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Abstract Several methods of spatial analyses have been

proposed to infer the relative importance of evolutionary

processes on genetic population structure. Here we show

how a new eigenfunction spatial analysis can be used to

model spatial patterns in genetic data. Considering a

sample of n local populations, the method starts by mod-

eling the response variable (allele frequencies or pheno-

typic variation) against the eigenvectors sequentially

extracted from a geographic distance matrix (n 9 n). The

relationship between the coefficient of determination (R2)

of the models and the cumulative eigenvalues, which we

named the spatial signal-representation (SSR) curve, can be

more efficient than Moran’s I correlograms in describing

different patterns. The SSR curve was also applied to

simulated data (under distinct scenarios of population dif-

ferentiation) and to analyze spatial patterns in alleles from

microsatellite data for 25 local populations of Dipteryx

alata, a tree species endemic to the Brazilian Cerrado. The

SSR curves are consistent with previous phylogeographical

patterns of the species, revealing combined effects of

isolation-by-distance and range expansion. Our analyses

demonstrate that the SSR curve is a useful exploratory tool

for describing spatial patterns of genetic variability and for

selecting spatial eigenvectors for models aiming to explain

spatial responses to environmental variables and landscape

features.

Keywords Cerrado � Dipteryx alata � Eigenfunction

analyses � Microsatellites � Spatial autocorrelation �
Spatial genetic structure

Introduction

Natural selection, adaptation, and the balance between

gene flow and genetic drift create complex spatial patterns

in genetic data (Epperson 2003; Rousset 2004). Thus,

several methods incorporating the spatial arrangement of

local populations under study have been developed to

detect and infer the evolutionary processes underlying

these patterns (Sokal and Oden 1978a, b; Slatkin and Arter

1991; Sokal et al. 1997; see Guillot et al. 2009; Balkenhol

et al. 2009; Diniz-Filho and Bini 2012; Wagner and Fortin

2013 for recent methodological reviews).

Recently, methods such as spatial autocorrelation,

Bayesian clustering, Wombling, Monmonier and multi-

variate analyses have been used within the field of land-

scape genetics to describe patterns of genetic variation, to

detect spatial boundaries, to infer gene flow limitation

(Manel et al. 2003; Holderegger and Wagner 2006, 2008;

Kelly et al. 2010; Wagner and Fortin 2013) and which

dispersal routes between local populations better explain

genetic similarity variation (Spear et al. 2005; Storfer et al.

2007; Meister et al. 2010; Croucher et al. 2011). Also,

these methods allow associating spatial patterns of genetic

variation with landscape characteristics, which have
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usually been modified by human activities (Meister et al.

2010; Manel et al. 2010a; Segelbacher et al. 2010;

Holderegger et al. 2010 for recent reviews).

Eigenfunction spatial analyses can also be used to

explore spatial patterns of genetic variation and to take

spatial autocorrelation into account in linear modeling,

evaluating the relative explanatory power of environmental

and spatial components (and their shared importance) at

distinct spatial scales (see Borcard and Legendre 2002;

Griffith 2003; Desdevises et al. 2003; Diniz-Filho and Bini

2005; Dray et al. 2006; Griffith and Peres-Neto 2006;

Dormann et al. 2007; Peres-Neto and Legendre 2010;

Manel et al. 2010b; Logue et al. 2011; Bertin et al. 2012;

Diniz-Filho et al. 2012a, b). However, despite its useful-

ness and flexibility, there have been only a few attempts to

use these approaches to infer evolutionary processes from

spatial patterns in molecular genetic data (see Diniz-Filho

et al. 2009; Manel et al. 2010b; Bertin et al. 2012).

In standard applications of eigenfunction spatial analy-

ses, response variables are regressed against a selected set of

eigenvectors extracted from pairwise matrices containing

different transformations of geographic distances or spatial

connectivity among spatial units (see Griffith and Peres-

Neto 2006; Dray et al. 2006). The coefficient of determi-

nation (R2) of this regression model indicates the amount of

spatial patterns in the data. Also, the effects of environ-

mental or landscape features on response variables may be

assessed after taking the selected eigenvectors (i.e., spatial

variables) into account in more complex models (Peres-Neto

and Legendre 2010). However, results from eigenfunction

spatial analyses to estimate spatial dependence or to control

for this dependence in analyses of environmental effects

depend on how the eigenvectors are selected. There is no

single consensual criterion to select eigenvectors and a few

attempts for discussing this important issue were performed

(see Blanchet et al. 2008; Bini et al. 2009; Diniz-Filho et al.

2012b). A strategy entails, for instance, trying a range of

models allowing for an increasingly number of eigenvectors

as explanatory variables (see Diniz-Filho et al. 2012c).

Our goals are threefold. First, we propose a new appli-

cation of eigenfunction spatial analyses to describe the

geographic patterns of genetic variation. We call this

method spatial signal-representation (SSR) curve, which

was originally developed in the context of phylogenetic

comparative analyses (see Diniz-Filho et al. 1998, 2012c).

Second, using simulated data, we compare SSR curves with

Moran’s I spatial correlograms, which have been more

commonly used to describe genetic variation. Third, we

apply the SSR curves to an empirical dataset in which the

variation in microsatellite molecular markers was used to

describe the genetic population structure in Dipteryx alata

Vogel (Fabaceae), a widely distributed tree species ende-

mic to Brazilian Cerrado.

Materials and methods

The spatial signal-representation (SSR) curve

The first step to build a SSR curve is to extract a total of

n - 1 eigenvectors (and associated eigenvalues) from a

double-centered matrix G, given as -0.5Dij (where Dij are

the geographical distances between populations) (Fig. 1).

The eigenvectors are extracted from the double-centered

G matrix without truncating or squaring distances, as in

other spatial eigenfunction methods, such as Principal

Coordinate of Neighbour Matrices (Borcard and Legendre

2002) or Moran’s Eigenvector Mapping (Dray et al. 2006;

Griffith and Peres-Neto 2006; Peres-Neto and Legendre

2010) (see spatial filtering by Griffith 2003).

In a second step, a response variable of interest, mea-

sured in n local populations (e.g., phenotypic traits or allele

frequencies), is modeled as a function of an increasingly

number of eigenvectors (Fig. 1). Thus, the first regression

model describes the relationship between the response

variable and the first eigenvector (the one associated with

the highest eigenvalue). The second eigenvector is then

added to estimate a second regression model. Regression

models are then built sequentially until the addition of all

eigenvectors is completed. Third, both coefficients of

determination (R2) and the cumulative eigenvalues (k%) of

the eigenvectors used in each model are recorded (Fig. 1).

The SSR curve is obtained by plotting the unadjusted R2 of

each model against k%, providing a description of how the

response variable is accounted for by the spatial arrange-

ment of the local populations at different scales (Fig. 1).

An R-package for calculating SSR curves and testing it

against the null expectation of absence of spatial patterns is

available from CRAN (see http://cran.r-project.org/web/

packages/PVR/index.html). A friendly-user program writ-

ten in Delphi for PSR/SSR curves is also available from the

authors upon request.

Simulations of population genetic structure

and the interpretation of the SSR curve

We simulated well-know population genetic processes (see

Hardy and Vekemans 1999; Epperson et al. 2010) to show

the usefulness of SSR curves in describing the spatial

structure of genetic data generated under four evolutionary

scenarios (i.e., isolation by distance, the effect of barriers

on gene flow, range expansion, and panmixia, which gen-

erate a random pattern) (Fig. 2). All simulations were

performed in a software developed in JAVA for this work

and available from the authors upon request.

First, we simulated an isolation-by-distance (IBD) pro-

cess (Wright 1943; see also Sokal and Wartenberg 1983;
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Epperson 1995, 1996; Hardy and Vekemans 1999). All

individual-based simulations were performed in an area

with 100 9 100 cells, in which 2,000 diploid individuals

(1,000 males and 1,000 females) were randomly allocated

(the individuals thus occupy 1/5 of the available positions

in the area). A single locus with two alleles was assigned to

each individual, so that initial allele frequencies were equal

to 0.5 and 0.5. The probability of mating [P(D)] between

the pairs of individuals is given by the following inverse

exponential function:

PðDÞ ¼ ce�aD;

where a is a parameter regulating the strength of the spatial

patterns, D is the geographic distance between pairs of

individuals, and c is a scaling factor. Thus, a large a
indicates that individuals tend to mate primarily with their

neighbors, meaning that allele frequencies will be strongly

autocorrelated within short geographic distances. In our

simulations we used a values from 1 to 5 (results shown for

a = 5), although the shape of the SSR curve is not strongly

affected by variations in this range of the parameter.

After reproducing, the genotypes of the offspring from

each pair were stochastically defined by standard Mende-

lian inheritance rules. There is no overlap between gener-

ations and, in the basic IBD simulation scenario, the two

offspring resulting from each couple replace their parents

in the same geographical coordinates. The simulations

were run for 1,000 generations, and the entire process was

replicated 100 times.

Starting from the simple IBD simulations, other evolu-

tionary scenarios were defined by the way in which indi-

viduals mate and by how they disperse across space after

reproducing. Thus, for our second scenario, we added a

barrier in our grid, limiting mating between individuals on

the opposite east–west sides of this barrier (the ‘‘barrier

scenario’’). Thus, genetic differentiation between both

sides of the barrier will occur when (1) a is small, (2) the

effects of IBD do not structure the genetic variation of

nearby neighbors, and (3) the simulation time is long (as

the ‘‘effective’’ population size is relatively high on each

side of the barrier). For this barrier scenario (see below),

the a was reduced to 1.0, allowing for the emergence of

broad-scale geographic structures, and 2,000 generations

were used. It is important to emphasize that the SSR curve

does not incorporate any information about the physical

barrier, as our goal was to explore how a SSR curve would

behave under this effect and the other scenarios.

Our third scenario consists of a process of range

expansion in which each simulation starts with a small

number of individuals (10 instead of 2,000) located in the

Fig. 1 Schematic representation of the calculations needed to

construct a SSR curve. Eigenvectors (from 1 to p, where p = n -

1) extracted from a distance (or connectivity) matrix containing the

spatial relationships among the local populations (represented by the

inset map) are successively used to model the response variable (Y;

e.g. allele frequency). Each model produces an unadjusted R2.

Eigenvalues (k) associated to the eigenvectors used in the models are

summed up and plotted against R2. The region occupying the space

between the curve (dotted line) and the 45� line (dashed) is the SSR

area. It can be used to measure the deviation from a neutral model of

spatial variation. The same procedure can be applied to study

phylogenetic autocorrelation
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lower left corner of the grid (the ‘‘expansion’’ scenario).

We allowed the population to expand (pairs will generate,

on average, 1.2 offspring) and gradually disperse

throughout the grid until a population of 2,000 individuals

was reached, following the same exponential relationship

defined above. Under this process of range expansion, it is

Fig. 2 Examples of allele surfaces simulated under different scenarios (isolation-by-distance, barrier, range expansion and random variation),

with respective Moran’s I correlograms and SSR curves

482 Genetica (2013) 141:479–489
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expected that alleles will display a clinal pattern of varia-

tion, with frequencies changing gradually when departing

from the initial location (see Excoffier and Ray 2008 for

more complex effects due to allele surfing).

Finally, a fourth scenario was generated by randomly

assigning values of allele frequencies in geographic space,

as a null model for comparing the SSR curves (the ‘‘null

model’’ scenario), biologically reflecting panmixia. This is

equivalent to setting a = 0 in the IBD scenario defined

above, so mating between individuals will occur randomly

at any geographic distance (random scenario).

After the simulations, the geographical space with 10,000

cells in which the 2,000 individuals were allocated was

subdivided in a regular lattice of 10 9 10 cells, forming

‘‘populations’’. The genotypes of the individuals in each cell

were recorded and the allele frequency in each cell was

calculated and used to produce the SSR curve. The matrix

G used to extract eigenvectors (after a double-center trans-

formation) was also used to represent the geographic rela-

tionship between the centroids of the 100 populations. In all

scenarios, eigenvectors were extracted from the same

G matrix, so that variations in the shape of the curves are

expected to track the processes underlying these different

scenarios.

Using the simulated datasets, we compared the SSR

curves with Moran’s I correlograms, whose use for

describing spatial patterns in genetic variation was pioneered

by Sokal and Oden (1978a, b; see Diniz-Filho and Bini 2012

for a review). For the different alleles, Moran’s I correlo-

grams were estimated with 10 distance classes, using a batch

version of the SAM (Spatial Analysis in Macroecology) v.

4.0 software (Rangel et al. 2006, 2010).

Sokal and Wartenberg (1983) and Sokal et al. (1997; see

also Sokal and Jacquez 1991) showed that, under IBD, allele

frequencies of different loci will be stochastically indepen-

dent even though their Moran’s I spatial correlograms will be

similar; this is because their spatial patterns will be driven by

a common dispersion parameter (see also Diniz-Filho et al.

2012a). They tested this prediction by correlating a Man-

hattan distance matrix (M) (Legendre and Legendre 2012)

containing the dissimilarities between the correlograms for

the different allele frequencies (using Moran’s I as ‘‘vari-

ables’’) with a Pearson correlation matrix (R) containing the

spatial correlations between allele frequencies (correlation

between ‘‘maps’’). Thus, it is possible to evaluate how sim-

ilarity between maps of allele frequencies is related to the

similarity among the patterns described by their correlo-

grams (Manhattan distances among correlograms). Here, we

performed a similar test with the SSR curves, by using a

Pearson correlation between the Manhattan distances

between pairs of SSR curves (using R2 as ‘‘variables’’)

obtained for different alleles and the correlation matrix

between the maps of allele frequencies.

Finally, we also calculated the area of the SSR curve

(SSR area) as the region occupying the space between the

curve and the proportional variation line (the 45� line) on

the scatter plot of R2 against the cumulative k% of the

eigenvalues (Fig. 1) (see Diniz-Filho et al. 2012c). As a

convention, the area below the curve was coded as ‘‘neg-

ative’’, and areas above the curve were assigned as

‘‘positive’’. Null distributions of the SSR areas can be

obtained by randomizing the allele frequencies in the

populations.

Empirical data analysis

We analyzed 28 allele frequencies derived from eight

microsatellite loci of D. alata, an endemic tree of the

Brazilian Cerrado. We obtained the genotypes of 644

individuals collected from 25 locations throughout Central

Brazil (see Diniz-Filho et al. 2012d), with sample sizes

ranging from 12 to 32 individuals per locality (32 indi-

viduals were analyzed in 15 of the 25 populations).

Although more alleles were found for these eight loci (a

total of 52), many of them were rare and occurred in a

single population; therefore, we restricted our spatial

analyses to those alleles present in at least 8 local popu-

lations. Details of genotyping, sample size, private alleles

and the genetic characteristics of each local population are

given in Soares et al. (2012) and Diniz-Filho et al. (2012d).

The same analytical protocols described above (SSR

curves and Moran’s I correlograms) were applied to ana-

lyze each of the alleles in this dataset.

Results

Simulations

The maps obtained from the simulations are in line with the

spatial patterns expected under each process. For the sim-

ulations performed under the IBD scenario (Figs. 2, 3), a

short-distance spatial structure is observed, and Moran’s

I correlograms show the expected exponential-like distance

decay. The SSR curve also shows an exponential shape

with points lying below the proportional variation line.

Thus, the variation in genetic data explained by the first

eigenvectors, representing broad spatial scales, is smaller

than the relative eigenvalues associated with these eigen-

vectors (Fig. 3a).

Under IBD, the pairwise Manhattan distances between

SSR curves and correlograms are correlated (r = 0.337;

P [ 0.01; Fig. 4a), although there is wide scatter. Even so,

the absolute values of Manhattan distances are relatively

small, indicating that the curves and correlograms are

similar. Most importantly, the relationships between the
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matrix containing the Pearson’s correlations between allele

frequencies and the Manhattan distances between correlo-

grams (Fig. 4b) or SSR curves (Fig. 4c) were not signifi-

cant (r = 0.04; P � 0.05 and r = -0.003; P � 0.05,

respectively).

With the addition of a dispersal barrier, the allele fre-

quencies tend to differ between the two sides of the barrier

(east and west sides—Figs. 2, 3b). The correlogram shows

a more continuous decline of Moran’s I from small to large

geographic distance classes. On the other hand, the SSR

curve shows a conspicuous increase in R2 when approxi-

mately half of the variation in the geographic distance

matrix was represented by the eigenvectors used in the

model (i.e., k% = 50 % in the abscissa). Thus, the increase

in the variation of allele frequencies accounted for by

spatial eigenvectors is higher than detected for the SSR

curve estimated with the data from IBD simulations.

Under the range expansion scenario (Figs. 2, 3c), the

correlograms show a distance decay in Moran’s I coeffi-

cients up to the sixth distance class. On the other hand, the

SSR curve tends to be linear and close to the proportional

variation line.

Finally, in contrast to the patterns described above, the

lack of spatial patterns (i.e., randomness of allele fre-

quencies in space or panmixia) is easily recognized by the

Moran’s I correlograms. The SSR curve is also very dif-

ferent from the ones previously described, depicting a line

that starts flat, but moves upward only after the addition of

a large number of eigenvectors (Figs. 2, 3d). Thus, even

after allowing for a large number of eigenvectors (which

account for most of the variation in matrix G; for instance,

k% = 80 %), the coefficients of determination of models

for allelic frequencies are always lower than 10 %.

The areas of the SSR curves differed significantly among

the scenarios (ANOVA’s R2 = 0.795; F = 442; P � 0.01)

as well as between each scenario and the null expectation. The

areas estimated for barrier and expansion scenarios did not

differ significantly (Tukey’s post hoc test), but both differed

from IBD. All three simulated scenarios differed from the null

model (i.e. random or panmixia) scenario (Fig. 5).
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Fig. 3 Average SSR curves

(filled circles and continuous

lines) derived from the different

scenarios: a isolation by

distance, b barriers, c range

expansion and d random

variation. The dotted lines

represent the 95 % confidence

intervals. The 45� line (dashed)

is also shown for comparison
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Geographic variation of allele frequencies in Dipteryx

alata populations

Most SSR curves for the 28 allele frequencies of the D. alata

populations are below or close to the proportional variation

line and are thus similar to the ones obtained in our simula-

tions for IBD and range expansion (Fig. 6a). The null dis-

tribution of the SSR area (Fig. 6b) shows that, for this sample

size and spatial configuration, SSR areas lower than -0.266

below the proportional variation line can be considered

random. SSR areas for fourteen alleles were below -0.266

and thus their variations across space were not different from

those expected by chance alone (Fig. 5b). Indeed, of these 14

alleles, only three have Moran’s I coefficients larger than 0.1

in the first distance class. The correlation between the SSR

area and the Moran’s I coefficient in the first distance class

was positive (r = 0.609; P \ 0.01), but gradually became

negative as higher distance classes were considered. For

instance, the correlation between SSR area and the Moran’s

I coefficient estimated for the last distance class was strongly

negative (r = -0.908; P � 0.01), indicating that linear

SSR curves are found for more linear correlograms too, both

expressing clinal patterns in geographical space.

Discussion

Spatial autocorrelation and the SSR curve

Our results show that SSR curves can be a useful tool to

explore spatial patterns of genetic variation and allow for

the differentiation between evolutionary processes, as

given by our simulated scenarios. In addition, SSR curves

provide a better visual description of complex spatial sur-

faces than do Moran’s I correlograms.

Previous studies showed that correlograms resulting

from the IBD process tend to have positive autocorrelation

(as estimated by Moran’s I coefficients) at short distances

and non-significant autocorrelation at long distances (Sokal

and Oden 1978b; Sokal and Wartenberg 1983; Barbujani

1987; Epperson 1995, 1996, 2004, 2005; Hardy and

Vekemans 1999). This pattern is found because, although

nearby individuals or local populations tend to be geneti-

cally similar, similarity between individuals becomes

unpredictable with the increase of geographic distance. The

same pattern appears when using the SSR curve, which

also follows an exponential-like shape under IBD.

Fig. 4 Relationship between Manhattan distances between pairs of

correlograms and SSR curves (a), relationship between correlations

between alleles and Manhattan distances between correlograms

(b) and relationship between correlations between alleles and

Manhattan distances between SSR curves (c)

c
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Under the barrier scenario, the simulations show that

Moran’s I correlograms become more linear and similar to

the ones that can emerge under long-distance migration

waves or selection. In general, the SSR curve is a better

description of the spatial pattern generated by the barrier

scenario than Moran’s I correlograms, with a peak of R2 at

intermediate geographic distances. Notice that the R2 of the

first model in the SSR curve (i.e., the one that includes the

first eigenvector only) is very close to zero because of the

omnidirectional behavior of our simulations. Because our

simulations generate large differences in allele frequencies

between the east and west sides of the grid, and the first

eigenvectors depict broad-scale patterns, one could expect

that these first eigenvectors would explain a large fraction

of the variation in the allele frequencies. However, this

expectation does not hold because of the strong similarity

in the north–south direction; the R2 tends toward zero and

only after adding the second eigenvector is the R2 near the

proportional line. The ability of the SSR curve to detect a

barrier is directly related to the difference between the two

regions separated by the barrier. Despite the existence of

other spatial methods to detect barriers, such as wombling

(see Fortin and Dale 2005 for a detailed description, and

Cercueil et al. 2007 for a recent development), one of the

improvements of the SSR curve over these methods is that

it is possible to identify which eigenvector is describing the

pattern, which can be used later to model the variation in

allele frequency in relation to environmental predictors.

The range expansion scenario generates a simple spatial

pattern that is described approximately by linear correlo-

grams (at least considering the first distance classes) or

SSR curves. Broad-scale clines in allele frequencies, which

have sometimes been interpreted as resulting from selec-

tion, can indeed be generated by stochastic processes, as

observed here (see Excoffier and Ray 2008). Further

developments of the SSR curve and of the Sokal and

Oden’s (1978b) correlograms-based framework are neces-

sary to allow better distinction between neutral and adap-

tive clines under range expansion scenarios. Nevertheless,

this may be challenging because range expansion is also

usually associated with climate changes (Excoffier and Ray

Fig. 5 SSR area for the different scenarios (isolation by-distance,

barrier, range expansion and random variation)

Fig. 6 SSR curves for 28 alleles derived from 8 microsatellite loci of Dipteryx alata in Brazilian Cerrado (a) and the null distribution of SSR

area for the spatial configuration of 25 local populations (b). The horizontal bar delimits the range of SSR areas obtained for the 28 alleles

486 Genetica (2013) 141:479–489
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2008), so a correlation between the cline in allele fre-

quencies and environmental drivers (triggering range

expansion) will appears even under neutral processes.

Our results show that SSR curves can be used to infer

microevolutionary processes, following the inferential

framework proposed by Sokal and Oden (1978a, b; see also

Sokal and Jacquez 1991; Sokal et al. 1997; Diniz-Filho and

Bini 2012). For example, Sokal and Wartenberg (1983)

showed that, under IBD, allele frequencies are uncorrelated

(because they are independent realizations of the stochastic

dispersal process). However, the correlograms of these

allele frequencies are similar because the same dispersal

distance controls the underlying structure of the spatial

pattern. Thus, pairwise Manhattan distances between cor-

relograms and pairwise correlations between allele fre-

quencies are expected to be independent of each other (see

also Diniz-Filho et al. 2012a for application of the same

reasoning for ecological communities). Indeed, for our IBD

simulations, this correlation (between Manhattan distances

and pairwise correlations between allele frequencies) ten-

ded toward zero. Also, there was no correlation between

the matrix of Manhattan distances between the curves and

the correlation matrix between the allele frequencies. This

result suggests that SSR curves can potentially replace

Moran’s I in Sokal and Oden’s (1978b) inferential

framework.

Epperson (1995, 1996) proposed that Moran’s I coeffi-

cients and correlograms could be used to evaluate patterns

within populations based on transformed genotypic data by

assigning a value of 1 if the individual is homozygous for

the allele, 0.5 if the individual is heterozygous, and 0 if the

individual does not contain the allele (these numbers are

the allele frequencies in a ‘‘region’’ so small that it contains

only a single individual). In the same vein, although our

analyses were based on allele frequencies in local popu-

lations, it is possible to use the SSR curve to analyze

variation within local populations, highlighting the flexi-

bility of eigenfunction spatial analyses (Griffith and Peres-

Neto 2006).

However, it is important to emphasize that the flexibility

of eigenfunctions (see Griffith and Peres-Neto 2006) has a

downside, which is the large number of eigenvectors that

can be extracted to represent the spatial relationships when

many local populations are analyzed (Blanchet et al. 2008).

Therefore, some form of variable selection is required and,

in the realm of spatial eigenfunction analyses, it has usually

been performed using several criteria with the main goal of

controlling Type I error rates (see Diniz-Filho and Bini

2005; Griffith and Peres-Neto 2006; Blanchet et al. 2008;

Bini et al. 2009; Diniz-Filho et al. 2012c). Our results

suggest that SSR curves can also be useful in eigenvector

selection by highlighting the geographic distance at which

incorporation of the eigenvector in the model can track the

spatial variation in the response variable (as performed by

Manel et al. 2010b). For example, as noted above, the SSR

curve can be used to identify which eigenvector is cap-

turing the effect of a barrier or of other adaptive factors

(see Manel et al. 2010a). One can then map the selected

eigenvector as a way to verify whether it represents regions

separated by an overlooked barrier in the studied land-

scape. Further studies using data of other species having

similar dispersal abilities and a planned sampling design

(to ensure representation of populations in both sides of the

supposed barrier) could be performed to offer independent

evidence of the barrier’s efficiency in disrupting or mini-

mizing gene flow.

The SSR curve, as presented here, is essentially uni-

variate (i.e., one allele frequency is analyzed at time),

similarly to Moran’s I correlograms, allowing interesting

evolutionary inferences. On the other hand, dealing

simultaneously with many alleles, such as done with a

Mantel test or Mantel correlogram based on genetic dis-

tances or similarity, does not allow a detailed description of

multiple potential evolutionary processes driving patterns

in each loci or allele frequency (except if these distances

are defined with clearly defined expectations based on

evolutionary models—see Diniz-Filho et al. 2012d). Even

so, if the researcher is interested in a general description of

several alleles and loci, the SSR curve can still be applied

using a multivariate R2 rather than the univariate R2. Also,

one can simply use the scores derived from any ordination

analysis as response variable in the multiple regression

models needed to generate the SSR curve.

Geographical genetics of D. alata

SSR curves applied to the D. alata are consistent with the

previous findings about the landscape and population

genetics of this species. For instance, autocorrelation

analyses detected a spatial genetic structure at local scales,

within local populations (see Hardy et al. 2006, 2008), as

expected by considering the ecological and life history

traits of the species, especially reproductive mode (i.e. self-

incompatible) and seed dispersal by mammals and polli-

nation by large bees (see Collevatti et al. 2010). These

characteristics tend to create local spatial structure in

genetic variation, and the local patterns described by Col-

levatti et al. (2010) can be expanded to broader spatial

scales and generate IBD-like decrease of genetic similarity

with increasingly geographic distances. But at broad spatial

scales these must be coupled with historical processes of

range expansion to explain more clinal genetic structure

among populations, such as studied here using the SSR

curve (see also Soares et al. 2008; Collevatti et al. 2013).

Our current knowledge of genetic diversity and popu-

lation structure in D. alata shows that the species possess a

Genetica (2013) 141:479–489 487
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strong spatial structure in genetic differentiation following

an IBD-like pattern coupled with range expansion for

distinct loci (Diniz-Filho et al. 2012d; Collevatti et al.

2013). This is also revealed by the SSR curves proposed

here. However, inferring evolutionary processes from

spatial patterns depicted by empirical data is a challenging

task because these processes are complex, idiosyncratic

and have a strong historical component (Slatkin and Arter

1991; Sokal et al. 1997). In this context, both SSR curves

and Moran’s I based correlograms have limitations. Even

so, the SSR curves seem to be better than correlograms to

detect the existence of barriers to gene flow at long

distances.

Concluding remarks

Here, we show that our new approach based on SSR curves

is a useful exploratory tool for describing spatial patterns of

genetic variability. Our simulations show that different

processes driving population divergence produce SSR

curves with distinct shapes. Particularly, the SSR curve was

more efficient in detecting the effect of barriers on gene

flow than Moran’s I correlogram. Although further devel-

opments in the application of the SSR curve to infer

microevolutionary processes are still needed, our analyses

suggest that the new approach can be applied akin to

Moran’s I correlograms. Moreover, the SSR curve can be

useful for eigenvector selection to model phenotypic spa-

tial variation. These different possibilities reveal the flex-

ibility of eigenfunction spatial analyses when applied to

geographical and landscape genetics.
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