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A B S T R A C T

Because the methods specified by regulatory agencies for the determination of the physicochemical properties of
biodiesel can be laborious and expensive, the development of alternative methodologies represents a major
breakthrough. Thus, low-field nuclear magnetic resonance (NMR) is an advantageous option because it is
nondestructive and reduces the cost and time consumption. In this study, the partial least squares (PLS) re-
gression method was used to create models that correlated the decay curves of the Carr–Purcell–Meiboom–Gill
(CPMG) signal, obtained from low-field NMR equipment (2.2MHz for 1H), with the kinematic viscosity, specific
mass and refractive index of biodiesel and their blends. Seventeen oilseeds diversified between edible and non-
edible oils were utilized to synthesize the biodiesel and produce binary blends. Separately, multivariate cali-
bration models were created only with biodiesel and blends with castor bean because these samples showed
different tendencies from the others. The values of root mean square error of prediction (RMSEP) for the ki-
nematic viscosity, specific mass and refractive index were equal to 0.1mm2·s−1, 3.7 kg·m−3 and 0.002, re-
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spectively, for samples of biodiesel and blends without castor bean and 0.6mm2·s−1, 2.0 kg·m−3 and 0.0005 for
samples of biodiesel and blends with castor bean. The results reveal that the developed models are very sa-
tisfactory to predict the quality parameters of biodiesel and blends based on CPMG data with fairly good efficacy.

1. Introduction

Chemically, biodiesel is composed of monoalkyl esters of long chain
fatty acids derived from renewable feed stocks, such as vegetable oil or
animal fats, that are synthesized by transesterification, in which the
triglycerides in vegetable oils react with alcohols of low molecular
weights in the presence of catalysts [1–2]. Biodiesel presents several
interesting features that tend to highlight it as an excellent alternative
fuel source as a partial or complete replacement for diesel. Among these
characteristics, it should be emphasized that its production is en-
vironmentally acceptable, technically feasible, and economically com-
petitive and can promote social development, in addition to its raw
materials being readily available [2–8].

The quality of biodiesel is related to several properties, such as ignition
quality, heat of combustion, cold flow, oxidative stability, viscosity, spe-
cific mass, and lubricity [9]. Viscosity affects the atomization of a fuel
after injection into the combustion chamber and consequently the for-
mation of engine deposits. The higher the viscosity is, the greater the
tendency of the fuel to cause such problems [10,11]. Specific mass is re-
lated to many engine performance characteristics, such as cetane number
and heating value. Moreover, diesel fuel injection systems measure the
fuel by volume. Thus, changes in the fuel density will influence the engine
output power due to the different masses of fuel injected [12]. The re-
fractive index is also an important physicochemical property that is widely
used in fuel characterization and may be used to indicate the presence of a
microemulsion during the biodiesel production process [13].

The methods specified by regulatory agencies for the evaluation of
such parameters are in many cases, laborious, expensive and destruc-
tive to the sample, as can be verified through the requirements of the
ANP (Brazilian National Agency for Petroleum, Natural Gas and
Biofuels) [14]. In this sense, low-field 1H NMR relaxometry has already
been shown as an alternative method in studies of oil content and oil
quality in oilseeds [15] and in the evaluation of biodiesel quality [9].

Low-field NMR (or time-domain nuclear magnetic resonance – TD-
NMR), which is called as such because of the low magnetic field applied
(B0 < 1T), is based on less-expensive, small, and robust benchtop
permanent low-field magnets, which significantly reduces the overall
system and running costs. The technique has been proven to be an
excellent alternative to many traditional methods because of its ra-
pidity, reproducibility, high correlation with these traditional methods,
possibility for online and in situ application, non-destructiveness and
minimal or absent sample pre-treatment requirements [16]. For these
reasons, low-field NMR has been widely used for qualitative and
quantitative analyses [15–38]. Experiments are performed mainly by
using the difference in longitudinal relaxation time (T1), transverse
relaxation time (T2) (relaxometry) or self-diffusion (D, diffusometry)
between the sample constituents [16].

In measurements on low-field NMR equipment, the
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [39] stands out as
the most important sequence. It has been used in analyses of seed, ve-
getable oil and foodstuffs, replacing laborious processes that consume
toxic organic chemicals [15,19–31], in the petroleum industry in well-
logging sensors and in the laboratory to measure oil viscosity, density,
rock porosity and many other properties for the oil industry [16,32–38].

NMR data can also be modelled using chemometric methods, such
as principal component analysis (PCA), hierarchical cluster analysis
(HCA) and partial least squares (PLS) regression, which is one of the
most widely used methods for creating calibration models [9,15,40].

To provide only one property (PLS-1), the PLS algorithm searches for
a set of components that explain the maximum covariance between the

dependent (X) and independent variables (y). It is reached by the si-
multaneous decomposition of the set of instrumental data (X) and of the
physicochemical property (y) obtained by traditional method, followed
by a regression model relating the two decomposition models [13,41–43].
In PLS regression the matrix X and the vector y are simultaneously de-
composed as the covariance structure between them is maximized.

= +X TP Et
x (1)

= +y Uq et
y (2)

where T and U are the score matrices and PT and qT are the transposed
weight matrix and the transposed weight vector of the matrix X and of the
vector y, respectively. Ex and ey are the residual matrix and residual
vector containing the unexplained variances of X and y, respectively
[13,41–43]. The inner relationship between the score matrices T and U is
given by the equation:

=b W P W q( )T 1 (3)

where b is the vector of the regression coefficients and W is a weights
matrix for loadings from X [41].

Thus, in this paper, the low-field 1H NMR technique associated with
partial least squares (PLS) regression method was used to estimate the
kinematic viscosity, specific mass and refractive index of biodiesel
samples and their blends.

2. Material and methods

2.1. Studied biodiesel

Table 1 presents the edible and non-edible oils used for biodiesel
synthesis. These oils have similar fatty acids variability of the oils/fats
used in commercial biodiesel production.

2.2. Low-field NMR analysis

The low field NMR equipment used in the analysis of biodiesel and
blends samples was a MARAN Ultra-2 from Oxford Instruments, which
was operated at 52mT (2.2MHz for 1H) conducted by a probe of 51mm
in diameter and controlled by the Oxford Instruments RINMR software.
The measurement temperature was equal to 35.0 ± 0.5 °C.

Table 1
Oilseeds selected for synthesis of biodiesel.

Common Names Scientific Names

Pumpkin Cucurbita pepo L.
Cottonseed Gossypium hirsutum L.
Peanut Arachis hypogaea L.
Canola Brassica napus L.
Safflower Carthamus tinctorius L.
Chia Salvia hispanica L.
Cutieira Joannesia princeps Vell
Palm Elaeis guineensis Jacq.
Sesame Sesamum indicum L.
Sunflower Helianthus annuus L.
Linseed Linum usitatissimum L.
Castor Bean Ricinus communis L.
Watermelon Citrullus lanatus L.
Corn Zea mays L.
Radish Raphanus sativus L.
Candlenut Aleurites moluccana L.
Soybean Glycine max L.
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The CPMG pulse sequence employed 90° and 180° pulses of 8.6 and
17.2 μs, τ of 100 μs and recycle delay of 5 s. The maximum intensity of
10,240 even echoes was acquired and average with 32 transients.

2.3. Oil extraction

In the first step of analysis, the extraction of the oil from the oilseeds
samples selected for the study, using hexane as the extracting solvent was
performed. The system was refluxed for 6 h and the resulting extracted
solution was dried over anhydrous sodium sulfate to remove traces of
free water. After filtering the solution, the solvent was removed on a
rotary evaporator, and the mass of extracted oil was weighed.

2.4. Transesterification and analysis of biodiesel samples

For biodiesel synthesis, sodium hydroxide (NaOH) was used as the
reaction catalyst. The mass of sodium hydroxide used was 1% of the
mass of oil, and NaOH was pre-solubilized in methanol under vigorous
stirring and then added to a round bottom flask containing the vege-
table oil. After addition, a reflux condenser was connected to the flask,
which was in a glycerin thermal bath and under constant magnetic
stirring. The molar ratio of oil:methanol was 1:6, and the reaction oc-
curred within the temperature range of 55–60 °C for 30min.

To follow the end of the reaction, the thin layer chromatography
method was used. The elution solvent was a mixture of hexane, ethyl
ether and acetic acid in a ratio of 85:15:1 (v/v/v). Visualization was
performed in an iodine chamber.

The reaction product was placed in a separation funnel where gly-
cerin, a by-product of the reaction, was separated from the biodiesel by
decantation. Then, the biodiesel was washed several times with hot
water until the pH became neutral, and after it was transferred to an
Erlenmeyer flask where anhydrous sodium sulfate was added as a drying
agent. Subsequently, the product was filtered into a storage vessel.

Finally, approximately 25 g of the biodiesel samples were analyzed
three times by CPMG, and a mean decay curve was generated.

2.5. Preparation and analysis of the biodiesel blends

The formulation of biodiesel blends can be an excellent option to
adapt the physicochemical properties of a given matrix to the current
norms or even to modify some interesting specific properties. In addi-
tion, when the range of oilseeds used by a country for the synthesis of
biodiesel is diversified, blends are also an excellent alternative to by-
pass market or production problems in order to obtain the needed
amount of biodiesel.

Therefore, binary blends of linseed/peanut, chia/radish, sunflower/
palm and canola/cotton were prepared at ratios of 10:90, 25:75, 50:50,

75:25 and 90:10, and castor bean/soybean blends were produced at
ratios of 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and
90:10. Approximately 25 g were also analysed three times by CPMG to
obtain a mean decay curve.

It is important to clarify that the sunflower/palm, canola/cotton and
castor bean/soybean blends were produced with biodiesel synthesized
from commercially available oils. In these cases, pure biodiesel was also
analyzed by CPMG.

2.6. Determination of physicochemical properties

The following quality parameters of the biodiesel and the blends
were then determined: kinematic viscosity, specific mass and refractive
index.

The kinematic viscosity at 40 °C of the samples was obtained in
duplicate according to the ASTM D445 method. The experiments were
performed on a SCHOTT automatic viscometer, model AVS350,
equipped with a digital thermostatic bath for temperature control in
which a Cannon-Fenske type 150 capillary tube with 10mL of the
sample was used.

The determination of the specific mass at 20 °C was performed in
duplicate using an Anton Paar DMA-5000 digital densimeter according
to ASTM D4052. The refractive indices were measured at 25 °C in an
Abbe Digital refractometer (Krüss, Germany, model AR 2008).

2.7. Partial least squares (PLS)

Matlab® software version 7 (Mathworks Inc.) was used to build the
partial least squares regression (PLS) models of the CPMG signals of the
biodiesel and blends samples obtained from MARAN equipment.

The PLS models were created based on the selection of the intensity
values of the first 5120 echoes of each matrix by allocating them in
5120 columns. These values were preprocessed by centring them on the
mean, i.e., each intensity value of a given column was subtracted from
the mean intensity value of the given column. The dataset was split into
calibration (70% of the samples) and prediction (30% of the samples)
sets. The calibration set was used to build the calibration model, which
was then applied to the prediction set.

Calibrations were performed by leave-one-out cross-validation (one
at a time, each sample was removed from the calibration set and tested
in the model constructed with the others) to determine the optimal
number of latent variables (LV) to be included in each model in order to
minimize the root mean square cross-validation error (RMSECV), which
was also calculated from Eq. (4) but using an n equal to the number of
calibration samples. The PLS model adjustments were evaluated by
correlating the predicted values with the reference values of the vali-
dation set in a graph. To evaluate and compare the accuracy of the PLS

Fig. 1. Normalized decay curves of the CPMG signal of the analysed samples according to their category: (a) pure biodiesel; and (b) biodiesel blends of Cas:Soy.
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models created, root mean square error of prediction (RMSEP) was
calculated according to Eq. (4). RMSEP is an excellent statistical para-
meter that measures how well the generated model manipulates new
samples [13,42–44].

= =RMSEP
y y
n
( )i

n
i i1

2

(4)

where ŷi and yi are the predicted and the reference values of the ith
sample, respectively, and n is the number of prediction samples.

The PLS models constructed for the determination of the physico-
chemical properties of pure biodiesel and blends with castor bean were
developed using the repeated double cross-validation (RDCV) algorithm
[45,46]. This process is recommended when the number of samples
existing for model construction is limited and is called as such because
it is applied two times to estimate a set of samples. In RDCV, the cali-
bration and validation sets are divided k-times, and k PLS models are
constructed. The PLS model is constructed with calibration samples and
applied to estimate the physicochemical property in the validation set.

3. Results and discussion

3.1. Interpretation CPMG signals

Fig. 1 shows the normalized decay signals for some analyzed sam-
ples of pure biodiesel (a) and biodiesel blends of Cas:Soy (b). It can be
seen that the curves with faster decay have lower values of T2, which
were calculated from a mono-exponential fitting. There is an inverse
correlation between the viscosity of the biodiesel and their values of T2,
which is shown later in Figs. 2a and 3a, and can be explained by the
correlation time of the molecules (τc). The correlation time is defined as
the average time required for the molecule to rotate through an angle of
1 rad around any axis [47]. The most viscous samples contain molecules
with the highest of τc values and have short T2. However, the less vis-
cous samples contain molecules with short τc, so their T2 values will be
longer.

Then, in Fig. 1a, the longer decay of chia biodiesel (T2=802.83ms)
indicates its low viscosity (3.7163mm2·s−1). On the other hand, the
castor bean biodiesel, with much shorter decay (lower value of T2) is
the most viscous biodiesel (12.2782mm2·s−1). Fig. 1b shows the CPMG
decays of castor bean:soybean (CAS:SOY) blends, which also represent
the other blends. It is clear that the higher the proportion of the most
viscous biodiesel in the blend is (in this case, castor bean), the lower the
T2 value of the sample, and the faster the decay.

3.2. Obtained physicochemical properties

Table S1, given as Supplementary material, shows the values of
physicochemical parameters obtained, as well as the error of each
measure.

The kinematic viscosity range accepted by the ANP is from 3.0 to
6.0 mm2·s−1, so only the two castor biodiesel samples (synthesized
from oil extracted and commercial) and the blends in which the per-
centage of castor bean biodiesel is equal to or greater than 40% did not
comply with the norm. The values are even much higher than that al-
lowed by the regulatory agency (reaching 15.5mm2·s−1) and represent
a great obstacle for castor bean biodiesel to be commercialized, even in
blends. Castor oil produces a much more viscous biodiesel due to the
presence more than 85% of ricinoleate in its composition. The hydroxyl
group present on carbon 12 of this methyl ester, which is uncommon in
other esters, increases the intermolecular hydrogen bonds and raises the
oil viscosity [48,49].

The permitted range for the specific mass is between 850 and
900 kg·m−3. Thus, the same samples with nonconformity in viscosity
were also non-compliant with regard to the specific mass. The only
exception was the 40:60 castor bean/soybean blend, which was within

the allowed limit for the specific mass but did not conform to the range
for kinematic viscosity.

The refractive index is not a physicochemical parameter required by
the ANP; however, it is important to evaluate the biodiesel quality and
can be interesting to include as a quality parameter for biodiesel
characterization.

In addition to the non-compliance with the ANP-stipulated limits,
biodiesel and castor bean blends present another difference in relation
to the other samples: the correlations between the physicochemical
properties and, consequently, with the T2 values. Figs. 2 and 3 illustrate
the correlations between the kinematic viscosity values (ν) and T2 and

Fig. 2. Correlation curves between kinematic viscosity values (ν) of biodiesel
blends of linseed/peanut (ratios of 10:90, 25:75, 50:50, 75:25 and 90:10) and:
(a) T2; (b) specific mass; and (c) refractive index. The peanut biodiesel is the
most viscous.
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the other quality parameters: as specific mass and refractive index.
Fig. 2 shows the correlations of linseed/peanut blends, where peanut
biodiesel is the most viscous, and Fig. 3 is the correlations of castor
bean/soybean blends.

For the samples without castor bean there is an inverse correlation
between the kinematic viscosity and the other physicochemical prop-
erties (Fig. 2). Fig. 2b and c show the linear correlation decreasing with
high determination coefficients of specific mass and refractive index
with viscosity, respectively. It is emphasized that as the viscosity pre-
sents an inverse correlation with T2 (Fig. 4a), so the other parameters
will have a direct correlation.

These inverse correlations can be explained from the composition of

methyl esters in biodiesel. The biodiesel viscosity increases with the
increase in the ester chain size and decreases with the increase in the
unsaturation degree [10–11], whereas for the other parameters the
relation is different, they increase with the increase in unsaturation
degree of biodiesel and a decrease in the length of the chains causes an
increase in the specific mass and a decrease in the refractive index [50].

For biodiesel samples containing castor bean (Fig. 3) the curves are

Fig. 3. Correlation curves between kinematic viscosity values (ν) of biodiesel
blends of castor bean/soybean (ratios of 10:90, 20:80, 30:70, 40:60, 50:50,
60:40, 70:30, 80:20 and 90:10) and: (a) T2; (b) specific mass; and (c) refractive
index. The castor bean biodiesel is the most viscous.

Fig. 4. Measured physicochemical properties by ASTM methods and its pre-
dicted values from the constructed PLS models: (a) viscosity; (b) specific mass;
and (c) refractive index. The CPMG data used to build the models were gen-
erated from analyses of pure biodiesel and blends without castor bean.
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in the opposite direction. There are direct correlations between the
kinematic viscosity and the other parameters. The 3b and 3c curve
show high correlation with exponential and polynomial quadratic
trend, respectively. Therefore, the viscosity shows an inverse correla-
tion with T2 (Fig. 3a), and all properties analyzed also exhibit the same
relation. This is also due to the methyl ricinoleate: because it is un-
saturated, an increase of its percentage in the blends favours an increase
in the specific mass and the refractive index and should induce a
viscosity reduction. However, the presence of the hydroxyl group in-
creases the oil viscosity instead of reducing it.

The correlations shown in Figs. 2 and 3 also demonstrated that the
NMR technique, based on the T2 values of the samples, can be related to
the physicochemical parameters of biodiesel. However, the correlations
were constructed using a limited number of samples, more specifically
of binary blends composed of the same biodiesel types (linseed/peanut
and castor bean/soybean), where only the percentage of each one is
changed. If the universe of the types of biodiesels and blends used in the
correlations is expanded, the coefficients of determination (R2) of the
correlations decrease considerably. Thus, the PLS method was used to
allow the expansion of biodiesel types in the same regression, gen-
erating smaller prediction errors of physicochemical properties than if
simple correlations with T2 were made.

3.3. PLS

The PLS method was used to calibrate of CPMG data (dependent
variable) and the values of the quality parameters obtained by the ex-
perimental methods. The curves obtained by PLS, correlating the
measured values by ASTM methods and predicted values of the PLS
models, are shown in Fig. 4 and important information inherent to the
models quality are given in Table 2. It is noteworthy that in the created
models, the castor bean samples were eliminated by previous ob-
servations that show different tendencies from the others in such
samples.

As can be seen from Table 2, four or five latent variables (LV) were
used to perform the correlations. It is also verified that the cumulative
variance was higher than 99.4% in all cases. In addition, the coeffi-
cients of determination (R2) values of the calibration curves indicate the
high linearity of the models and the low values of RMSEP are indicative
of their accuracy. It is found that some samples deviated from the re-
gression for the specific mass and for the refractive index (Fig. 4b and
c), however, such deviations did not compromise the errors of predic-
tion in a significant way. Together, such features demonstrate that the
models created are very satisfactory and can predict the biodiesel
properties from the CPMG data quite effectively.

In the prediction of viscosity, the RMSEP value was 0.1mm2·s−1. It
is interesting to note that these RMSEP value is within reproducibility
(R) of the ASTM D445 method, used to obtain the kinematic viscosity. R
is equal to 2.24% of the measured values, ranging from 0.08mm2·s−1

for less viscous biodiesel (candlenut) to 0.12mm2·s−1 for the most
viscous biodiesel (radish). The RMSEP value is also comparable to those
found by Baptista et al. who developed a methodology for determining
the specific mass and kinematic viscosity of biodiesel blends produced
from soybean, palm, rapeseed and oil fry mixtures using near infrared
(NIRS) spectroscopy in the range of 9000–4500 cm−1. The authors
constructed a PLS model that gave a RMSEP value for viscosity of
0.09mm2·s−1 [51].

For the specific mass determination, the model created resulted in
RMSEP value of 3.7 kg·m−3. This result can also be compared to those
obtained in other studies. Cunha et al. created a PLS method using
medium infrared spectroscopy with Fourier transform and a horizontal
attenuated total reflectance (HATR/m-FTIR) to predict the specific
mass and refractive index of biodiesel and ternary and quaternary
blends, from soybean, corn, sunflower and canola. The RMSEP value for
the specific mass model was 0.2 kg·m−3 [13]. Ferrão et al., also using
HATR/m-FTIR data, developed a PLS model with RMSEP value of

0.73 kg·m−3 to determine the specific mass of blends of soybean bio-
diesel and diesel [52]. While in the previously mentioned article by
Baptista et al. the RMSEP value for the specific mass was 0.9 kg·m−3

[51]. Although the RMSEP values of the models here generated are
higher than those obtained in the cited works, they are still very sa-
tisfactory, since the range accepted by ANP for specific mass
(850–900 kg·m−3) has a variation of 50 kg·m−3.

For the refractive index prediction the RMSEP model value resulting
was equal to 0.002. While Cunha et al. obtained the value of 0.0001
[13].

It is clear, then, based on the characteristics of the established
models that from the generated data by CPMG, the capacities to predict
the physicochemical properties of biodiesels by analyzing the biodiesel
and blends samples. This verification, joined with the fact that the
equipment of low-field NMR are bench-top, do not require any previous
preparation of samples and the financial cost to maintain them is low,
since they do not need cooling as the high field equipment, the tech-
nique stands out in the scope of use in quality laboratories in industries.

Models were also created only with pure biodiesel and blends of
castor bean. Fig. 5 shows the curves correlating the measured values by
ASTM methods and predicted values of the PLS models and important
data related to the models quality are in Table 3. Three latent variables
(LV) were used to perform the correlations and the cumulative variance
was higher than 99.7% in all cases. The coefficients of determination
(R2) values indicate the high linearity of the models and the low values
of RMSEP are an indication of their accuracy. Only a small deviation
occurred in the refractive index regression (Fig. 5c), where the samples
of pure castor bean biodiesel and the blends with high content of castor
bean biodiesel (greater than 80%) move away of linearity, but this not
interfered significantly with the model prediction errors. The RMSEP
values for viscosity, specific mass and refractive index were, respec-
tively, 0.6 mm2·s−1, 2.0 kg·m−3 and 0.0005.

The high viscosity of castor bean biodiesel is an obstacle to its use as
a fuel, not only in pure samples (B100), but also in blends with diesel.
However, the blends formation with other biodiesels may be a solution
to make them feasible. In this sense, the models obtained by PLS, cre-
ated with the data generated by CPMG, proved to be highly significant
to evaluate the parameters of blends containing castor bean biodiesel as
one of its constituents.

4. Conclusions

The CPMG pulse sequence was associated with PLS regression and
used to predict the physicochemical properties of biodiesel and blends.
The kinematic viscosity, the specific mass and the refractive index could
be determined with acceptable accuracy.

It was necessary to separate the set of samples into two distinct
groups to create the PLS models. One group contained biodiesel and
blends without castor bean and the other with castor bean, since the
castor bean blends exhibited different correlations between their T2
values and physicochemical properties.

RMSEP values for the viscosity, specific mass and refractive index
were equal to 0.1mm2·s−1, 3.7 kg·m−3 and 0.002, respectively, for
samples of biodiesel and blends without castor bean and 0.6 mm2·s−1,

Table 2
Summary of the statistical parameters that describe the PLS models (Fig. 4) of
each physicochemical property for pure biodiesel and blends without castor
bean.

Curve Property Number of
LV

Captured
Variance (%)

R2 RMSEP

a Viscosity 4 99.45 0.9432 0.1 mm2·s−1

b Specific Mass 4 99.45 0.9422 3.7 kg·m−3

c Refractive
Index

5 99.47 0.9914 0.002
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2.0 kg·m−3 and 0.0005 for samples of biodiesel and blends with castor
bean.
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