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Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations
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In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations,
with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity
transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the
trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then
used to verify the stability of the localized solutions.
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I. INTRODUCTION

Vector solitons are essential to the understanding of a diver-
sity of physical systems that appear, for instance, in nonlinear
optics [1], multispecies condensates [2], superchemistry [3],
and plasma [4]. From the theoretical point of view, they present
a richer propagation dynamics than scalar solitons due to
the presence of cross-phase modulation leading to possible
intensity redistributions between the components in collision
events [5]. For applications, the collision dynamics of vector
solitons can be employed to implement all-optical digital
computation without radiative losses [6] and information
transfer [7].

In the investigation of vector solitons from a system
of coupled nonlinear Schrödinger equations (CNLSEs), the
so-called Manakov model [1] has received a great deal
of attention. In this scenario, experimental observations of
temporal vector soliton propagation and collisions in a linearly
birefringent optical fiber [8] and spatial vector solitons in
AlGaAs [9] and photorefractive crystals [10] have been
reported. In the case of Bose-Einstein condensates (BECs),
two-component condensates have been realized in rubidium
atoms in a magnetic trap [2] and in sodium atoms in an optical
trap [11].

Although most of the above-mentioned previous studies
make use of autonomous CNLSEs, there are more gen-
eral situations well described by nonautonomous CNLSEs
where the potentials and nonlinearities are modulated in
space and time [12]. Focusing on this, in this work we
study localized solutions of one-dimensional CNLSEs with
spatial and temporal dependencies on the linear (potential)
and nonlinear coefficients. To search for different vector
solitons of nonautonomous CNLSEs, we employ the following
strategy. First, a similarity transformation technique [13–17] is
used to transform nonautonomous CNLSEs into autonomous
CNLSEs. The latter can then be decoupled by applying
the trial orbit method [18], which involves choosing spe-
cific orbits connecting the minima of the field potential
associated with autonomous CNLSEs. Finally, the decou-
pled equations are solved by the first-order formalism for
lumps [19,20]. As we show, this strategy leads to several
solutions of nonautonomous CNLSEs, which we can see as
a gain in terms of a systematic way of solving autonomous
CNLSEs.

II. THEORETICAL MODEL

We consider an autonomous CNLSE, which can be
written as

i∂tψj = − 1
2∂2

xψj + Vjψj + (gjj |ψj |2 + gjk|ψk|2)ψj , (1)

with j �= k = {1,2}; ψ1 ≡ ψ(x,t); ψ2 ≡ φ(x,t); ∂t ≡ ∂/∂t ,
∂2
x ≡ ∂2/∂x2, etc.; and Vj = Vj (x,t). These equations can be

used to describe the density profile of a BEC with two compo-
nents (two species of atoms, say) in which nonlinearities are
controlled by using Feschbach resonances or pulse propagation
along two orthogonal polarization axes in inhomogeneous
nonlinear optical fibers in which the linear part of the refractive
index depends on the spatial position [21].

To start our strategy of finding specific solutions we use the
ansatz

ψj (x,t) = ρ(t)eiη(x,t)�j [ζ (x,t),τ (t)] (2)

to connect the solution of the coupled equations (1) with those
of the autonomous system given by

i∂τ�j = − 1
2∂2

ζ �j + (Gjj |�j |2 + Gjk|�k|2)�j, (3)

with j �= k and Gjk (and Gjj ) now being constant coefficients.
To get this we must have

ζxx = 0, τt = ζ 2
x , (4)

ζt + ζxηx = 0, ρt + 1
2ρηxx = 0, (5)

Vi = −1

2
η2

x − ηt , gij = Gi,j ζ
2
x

ρ2
. (6)

Thus, using the similarity transformations (2), we could change
the nonautonomous system (1) into an autonomous one,
described by Eq. (3), with the set of equations (4)–(6) being
satisfied to validate the procedure.

From Eq. (4) we obtain ζ (x,t) = γ (t)x + δ(t) and τ (t) =∫
γ 2dt , which when substituted into Eq. (5) results in

η(x,t) = − γt

2γ
x2 − δt

γ
x + β(t), ρ(t) = √

γ , (7)

where we have omitted the constant of integration of
the preceding equation, for simplicity. We can rewrite the
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nonlinearities and potentials in Eq. (6) as gjk(t) = Gjkγ (t) and

Vj (x,t) =
(

γtt

2γ
− γ 2

t

γ 2

)
x2 +

(
δtt

γ
− 2γtδt

γ 2

)
x

−
(

δ2
t

2γ 2
+ βt

)
.

In the case of BECs, these potentials and nonlinearities are
experimentally feasible using external magnetic and optical
pulses and the Feshbach resonance.

III. SPECIFIC SOLUTIONS

If we consider solutions of the form �1(ζ,τ ) = A(ζ )e−iμτ

and �2(ζ,τ ) = B(ζ )e−iντ in Eq. (3) we obtain

μA = − 1
2Aζζ + (G11A

2 + G12B
2)A, (8)

νB = − 1
2Bζζ + (G21A

2 + G22B
2)B. (9)

To find analytical solutions for Eqs. (8) and (9) we
use the trial orbit method to decouple these equations.
Following Ref. [18], we can construct a field potential
V(A,B) such that Aζζ = ∂V/∂A and Bζζ = ∂V/∂B and
choose a specific orbit condition g(A,B) = 0 having the
free parameter adjusted to be compatible with the field
potential. In our case, the condition G12 = G21 is required
to construct the field potential associated with Eqs. (8)
and (9). In this field potential we will see that the minimum
{0,0} is linked with the existence of localized solutions
while the four minima {±[(μG22 − G12ν)/(G11G22 −
G2

12)]1/2, sgn(G22)[(νG11 − G12μ)/(G11G22 − G2
12)]1/2}

and {±[(μG22 − G12ν)/(G11G22 − G2
12)]1/2, − sgn(G22)

[(νG11 − G12μ)/(G11G22 − G2
12)]1/2} are linked with

delocalized solutions. Choosing the orbit condition A = αB

(which presents a similar profile but with different amplitude),
we decouple the system (8) and (9) into two decoupled
equations presenting cubic nonlinearities as

μA = − 1
2Aζζ + (G11 + G12/α

2)A3, (10)

νB = − 1
2Bζζ + (G22 + α2G21)B3. (11)

In the following sections we show two examples: bright-
bright and dark-dark solitons. In these examples we use γ =
[2 − cos2(ωt)]−1 and δ = 0 (with βt = −δ2

t /2γ 2 in all cases).
In this way we get

τ (t) = 3

8ω

√
2 arctan[

√
2 tan(ωt)]

+ 1

4ω
tan(ωt)/[2 tan2(ωt) + 1]

and ζ (x,t) = x/[2 − cos2(ωt)]. This will lead us to

ρ(t) = [2 − cos2(ωt)]−1/2, (12)

η(x,t) = cos(ωt) sin(ωt)

2 − cos2(ωt)
ωx2, (13)

V (x,t) = [2 cos2(ωt) − 1]

cos2(ωt) − 2
ω2x2. (14)

Figure 1 shows the linear coefficient (potential) of the
CNLSE [Eq. (1)] given by Eq. (14) versus the spatial and

FIG. 1. (Color online) Linear coefficient (potential) of the
CNLSEs given by Eq. (14) with ω = 0.01.

temporal coordinates. Note that the potential is quadratic
in spatial coordinates and oscillates due to its temporal
dependence.

A. Bright-bright solitons

The minimum of the field potential {0,0} is attained taking
the conditions μ,ν < 0. Inserting the field potential V in the
orbit condition (see Ref. [18] for more details) we obtain
specific relations for the parameters such that for the orbit
A = αB we get ν = μ and G11 = (G12(α2 − 1) + G22)/α2.
At this point we have four parameters to be determined in
adjustment with the solutions of Eqs. (10) and (11).

As an example let us consider the solution A(ζ ) =
� sech(λζ ), with λ = √−2μ and � = [2μ/(G12α

2 +
G22)]1/2. The total power P = ∫ ∞

−∞(|A|2 + |B|2)dζ of the
autonomous coupled equation is given by P = −2

√−2μ(1 +
α2)/(G12α

2 + G22). Since the evolutions of A and B are
governed by a single parameter (μ in this case), an approach
similar to the Vakhitov-Kolokolov criterion for the stability
is usually for the total power, i.e., stable solutions are ob-
tained since dP/dμ = √

2(1 + α2)/[
√−μ(G12α

2 + G22)] >

0 [22]. Localized solutions of Eqs. (10) and (11) require
negative cubic coefficients, such that G22 + α2G12 < 0, that
satisfy dP/dμ > 0 for any μ < 0, i.e., stable solutions.

Considering P = 2, for simplicity, we get G22 =
−√−2μ(1 + α2) − G12α

2. To give an explicit example we
have chosen μ = −0.5, α = √

2, and G12 = −1. The G11 and
G22 are obtained by the above conditions.

Considering the above example, we can write the complete
solutions in the form

ψj (x,t) =
√

6/j

3

exp
(

iωx2 cos(ωt) sin(ωt)
2−cos2(ωt)

)
√

2 − cos2(ωt)
sech

(
x

cos2(ωt) − 2

)
.

(15)

FIG. 2. (Color online) Plots of (a) |ψ |2 and (b) |φ|2, correspond-
ing to Eq. (15) with j = 1,2, respectively. Here we have used the
modulation frequency ω = 0.01.
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FIG. 3. (Color online) Plots of (a) |ψ |2 and (b) |φ|2, correspond-
ing to Eqs. (16) and (17), respectively, with modulation frequency
ω = 0.01.

In Figs. 2(a) and 2(b) we display the solutions given by
Eq. (15) for j = 1,2, respectively. Note that both solutions
show a breathing pattern due to the external modulation of the
static solutions.

B. Dark-dark solitons

In this example we look for solutions that connect two min-
ima of the field potential. The requirements for the minima of
the potential are sgn{G11/(G11G22 − G2

12)}(G12ν − μG22) <

0 and sgn{G22/(G11G22 − G2
12)}(G11ν − G12μ) > 0 (sgn is

the signal function). Via the orbit condition for the minima we
take α = √

(μG22 − G12ν)/(G11ν − G12μ), which associates
the relative amplitude of the fields with the value of the external
parameters. As a result, we get ν = μ assuming G2

12 �= G11G22

and G22 �= G12 (to avoid divergence analysis), which simplify
the analysis based on a single evolution parameter. For
positive nonlinear parameters (a requirement for delocalized
solutions) we will assume (G11G22 − G2

12)/(G11 − G12) > 0
and (G11G22 − G2

12)/(G22 − G12) > 0.
At this point we look for solutions given by A(ζ ) =

� tanh(λζ ), where � = λ
√

(G11 − G12)/(G11G22 − G2
12)

and λ = √
μ. It is clear that the total power is an infinity

quantity. So by use of the renormalized total power [21] we
obtain P = 2

√
μ(2G12 − G11 − G22)/(G2

12 − G11G22). We
will focus on parameter values such that dP/dμ > 0, i.e.,
sgn{2G12 − G11 − G22} = sgn{G2

12 − G11G22}. It is worth
stressing that dP/dμ > 0 is not usually a criterion for dark
solitons (see Ref. [21] for more details). Here this choice only
gives a direction for our numerical tests.

As we have done previously, taking P = 2 for simplicity
we get G11 = (−2

√
μG12 + √

μG22 + G2
12)/(G22 − √

μ). To
give an explicit example we have chosen μ = 0.5, G12 = 0.25,
and G22 = 1. In this case we will have

ψ(x,t) = −
(√

2(2 − √
2)

3

)1/2 exp
(

iωx2 cos(ωt) sin(ωt)
2−cos2(ωt)

)
√

2 − cos2(ωt)

× tanh

(
x√

2[cos2(ωt) − 2]

)
, (16)

φ(x,t) = −
(

2
√

2 − 1

3
√

2

)1/2
exp

(
iωx2 cos(ωt) sin(ωt)

2−cos2(ωt)

)
√

2 − cos2(ωt)

× tanh

(
x√

2[cos2(ωt) − 2]

)
. (17)

Figures 3(a) and 3(b) display the solutions (16) and (17),
respectively. Note that, similar to the bright-bright case, both
solutions show a breathing pattern with frequency ω due to

the external modulation associated with the choice of the
γ (t). Also note that the motion of the center of mass can
be controlled by the δ(t) function. These choices depend
on experimental parameters associated with the external
parameters such as magnetic and optical fields, lead by the
Feshbach resonance management.

C. Bright-dark solitons

Let us now investigate another pair of solutions of the
system given by Eq. (1). Here we use the orbit |�|2 =
α

(
1 − |�|2), from with we can decouple the system (3) as

follows:

(μ − G12)A = − 1
2Aζζ + (G11 − G12/α)A3, (18)

(ν − αG12)B = − 1
2Bζζ + (G22 − αG12)B3, (19)

where we have employed the stationary configurations given
by Eqs. (20) and (21). In this case we will have a localized
solution in one field plus a delocalized solution in the other.
Thus we require that the minima of the field potential are given
by {0, ± 1} since the orbit condition for the minima results
in G22 = ν, with necessary conditions ν > 0 and μ < G12.
We obtain G12 = (2μ + ν)/(α + 2) and G11 = (2μα + 2μ −
ν)/[α(α + 2)], reducing the number of free parameters that
describes the solution.

Next we use the formal solution B(x) = tanh(�ζ ), where
� = √−2(μα − ν)/(α + 2). We also use the same γ (t), δ(t),
and β(t), maintaining the conditions (12)–(14) with the same
form. We use the natural choices of the nonlinear parameters,
i.e., a negative value for the localized solution and a positive
value for the delocalized one. So we will have ν > 2μ(α + 1)
and ν > α(2μ + ν)/(α + 2) (assuming α > 0). The complete
solution can be written in the form

ψ(x,t) =
√

2

2 − cos2(ωt)
exp

(
iωx2 cos(ωt) sin(ωt)

cos2(ωt) − 2

)

× sech

(√
3

2

x

cos2(ωt) − 2

)
, (20)

φ(x,t) = − 1√
2 − cos2(ωt)

exp

(
iωx2 cos(ωt) sin(ωt)

cos2(ωt) − 2

)

× tanh

(√
3

2

x

cos2(ωt) − 2

)
, (21)

where we have used α = 2 and μ = −ν = 1.
In Fig. 4 we show the profile of |ψ |2 and |φ|2. Since

both fields (particle densities in the case of BECs) experience

FIG. 4. (Color online) Plots of (a) |ψ |2 and (b) |φ|2, correspond-
ing to Eqs. (20) and (21), respectively, with modulation frequency
ω = 0.01.
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FIG. 5. (Color online) Analysis of stability. The maximum
amplitudes of |ψ |2 and |φ|2 are shown as black and gray lines,
respectively. In this sense, we show in (a), (c), and (d) the maximum
amplitudes for cases 1, 2, and 3, respectively. The profile of |ψ |2 for
case 1 is shown in (b). Similar behaviors are obtained for |φ|2. Here
we consider the evolution up to t = 1000, but the same behavior was
observed up to t = 10 000, which is not shown here due to problems
in the resolution of the figures because of the number of oscillations.

the same linear coefficient (potential) with similar nonlinear
coefficients, the periods of oscillations are equal. This fact is
feasible in the case of BECs since the external fields can be
perceived in a similar way for the two components. Note the
two distinct behaviors, one localized and the other delocalized.
Experimentally, this behavior is similar to the BECs of 87Rb [2]
and 7Li [11] atoms.

To verify the stability of the solutions presented above,
we have employed numerical simulations based on split-step
Crank-Nicholson algorithms, working with finite-difference
methods. For a detailed description of these algorithms and
FORTRAN programs for the time-dependent Gross-Pitaevskii
equation, see Ref. [23]. We have used the time step �t = 10−4

and the space step �x = 10−2 for a good convergence [23].
First we consider the analytical solution of each example above
in the time t = 0. Then the input of the program is given
by this solution with a random perturbation (with 5% of the

amplitude) of a uniform distribution with its mean centered at
zero. Next this profile is lead to evolve up to t = 10 000, which
corresponds to a real time of ∼ 10s, which is greater than
the lifetime of the BEC (∼ 3 s) since the dimensionless time
is proportional to ω−1

z , with ωz ∼ 1–103 Hz being the axial
oscillation frequency (see Ref. [11]). Note that the effective
modulation frequency given by ω × ωz leads to the period of
oscillation of the potential [Eq. (14)] equal to π/(ω × ωz).
A stable coupled solution is verified for the first example
[Eq. (15)]. However, the last two cases have presented an
unstable behavior under the considered perturbations. Figure 5
displays the time evolution of the maximum values of |ψ |2
and |φ|2 as black and gray lines, respectively. In Fig. 5(b) we
display the profile |ψ |2 of Eq. (15). It is worth mentioning that
the stability of the solutions is a necessary condition for them
to be experimentally feasible. Thus the latter two solutions
are treated in this study as examples of the application of the
method.

IV. CONCLUSION

In this work we investigated the presence of solutions
for a system of two CNLSEs. As a result we have shown
that inhomogeneous CNLSEs can present stable solutions for
both field components. This was done through the use of
the similarity transformation method [14] plus the trial orbit
method [18]. We found explicit analytical solutions in the case
|�|2 = α2|�|2 for two distinct sets of parameters. We also
found analytical solutions for |�|2 = α(1 − |�|2) for a given
set of parameters. The first set of solutions seems to be stable,
while the two other sets appear to be unstable under small
perturbations in their corresponding amplitudes.
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