Use este identificador para citar ou linkar para este item: http://repositorio.bc.ufg.br/handle/ri/18619
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDrost, Derek R.-
dc.creatorPuranik, Swati-
dc.creatorNovaes, Evandro-
dc.creatorNovaes, Carolina Ribeiro Diniz Boaventura-
dc.creatorDervinis, Christopher-
dc.creatorKirst, Matias-
dc.date.accessioned2020-02-07T14:51:43Z-
dc.date.available2020-02-07T14:51:43Z-
dc.date.issued2015-
dc.identifier.citationDROST, Derek R.; PURANIK, Swati; NOVAES, Evandro; NOVAES, Carolina R. D. B.; Dervinis, Christopher; GAILING, Oliver; KIRST, Matias. Genetical genomics of Populus leaf shape variation. BMC Plant Biology, New York, v. 15, p. 166, 2015.pt_BR
dc.identifier.issne- 1471-2229-
dc.identifier.urihttp://repositorio.bc.ufg.br/handle/ri/18619-
dc.description.abstractBackground: Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree to identify genetic factors controlling leaf shape. The approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis. Results: A major QTL for leaf lamina width and length:width ratio was identified in multiple experiments that confirmed its stability. A transcriptome analysis of expanding leaf tissue contrasted gene expression between individuals with alternative QTL alleles, and identified an ADP-ribosylation factor (ARF) GTPase (PtARF1) as a candidate gene for regulating leaf morphology in this pedigree. ARF GTPases are critical elements in the vesicular trafficking machinery. Disruption of the vesicular trafficking function of ARF by the pharmacological agent Brefeldin A (BFA) altered leaf lateral growth in the narrow-leaf P. trichocarpa suggesting a molecular mechanism of leaf shape determination. Inhibition of the vesicular trafficking processes by BFA interferes with cycling of PIN proteins and causes their accumulation in intercellular compartments abolishing polar localization and disrupting normal auxin flux with potential effects on leaf expansion. Conclusions: In other model systems, ARF proteins have been shown to control the localization of auxin efflux carriers, which function to establish auxin gradients and apical-basal cell polarity in developing plant organs. Our results support a model where PtARF1 transcript abundance changes the dynamics of endocytosis-mediated PIN localization in leaf cells, thus affecting lateral auxin flux and subsequently lamina leaf expansion. This suggests that evolution of differential cellular polarity plays a significant role in leaf morphological variation observed in subgenera of genus Populus.pt_BR
dc.language.isoengpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLeaf morphologypt_BR
dc.subjectADP-ribosylation factorpt_BR
dc.subjectQTL analysispt_BR
dc.subjectPopulus trichocarpapt_BR
dc.subjectExpression QTLpt_BR
dc.subjectGenomicspt_BR
dc.titleGenetical genomics of Populus leaf shape variationpt_BR
dc.typeArtigopt_BR
dc.publisher.countryEstados unidospt_BR
dc.identifier.doi10.1186/s12870-015-0557-7-
dc.publisher.departmentEscola de Agronomia e de Engenharia de Alimentos - EAEA (RG)pt_BR
Aparece nas coleções:ICB - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Artigo - Derek R. Drost - 2015.pdf675,67 kBAdobe PDFThumbnail
Baixar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons