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We carry out a study of the two-dimensional Blume-Capel model using the Wang-Landau Monte Carlo
method which estimates the density of states g�E� directly. This work validates the applicability of this method
to multiparametric systems, since only one computer run is needed for all range of macroscopic parameters
�temperature, anisotropy, etc.�. The location of the tricritical point is determined as kBTt /J=0.609�3�, Dt /J
=1.966�2� and is in excellent agreement with previous estimates. The free energy and the entropy, which are
not directly accessible by conventional Monte Carlo simulations, are obtained simply using g�E�.
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I. INTRODUCTION

The study of phase transitions and critical phenomena �1�
has been enriched in recent years by the development of new
algorithms that improve the efficiency of the computer simu-
lations. The standard Metropolis Monte Carlo �MC� method
�2� due to long time scales in both first-order and continuous
phase transitions problems suffers from the slow dynamics
which requires very long simulations. Several attempts to
overcome these problems have been suggested, like the clus-
ter algorithms proposed by Swendsen and Wang �3� and ex-
tended by Wolff �4�, which have been used to reduce the
critical slowing down at continuous transitions, or the multi-
canonical ensemble method �5�, which reduces the tunneling
time between coexisting phases in first-order transitions.
Other approaches such as the histogram method of Ferren-
berg and Swendsen �6�, the entropic sampling �7�, and the
flat histogram method �8� also represented important im-
provements to circumvent problems of scalability for large
systems.

Most conventional MC algorithms generate an unnormal-
ized canonical distribution P�E ,T�=g�E�e−E/kBT at a given
temperature T and then multiple runs are usually needed to
describe thermodynamic quantities over a significant range
of temperatures. However, a new, general, and efficient MC
algorithm known as the Wang-Landau algorithm �9,10� of-
fers substantial advantages over existing approaches since it
estimates directly the density of states g�E�, the number of
all possible states �or configurations� for an energy level E of
the system. With an accurate estimate of g�E� for all ener-
gies, one can construct canonical distributions at any tem-
perature and calculate the partition function as

Z�T� = �
X

e−E�X�/kBT = �
E

g�E�e−E/kBT, �1�

where the sum in X runs over all possible configurations and
the sum in E runs over all the existing energy levels. Most
thermodynamic quantities can therefore be calculated from
Z.

The Wang-Landau method estimates g�E� via a random
walk in energy space that produces histograms locally flat
and makes g�E� converge quickly to the real value improving
it at each step of the random walk using a carefully con-
trolled modification factor. This method, initially proposed to
study classical spin models �9,10�, has proven to be very
useful and efficient in many different applications, like sys-
tems with continuous degrees of freedom �11� and quantum
systems �12�, including systems with rough energy land-
scapes. Some generalizations have also been carried out to
cluster dynamics �13� and N-fold way dynamics �14�, and in
order to avoid boundary effects in the algorithm itself �15�.

In this paper, we apply the Wang-Landau method to the
two-dimensional spin-1 Blume-Capel model �16� which ex-
hibits a line of continuous phase transitions, a line of first-
order phase transitions, and a tricritical point. The motivation
behind this model is that it has a rich phase diagram and,
since the density of states is independent of any macroscopic
parameters, the study of such a diagram can be performed
accurately by a single simulation. Using the background pre-
sented in �17�, we also estimate directly the tricritical point,
which characterizes the thermodynamic behavior of this
model, and compare our value with some previously avail-
able results �18,19�.

The rest of this paper is organized as follows. In Sec. II,
we present the model. In Sec. III, we describe the simulation
procedure employed in this study and the details of the
Wang-Landau algorithm. In Sec. IV we show our results for
the density of states, the thermodynamic properties, and both
second- and first-order lines of the phase diagram and, in
addition, the estimate of the tricritical point. Finally, in Sec.
V we detail our conclusions.
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II. THE MODEL

The Blume-Capel model is the spin-1 generalization of
the Ising model defined by the Hamiltonian

H = − J�
�ij�

�i� j + D�
i

�i
2, �2�

where the spin variables �i take on the values −1, 0, +1, and
the notation �ij� implies summation over all pairs of nearest-
neighbor spins on a two-dimensional lattice. Here, J is the
coupling constant and D is the single-spin anisotropy param-
eter. A wide variety of techniques have been employed to
study this model, including mean-field theory �16�, Monte
Carlo simulations �20�, series expansion methods �21�, and
renormalization group theory �22�. The model exhibits a
phase diagram with ordered ferromagnetic and disordered
paramagnetic phases separated by a transition line that
changes from an Ising-like continuous phase transition to a
first-order transition at a tricritical point. Most of the tech-
niques cited above predict the existence of this tricritical
point. A precise and conclusive result for the tricritical point
was obtained by using conformal invariance and finite-size
scaling in Ref. �19�. In this work the authors found the tric-
ritical point at kBTt /J=0.609�4� and Dt /J=1.965�5�. This is
until now a well-established result and may be compared
with a previous finite-size scaling calculation �18� that gives
kBTt /J=0.610�5� and Dt /J=1.965�5�.

III. SIMULATION PROCEDURE

The Wang-Landau algorithm performs random walks in
the energy space by changing randomly the states of the
spins, where the new configurations are accepted with a
probability that is proportional to 1/g�E�, the reciprocal of
the density of states. As a result a flat histogram is generated
for the energy distribution. We accumulate this histogram
H�E� during the random walk and the current density of
states is modified by a multiplicative factor f , and the new
�updated� density of states is used to perform a further ran-
dom walk. Since the density of states is not known a priori
in the beginning of the simulations we set all entries to
g�E�=1 for all energy levels. In an ideal case, when the

density of states would reach its true value, the simulation
would be finished and the modification factor should be the
unit.

The random walk is then performed considering that if Ei
and Ef are energies before and after a spin is flipped, the
transition probability from energy level Ei to Ef is

p�Ei → Ef� = min� g�Ei�
g�Ef�

,1	 . �3�

The density of states is modified by f using

g�E� → g�E�f , �4�

whenever a state with energy E is accepted. In addition the
energy histogram is updated as H�E�→H�E�+1. In practice,
we use

ln�g�E�� → ln�g�E�� + ln�f� . �5�

In choosing the initial modification factor one should have in
mind that all possible energy levels must be reached quickly
even for a large system. A reasonable choice is f = f0=e
=2.718 28. . .. To reduce the modification factor we use a
function like f i+1=
f i. This reduction is accomplished when-
ever the energy histogram becomes flat during the random
walk.

In our simulations, the flatness criterion for the histogram
H�E� is about 80% of the average histogram �H�E��, and this
is generally checked about each 10 000 Monte Carlo sweeps.
For the multiparametric case a higher percentage of �H�E��
would take long simulation times. Afterward the histogram is
always reset �H�E�=0� for all values of E. Finally the simu-
lation comes to an end when the modification factor is
smaller than f final=1+10−8.

Specifically for the Blume-Capel model we may define,
from Eq. �2�,

E1 = �
�ij�

�i� j �6�

and

FIG. 1. Logarithm of the density of states of
the two-dimensional �2D� Blume-Capel model
for L=10.
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E2 = �
i

�i
2. �7�

These quantities are independent of the set of parameters J,
D, and T. The energy of the system is then reduced to
−JE1+DE2. At a temperature T the partition function may be
written as

Z�T,D� = �
X

e�JE1�X�−DE2�X��/kBT �8�

or

Z�T,D� = �
E1,E2

g�E1,E2�e�E1−�D/J�E2�/�kBT/J�. �9�

In this case, D /J varies from −� to 2. Thus, if the function
g�E1 ,E2�, which is independent of the temperature and the
anisotropic parameter, can be calculated precisely, one may
therefore estimate all thermodynamic properties of the sys-
tem. For example, the internal energy U�T ,D� can be calcu-
lated as

U�T,D� =

�
E1,E2

�− JE1 + DE2�P�E1,E2,T,D�

�
E1,E2

P�E1,E2,T,D�
� �E� ,

�10�

where

P�E1,E2,T,D� = g�E1,E2�e�E1−�D/J�E2�/�kBT/J� �11�

is the canonical distribution. The specific heat C�T ,D� can be
estimated from the fluctuations in the internal energy

C�T,D� =
�E2� − �E�2

kBT2 . �12�

Furthermore, one can also calculate quantities that are not
available from conventional Monte Carlo simulation, such as
the Helmholtz free energy and the entropy. The free energy
F�T ,D� can be calculated directly from the partition function
Z using

F�T,D� = − kBln�Z� , �13�

and the entropy as

S�T,D� =
U�T,D� − F�T,D�

T
. �14�

IV. RESULTS

The estimate of the density of states for L=10 using
Wang-Landau sampling is shown in Fig. 1. Similar results
are obtained for other values of L. Note that the macrostate
space E1 vs E2 is not completely covered because some pairs
�E1 ,E2� do not correspond to existing states. We also note
that the energy space of the Blume-Capel model has a huge
number of levels. This increases the simulation time and re-
stricts the applicability of the Wang-Landau method to mul-
tiparametric systems as well as to large lattices L. Although
the random walk can be done over several energy windows
independently, this causes considerable fluctuations in the
thermodynamic properties when the windows are joined to-
gether �14�. Also, this does not reduce the simulation time
noticeably. Thus, our random walk is made over the entire
energy space without windows. Since g�E1 ,E2� is now ob-
tained, we can calculate any thermodynamic quantity with-
out resorting again to computer simulations. We have calcu-
lated the internal energy, the specific heat, the free energy,
and the entropy as continuous functions of temperature T for
some values of the anisotropy parameter D /J. Our results for
the internal energy, the specific heat, the free energy and the
entropy are shown in Figs. 2, 3, 4, and 5, respectively.

FIG. 2. Internal energy calculated from the density of states of
the Blume-Capel model for L=12 and some values of D /J.

FIG. 3. Specific heat calculated from the density of states of the
Blume-Capel model for L=12 and some values of D /J.

FIG. 4. Helmholtz free energy calculated from the density of
states of the Blume-Capel model for L=12 and some values of D /J.
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In Fig. 6 we show the magnetization of the Blume-Capel
model as a function of temperature for some values of D /J.
This quantity is obtained from the canonical average

M�T,D� =

�
E1,E2

�M�E1,E2��P�E1,E2,T,D�

�
E1,E2

P�E1,E2,T,D�
� �m� , �15�

where �M�E1 ,E2�� is a microcanonical average of the mag-
netization which is calculated simultaneously with the en-
ergy histogram H�E1 ,E2�. Similar results are obtained for
other values of L.

A. The phase diagram

Because of the huge number of energy levels of the
Blume-Capel model, we have chosen to study four system
sizes corresponding to L=8,10,12,16. Our attempts at simu-
lating the system for L=32 have shown that it would take a
prohibitive computer time for our available facilities. Prob-

lems with large system sizes are also present in other Monte
Carlo estimates for the same model �18,19� and our work
reveals some limitations for the Wang-Landau sampling as
well. Nevertheless, we have obtained very good results as
will become clear farther on. First, we have investigated the
second-order line of the phase diagram. From the peaks of
the specific heat the transition temperature kBTc /J in the ther-
modynamic limit was estimated for each value of anisotropy
parameter D /J. Some of these points are shown in Table I,
where our results are compared with some previous estimates
obtained in Refs. �18,19�, when available. One can see that
there is an overall good agreement between them.

To examine the first-order line we have computed the
probability distribution which should have a double-peak
picture at a first-order transition. Following the prescription
of Wilding and Nielaba �17� we have located the first-order
transition temperatures. In this work, the authors calculate
the distribution of a new variable defined as

D = E1 − sE2, �16�

where s is an arbitrary field mixing parameter �23�.

TABLE I. Comparison between our results of the second- and first-order lines with the previous results
obtained by the finite size scaling technique.

D /J kBT /J Order of transition

Ref. �18� Ref. �19� Wang-Landau

−0.5 1.794�7� 1.816�2� Second

0.0 1.695 1.681�5� 1.714�2� Second

0.5 1.567 1.584�1� Second

1.0 1.398 1.413�1� Second

1.5 1.150 1.155�1� Second

1.87 0.800 0.800�3� Second

1.9 0.764�7� 0.755�3� Second

1.92 0.700 0.713�2� Second

1.95 0.650 0.651�2� Second

1.962 0.620 0.619�1� Second

1.969 0.600 0.596�5� First

1.99 0.550 0.555�2� First

1.992 0.500 0.499�3� First

FIG. 5. Entropy calculated from the density of states of the
Blume-Capel model for L=12 and some values of D /J.

FIG. 6. Canonical average of the magnetization obtained from
the density of states of the Blume-Capel model for L=12 and some
values of D /J.
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For each value of D /J we adjust the values of s and kBT /J
that make the two peaks of the distribution to have the same
height. This temperature corresponds to the first-order tran-
sition temperature kBTc /J. From theory we know that the
first-order line is located close to 2; thus taking values of
D /J in this region we obtain the corresponding transition
temperatures. Some of our results for the first-order line are
also shown in Table I.

To locate the tricritical point, we used the intersection of
the fourth-order cumulant UL �24�, which is defined as

UL = 1 −
�m4�

3�m2�2 . �17�

In our case, �m2� and �m4� are the canonical averages of the
second and fourth moments of magnetization. Thus, we mea-
sured UL for a number of temperatures and system sizes
along the first-order line and at the tricritical point the curves
UL are expected to intersect one another. The cumulants were
calculated in the range D /J=1.96–1.97 for each system size.
Our result for the cumulant is presented in Fig. 7 as a func-
tion of the temperature. The common point of intersection
have been estimated as kBTt /J=0.609�3� with a correspond-
ing tricritical anisotropy parameter Dt /J=1.966�2�. These
values are in excellent agreement with the previous results
mentioned before. In Fig. 8 we show the phase diagram of
the Blume-Capel model in the plane of anisotropy parameter
and temperature. The dashed curve is a first-order transition
line and the solid curve is a second-order one. They separate
the ordered from the paramagnetic phase, and join together
at the tricritical point �TP�. Our results confirm the great
advantage of exploring the phase diagram using a microca-

nonical approach, since the simulation is independent of the
macroscopic parameters.

V. CONCLUSIONS

In this work we have shown the applicability of the Wang-
Landau method to the two-dimensional Blume-Capel model
investigating its tricritical behavior. It is now clear that even
though the method was originally proposed to study large
systems, the simulation of systems with more than one mac-
roscopic parameter �multiparametric Hamiltonians� is re-
stricted to not very large lattice sizes because of the huge
number of energy levels. Nevertheless by estimating with
high accuracy the density of states, we succeeded in explor-
ing the phase diagram of the present model with more pre-
cision then any previous simulational work.

Another advantage of our results is the calculation of the
entropy and the Helmholtz free energy which are usually
unreachable within the conventional Monte Carlo simula-
tions. Finally, we have estimated the location of the tricritical
point as kBTt /J=0.609�3� and Dt /J=1.966�2�. This estimate
is in excellent agreement with previous approaches and
shows the great efficiency of the Wang-Landau method in
estimating the density of states of any system like this.
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