid BR-3123

was used as a check, and planting was done on January 6,

1999, in the experimental area at the EA-UFG.

Griffing’s model (1956) was adopted to describe the

observations of the diallel table:

yij = µ + gi + gj + sij + εij (1)

where: yij is the phenotypic value of the hybrids between the

dent line i (i = 1, 2, ..., I) and the flint line j (j = 1, 2, ..., J); µ
is the mean common to the observations; gi is the general

combining ability effect of the ith parent from the dent

group, assumed to be random and with the distribution

N ~ (0, σ2
LD); gj is the general combining ability effect of

the jth parent from the flint group, assumed to be random

and with the distribution N ~ (0, σ2
LF); sij is the specific

combining ability effect resulting from the crossing be-

tween the parents i and j, assumed to be random and with

the distribution N ~ (0, σ2
CEC); and εij is the random error ef-

fect with the distribution N ~ (0, σ2).

Fixed model

In the matrix form, the hybrid means can be repre-

sented by:

y = Xβ + ε (2)

where y is the mean treatment vector, X is the incidence ma-

trix of the genetic effects, β is the parametric vector, and is

the error vector. As X is an incomplete rank column matrix,

X’X is singular, not having a single inverse. Therefore, in

order to solve the system of normal equations and to obtain

single solutions, the following parametric restrictions were

adopted: g i

i

I

=
=

∑ 0
1

, g j

j

J

=
=

∑ 0
1

, sij

i

I

=
=

∑ 0
1

and sij

j

J

=
=

∑ 0
1

.

Thus, the OLS solutions are given by:

$ ( ’ ) ( ’ )β = −X X X y1 . (3)

Mixed linear model

The individual observations can be expressed in the

matrix form as follows:

y = Xθ + Z1 aX + Z2 aY + Z d + ε (4)

where: y is the observation vector; θ is the vector of fixed

effects, which here includes the general mean and the block

effect; aX is the vector for the general combining ability of

the dent inbred lines; aY is the vector for the general com-

bining ability of the flint inbred lines; d is the vector for the

specific combing ability; ε is the error vector; and X, Z1, Z2

and Z are the incidence matrices for vectors θ, aX, aY, and d,

respectively.

In this case, applying generalized least squares (GLS)

to calculate the fixed effects and the best linear unbiased

prediction for the random effects, as proposed by

Henderson (1984), the solutions of the mixed model equa-

tions can be obtained by:
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Using the expectation maximization-restricted maxi-

mum likelihood (EM-REML) algorithm (Dempster et al.,

1977) to obtain the solution of this system, the variance

component estimators are given by:
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where: p1, p2, p, and s are the numbers of flint inbred lines,

dent inbred lines, total number of inbred lines and the num-

ber of crosses for each inbred line, respectively. In (6), r(X)

is the rank of X, and Tr is the trace operation. As the inbred

lines were considered unrelated and since the two groups
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are not related to each other, the matrices A1, A2 and D are

identity matrices. When assuming the existence of co-

ancestry between the parents, matrices A1 and A2 will pres-

ent values equal to 1.0 in the diagonal and the co-ancestry

coefficient between parents off the diagonal. Thus the diag-

onal of matrix D is also composed of values equal to 1.0,

and the off-diagonal values are the products of the co-

ancestry coefficients between the parents.

An interactive process was conducted, in accordance

with (6) and (5), until a convergence was obtained, attribut-

ing an initial randomized value to the variance components.

As only the estimates of the variance components, and not

their parametric values, were known, the EBLUP

(Empirical Best Linear Unbiased Predictor) was obtained

from the random effects (Littel et al., 1996). However, for

the selection based on isolated traits, the rank of the candi-

dates for selection is not as influenced by errors in the esti-

mation of variance components (Resende, 2002), when

there are balanced data and when only one population is

considered (Duarte and Vencovsky, 2001).

The diallels were simulated to evaluate the models’

goodness of fit and the way that correlation is obtained, in

order to make the predictions of non-observed hybrids. The

s sizes ranged from 5 to 2, and the correlation was made in

two different ways. First, the correlation was obtained by

using the sample of observed hybrids to calculate both the

parameters and the coefficient of correlation. Second, a

cross-validation procedure was applied to the original data

set. This set was randomly divided into two groups: one,

constituting 75% of the original set, was used to estimate

the genetic parameters, and the other, composed of the re-

maining observed hybrids (25%), was used to validate the

predictions. In all cases, a process of 200 resamplings with

replacement (bootstrap) was employed to generate empiri-

cal distributions of the correlation coefficient estimates.

The OLS was used to estimate the genetic parameters

from (3), and to obtain the best linear unbiased prediction,

as done in (5). All analyses were performed using the SAS®

PROC IML system (Little et al., 1996). The program used

to calculate the EBLUP was adapted from André (1999):
options no date no number ps = 1000 ls = 90;

data;

input efix pi pj cruz y;

cards;

;

proc iml;

START REML;

n1 = nrow(x1); /*counts the number of observations*/

n = n1;

ncru = unique(p3);

ncru1 = union(ncru, ncru)`;

ncrut = nrow(ncru1); /*counts the number of crosses */

z1 = design(p1); /* incidence matrix of p1*/

z2 = design(p2); /* incidence matrix of p2*/

z3 = design(p3); /* incidence matrix of p3*/

ng1 = ncol(z1);/*counts the number of genitors in group I*/

ng2 = ncol(z2);/* counts the number of genitors in group II*/

x = design(x1); /* incidence matrix of the fixed effects*/

nf = ncol(x); /*counts the number of fixed effects*/

z = z1||z2||z3; /*incidence matrix of the random effects*/

k = x||z1||z2||z3; /*overall incidence matrix*/

vgI = 558; /* initial value of the CGC variance for the dent group */

vgII = 647; /* initial value of the CGC variance for the flint group*/

vs = 83; /* initial value of the CEC variance*/

r = 118; /* initial value of the error variance*/

iter = 0; /*initializes the interaction counting */

maxiter = 2000; /*defines the maximum interactions*/

conv = 1E-8; /*defines the criterion of convergence */

do until (dif );

g1 = I(ng1); /* parentage matrix A associated to the flint group */

g2 = I(ng2); /* parentage matrix A associated to the dent group */

g3 = I(ncrut); /* parentage matrix A associated to sij*/

g = block((g1)/vgI,(g2)/vgII,(g3)/vs); /*defines the inverse matrix G */

t = inv(((x`*x)||(x`*z))//((z`*x)||(z`*z+g*r)));

/* concatenates and inverts the t matrix*/

solution = t*(x`*y//z`*y); /*solution of the system*/

u = solution[nf:nf]; /*solution of the fixed effect*/

si = solution[nf+1:ng1+1]; /*solution of the CGC GI*/

sj = solution[ng1+2:ng1+ng2+1]; /*solution of the CGC GII*/

sij = solution[ng1+ng2+2:ng1+ng2+ncrut+1];/*solution for sij*/

r1 = (y`*y-solution`*k`*y)/(n-nf);/*component of the residual variance

l*/

vgI1 = (si`*g1*si+trace(g1*(t[1:ng1,1:ng1]))*r)/(ng1);/*component of

the CGC variance of the flint group*/

vgII1 =

(sj`*g2*sj+trace(g2*(t[ng1+1:ng1+ng2,ng1+1:ng1+ng2]))*r)/(ng2);

/*component of the CGC variance of the dent group */

vs1 =

(sij`*g3*sij+trace(g3*(t[ng1+ng2+1:ng1+ng2+ncrut,ng1+ng2+1:ng1+ng

2+ncrut]))*r)/(ncrut);/*component of the sij variance*/

dif = max(abs(r1-r), abs(vgI1-vgI), abs(vgII1-vgII));

/*calculation of the differences in estimation s*/

if iter = maxiter then dif = 0;

/*condition for the maximum of interactions */

if iter then do;

var_CGCI = vgI;

var_CGCII = vgII;

var_sij = vs;

erro = r;

difer = dif;

n_iter = iter;

end;

else do;

var_CGCI = var_CGCI//vgI;

var_CGCII = var_CGCII//vgII;

var_sij = var_sij//vs;

erro = erro//r;

difer = difer//dif;

n_iter = n_iter//iter;

end;

iter = iter+1;

vgI = vgI1;

vgII = vgII1;

vs = vs1;

r = r1;

end;

print , ‘VARIANCE COMPONENT ESTIMATIONS (REML)’,

n_iter [format = 3.]

var_CGCI [format = 12.6]

var_CGCII [format = 12.6]
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var_sij [format = 12.6]

error [format = 12.6]

difer [format = 12.8];

vectoru = solution[1:nf];

vectorCGCI = solution[nf+1:ng1+1];

vectorCGCII = solution[ng1+2:ng1+ng2+1];

vectorsij = solution[ng1+ng2+2:ng1+ng2+ncrut+1];

crossings = (1:ncrut)`;

genitorsg1 = (1:ng1)`;

genitorsg2 = (1:ng2)`;

print ,’EBLUP ESTIMATIONS OBTAINED BY THE MIXED

MODELS ‘,

vectoru [format = 12.2] vectorCGCI [format = 12.3] vectorCGCII [for-

mat = 12.3] vectorsij [format = 12.3];

zu = x*vector u;

zvi = z1c*vector CGCI;

zvj = z2c*vector CGCII;

zsij = z3*vector sij;

predictions MM = zu+zvi+zvj+zsij;

print ,’PREDICTIONS OF HYBRIDS’,

predictions MM [format = 12.3];

FINISH;

use data;

read all into data;

x1 = data(|,1|); /*defines the mean vector */

p1 = data(|,2|); /*defines the vector of the CGC effects for the flint

group*/

p2 = data(|,3|); /*defines the vector of the CGC effects for the dent

group*/

p3 = data(|,4|); /*defines the vector of the CEC effects*/

y = data(|,5|); /*defines the vector of observations*/

RUN REML;

quit;

Results and Discussion

An increase was found in the correlation coefficient

as the value of s was reduced, when the observed hybrids

were used both in the estimation of the genetic parameters

and of the correlation coefficient. However, the standard

deviations associated with those estimates increased as s

decreased. The value of the correlation coefficient de-

creased from 0.916 ± 0.0727 (s = 2) to 0.742 ± 0.0090

(s = 5), using the OLS, and from 0.851 ± 0.0217 (s = 2) to

0.733 ± 0.0049 (s = 5), when the mixed model was applied

(Table 2).

The opposite results were found when cross-

validation was employed, that is, the value of the correla-

tion coefficient increased as the value of s increased. Like-

wise, the related standard deviation decreased with the

increase of s. When the OLS method was applied, the corre-

lation coefficient varied from 0.260 ± 0.1217 (s = 5) to

0.100 ± 0.2441 (s = 2), while with the mixed model the vari-

ation ranged from 0.370 ± 0.1063 (s = 5) to 0.120 ± 0.2278

(s = 2) (Table 3). It is interesting to note that the greatest

mean values of the correlation coefficient (r = 0.41) were

obtained when using s = 4, in the analysis made through the

mixed model. The empirical distributions of correlation co-

efficient estimates for each case are shown in Figure 1. It is

important to highlight that the maximum theoretical limit

of this correlation is not 1.0, but the square root of the

heritability coefficient (Vencovsky and Barriga, 1992). In

the present work, this limit was equal to 0.734, which does

not seem so unrealistic when compared with the correla-

tions found by Bernardo (1996a). This author evaluated

4099 hybrids among several heterotic groups, using the

mixed model method associated with the co-ancestry data

between the parents. In his experiment, the correlations

ranged from 0.136 to 0.762, with theoretical maximum lim-

its of 0.554 and 0.864, respectively.

It is relevant to emphasize that the increase observed

in the correlation coefficients, when the size of s is de-

creased, does not mean that the lower values of s allow

better predictions. As stated by Gauch and Zobel (1988), it
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Table 3 - Mean values ( $R), associated standard deviations (DP), and

maximum and minimum values for the correlation coefficient between the

predicted and observed hybrid means using different sizes of s, obtained

by a cross-validation and 200 resamplings with reposition.

Parameters s = 5 s = 4 s = 3 s = 2

OLS

$R 0.260** 0.240** 0.110ns 0.100ns

DP 0.122 0.169 0.183 0.244

Maximum 0.550 0.620 0.620 0.620

Minimum -0.200 -0.180 -0.440 -0.590

Mixed model

$R 0.370** 0.410** 0.300** 0.120ns

DP 0.106 0.114 0.162 0.228

Maximum 0.650 0.710 0.670 0.720

Minimum -0.040 0.090 -0.270 -0.690

Table 2 - Mean values ( $R), associated standard deviations (DP), and

maximum and minimum values for the correlation coefficient between the

predicted and observed hybrid means, under different sizes of s1.

Parameters s = 5 s = 4 s = 3 s = 2

OLS

$R 0.742** 0.795** 0.801** 0.916**

DP 0.009 0.014 0.034 0.073

Maximum 0.757 0.820 0.852 0.990

Minimum 0.708 0.759 0.670 0.658

Mixed model

$R 0.733** 0.783** 0.798** 0.851**

DP 0.005 0.007 0.012 0.022

Maximum 0.743 0.792 0.820 0.871

Minimum 0.717 0.755 0.750 0.779

1Observed hybrid means for both the estimation of parameters and the

calculation of the correlation coefficient, using 200 resamplings with

reposition.



means that the correlation is measuring the postdictive abil-

ity of the model, that is, with the decrease in s, the model

can better explain the observed data. Moreover, when the

correlation coefficients were evaluated through a cross-

validation process, an increase of the correlation coeffi-

cients was observed whenever the values of s were in-

creased. In this situation, not only the ability of the model to

predict non-realized observations is evaluated, but also its

ability to describe the set of observed data. Thus, it is possi-

ble to assess the predictive ability of the model by ap-

proaching its predictions to the data not included in the

analysis, simulating future responses that have not been

measured yet.

It is thus clear that a reduction in the value of s also

decreases the predictive potential of the model. Further-

more, the correlation coefficient calculated through the ob-

served hybrids, during both the assessment of $g i and of $g j

and the model’s validation, yields bias. This bias can be cal-

culated assuming that the average correlation coefficient

obtained by using the cross-validation is the parametric

value for each value of s. In this case, an increase in the bias

of the correlation coefficient estimate can be observed

when the value of s decreases (Table 4). The bias is of

greater magnitude when the OLS method is employed in

the analysis, ranging from 0.482 with s = 5 to 0.816 with

s = 2. Using the mixed models, the value found was 0.363

with s = 5 and 0.731 with s = 2. Another indicator of this

bias can be observed in Figure 1, where the distributions

obtained using cross-validation do not exceed the maxi-

mum theoretical limit of the correlation coefficient (MC).

However, this is not true for the first situation.

If hybrids with yield mean superior to the check mean

were to be selected, considering all possible hybrids in the

diallel table (1156 hybrids), and if the prediction was made

through OLS analysis with s = 5, 19% of the hybrids would

be selected. By using a mixed model, only 1.8% would be

selected. However, Spearman’s correlation coefficient be-

tween the ranks of hybrid means by the two analyses was

equal to 0.95.

The use of the mixed model approach was more effi-

cient than the OLS in the operation and management of this

data set, resulting in more accurate estimates of correlation

coefficients between observed and non-observed hybrids.

Values of s < 4 have yielded poorer predictions for both the

mixed model and the OLS analysis. The use of the same

data set to estimate the parameters and to evaluate the
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Figure 1 - Empiric distributions of the correlation coefficients between the predicted and observed hybrid means, considering the two following situa-

tions: Situation 1: the observed hybrid means are included in the estimation of the genetic parameters and in the calculation of the correlation coefficient.

Situation 2: the observed hybrid means were assigned to two different groups, where 75% of them were used to calculate the parameters, and the remain-

ing 25% to estimate the correlation coefficient (MC is the maximum limit of the correlation coefficient, OLS is the ordinary least square estimation, and

MM is the mixed model approach).

Table 4 - Bias of the correlation coefficient for different sizes of s under

two statistical analysis models (ordinary least square - OLS and mixed

models).

Values of Mixed model OLS

s = 5 0.363 0.482

s = 4 0.373 0.555

s = 3 0.498 0.691

s = 2 0.731 0.816



model does not permit inferences about future responses of

the hybrids.

The circulant crossing method, with s = 5 and s = 4,

associated with the methodology of mixed models, allowed

to predict non-observed hybrid means, and showed good

reliability, which is very important in the initial stages of

the evaluation of inbred lines.
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