
ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2011.01499.x

EXPLORING PATTERNS OF INTERSPECIFIC
VARIATION IN QUANTITATIVE TRAITS USING
SEQUENTIAL PHYLOGENETIC EIGENVECTOR
REGRESSIONS
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A number of metrics have been developed for estimating phylogenetic signal in data and to evaluate correlated evolution, inferring

broad-scale evolutionary and ecological processes. Here, we proposed an approach called phylogenetic signal-representation (PSR)

curve, built upon phylogenetic eigenvector regression (PVR). In PVR, selected eigenvectors extracted from a phylogenetic distance

matrix are used to model interspecific variation. In the PSR curve, sequential PVR models are fitted after successively increasing

the number of eigenvectors and plotting their R2 against the accumulated eigenvalues. We used simulations to show that a

linear PSR curve is expected under Brownian motion and that its shape changes under alternative evolutionary models. The PSR

area, expressing deviations from Brownian motion, is strongly correlated (r = 0.873; P < 0.01) with Blomberg’s K-statistics, so

nonlinear PSR curves reveal if traits are evolving at a slower or higher rate than expected by Brownian motion. The PSR area is also

correlated with phylogenetic half-life under an Ornstein-Uhlenbeck process, suggesting how both methods describe the shape

of the relationship between interspecific variation and time since divergence among species. The PSR curve provides an elegant

exploratory method to understand deviations from Brownian motion, in terms of acceleration or deceleration of evolutionary

rates occurring at large or small phylogenetic distances.

KEY WORDS: Brownian motion, comparative methods, K-statistics, O-U process, phylogenetic eigenvector regression,

phylogeny.

It is widely recognized that species cannot be considered inde-

pendent units in statistical analysis. This has been clear ever since

Charles Darwin’s 1837 “I think” tree (see Felsenstein 1985; Har-

vey and Pagel 1991). Because species share ancestors, their traits

tend to be phylogenetically autocorrelated, albeit to different ex-

tents and over different time scales. More closely related species

tend to be more similar to each other than expected by chance

alone, creating phylogenetic signal (see Blomberg and Garland

2002 for a review). The presence of phylogenetic autocorrelation

or signal precludes the use of traditional statistical tests, so an

initial motivation for estimating this signal was the need to de-

termine how much (if any) correction must be made to take the

phylogenetic relationships among species into account when mod-

eling correlated evolution or using interspecific variation to under-

stand ecological and evolutionary patterns (see Felsenstein 1985;

Martins and Garland 1991; Martins et al. 2002; Stone et al. 2011).

There is a growing interest in using phylogenetic signal to infer

broad-scale evolutionary and ecological patterns and processes

(Hansen and Martins 1996; Diniz-Filho 2001; Hansen et al. 2008;

Cooper et al. 2010; Hof et al. 2010; but see Revell et al. 2008).
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In fact, detailed examination of interspecific variation reveals that

different autocorrelation patterns arise under alternative evolu-

tionary processes (Hansen and Martins 1996; Diniz-Filho 2001).

Over the last 30 years, a number of methods have been proposed

to address these problems, including methods that analyze the

relationships between traits while taking phylogenetic structure

into account, as well as methods that measure the magnitude of

phylogenetic signal in a dataset.

Freckleton et al. (2002) and Blomberg et al. (2003) developed

interesting and widely used “model-based” metrics for estimating

phylogenetic signal. These metrics are obtained using forms of

phylogenetic generalized least squares (PGLS). The Blomberg

et al. (2003) K-statistic estimates whether relatives resemble

each other less (K < 1) or more (K > 1) than expected under

Brownian motion evolutionary model, whereas Pagel’s λ (Pagel

1999), championed by Freckleton et al. (2002), allows the de-

tection of departures from Brownian motion if λ is significantly

smaller than 1.0. In an ecological context, the K-statistic has been

particularly useful in evaluating patterns of phylogenetic niche

conservatism (see Cooper et al. 2010; Hof et al. 2010; Wiens

et al. 2010), especially after Losos (2008) pointed out that “docu-

mentation of niche conservatism requires demonstrating that phe-

notypic similarity of closely related species is significantly greater

than would be expected based on phylogenetic relatedness (i.e.,

phylogenetic signal would have to be even greater than expected

to result from Brownian motion).”

Phylogenetic signal can also be estimated using a framework

based on statistical models that separate the total variation of a trait

(T) into phylogenetic (P) and specific (S) components, such that

T = P + S. In this framework, the P-component expresses the part

of the variation in the trait that is phylogenetically autocorrelated

and shared among species, whereas the S-component is the unique

variation in each species arising after the divergence from the

most recent common ancestor. This framework was pioneered

by Cheverud et al. (1985), who used an autoregressive model

(ARM) to partition trait variation into P- and S-components (see

also Gittleman and Kot 1990; Martins 1996). Later, Diniz-Filho

et al. (1998) proposed a different approach, called phylogenetic

eigenvector regression (PVR), to partition the variation in a similar

way. In both PVR and ARM, the R2 value of the model can be

interpreted as a measure of the phylogenetic signal because it

expresses the ratio between the phylogenetic component and the

total variation of a trait.

In short, PVR starts by extracting eigenvectors (using a prin-

cipal coordinate analysis [(PCoA]) from pairwise distance ma-

trices that describe the phylogenetic relationships among species

and then use some of the eigenvectors (which can be selected using

different criteria—see Diniz-Filho et al. 2012 for a recent review

and evaluation) to model trait variation with a standard ordinary

least-squares (OLS) regression. The coefficient of determination

(R2) of the multiple regression model is an estimate of phyloge-

netic signal (see also Borcard and Legendre 2002; Borcard et al.

2004; Griffith 2003; Diniz-Filho and Bini 2005; Griffith and

Peres-Neto 2006; Peres-Neto 2006; Dray et al. 2006; Tiefelsdorf

and Griffith 2007; Bini et al. 2009 and Peres-Neto and Legendre

2010 for the most recent developments and comparative tests of

analogous eigenvector mapping approaches in spatial analyses).

Many studies have used PVR to estimate the magnitude of phylo-

genetic signal, to partition interspecific variation into evolutionary

and ecological components and to estimate the phylogenetically-

corrected correlation between traits (e.g., Monteiro and Abe 1999;

Morales 2000; Bisson et al. 2010; Sakamoto et al. 2010; Safi and

Pettorelli 2010; Staggemeir et al. 2010; Beltran et al. 2010; Hill

and Kotanen 2011). However, partitioning methods such as PVR

and ARM have been criticized because the expected relation-

ships among species defined in these models do not correspond

to evolutionary models currently used in comparative analysis

(Martins and Hansen 1996; Rohlf 2001; Freckleton et al. 2011;

but see Lynch 1991; Housworth et al. 2004; Hadfield and Naka-

gawa 2009). Furthermore, Rohlf (2001) identified problems with

the interpretation of the R2 values derived from PRV (see below).

Here, we revisit the PVR approach to show that its coefficient

of determination can serve as a valid measure of phylogenetic sig-

nal, and we show how it can be used to compare observed patterns

against the expectations of phenomenological evolutionary mod-

els, such as Brownian motion or an Ornstein-Uhlenbeck (O-U)

process. To do this, we must take into account the amount of

phylogenetic information retained by the eigenvectors used to

represent the matrix of phylogenetic distances among species.

Moreover, when sequential PVR models are computed by succes-

sively adding eigenvectors to model trait variation, it is possible

to plot R2 against the accumulated eigenvalues associated with

the eigenvectors extracted from the phylogenetic distance matrix.

We called this plot a phylogenetic signal-representation (PSR)

curve, and we use simulations to show that the shape of the PSR

curve can be interpreted in terms of evolutionary models driving

trait variation. For instance, a Brownian motion model generates a

linear relationship between R2 and the accumulative eigenvalues.

Deviations from Brownian motion in a PSR curve are strongly

correlated with the Blomberg’s et al. (2003) K-statistic. In addi-

tion to graphical inspection of evolutionary patterns, which can

be used to show which traits evolve at accelerating or decelerating

rates with respect to Brownian motion, a PSR curve also allows

one to determine when these deviations might have emerged dur-

ing the evolutionary history of the group under study. Finally, we

discuss the implications of PSR curves for investigating corre-

lated evolution and patterns of interspecific variation while taking

phylogenetic structure into account.
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Methods
THEORETICAL BACKGROUND
PVR, as originally formulated by Diniz-Filho et al. (1998), begins

with the extraction of eigenvalues (λ) and associated eigenvectors

from a double-centered phylogenetic distance matrix. To accom-

plish this, a PCoA is used (see Legendre and Legendre 1998 for

a detailed account of this multivariate method). As the eigenvec-

tors are orthogonal, each one depicts a particular pattern of rela-

tionships among the species. For instance, the first eigenvectors

(associated with the largest eigenvalues) represent the largest phy-

logenetic distances, usually the distances between the main clades

closer to the root. Progressively, eigenvectors with smaller eigen-

values are associated with smaller phylogenetic distances (how-

ever, the first eigenvector of a strongly asymmetric phylogeny will

tend to show a gradient among species, representing the overall

“shape” of the relationships with the node of the phylogeny).

After the eigenvector selection procedure (see Diniz-Filho

et al. 2012), some of the eigenvectors are used as explana-

tory variables (X) in a standard OLS multiple regression model

(Y = Xβ + ε) in which the response variable (Y) is the phenotypic

character under study. The R2 value of this multiple regression

model is, as we will show later, an estimate of the phylogenetic

signal (or, more precisely, of the part of the variation in trait Y
that can be explained by the phylogenetic relationships among the

species, which, in turn, are represented by the selected eigenvec-

tors). The PVR residuals (ε) express the specific component, the

equivalent of the S-component under the partitioning approach

proposed by Cheverud’s et al. (1985) ARM (see also Desdevises

et al. 2003 for a similar use of phylogenetic eigenvectors in a

partial regression approach). In this study, we focus on describ-

ing phylogenetic patterns and interpreting them with respect to

evolutionary models, such as a Brownian motion model or an

O-U process, and not on measuring the evolutionary correlation

among two or more traits (which can be done by correlating the

S-components of independent PVR or ARM models—see Martins

et al. 2002).

As Rohlf (2001) pointed out, when all eigenvectors are used

as explanatory variables in the multiple regression model (a nec-

essary condition to take the entire phylogeny into account), the

resulting coefficient of determination is trivial: “Thus, the fit

will always be perfect, R2 = 1, and there will be no residual

variation in which to investigate correlations with other vari-

ables.” Conversely, Rohlf (2001) also acknowledged that, orig-

inally, “ . . . Diniz-Filho et al. (1998) only retained the first few

eigenvectors—those for which the corresponding λi exceed the

values expected from the broken stick model. The fit is then

no longer perfect and the R2 values simply measure the propor-

tion of the variance attributable to average differences among the

nodes corresponding to the retained eigenvectors. Leaving out

any eigenvector with λi > 0 corresponds to ignoring some part of

the structure of the tree near the tips and thus not taking the en-

tire phylogeny into account. By ignoring eigenvectors with small

eigenvalues, this approach confounds variation due to divergence

among species that diverge near the tips of the tree with variation

within the branches connecting each species to its more recent

common ancestor. Thus, this only estimates part of the variation

in a variable that can be accounted for by phylogeny.”

Rohlf’s (2001) argument is valid. To overcome his criticism it

is necessary to understand how ignoring some of the eigenvectors

will lead to a decrease in the PVR R2 value. Under Brownian

motion, the relationship between interspecific divergence and

time is linear, when divergence is measured as the proportion

of shared-branch length among species, or standardized phyloge-

netic covariance � matrix (or the “correlation” among species—

see Hansen and Martins 1996; Rohlf 2001). Thus, excluding part

of the phylogeny from an analysis causes a proportional decrease

in signal. If using 100% of the phylogeny leads to an R2 of 1.0

and, obviously, using zero eigenvectors will lead to an R2 of 0,

then we can expect that leaving out one particular eigenvector

will cause a decrease in the estimate of R2 that is proportional

to the relative importance of the eigenvalue associated with that

eigenvector. Thus, under Brownian motion the expected propor-

tion of variability in a trait explained by an eigenvector is equal

to its relative importance in describing species divergence in the

phylogeny, such that λi ≈ R2
i. In this formula, λi is the eigenvalue

of the ith eigenvector extracted from a pairwise distance matrix

along the branches of a phylogeny (which is inversely and linearly

proportional to � defined above) and is expressed as a proportion

of the trace of the double-centered phylogenetic distance matrix,

whereas R2
i is the coefficient of determination resulting from a

PVR based on the ith eigenvector.

Based on the above reasoning, it is expected that progres-

sively and consecutively adding eigenvectors to a series of se-

quential PVRs will generate a linear relationship between λ and

R2 (Fig. 1A). This curve, referred to here as a PSR curve, shows

that the phylogenetic signal measured by PVR increases (y-axis

in PSR curve) as more eigenvectors are used to represent the phy-

logeny (x-axis in the PSR curve) and model trait variation. The

distribution of points along the PSR curve will not be uniform

because of the nonlinear relationship between R2 and the number

of eigenvectors (the sum of the eigenvalues increases rapidly),

and the distribution of λi depends on tree balance and stemmi-

ness (see Discussion section). The most important feature of the

PSR curve is that the 45◦ line provides a reference for determin-

ing how fast a trait evolves relative to the rate expected under

a Brownian motion model of evolution. Thus, if a trait evolves

faster than expected under Brownian motion, the PVRs R2 (the

signal with respect to the amount of variation explained by the

eigenvectors) would be larger than λi (the relative proportion of

the phylogeny represented) because an eigenvector better explains
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Figure 1. (A) Hypothetical phylogenetic signal-representation

(PSR) curve derived from phylogenetic eigenvector regression with

models progressively incorporating more eigenvalues. The shaded

area under the 45◦ line is the PSR area, which measures deviation

from Brownian motion. (B) Representation of the relative impor-

tance of trait variation among clades in respect to their divergence,

expressed by an eigenvector. The size of the circles associated with

each species represents the coordinates on an eigenvector and the

trait values. It is possible to see that for trait A there is more vari-

ation among species than expected by the eigenvector (i.e., the

divergence among the two clades), whereas in the trait B there

is more random variation among species in the two clades and,

therefore, less variation is accounted for by the eigenvector.

trait variability than expected at the corresponding phylogenetic

distances (which define the time periods available for trait diver-

gence under a Brownian model). Conversely, for a slowly evolving

and more conserved trait, there would be only small differences

among species or clades, and the variation described by an eigen-

vector would be smaller than its relative importance in describing

phylogenetic distances (Fig. 1B).

Thus, the interpretation of deviations from the linear rela-

tionship between R2 and λ is similar to the interpretation of the

Blomberg’s et al. (2003) K-statistic. Values of K < 1.0 indicate

that related species resemble each other less than expected under

a Brownian motion model of trait evolution, due to adaptive evo-

lution independent of phylogeny or measurement error (and both

factors will cause R2 to be smaller than λ in the PSR curve). Con-

versely, values of K > 1.0 indicate that species are more similar

than predicted by the Brownian motion model, indicating a strong

phylogenetic structure that appears as a higher R2 in respect to λ

in the PSR curve.

Deviations from Brownian motion can be measured in dif-

ferent ways using the PSR curve. The mean of R2 and λ across the

curve, the sum of their ratios, or the differences between them at

each point of the curve can be used to describe it. These metrics,

however, tend to generate nonlinear relationships with Blomberg’s

K, and we found that the area between the observed PSR curve

and the 45◦ line (the shaded area in Fig. 1, henceforth referred as

PSR area) is a better general metric for measuring deviation from

Brownian motion. By convention, the PSR area below the 45◦ line

is considered “negative” (i.e., signal smaller than expected under

Brownian motion), whereas the PSR area above the 45◦ line is

considered “positive” (i.e., signal stronger than expected under

Brownian motion—see Fig. 1B).

It is useful to note that, beyond calculating a single metric

that captures the deviations from a PSR curve (the PSR area),

the curve allows one to determine where in the phylogeny (i.e.,

at which phylogenetic distances) these departures from Brownian

motion occur for a given trait. This is possible because the profile

provided by the PSR curve allows one to determine which eigen-

vectors increase disproportionately to the amount of explained

trait variation.

SIMULATION ANALYSIS

We initially tested the above interpretation by using Brownian

motion simulations (for a trait with zero mean and unity vari-

ance) and performing an analysis of the relationship between R2

and λ. We successively increased the number of eigenvectors

used to model trait variation in the analysis. In all 1000 simula-

tions, the phylogenetic relationships among the 209 species were

based on the terrestrial Carnivora supertree (Bininda-Emonds

et al. 1999, 2007; see also Diniz-Filho et al. 2009), which was

scaled so that phylogenetic distances from root to tips vary be-

tween 0 and 1. We also randomized values across species to

produce a null model that shows the PVR results in the absence of

phylogenetic signal. This phylogeny was used only as a reference

for Brownian motion evolution and as a representation of a real

topology. By using PCoA, eigenvectors were extracted from the

double-centered phylogenetic distance matrix containing the pair-

wise distances between species. We did not square the distances

to perform the PCoA (see Legendre and Legendre 1998), so we

avoided distorting the representation of original phylogenetic dis-

tances among species by the eigenvectors, and we gave more

weight to deeper branch lengths that were closer to the root of the

phylogeny. Sequential PVRs were then performed for each simu-

lated dataset (each dataset was a trait vector of length 209) using
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1–150 eigenvectors (see Results). The first 150 eigenvectors ex-

plained 99% of the phylogenetic distance matrix. A PRS curve

was produced by plotting the cumulative eigenvalues against the

R2 value for each simulation.

We also used more complex models of trait evolution to

evaluate how a PSR curve captures different forms of departure

from Brownian motion. O-U models with restraining forces α

ranging from 2.0 to 10.0 in steps of 2.0 (for a phylogeny with

branch lengths summing to 1.0—see Diniz-Filho 2001) were used

to model trait variation under stabilizing selection (Felsenstein

1988; Hansen 1997; Martins and Hansen 1997; Martins et al.

2002; Hansen et al. 2008). To facilitate interpretation, we rescaled

the α value from the O-U model to express the phylogenetic half-

life (t1/2), which is the time it takes for the trait value to move

half the distance from the ancestral state to the primary optimum

(Hansen 1997; see also Hansen et al. 2008). This is given by

t1/2 = ln(2)/α, where α is the adaptation rate. A low value of

t1/2 is obtained if strong adaptation occurs, indicating that the

trait changes very quickly to approach the adaptive peak. A high

value of t1/2 is obtained if adaptation is weak, indicating that the

trait changes very slowly. We note that in Hansen et al.’s (2008)

more recent model, the shifts in trait values track another trait

evolving under Brownian motion, so signal and adaptive variation

are correlated. However, because we are analyzing a single trait

in our simulations, we used a primary adaptive optimum in the

O-U process (Hansen 1997), and the statistical interpretation for

the relationship between PSR area and half-life is that a low t1/2

value is found when the species will not shift away from the

peak, being thus strongly constrained throughout the phylogeny

(the PVR R2, or the PSR area, will be smaller when t1/2 values

are low). Although the α parameter of the O-U process and the

associated phylogenetic half-life (t1/2) do not actually measure

phylogenetic signal, they do describe the shape of the relationship

between interspecific variation in the phenotype and time since

divergence between species. Thus, α is statistically related to

departure from Brownian motion, which is detected with the PSR

curve or Blomberg’s K.

We also analyzed more complex patterns by using Brownian

motion simulations after transforming branch lengths using dif-

ferent Grafen’s (1989) ρ parameters (0.1, 0.5, 2.5, and 5.0). Values

of ρ smaller than 1.0 tend to shrink deeper branches and lengthen

those near the tips (thus simulating recent diversification of the

trait), whereas values larger than 1 increase branch lengths near

the root of the tree and simulate early diversification (Fig. 2).

We also calculate, for each simulation, Blomberg’s

K-statistic under Brownian motion using the package “ape” in the

R programming environment (R Development Core Team 2010),

and we correlate the K-values with PSR area. PSR curves and

their areas were generated by using a sequential PVR algorithm

implemented in the software PAM 0.9 (Phylogenetic Analysis in

Figure 2. Branch lengths generated under different values for

the Grafen’s (1989) rho parameter (ρ), for a phylogeny with 209

species used to demonstrate the properties of the PSR curve.
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Figure 3. (A) Cumulative eigenvalues (%) and (B) frequency dis-

tribution of R2 obtained under Brownian motion from 1000 PVRs

using the first eigenvector only.

Macroecology; T. F. Rangel and J. A. F. Diniz-Filho, unpublished

beta version available from the authors upon request). A script in

R for calculating the PSR curve and area is also available from

the authors upon request.

Results
The plot of cumulative eigenvalues (Fig. 3A) shows that the first

eigenvector explains about 30% of the structure in the phyloge-

netic distances. The PVR R2 based on the first eigenvector alone

has a value of 23.7 ± 21.8%, slightly smaller than the respective

observed eigenvalue, although the distribution is right skewed

(Fig. 3B). However, when performing sequential PVRs by suc-

cessively adding eigenvectors to the model and generating the

PSR curve, the mean relationship between R2 and λ is strongly

linear under Brownian motion, as expected, although there is also

a large variation for the first eigenvalues, creating a polygonal

shape for the relationship across the 1000 simulations (Fig. 4).

Tests of this relationship are difficult because values correspond-

ing to the increasing number of eigenvectors are not independent

Figure 4. PSR curve under Brownian motion, including mean,

maximum and minimum values obtained for 1000 simulations, and

mean expected PSR curve in the absence of phylogenetic signal

obtained by randomization of species values.

and distributions of R2 for each λ are strongly skewed, but in

general the slopes and intercepts do not differ greatly from 1 and

0, respectively. Notably, building the PSR curve in the absence

of phylogenetic signal (randomizing values across species) pro-

duces a very different curve characterized by little or no increase

in R2 even when phylogenetic information accumulates along the

abscissa of the curve (Fig. 4).

The mean value of Blomberg’s K for the same data was

0.991 (about equal to 1.0, as expected under a Brownian motion

model of trait evolution). However, the distribution was strongly

right skewed (Fig. 5A), whereas the PSR area obtained from the

curves was more symmetrically distributed (Fig. 5B). Because of

the right-skewed distribution of K, we used a logarithmic trans-

formation to normalize this metric so that the evolution under

Brownian motion can be inferred when log(K) equals zero. There

is a linear relationship between log(K) and PSR area (Fig. 6; r =
0.873; P << 0.01), and it is important to note that both metrics

were centered on the expected value under Brownian motion (i.e.,

both log(K) and PSR area are equal to zero).

For the O-U processes, the R2 values from sequential PVRs

are smaller than expected based on the corresponding λ for the

largest eigenvalues, which occur in the first steps of the PSR

curve. An increase in the value of the O-U α parameter progres-

sively moves the PSR curve away from the 45◦ line (and away

from the predictions of the Brownian motion simulations; Fig. 7A)

and increases the area into the “negative” direction. This means

that higher levels of restraining force in the O-U model, corre-

sponding to a low t1/2 value in the Hansen et al. (2008) model,

correspond approximately to a null pattern (in which phyloge-

netic signal is eliminated from the data—see Diniz-Filho 2001;

Fig. 8).
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Figure 5. Frequency distribution of Blomberg’s K and PSR area

for Brownian motion models based on 1000 simulations.

On the other hand, Grafen’s (1989) ρ parameters produced

PSR curves below and above the expectation, corresponding to a

process of early diversification (acceleration, such that the early

clades tend to diverge more than expected early in the phylogeny)

and more recent divergence alone, in which species tend to diverge

from each other faster and eliminate the phylogenetic signal, as

in the O-U process (Fig. 7B).

Discussion
PSR CURVE, PHYLOGENETIC SIGNAL, AND

EVOLUTIONARY MODELS

We provide a new method to describe phylogenetic patterns in

data and to infer how fast a trait has evolved in comparison with

alternative evolutionary models, such as a Brownian motion or an

O-U process. Our metric is related to the K-statistic described by

Blomberg et al. (2003). Under a Brownian motion model of trait

evolution, the mean expected metric derived from a PSR curve

(the area) is equal to zero, indicating that no other processes

Figure 6. Relationships between PSR area and Blomberg’s

K-statistics. Notice that a log K = 0, expected under Brownian

motion, corresponds to PSR area equals to zero.

are affecting the data at any phylogenetic distance. As correctly

pointed out by Rohlf (2001), a single PVR provides an R2 < 1

only because some part of the phylogeny is missing. However,

when this single R2 is standardized by taking into account the

amount of phylogenetic structure represented by the eigenvectors

used to model trait variation, the ratio between R2 and sum of the

eigenvalues associated with these eigenvectors will approach 1.0,

indicating that all trait variation is accounted for by phylogenetic

relationships.

A ratio of 1.0 between R2 and the associated eigenvalue (and

a deviation area equal to zero if all successive PVR models are

used to build the PSR curve) under Brownian motion is consistent

with the results of other metrics for phylogenetic signal, such

as Blomberg’s K (Blomberg et al. 2003), Pagel’s (1999) λ (not

to be confused with the eigenvalues of phylogenetic distance,

as used throughout this text) and Lynch’s (1991) phylogenetic

heritability h2 derived from a mixed model (see Housworth et al.

2004). Indeed, Housworth et al. (2004) pointed out that Lynch’s

(1991) h2 and the R2 of partitioning methods (i.e., ARM) can be

analytically derived from one another, although the relationship

between h2 and the original PVRs R2 can be more difficult to

establish exactly because of the eigenvector selection.

An advantage of the PSR curve over Pagel’s λ or Lynch’s h2 is

that the former can estimate phylogenetic patterns that are stronger

than Brownian motion expectations (a necessary outcome to infer

phylogenetic niche conservatism; see Losos 2008), which can also

be detected using the K-statistic. Indeed, the PSR area is positively

correlated with Blomberg’s K, and they are both centered on

their respective expectations under Brownian motion (i.e., zero

for both PSR area and log(K)). A positive area, on the other hand,

indicates that the R2 values from multiple PVR analyses will tend

to be above the proportionality line of the relationship between

R2 and λ, such that the phylogenetic eigenvectors explain more
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Figure 7. Mean R2 from PVR under alternative evolutionary mod-

els, including O-U processes with increasing levels of restraining

forces (from two to 10), and Brownian motion under transformed

phylogenies according to Grafen’s (1989) parameter (see Fig. 2),

ranging from 0.1 to 5.

of the trait than expected by Brownian motion. This is analogous

to Blomberg’s K when it is larger than 1.0 (or log(K) > 0); when

this condition is met, “ . . . close relatives are more similar than

expected under Brownian motion evolution” (Blomberg et al.

2003, p. 723).

It is important to note that the ability of eigenvectors to repre-

sent phylogenetic structure at distinct hierarchical levels depends

on topology and stemminess (see Rohlf et al. 1990; Diniz-Filho

et al. 2012). This effect is clearly visible in the distribution of

the relative eigenvalues along the abscissa of the PSR curve. If,

for example, the group of species under study is divided into

two clades that diverged long ago, the first eigenvalue would be

large because most of the variation in pairwise phylogenetic dis-

tances would be well represented by a single eigenvector whose

scores would clearly differentiate the species into these two clades.

On the other hand, when a strongly imbalanced phylogeny is

Figure 8. Relationship between PSR area (and 95% confidence

interval) under O-U process and Hansen’s et al. (2008) phylogenetic

half-life, t1/2, fitted using a logarithmic functions. Under Brownian

motion, t1/2 goes to infinity (because α = 0), but for graphical

purposes we set it to 1.0, which is the maximum distance allowed

in our phylogeny.

analyzed, the first eigenvector will ordinate the species along a

gradient that measures the departure from the root. The eigenvalue

associated with this eigenvector, however, would explain only

a small portion of the phylogenetic structure due to its higher

complexity. Blomberg’s K-statistic is similarly affected by the

topological structure of the phylogeny, as the denominator of the

K-statistic represents the expected fit of a model (e.g., Brownian

motion) for a given phylogenetic topology and stemminess.

Our general interpretation of the PSR curve is also sup-

ported when processes other than Brownian motion are consid-

ered. These other processes were simulated with a transformation

of branch lengths to accelerate or decelerate evolutionary rates

in different parts of the phylogeny. When using an explicit O-U

process, the PSR curve falls below the expectation line of pro-

portionality between λ and R2, especially for the first few eigen-

values. Indeed, under an O-U model of trait evolution, there is an

exponential relationship between divergence and time (Hansen

and Martins 1996; Hansen et al. 2008). Although closely related

species tend to be similar (i.e., positive autocorrelation), as tem-

poral distances increase, species are gradually “pulled” toward an

adaptive optimum, and trait variation at these deeper time scales

thus becomes independent of the elapsed time since species diver-

gence. Using Grafen’s (1989) transformation to decelerate evolu-

tion is analogous to the O-U process and, as expected, the PSR

curve produced consistent results. Increasing the Grafen’s param-

eter accelerates evolution and, accordingly, the PSR curve lies

above the expectation line of the Brownian motion model (i.e.,

positive PSR area; see Fig. 7B). We note, however, that all of

the relationships discussed here give heuristic support to the PSR

curve, and they do not ensure that the true evolutionary models

can be unambiguously identified in real datasets. For instance, all
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models tested have constant rates through time, and phylogenetic

nonstationarity or multiple adaptive peaks could yield more com-

plex signatures (e.g., Kozak and Wiens 2010; Diniz-Filho et al.

2010). Of course, this problem will arise not only in the descrip-

tion of patterns by a PSR curve but also when any metric is used

to measure and describe phylogenetic signal (e.g., Blomberg’s

K-statistic and Pagel’s λ).

Considering the strong theoretical foundation for general-

ized estimators (e.g., Grafen 1989; Rohlf 2001), we do not claim

that PSR curves are better, more accurate, or more powerful than

Blomberg’s K-statistic (e.g., Hansen’s et al. 2008; Kozak and

Wiens 2010). Rather, we argue that the PSR curve can be inter-

preted in a similar way when describing phylogenetic signal or

patterns in data. The correspondence between the shape of PSR

curves and the K-statistic, as well as the behavior of the curve as

a result of restraining forces of an O-U model, validate the new

eigenvector approach proposed here. Also, the flexibility of PSR

in describing patterns allows a better use of PVR as a variance

partition technique (see below), improving the analytical options

for selecting eigenvectors in more complex designs for compara-

tive analyses (e.g., Desdevises et al. 2003; Diniz-Filho et al. 2007,

2009; Kuhn et al. 2009; see below).

Moreover, it may be advantageous to describe patterns in trait

variation at distinct levels of the phylogeny, as opposed to describ-

ing them with a single number (see Diniz-Filho 2001; Ollier et al.

2006). This may be especially important when more complex

patterns are found in empirical data (i.e., different levels of trait

lability, nonstationary patterns, or O-U with multiple adaptive

peaks—see Diniz-Filho et al. 2010; Kozak and Wiens 2010). In

this case, although the PSR curve is not built based on any a priori

evolutionary model, it is a useful way to visually assess where the

deviations from the Brownian motion model happen across the

phylogeny. More importantly, one can estimate the phylogenetic

distance at which these deviations occur and determine if they are

concentrated in particular regions of the phylogeny.

IMPLICATIONS FOR EVALUATING CORRELATED

EVOLUTION AND PATTERNS IN THE S-COMPONENT

We believe that the PSR curve, as a new analytical strategy, can

also shed light on some of the previous analyses based on PVR

S-components, which have been used to study correlated evolution

and to reveal geographical patterns in adaptive variation (e.g.,

Diniz-Filho and Torres 2002; Diniz-Filho et al., 2007, 2009).

The PSR curve shows that, if a trait evolves under Brownian

motion, PVR may ignore important phylogenetic information

(Rohlf 2001). In this case, the problem is that the S-component

estimated by PVR may contain a significant proportion of phylo-

genetic signal, as the PVR does not incorporate all the information

contained in the phylogeny. Thus, when testing correlations be-

tween S-components obtained from two traits evolving indepen-

dently, the Type I error rate may be inflated (although strongly

reduced compared to nonphylogenetic correlations). This explains

why previous simulation studies have failed to find correct Type I

error rates, regardless of the approach used for eigenvector selec-

tion (Diniz-Filho and Torres 2002; Martins et al. 2002; Freckleton

et al. 2011).

However, when more complex and nonlinear models of evo-

lution are applied to the data, the idea of using only part of

the eigenvectors to describe phylogeny and model trait varia-

tion makes much more sense because not all of the eigenvectors

are equally useful for modeling trait variation. This effect is cap-

tured by the PSR curve, and it can be assessed by comparing

the intervals along the abscissa of the PSR plot. As discussed

above, under an O-U process, the PSR curve falls below the line

that represents the expectation of a Brownian motion model (see

Fig. 7B). Additionally, the shape of the PSR curve shows that the

first eigenvectors are less important for explaining trait variation

than those describing relationships at smaller phylogenetic dis-

tances. When analyzing empirical data, more complex patterns

frequently emerge, and, in these cases, the PSR curve is use-

ful for guiding the selection of eigenvectors for use in PVR to

model trait variation. Alternatively, an iterative search that mini-

mizes autocorrelation structure in the S-component (see Griffith

and Peres-Neto 2006; Diniz-Filho et al. 2012), potentially picking

eigenvectors that create peaks in the PSR curve, can also be used

to implement an automated eigenvector selection and obtain valid

estimates of the S-component.

The most important diagnostic measure for PVR is not the

amount of variation explained (i.e., the R2), but rather the inde-

pendence of residuals (S-component), as originally pointed out

by Diniz-Filho et al. (1998) and recently stressed by Diniz-Filho

et al. (2012). This idea was originally proposed by Gittleman and

Kot (1990) for evaluating the effectiveness of Cheverud et al’s.

(1985) ARM, and it was based on the use of Moran’s I autocorre-

lation coefficient to test the independence among species for the

S-component (see also Pavoine et al. 2007). If the S-component

does not contain phylogenetic signal, then the partition was ef-

fective and the S-components can be reliably used for statistical

inference (see Desdevises et al. 2003). Of course, the PSR curve

developed here shows that, if the traits evolve under Brownian

motion models, a very large portion of the eigenvectors (in the-

ory, all of them) should be used to model trait variation using PVR.

Even so, if the Moran’s I values indicate that the S-component

is not autocorrelated, containing only random noise and mea-

surement error, it is unlikely that the S-component displays any

geographical pattern or interspecific correlation with other traits

(see Diniz-Filho et al. 2007, 2009).

Beyond the PSR curve proposed here, and mainly in the

context of correlated evolution among traits, previous simula-

tion analyses showed that PGLS tends to outperform any other
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comparative method, including PVR, in terms of Type I error

rates and parameter estimation (see Martins et al. 2002; Laurin

2010; Freckleton et al. 2011). Although the effectiveness of PVR

depends on both the geometry of relationships and the evolution-

ary models used, as pointed out above (see also Diniz-Filho et al.

2012), there are some situations in which using methods that incor-

porate phylogeny into model structure (sensu Martins and Hansen

1997) can be advantageous over model-based methods (e.g.,

Desdevises et al. 2003; see also Griffith 2003; Griffith and Peres-

Neto 2006 for a discussion in the spatial context). As pointed out

by Griffith & Peres-Neto (2006), for Moran’s eigenvector map-

ping used in spatial analyses, “the class of methods presented is

flexible enough that it can be applied to any type of distribution

under general as well as generalized linear model (e.g., logis-

tic/binomial and Poisson regressions) procedures.” Indeed, using

eigenvectors to express the phylogeny makes it possible to apply

other analytical strategies that are not as straightforward when

PGLS is used, including (1) the partitioning of the variation of a

trait into components that can be uniquely attributed to phylogeny,

ecology, and to the common influence of these two factors (an ex-

plicit measure of phylogenetic niche conservatism; see Desdevises

et al. 2003); (2) to map the S- and P-components of traits

to study the phylogenetic components of ecogeographical rules

(Diniz-Filho et al. 2007, 2009; Ramirez et al. 2008; Terrible et al.

2009; Ollala-Tárraga et al. 2010; but see Diniz-Filho et al. 2012);

(3) to relate these components with environmental variation at the

assemblage level (Kuhn et al. 2009; Pillar and Duarte 2010); (4) to

estimate phylogenetic species diversity at multiple phylogenetic

levels (e.g., Diniz-Filho et al. 2011); and (5) to deal empirically

with more complex phylogenetic patterns that cannot be easily

described by processes such as Brownian motion and some forms

of O-U (i.e., phylogenetic nonstationarity—see Diniz-Filho et al.

2010).

Concluding Remarks
We propose here that, rather than using a single R2 from PVR to

measure phylogenetic signal, a more reliable way to understand

phylogenetic patterns in comparative data analyses is to use a PSR

curve. When high-quality phylogenetic information is available,

the PSR curve can be interpreted in the same way as Blomberg’s

K-statistic. Our results indicate that, despite Rohlf’s (2001) crit-

icism, the R2 derived from a single PVR can be compared with

other “model-based” metrics for phylogenetic signal when it is

rescaled by the corresponding eigenvalues of the eigenvectors

used to model trait variation. Also, as in any autocorrelation-like

approach, the measure of signal is strongly dependent on the way

distances are defined or represented in the models. As pointed out

by Freckleton (2009), it is important to consider plurality when

dealing with comparative methods, and this study shows that the

eigenvector approach, used with the PSR curve, is a useful and

flexible tool for describing phylogenetic patterns in data.
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