AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÊNIO NA PRODUÇÃO DE MATÉRIA SECA E COMPOSIÇÃO BROMATOLÓGICA DO CAPIM MOMBAÇA

JULIANA AZEVEDO RUGGIERO
Autora
BENEVAL ROSA
Orientador

Dissertação apresentado ao Programa de Pós-graduação em Agronomia da Universidade Federal de Goiás como requisito parcial para a obtenção do grau de Mestre em Agronomia.
Área de Concentração: Produção Vegetal.

GOIÂNIA - GO
Fevereiro/2003
AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÊNIO NA PRODUÇÃO DE MATÉRIA SECA E COMPOSIÇÃO BROMATOLÓGICA DO CAPIM. MOMBÁÇA

JULIANA AZEVEDO RUGGIERO
Engenheira Agrônoma

Dissertação apresentada ao Programa de Pós-graduação em Agronomia da Universidade Federal de Goiás como requisito parcial para a obtenção do grau de Mestre em Agronomia.

Área de Concentração: Produção Vegetal.

GOIÂNIA - GO
Fevereiro/2003
SUMÁRIO

Lista de tabelas e quadros...

Lista de figuras..

Resumo..

Abstract...

CAPÍTULO I

REVISÃO BIBLIOGRÁFICA

1.1 INTRODUÇÃO..
1.2 CARACTERÍSTICAS DA FORRAGEIRA.................................
1.3 PRODUÇÃO DE FORRAGEM E COMPOSIÇÃO BROMATOLÓGICA...
1.4 FORRAGEIRA EM SISTEMA IRRIGADO..................
1.5 REFERÊNCIA BIBLIOGRÁFICA...

CAPÍTULO II

AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÊNIO NA PRODUÇÃO DE MATÉRIA SECA DO CAPIM MOMBAÇA

1 RESUMO...
2 ABSTRACT...
3 INTRODUÇÃO..
4 MATERIAL E MÉTODOS..
4.1 INSTALAÇÃO E CONDUÇÃO DO EXPERIMENTO......
4.2 AVALIAÇÃO DO EXPERIMENTO..

SUMÁRIO
CAPÍTULO III

AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÊNIO NA ANÁLISE BROMATOLÓGICA DO CAPIM MOMBACA

1 RESUMO...

2 ABSTRACT...

3 INTRODUÇÃO..

4 MATERIAL E MÉTODOS...

4.1 INSTALAÇÃO E CONDUÇÃO DO EXPERIMENTO......................................

4.2 AVALIAÇÃO DO EXPERIMENTO...

4.3 PROCEDIMENTO ESTATÍSTICO...

5 RESULTADOS E DISCUSSÕES..

5.1 MATÉRIA SECA (MS) NA FORRAGEIRA..

5.2 PROTEÍNA BRUTA (PB) NA FORRAGEIRA...

5.3 FIBRA E DETERGENTE NEUTRO (FDN) NA FORRAGEIRA...........................

6 CONCLUSÕES..

SUMÁRIO

7 REFERÊNCIA BIBLIOGRÁFICA..
CAPÍTULO I

REVISÃO BIBLIOGRÁFICA

1.1 INTRODUÇÃO

O Cerrado brasileiro apresenta, atualmente, condições muito favoráveis para a produção e exploração da pecuária em sistemas de pastagem. Estima-se que os pastos cultivados ocupem cerca de 49,5 milhões de hectares, sendo Goiás, o estado com maior área de pastagens cultivadas (14,2 milhões) (SANO et al., 1999). A importância das pastagens pode ser caracterizada por constituírem a base dos sistemas de produção de bovinos. Na economia, esta importância é facilmente expressa pelos valores de exportação movimentados, no ano de 2000, que totalizaram um montante de 755,18 milhões de dólares na balança comercial brasileira (FNP CONSULTORIA, ANUALPEC, 2001).

Sabe-se que a produtividade da pecuária brasileira é muito baixa. Dentre as diversas causas estão o estado de degradação em que se encontram a maioria das pastagens e a estacionalidade de produção que as forrageiras sofrem em função dos meses de estiagem. A degradação sofrida no solo e nas forrageiras, pelo manejo inadequado, superpastejo, invasão de plantas indesejáveis, falta de adaptação ao meio, de espécies semeadas e perda da fertilidade do solo por falta de adubação, acumulados com os fatores que determinam a estacionalidade de produção da forrageira como, baixa temperatura, precipitação pluvial insuficiente e baixa intensidade luminosa, fazem com que a bovinocultura em pasto, sofra uma sazonalidade nos preços, decorrentes das quedas de produção na estação da seca.

Os benefícios produzidos no verão, como as altas produções devido ao crescimento das gramíneas, promove a retirada de nutrientes do solo para compor a matéria seca fornecida ao animal. Estima-se que nas pastagens cultivadas, a lotação bovina por hectare esteja em torno de meia unidade animal/hectare, possibilitando produções na faixa de 100 kg de peso vivo por hectare ano (ESTEVES et al., 1998).

O aumento do preço da arroba do boi, na época seca é decorrente da queda da produção em pasto. Uma alternativa para amenizar as quedas, no pasto, é o uso de irrigação associada ao manejo adequado e a utilização de fertilizantes. Isto ocasionaria aumento de produção animal, incrementando a receita líquida do pecuarista.
Na região central do Brasil, onde se compreende o estado de Goiás, a irrigação é uma alternativa tecnicamente viável. A região de pecuária intensiva, localiza-se na parte sudoeste onde a luminosidade é suficiente e as temperaturas mínimas ficam acima dos 18ºC nos meses de maio a setembro. Nesta região a estacionalidade ocorre pela falta de água nos sistemas pastoris, onde a precipitação cai drasticamente nos meses de maio a setembro, voltando a chover, significativamente só no final de outubro. Já na região do município de Goiânia a estacionalidade pode ser causada pela falta de água nos sistemas pastoris e pelas quedas nas temperaturas nos meses de maio a setembro, conforme foi observados nas normais climatológicas fornecidas pelo INMET, 2002.

As pesquisas com forrageiras tropicais, utilizando irrigação e adubação nitrogenada, ainda são escassas e insuficientes, principalmente para a região central do Brasil. Na tomada de decisão para o uso de irrigação, em uma determinada propriedade, é necessária a utilização de dados confiáveis para possibilitar a implantação de um sistema economicamente viável.

1.2 CARACTERÍSTICAS DA FORRAGEIRA

O capim Mombaça, Panicum maximum cv. Mombaça, teve sua primeira utilização como forrageira para pastejo, no ano de 1993 na Embrapa Gado de Corte, em Campo Grande. É, atualmente, considerada uma das forrageiras tropicais mais produtivas à disposição do pecuarista. Pertencente ao gênero Panicum espécie Panicum maximum, o cultivar Mombaça possui hábito de crescimento cespitoso, com porte da planta de aproximadamente 1,70 m e produção anual de matéria seca em torno de 33 t/ha (JANK, 1995).

Sendo uma gramínea tropical de fisiologia C₄, as principais condições edafoclimáticas para a produção do Mombaça são: temperatura superiores a 15º C, índice de precipitação pluvial de 760 mm a 1300 mm e o índices de radiação solar acima de 300 cal/cm²/dia.

Na produção de massa verde temperaturas médias anuais de 29ºC e de inverno acima de 15ºC, que são características das regiões tropicais e subtropicais, caracterizam condições ideais para a produção do Panicum (SILVA, 1995). Estas temperaturas influenciaram na taxa de aparecimento de folhas (GOMIDE, 1997), senescência de folhas, longevidade de folhas, desenvolvimento de gemas (ZIMMER, 1994) e na taxa de alongamento das folhas, que é influenciada por qualquer mudança na temperatura.

A água é um fator essencial ao crescimento de qualquer planta forrageira, sendo para o gênero *Panicum* essencial em seu desenvolvimento. As maiores concentrações de *Panicum*, estão em áreas com ocorrência de índices de precipitação pluvial de 760 mm a 1300 mm anuais (ROCHA, 1991; SKERMAN e RIVEROS, 1992).

As regiões tropicais e subtropicais, de ocorrência do *Panicum*, são caracterizados por ambiente com elevados índices de radiação solar, acima de 300 cal/cm²/dia, não se constituindo fator limitante ao crescimento desta forrageira, porém seu padrão de ocorrência e disponibilidade possui influência marcante sobre a distribuição e/ou estacionalidade de produção forrageira (ROLIM, 1980; ALCÂNTARA e BUFARAH, 1985).

O capim mombaça é caracterizado como tolerante a cigarrinha das pastagens, atualmente a principal praga (VALÉRIO, 2001).

1.3 PRODUÇÃO DE FORRAGEM E COMPOSIÇÃO BROMATOLÓGICA

O Mombaça é uma forrageira exigente em fertilidade do solo. Em pastagens com o uso racional de fertilizantes e corretivos, a resposta da forrageira é bastante acentuada, já em situações de baixa fertilidade a produção é pequena, caracterizando sua exigência em fertilidade do solo (SILVA, 1995; COMISÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS, 1999; VILELA et al., 2000).

O gênero *Panicum* geralmente é composto de gramíneas sensíveis à acidez do solo. O Mombaça tem seu grau de adaptação a baixa fertilidade, muito baixo, exigindo solos de Cerrado com saturação de bases em torno de 40 a 45% caracterizando sua baixa adaptabilidade a solos mais ácidos (VILELA et al., 2000). Outras recomendações de saturação de bases para o gênero *Panicum* ocorrem; MONTEIRO (1995) recomenda saturação em torno de 60% e HERLING (2000) citando Corsi & Nussio (1992), recomenda a saturação em torno de 70 a 80%.
Caracterizada como uma gramínea exigente em fertilidade, para o estabelecimento do Mombaça é necessária a adubação de formação, para o aprofundamento de seu sistema radicular e a formação do estande adequado à pastagem. Na formação, o fósforo desempenha um papel essencial no estabelecimento da gramínea e no aprofundamento das raízes. A aplicação do fósforo para a formação da pastagem com Mombaça é definida de acordo com o teor de fósforo indicada na análise de solo. Para verificar o nível crítico de fósforo no solo para a produção do capim Tanzânia (*Panicum maximum* Jacq. cv. Tanzânia), GHERI et al. (2000) realizaram um trabalho, onde foi constatado que para 80% da produção máxima de matéria seca, o nível crítico de fósforo foi de 38 mg/dm³. Por outro lado, MONTEIRO (1995), indica aplicação de 30 a 100 kg/ha de P₂O₅, na implantação da pastagem e para a manutenção de 20 a 60 kg/ha de P₂O₅. No entanto, Corsi e Nussio, citados por HERLING et al., (2000), recomendam a aplicação de 200 a 250 kg/ha de P₂O₅ em solos com níveis de fósforo em torno de um a cinco mg/dm³. VILELA et al, (2000) indicam para solos da região dos Cerrados com teor de fósforo de zero a 2,5 mg/dm³, a aplicação de 90 kg/ha de P₂O₅ para a formação de uma pastagem de Mombaça e na manutenção a recomendação é de 40 kg/ha/ano de P₂O₅.

Em sistemas onde não tem limitação nenhuma das condições edafo-climáticas, o nitrogênio passa a ser o fator de maior impacto na produtividade da planta forrageira (MONTEIRO, 1995). Segundo CORRÊA (2000), a recomendação para a manutenção das forrageiras varia de 1000 a 1500 kg/ha/ano da fórmula 20-05-20 aplicada em cobertura no período chuvoso. MONTEIRO (1995), após analisar vários trabalhos de adubação nitrogenada no gênero *Panicum*, verificou-se uma variação grande entre as recomendações de nitrogênio para a manutenção destas forrageiras, variando de 50 a 300 kg/ha/ano, onde a dose mais baixa tem sido considerada como mínima para se evitar a degradação da pastagem. Verificou-se em capim Colonião e uma eficiência de conversão de até 32,1 kg em respostas lineares de matéria seca/kg de nitrogênio (GOMIDE, 1985).

Um sistema de pastagem formada com uma densidade de plântulas de 40 a 50 plântulas/m² e com manutenção da fertilidade do solo, necessita de manejo voltado para a fisiologia da gramínea. A altura de pastejo ou de corte da gramínea, bem como a altura do resíduo deixado na pastagem é essencial para a recuperação da forrageira e para se atingir a melhor qualidade da forragem ofertada aos animais. Há variações, de cultivar para cultivar, na fisiologia das forrageiras, como produção de perfilhos, altura de emissão de folhas. Para plantas de crescimento em touceiras, como é o caso do Mombaça, cortes rente ao solo
podem eliminar grande parte da área foliar, além de destruir, em grande parte, o meristema apical. Em experimentos de avaliação da rebrota sob duas alturas de corte (20 e 40 cm), o Mombaça apresentou menor vigor de rebrota, quando cortado ao nível de 20 cm do solo, que pode estar associada a maior eliminação do meristema apical, (CECATO et al., 2000). Já ESTEVES et al. (1998) e CORRÊA (2000), recomendam como altura mínima requerida para o Mombaça em torno de 40 cm do solo. Em avaliação de acúmulo de forragem de Panicum maximum cv. Tanzânia, em dois resíduos forrageiros, 25 cm e 40 cm respectivamente, os resultados obtidos indicaram não haver diferença significativa no potencial produtivo forrageiro entre os resíduos estudados (BARBOSA et al., 2002). Em avaliação de Panicum maximum cv. Mombaça adubado com quatro doses de NPK, o resíduo deixado foi de 30 cm (QUADROS et al., 2002).

Para se obter o melhor equilíbrio entre a produção e a composição da forragem, o período de descanso entre um pastejo e o outro é essencial. Em experimento realizado em Piracicaba, SP, avaliando-se 3 frequências de pastejo (28, 38 e 48 dias), na produção de Mombaça, verificou-se uma maior massa da forragem na menor frequência de pastejo, entretanto a taxa de acúmulo de matéria seca não tem efeito, devido à frequência de corte (SANTOS et al., 1999). Por outro lado ESTEVES et al. (1998), recomendam para Mombaça um período de descanso médio de 35 dias. GOMIDE e GOMIDE (2001), verificaram que a vida útil das folhas de Mombaça foi de 36 dias.

A recomendação para a adubação com potássio varia de acordo com a análise do solo, mas as dosagens aplicadas em pastagens já formadas variam de 30 a 60 kg/ha/ano, em solos com baixos a médios teores, respectivamente (VILELA et al, 2000).

1.5 A FORRAGEIRA EM SISTEMA IRRIGADO

A estacionalidade, em pastagens bem manejadas, é considerada o fator de decrécimo da produção de matéria seca, no período da seca. A estacionalidade é ocasionada principalmente por baixas temperaturas, por mais de quatro dias consecutivos, intensidade luminosa reduzida e precipitação pluvial baixa. A estacionalidade, acaba por ser, um fator de restrição, para algumas regiões do Brasil, principalmente nos períodos de maio a outubro, onde a precipitação pluvial decresce e temperaturas baixas ocorrem devido ao inverno.

Intensidades luminosas maiores favorecem o perfilhamento na grande maioria das espécies forrageiras, podendo ser considerada a intensidade de luz o fator ambiental
mais limitante na dinâmica de perfilhamento, (PEDREIRA et al., 2001, citando Spietz e Ellen, 1972; Langer, 1979). A temperatura apresenta maior influência na qualidade da forragem, (Buxton e Fales citados por PEDREIRA, 2001). Em regiões com déficit hídrico acentuado e onde as temperaturas e luminosidades no ano não variam muito, a ponto de causar a estacionalidade na forrageira, a prática de irrigação é um alternativa para manter a produção de forragem no sistema de pastejo. A falta de água em sistema de pastejo ocasiona redução do número de perfilho e da parte aérea, devido ao decréscimo das raízes, levando a limitação na capacidade de competir por luz, através da diminuição da área foliar (NABINGER, 1999).

A produção de forragem em sistemas irrigados só tem fundamento, quando associadas com um manejo da forrageira, tanto fisiologicamente quanto à fertilidade do solo e com o manejo correto do sistema de irrigação. Em sistema de produção de *Brachiaria brizantha* cv. Marandu, avaliando o efeito da adubação nitrogenada e da irrigação sobre a produtividade e o índice de área foliar, constatou-se que na medida em que se elevaram as doses da adubação nitrogenada até 360 kg/ha (níveis de 45, 90, 180, 360 kg/ha de N), aumentava a produção de matéria seca e do índice de área foliar, onde as melhores respostas foram obtidas com as irrigações feitas quando a tensão de água no solo atingiu 65 kPa (MARCELINO et al., 2001). Já COUTINHO et al. (2001) constataram em Coastcross (*Cynodon dactylon* L.) irrigado, sintomas de deficiência de nitrogênio e potássio, em tratamento que receberam doses baixas de adubação potássica e nitrogenada (30 kg/ha de Potássio e de Nitrogênio), demonstrando que depois de cada corte é essencial a adição de potássio e principalmente nitrogênio para a obtenção de altas produções. Crespo (1986) citado por MONTEIRO (1995), verificou que a taxa média de crescimento de capim-coloníao, irrigado, aumentou de 32 até 97 kg/ha/dia de matéria seca, quando o capim era cortado a cada 36 dias e recebia doses de nitrogênio de zero, 30, 60, 90, 120 e 150 kg /ha/corte. A eficiência média de conversão decresceu de 39,0 até 15,9 kg de MS/kg de N, com o aumento das doses de nitrogênio.

Na avaliação de capim elefante Paraíso, irrigado na região de Uberlândia verificou-se que a irrigação aumentou a produção de matéria seca da forrageira em seis a sete vezes, durante o outono-inverno, demonstrando que o manejo da irrigação suplementar foi eficiente na produção de forragem (VILELA et al., 2002). Entretanto RASINI (2002) avaliando o capim Tanzânia irrigado verificou, pequeno acréscimo, na produção de matéria seca no período da entressafra, contudo a irrigação consegue manter
uma taxa de lotação (TL), razoável em pastejo, sendo que na safra a TL foi aproximadamente de 9,2 UA/ha e na entressafra, com capim irrigado, esta TL ficou em torno de 4,8 UA/ha, considerando 90% de aproveitamento e um consumo de 12 kg/UA/dia de MS.

Em sistema de irrigação por pivô central, LOURENÇO et al., (2001) determinaram o coeficiente da cultura (Kc) para Panicum maximum cv. Tanzânia, verificando que os valores de Kc do capim Tanzânia, em diferentes estágios de crescimentos após o pastejo, com evapotranspiração estimada pelo método de Penman Monteith, variou de 0,50 a 0,98. A variação de 0,45 a 0,93 foi observado na metodologia do tanque Classe A. Nas duas metodologias os valores médios obtidos para o Kc foram de 7 dias após o corte.

Atualmente o método mais utilizado para a irrigação de forrageiras é pelo sistemas de aspersão como demonstrados por LOURENÇO et al. (2001), RASINI (2002) e VILELA et al. (2002). O sistema de irrigação localizada para forrageiras não é citado em trabalhos, mas para a irrigação de cana de açúcar, já está sendo amplamente difundido. Com relação ao método de irrigação o sistema localizado, por tubos gotejadores, apresenta como vantagens, em sua utilização, maior eficiência no uso d’água, maior eficiência na adubação e economia de mão-de-obra (BERNARDO, 1995).
1.5 REFERÊNCIA BIBLIOGRÁFICA

CAPITULO II

AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÉNIO NA PRODUÇÃO DE MATÉRIA SECA DO CAPIM Mombaça

1. RESUMO

Avaliou-se o efeito de diferentes lâminas de água e doses de nitrogênio na produção de matéria seca (t/ha) em capim Panicum maximum Jaqc. cv. Mombaça, no período de abril a outubro no município de Goiânia. A forrageira foi submetida aos seguintes tratamentos: cinco lâminas de irrigação (L₀, L₁, L₂, L₃ e L₄ correspondendo respectivamente a sem irrigação, 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Etpc)) nas parcelas, aplicados por gotejamento, e a quatro doses de adubação nitrogenada (100, 200, 300 e 400 kg/ha/ano de nitrogênio) nas subparcelas, que foram divididas em 7 aplicações realizadas logo após os cortes. O período de descanso utilizado foi de 28 dias, sendo a massa forrageira cortada a aproximadamente 30 cm do solo. O delineamento utilizado foi de blocos casualizados em parcelas subdivididas avaliados em 6 épocas diferentes, compreendendo o período da seca na região. Para a produção de matéria seca (t/ha) houve efeito significativo para a irrigação (P<0,05), nos meses de abril, maio, junho e outubro, não havendo diferença (P>0,05) nos meses de julho e setembro, devido a queda na produção ocasionada pelas baixas temperaturas e pelo manejo da forrageira. O acúmulo de matéria seca nos meses de déficit hídrico para a L₃ e adubada com 400 kg/ha/ano de N foi de 1,36 t/ha, correspondendo a um acréscimo de produção de aproximadamente 152% em relação as parcelas sem irrigação (0,54 t/ha). Este incremento na produção é pequeno, se comparado com a produção obtida somente em abril que foi de 4,19 t/ha. Não houve diferença significativa (P>0,05) para as doses de adubação nitrogenada. As baixas temperaturas, o manejo de irrigação, a altura de rebaixamento de 30 cm do solo e o período de descanso de 28 dias, interferem na produção de matéria seca, limitando a utilização desta técnica em certas regiões. A utilização do sistema de gotejamento na irrigação de pastagem não está bem definida tendo sido encontradas dificuldades na avaliação da correta aplicação de água.

PALAVRA CHAVE: Mombaça, Produção, Irrigação
2. ABSTRACT

The best combinations of different sheets of water were evaluated and of doses of nitrogen in the production of dry matter (t/ha) in grass Panicum maximum Jaqc. cv. Mombaça. The grass was submitted to the following treatments: 5 irrigation sheets (portions L₀, L₁, L₂, L₃ and L₄ corresponding her/it respectively without irrigation, 30%, 60%, 90% and 120% of the evaporation and potential perspiration of the culture (Etpc)), applied for leak, and to 4 doses of manuring of nitrogen (subportions 100, 200, 300 and 400 kg/ha/year of nitrogen) that were divided in 7 applied doses after the cuts. The period of used rest was of 28 days, being approximately the mass cut grass the 30 cm of the soil. The used complet randomized blocks in portions subdivided appraised in 6 different times understanding the period of the drought in the area. For the production of dry matter (t/ha) there was difference (P <0,05), in the irrigation in the months of April, May, June and October, not having difference (P>0,05) the months of July, August and September, due to fall in the production caused by the low temperatures. The matter accumulation dries in the months of deficit hidric for L₃ and fertilized with 400 kg/ha/year of N was of 1,36 t/ha, corresponding her/it an increment of production of approximately 152% in relationship the portions without irrigation (0,54 t/ha). there was not significant difference (P>0,05) for the doses of manuring of nitrogen. The low temperatures and the irrigation handling interfered in the production of dry matter, could limit the use of this technique in certain areas. The use of the leak system in the pasture irrigation is not very defined having been had difficulties in the evaluation of the correct application of water.
3. INTRODUÇÃO

Atualmente as pastagens são a forma mais prática e econômica de alimentação de bovinos, desempenhando um papel fundamental nos sistemas de produção de carne e/ou leite.

Basicamente as produções de carne e de leite possuem dois estágios na economia, a safa que está associada ao período de chuvas, e a entressafra, na época seca do ano, onde há uma queda gradativa na oferta dos produtos nos mercados. Esta queda na produção, principalmente nos estados do Centro-Oeste, está associado ao período da seca, que começa em maio e vai até o final de setembro, onde o déficit hídrico na região é bem acentuado (INMET, 2002), ocorrendo uma queda significativa da produção de forrageiras nas pastagens.

Uma alternativa para minimizar com a queda na produção do pasto é a utilização de irrigação, associada às adubações de manutenção das pastagens, proporcionando maior confiabilidade ao pecuarista, garantindo melhores produções no período da seca. Visando aumentar ainda mais a produtividade em sistema irrigado e bem manejado, a utilização de gramíneas como o Panicum maximum são recomendados por apresentarem altas produções, com composições satisfatórias para a forragem. A utilização do Mombaça, nestes sistemas, é devida às suas grandes produções de matéria seca, conjuntamente com elevada qualidade de forragem (JANK, 1995).

A deficiência hídrica e a falta de adubações são os fatores que limitam a produtividade das pastagens (ALVIM et al., 1996). A utilização de adubação conjuntamente com a irrigação, torna-se então essencial para se manter um sistema produtivo, dando destaque para o nitrogênio. O nitrogênio assume um papel importantíssimo no crescimento e produção das plantas, sendo o principal constituinte das proteínas e participante ativo na síntese e composição da matéria orgânica que forma a estrutura vegetal (RAVEN et al., 2001). Com isto o suprimento de nitrogênio passa a ser o fator de maior impacto na produtividade das plantas forrageiras bem estabelecidas e dos animais que as utilizam, quando as condições edafo-climáticas não são consideradas limitantes (MONTEIRO, 1995). Entretanto a eficiência de absorção de nitrogênio pelas plantas, nos níveis mais elevados, é dependente da umidade, proveniente das irrigações ou das chuvas (VILELA e ALVIN, 1998).

Atualmente as pesquisas desenvolvidas no Brasil, com irrigação de forrageiras, não demonstram a realidade da produção irrigada na região Central do Brasil, pois são...
feitas em regiões onde a estacionalidade é afetada, principalmente, por temperaturas abaixo de 15ºC e dias curtos. As pesquisas com as melhores doses de adubação nitrogenada, para o capim Mombaça, estão definindo níveis para sistemas intensivos de pastejo sem irrigação, não havendo ainda informações sobre a interação da adubação nitrogenada com a irrigação. A determinação da melhor combinação de lâmina de água e adubação nitrogenada, é essencial para uma maior eficiência e economia em um sistema pastoril irrigado e de produção intensiva.

Desta forma buscou-se, neste trabalho, avaliar as melhores combinações de diferentes lâminas de água e doses de nitrogênio, na produção de matéria seca do capim *Panicum maximum* cv. Mombaça, visando estabelecer uma combinação de lâmina e dose de adubação para o manejo da forrageira em sistema irrigado na região de Goiânia.
4. MATERIAL E MÉTODOS

O experimento foi realizado na Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás, localizada na latitude S 16º 36´e longitude W 49º 16´e uma altitude de 727 m, no município de Goiânia.

Segundo a classificação de Köepen, o clima da região é do tipo Aw (quente e semi-úmido, com estação seca bem definida nos meses de maio a setembro). A temperatura média anual é de 23,2 ºC, com média mínima anual de 17,9 ºC. A precipitação média anual da região é de 1759,9 mm (BRASIL, 1992).

O solo da área é um Latossolo Vermelho distrófico argissólico. Para a obtenção das informações para o planejamento e manejo da irrigação, foi realizada a caracterização física e físico-hídrica do solo, considerando-se as camadas de 0-20 cm e de 20-40 cm de profundidade, utilizando a metodologia da EMBRAPA (1979). Determinou-se a densidade do solo e a curva de retenção de água (ANEXO 1, QUADRO 1 e FIGURA 14) Fez-se, também, análise do solo para fins de fertilidade e classe textural da área experimental, no Laboratório de Análise de Solo e Foliar da Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás, que apresentou os dados demonstrados na TABELA 1.

TABELA 1- Características químicas e físicas do solo da área experimental

<table>
<thead>
<tr>
<th>Bloco</th>
<th>pH</th>
<th>Ca (CaCl₂)</th>
<th>Mg</th>
<th>Al</th>
<th>H⁺</th>
<th>Al</th>
<th>CT (cmolc/dm³)</th>
<th>P</th>
<th>K</th>
<th>M</th>
<th>O</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.2</td>
<td>2.2</td>
<td>1.5</td>
<td>0</td>
<td>3.1</td>
<td>7.2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>2.1</td>
<td>1.4</td>
<td>0</td>
<td>3.9</td>
<td>7.7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
<td>2.2</td>
<td>1.3</td>
<td>0</td>
<td>2.8</td>
<td>6.8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>1.8</td>
<td>1.0</td>
<td>0</td>
<td>3.1</td>
<td>6.3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argila (%)</th>
<th>Limo (%)</th>
<th>Areia (%)</th>
<th>Matéria orgânica (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A área foi preparada convencionalmente com aração (arado de disco) e gradagem (grade niveladora).

4.1 INSTALAÇÃO E CONDUÇÃO DO EXPERIMENTO

O sistema de irrigação empregado no experimento foi o gotejamento, utilizando tubos gotejadores da marca T-TAPE modelo 508, com espaçamento entre os gotejadores de 30 cm. A vazão aplicada por gotejador foi da ordem de um litro por hora, o que equivale para o espaçamento de 1,2 m a uma intensidade de aplicação de 2,8 mm/h com pressão de serviço de 5 mca. O sistema de gotejamento foi implantado no mês de outubro de 2001 a uma profundidade aproximada de 20 cm e com espaçamento entre os tubos gotejadores de 1,20 metro.

A semeadura foi realizada no dia 22 de janeiro de 2002, com sementes de valor cultural da ordem de 32%. Foram aplicados 110 kg/ha de P$_2$O$_5$ mais 50 kg/ha de FTE BR-12, na ocasião da semeadura. Fez-se uma adubação nitrogenada de cobertura aos 35 dias após a semeadura, utilizando 40 kg/ha de N, na forma de sulfato de amônio, de acordo com VILELA et al. (2000).

O espaçamento utilizado entre linhas foi de 30 cm com estande de 40 a 50 plântulas/m2. A área do experimento é de 1800 m2. As unidades experimentais (subparcelas) são de 3 m x 2 m, totalizando 6m2. A subparcela útil considerada no experimento foi de 1,65 m2.

As doses utilizadas na adubação nitrogenada, tendo como fonte a uréia, foram de 100, 200, 300 e 400 kg/ha de nitrogênio, que correspondem, respectivamente, a N$_1$, N$_2$, N$_3$ e N$_4$. As doses iniciais (de abril a julho) foram divididas por sete, mas as doses aplicadas em setembro e outubro tiveram o incremento da adubação de agosto (a adubação de agosto foi dividida entre setembro e outubro), que não foi efetuada por falta de produção de massa. A última aplicação foi realizada em outubro não sendo avaliada a sua produção. As adubações foram realizadas, no máximo cinco dias após os cortes. Os níveis de irrigação foram constituídos de quatro lâminas, estabelecidas com base na evaporação do Tanque Classe A (ECA). As lâminas aplicadas foram L$_1$, L$_2$, L$_3$ e L$_4$ correspondendo respectivamente a 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Etpc). A irrigação foi realizada sempre que a Etpc acumulada em um determinado
período, aproximou-se de 50% da capacidade de armazenamento de água no solo, até a profundidade de 40 cm (ANEXO 2, QUADROS 2 e 3).

O Etpc foi calculada pela seguinte fórmula:

\[\text{ETpc} = \text{ECA} \times \text{Kc} \times \text{Kp} \]

Em que:
- \(\text{ETpc} \): evapotranspiração potencial da cultura (mm);
- \(\text{ECA} \): Evaporação do Tanque Classe A (mm);
- \(\text{Kc} \): Coeficiente da cultura, em função de dias após o corte;
- \(\text{Kp} \): Coeficiente do tanque Classe A.

O \(\text{Kc} \) utilizado foi o descrito por LOURENÇO et al. (2001), para a cultura de capim *Panicum maximum* cv. Tanzânia, para diferentes dias após o corte.

Foi utilizado, também, um tratamento sem irrigação, testemunha (L0), que recebeu as doses de nitrogênio de 100, 200, 300, 400 kg/ha/ano, parceladas nos meses de março, abril e maio simulando um sistema intensivo sem irrigação. Para o cálculo da lâmina de irrigação foi considerada a precipitação pluvial do período.

A capacidade de armazenamento de água no solo foi determinada por:

\[\text{CA} = (\theta_{cc} - \theta_{pmp})Z \]

Em que:
- \(\text{CA} \): Capacidade de armazenamento de água no solo (mm);
- \(\theta_{cc} \): umidade do solo na sua capacidade máxima de reter água (tensão 10 kPa), \(m^3 \cdot m^{-3} \);
- \(\theta_{pmp} \): umidade do solo no ponto de murcha permanente (tensão 1500 kPa), \(m^3 \cdot m^{-3} \);
- \(Z \): Profundidade do solo considerada (mm).

Durante a condução do experimento, de abril a outubro de 2002, foram registradas as precipitações pluviais e as temperaturas médias das máximas e das mínimas, pela estação meteorológica situada na Escola de Agronomia e Engenharia de Alimentos da UFG (FIGURA 1).
FIGURA 1: Temperatura média das máximas e mínimas (ºC) e precipitação (mm) no período de abril a outubro de 2002

4.2 AVALIAÇÃO DO EXPERIMENTO

Os dados para avaliação dos efeitos dos tratamentos foram obtidos pelos cortes da forrageira nas subparcelas. A altura do corte da massa forrageira foi de aproximadamente 30 cm do solo. O corte de uniformização ocorreu no dia 28 de março de 2002, sendo os cortes subseqüentes de avaliação, realizados de 28 em 28 dias, no período que compreendeu de 24 de abril a 09 de outubro de 2002 (TABELA 2). No mês de agosto de 2002, não houve avaliação, pois a forrageira em todas as subparcelas não atingiu a altura suficiente para a realização do corte. A irrigação após o dia 14 de agosto de 2002, para o cálculo do Kc, fixou-se o DAP (dias após o pastejo), em 28 dias, devido ao baixo desenvolvimento da área foliar, até a avaliação de setembro.

Após a realização dos cortes, a forragem era embalada em sacos plásticos e conduzida ao Laboratório de Solos da Escola de Agronomia e Engenharia de Alimentos da UFG, onde foi determinada a sua massa, para a determinação da produção de matéria verde.
(MV). Após esta determinação foram retiradas subamostras de massa de aproximadamente 250 g, para a determinação da matéria seca a 60ºC em estufa de ventilação forçada.

TABELA 2- Datas das realizações da semeadura, do corte de uniformização e dos cortes de avaliação de produção do capim Mombaça

<table>
<thead>
<tr>
<th>Evento</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semeadura do experimento</td>
<td>22 de janeiro de 2002</td>
</tr>
<tr>
<td>Corte de uniformização do experimento</td>
<td>28 de março de 2002</td>
</tr>
<tr>
<td>1º avaliação</td>
<td>24 de abril de 2002</td>
</tr>
<tr>
<td>2º avaliação</td>
<td>22 de maio de 2002</td>
</tr>
<tr>
<td>3º avaliação</td>
<td>19 de junho de 2002</td>
</tr>
<tr>
<td>4º avaliação</td>
<td>17 de julho de 2002</td>
</tr>
<tr>
<td>5º avaliação</td>
<td>11 de setembro de 2002</td>
</tr>
<tr>
<td>6º avaliação</td>
<td>09 de outubro de 2002</td>
</tr>
</tbody>
</table>

Após a secagem por 72 horas as amostras foram retiradas da estufa e aproximadamente 30 minutos após, foi determinada a sua massa. Toda a forragem colhida foi moída e passada em peneira de 1 mm para as posteriores análises. A matéria seca foi estimada de acordo com SILVA e QUEIROZ (2002).

4.4 PROCEDIMENTO ESTATÍSTICO

O experimento foi conduzido num delineamento experimental de blocos casualizados com parcelas subdivididas, dentro de cada época de avaliação (meses de abril, maio, junho, julho, setembro e outubro). Avaliou-se a produção de MS do capim Panicum maximum Jacq. cv. Mombaça com período de descanso de 28 dias e altura de corte de aproximadamente 30 cm do solo. Nas parcelas foram avaliadas as láminas de irrigação (L₀, L₁, L₂, L₃ e L₄ correspondendo respectivamente a sem irrigação, 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Etpc)) e nas subparcelas as doses de adubação nitrogenada (N₁, N₂, N₃ e N₄, que corresponderam respectivamente a 100, 200, 300 e 400 kg/ha de nitrogênio).

Para a análise estatística foi utilizado o Programa SAS, versão 8.0 e para a análise de comparação das médias foi utilizado o Teste de T pelo LSMEANS do SAS versão 8.0. As regressões foram realizadas no SAEG, versão 8.0, (cópia de demonstração).
5. RESULTADOS E DISCUSSÃO

5.1 PRODUÇÃO DE MATÉRIA SECA (t/ha)

Na primeira avaliação, realizada no dia 24 de abril de 2002, foi observada a maior produção média de matéria seca, sendo que a partir dos meses seguintes, com o decréscimo na temperatura, houve uma queda brusca na produção conforme é apresentado na FIGURA 2.

FIGURA 2- Produção média de matéria seca do capim Mombaça, nas diferentes lâminas de irrigação e épocas de avaliação com as temperaturas mínimas médias registradas para cada período

Durante as avaliações de produção houve alguns tratamentos em que as plantas não atingiram a altura de corte para avaliação. Nestes tratamentos verificou-se que houve perfilhamento, mas estes não atingiram a altura desejada, de aproximadamente 30 cm. No mês de julho nas lâminas L₀, L₁ e L₂ e no mês de setembro nas lâminas L₀ e L₁, as plantas
não atingiram a altura de corte satisfatória. O mesmo ocorreu no mês de agosto, onde em nenhum tratamento atingiu a altura para avaliação. Esta queda na produção está relacionada com a estacionalidade provocada pelas baixas temperaturas registradas no período de maio a agosto, onde as médias das mínimas registradas não ultrapassaram 15°C, não permitindo uma atividade metabólica satisfatória e a formação de tecidos na parte aérea da forrageira, estando de acordo com as observações de CARDOSO (2001). Outros fatores que contribuíram para o baixo desenvolvimento foliar foram a altura de corte, e o intervalo entre cortes.

Foi observado que a altura de corte da forrageira, em torno de 30 cm do solo, ocasionou a eliminação de muitos perfilhos basais da planta. Consequentemente houve uma baixa emissão de folhas pelos perfilhos basais e uma elevação na emissão de folhas dos perfilhos laterais. A distribuição dos perfilhos no Mombaça é muito desuniforme, onde os perfilhos se encontram em diferentes alturas na forrageira. O intervalo entre cortes também foi insuficiente para o desenvolvimento foliar, que já estava lento, devido aos fatores da estacionalidade, averiguando-se que haveria necessidade de intervalos maiores que 28 dias para a obtenção de uma melhor produção de massa.

A análise de variância referente à produção de matéria seca mostrou efeito significativo (P<0,05) para as lâminas de irrigação nos meses de abril, maio, junho e outubro, não tendo diferença significativa (P>0,05) nos meses de julho e setembro. Observou-se que a maior produção ocorreu na L4, para os meses de maio e outubro, embora não havendo diferença significativa (P>0,05) em relação a L3. No mês de abril a intensidade de chuva de 26,4 mm pode ter interferido nas respostas da irrigação, onde a melhor produção foi observada na L1. Na L0 a alta produção ocorreu devido as adubações de 100 a 400 kg/ha/ano de nitrogênio terem sido realizadas em três vezes, simulando um sistema rotacionado sem irrigação (TABELAS 3 e 4; FIGURAS 3 e 4).
TABELA 3- Análise de variância para produção de matéria seca (t/ha) em função de diferentes lâminas de irrigação, em diferentes épocas de avaliação

<table>
<thead>
<tr>
<th>Época de avaliação</th>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repetição</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>78,0311</td>
<td>6,70*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>31,4324</td>
<td>2,70**</td>
<td>8,38</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>9,6327</td>
<td>1,13**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>11,6544</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>5,7300</td>
<td>5,02*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>0,09735</td>
<td>0,09</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>1,3017</td>
<td>1,14**</td>
<td>22,78</td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>1,1413</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>1</td>
<td>1,7390</td>
<td>0,18</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>23,0559</td>
<td>2,43**</td>
<td>84,13</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>3</td>
<td>4,5081</td>
<td>0,47**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>18</td>
<td>9,506</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setembro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outubro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>2</td>
<td>1,843</td>
<td>0,11</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>17,7425</td>
<td>1,10**</td>
<td>43,83</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>6</td>
<td>24,7440</td>
<td>1,53**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>27</td>
<td>16,1573</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significância a 5 %. ns Não significativo a 1 e 5%.
TABELA 4- Comparação das médias de produção de matéria seca (t/ha) obtidas nas lâminas de irrigação em diferentes épocas

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ (sem irrig.)</td>
<td>3,98b</td>
<td>0,45b</td>
<td>0,10b</td>
<td>-</td>
<td>-</td>
<td>0,41b</td>
</tr>
<tr>
<td>L₁ (30%)</td>
<td>4,46a</td>
<td>0,40b</td>
<td>0,16b</td>
<td>-</td>
<td>-</td>
<td>0,83a</td>
</tr>
<tr>
<td>L₂ (60%)</td>
<td>3,90b</td>
<td>0,43b</td>
<td>0,25a</td>
<td>-</td>
<td>0,30a</td>
<td>0,89a</td>
</tr>
<tr>
<td>L₃ (90%)</td>
<td>3,66b</td>
<td>0,53a</td>
<td>0,26a</td>
<td>0,11a</td>
<td>0,28a</td>
<td>0,88a</td>
</tr>
<tr>
<td>L₄ (120%)</td>
<td>4,02b</td>
<td>0,54a</td>
<td>0,23a</td>
<td>0,12a</td>
<td>0,29a</td>
<td>0,92a</td>
</tr>
</tbody>
</table>

Valores seguidas pelas mesmas letras nas colunas, não diferem entre si ao nível de 5%

FIGURA 3- Produção de matéria seca (t/ha) de Panicum maximum cv. Mombaça, em função de diferentes lâminas de irrigação no mês de junho
FIGURA 4- Produção de matéria seca de Panicum maximum cv. Mombaça, em função de diferentes lâminas de irrigação no mês de outubro

Na TABELA 5, são representados os modelos exploratórios que melhor explicaram a variação da produção de matéria seca nos meses de junho e outubro.

TABELA 5- Modelos exploratórios da produção de matéria seca (t/ha) do capim Panicum maximum cv. Mombaça, referentes às épocas, em função das diferentes lâminas de irrigação, com os respectivos valores do coeficiente de correlação (R^2), dos números de observações (n), do desvio padrão (S), e de F

<table>
<thead>
<tr>
<th>Parâmetros do Modelo</th>
<th>Parâmetros estatísticos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>junho</td>
</tr>
<tr>
<td>Prod= a+ bL+ cL^2</td>
<td>a 0,0908571</td>
</tr>
<tr>
<td></td>
<td>b 0,0038970</td>
</tr>
<tr>
<td></td>
<td>c -0,00002318</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significância a 5% **Significância a 1%

Na análise da regressão dos dados de produção de MS, referente aos meses de junho e outubro, foi possível estabelecer uma relação funcional entre produção de matéria
seca (t/ha) e lámina de irrigação (mm), onde as melhores produções em junho e outubro foram obtidas com as láminas de irrigação em torno de 84 mm (0,25 t/ha) e 222 mm (0,91 t/ha), respectivamente. Nos meses de abril e maio as regressões não foram significativas, não sendo possível estabelecer uma relação funcional entre produção de matéria seca (t/ha) e lámina de irrigação (mm).

Em avaliação do capim Tanzânia irrigado na região Sudeste, nas estações de outono e inverno, com período de descanso de 35 a 66 dias, RASSINI, (2002), obteve uma produção de matéria seca de 11,7 t/ha. Em um experimento em São Desidério, Bahia, com Mombaça irrigado com lámina de 30 mm de água semanais e com adubação nitrogenada de 30 kg/ha de N, observou-se uma produção de matéria seca de 3,96 t/ha, no inverno, com período de descanso de 88 dias (MULLER, 2000). Em avaliação de *Brachiaria brizantha* cv. Marandu, no Cerrado, as melhores respostas de produção ocorreram nos tratamentos em que as irrigações eram realizadas, quando a tensão de água no solo, atingia 60 kPa (MARCELINO et al., 2001). Na avaliação do experimento, o maior produção acumulada observada, durante a condução, foi na L4 com 6,12 t/ha de matéria seca.

Em experimento de Mombaça, conduzido em Campo Grande, com período de descanso de 35 dias e adubação de 50 kg/ha de nitrogênio por pastejo, obteve-se uma produção de 2,74 t/ha de MS na estação da seca, (EUCLIDES et al.,1998). CECATO et al., (1996) trabalhando com o gênero *Panicum*, no inverno sem irrigação, obteve uma produção média, durante o período de inverno, de 2,48 t/ha de MS, com período de descanso de 70 dias.

Não se observou diferença significativa (P>0,05), para as doses de nitrogênio (TABELA 6). A não significância nas doses de adubações podem ter sido ocasionadas pelo baixo desenvolvimento das plantas, devido a ocorrência de baixas temperaturas durante o período de avaliação, o intervalo entre cortes ser insuficiente para o desenvolvimento foliar e a forma de realização da fertirrigação (aplicação na superfície do solo). Como o sistema de irrigação utilizado foi o de gotejamento enterrado, a aproximadamente 20 cm de profundidade, onde não se obteve uma avaliação da irrigação aplicada, podendo ter ocorrido uma má formação do bulbo molhado, a uma certa profundidade abaixo da superfície do solo. Esta formação pode ter ocasionado ausência de água para interagir com a adubação, não havendo assim o deslocamento do nitrogênio até os locais de absorção da planta.
TABELA 6- Médias de produção de matéria seca (t/ha) obtidas nas diferentes doses de adubações nitrogenada em diferentes épocas

<table>
<thead>
<tr>
<th>Adubação</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N/ha</td>
<td>3,96</td>
<td>0,46</td>
<td>0,19</td>
<td>0,05</td>
<td>0,24</td>
<td>0,71</td>
</tr>
<tr>
<td>200 kg de N/ha</td>
<td>4,01</td>
<td>0,48</td>
<td>0,21</td>
<td>0,11</td>
<td>0,31</td>
<td>0,82</td>
</tr>
<tr>
<td>300 kg de N/ha</td>
<td>4,06</td>
<td>0,47</td>
<td>0,20</td>
<td>0,12</td>
<td>0,29</td>
<td>0,81</td>
</tr>
<tr>
<td>400 kg de N/ha</td>
<td>4,25</td>
<td>0,47</td>
<td>0,21</td>
<td>0,18</td>
<td>0,32</td>
<td>0,81</td>
</tr>
</tbody>
</table>

Verificou-se as produções de matéria seca por kg de nitrogênio aplicado, constatando-se que as melhores aproveitamento do nitrogênio na produção de matéria seca foram encontradas na dose de 100 kg/ha/ano de N (os cortes avaliados foram abril e outubro, onde constataram-se as maiores produções). Respostas médias de 40 kg de MS/kg de N são consideradas satisfatórias para condições climáticas adequadas (BALSALOBRE et al. 2002). Durante a condução do experimento, as épocas que se enquadraram em condições climáticas satisfatórias, são os meses de abril e outubro, onde em abril o aproveitamento de nitrogênio para a produção de matéria seca foi mais satisfatório que outubro. Em outubro a eficiência de aproveitamento do nitrogênio foi prejudicada pelo intervalo de cortes e pela altura de rebaixamento da forrageira, como já foi esclarecido anteriormente, TABELA 7.

TABELA 7- Consumo de nitrogênio para a produção de matéria seca (kg/ha)

<table>
<thead>
<tr>
<th>Doses de adubação nitrogenada (ano)</th>
<th>Dose aplicada/corte (kg de N/corte)</th>
<th>Produção de matéria seca (kg/ha)</th>
<th>kg de MS/kg de N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abril</td>
<td>outubro</td>
<td>abril</td>
</tr>
<tr>
<td>100 kg de N/ha</td>
<td>14,29</td>
<td>21,44</td>
<td>3963,30</td>
</tr>
<tr>
<td>200 kg de N/ha</td>
<td>28,57</td>
<td>42,86</td>
<td>4014,77</td>
</tr>
<tr>
<td>300 kg de N/ha</td>
<td>42,86</td>
<td>64,29</td>
<td>4059,93</td>
</tr>
<tr>
<td>400 kg de N/ha</td>
<td>57,14</td>
<td>85,71</td>
<td>4250,64</td>
</tr>
</tbody>
</table>

Não ocorreu interação significativa (P>0,05) entre lâmina de irrigação e adubação nitrogenada. A utilização de irrigação na estação seca do ano, pode ser uma alternativa de acréscimos na produção de matéria seca, mas as baixas temperaturas, o manejo de irrigação e da forrageira podem interferir seriamente na produção da matéria seca. O acréscimo na produção acumulada na estação da seca, principalmente no período de maio a setembro (foi de aproximadamente 152% na parcela irrigada com a L3 e
adubadas com 400 kg/ha de nitrogênio (1,36 t/ha), em relação a parcela L₀ e adubada com 400 kg/ha de nitrogênio (0,54 t/ha)). A estacionalidade na produção provocada pelas baixas temperaturas registradas no município de Goiânia, tornaram este incremento apenas 32% do total produzido no corte de abril na L₃, adubada com 400 kg/ha de nitrogênio (4,18 t/ha). Este incremento na produção não justificaria o custo do investimento em irrigação (TABELA 8).

TABELA 8- Médias de produção de matéria seca (t/ha) das interações lâminas de água e adubação nitrogenada nas diferentes épocas

<table>
<thead>
<tr>
<th>Irrig. x Adub.</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ x 100 de N</td>
<td>3,40</td>
<td>0,44</td>
<td>0,10</td>
<td>-</td>
<td>-</td>
<td>0,43</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
<td>4,04</td>
<td>0,54</td>
<td>0,12</td>
<td>-</td>
<td>-</td>
<td>0,43</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
<td>3,96</td>
<td>0,36</td>
<td>0,09</td>
<td>-</td>
<td>-</td>
<td>0,40</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
<td>4,03</td>
<td>0,44</td>
<td>0,10</td>
<td>-</td>
<td>-</td>
<td>0,36</td>
</tr>
<tr>
<td>L₁ x 100 de N</td>
<td>4,33</td>
<td>0,37</td>
<td>0,15</td>
<td>-</td>
<td>-</td>
<td>0,75</td>
</tr>
<tr>
<td>L₁ x 200 de N</td>
<td>4,47</td>
<td>0,38</td>
<td>0,14</td>
<td>-</td>
<td>-</td>
<td>0,92</td>
</tr>
<tr>
<td>L₁ x 300 de N</td>
<td>4,37</td>
<td>0,45</td>
<td>0,20</td>
<td>-</td>
<td>-</td>
<td>0,83</td>
</tr>
<tr>
<td>L₁ x 400 de N</td>
<td>4,66</td>
<td>0,41</td>
<td>0,15</td>
<td>-</td>
<td>-</td>
<td>0,81</td>
</tr>
<tr>
<td>L₂ x 100 de N</td>
<td>3,54</td>
<td>0,38</td>
<td>0,22</td>
<td>-</td>
<td>0,17</td>
<td>0,87</td>
</tr>
<tr>
<td>L₂ x 200 de N</td>
<td>3,94</td>
<td>0,42</td>
<td>0,32</td>
<td>-</td>
<td>0,44</td>
<td>0,97</td>
</tr>
<tr>
<td>L₂ x 300 de N</td>
<td>3,96</td>
<td>0,51</td>
<td>0,21</td>
<td>-</td>
<td>0,27</td>
<td>0,93</td>
</tr>
<tr>
<td>L₂ x 400 de N</td>
<td>4,18</td>
<td>0,42</td>
<td>0,24</td>
<td>-</td>
<td>0,32</td>
<td>0,78</td>
</tr>
<tr>
<td>L₃ x 100 de N</td>
<td>4,11</td>
<td>0,54</td>
<td>0,25</td>
<td>0,04</td>
<td>0,25</td>
<td>0,66</td>
</tr>
<tr>
<td>L₃ x 200 de N</td>
<td>3,87</td>
<td>0,48</td>
<td>0,27</td>
<td>0,10</td>
<td>0,22</td>
<td>0,89</td>
</tr>
<tr>
<td>L₃ x 300 de N</td>
<td>3,82</td>
<td>0,52</td>
<td>0,24</td>
<td>0,14</td>
<td>0,28</td>
<td>0,81</td>
</tr>
<tr>
<td>L₃ x 400 de N</td>
<td>4,18</td>
<td>0,56</td>
<td>0,28</td>
<td>0,15</td>
<td>0,37</td>
<td>1,23</td>
</tr>
<tr>
<td>L₄ x 100 de N</td>
<td>3,93</td>
<td>0,58</td>
<td>0,20</td>
<td>0,07</td>
<td>0,29</td>
<td>0,83</td>
</tr>
<tr>
<td>L₄ x 200 de N</td>
<td>3,75</td>
<td>0,58</td>
<td>0,20</td>
<td>0,12</td>
<td>0,27</td>
<td>0,88</td>
</tr>
<tr>
<td>L₄ x 300 de N</td>
<td>4,18</td>
<td>0,50</td>
<td>0,24</td>
<td>0,10</td>
<td>0,32</td>
<td>1,08</td>
</tr>
<tr>
<td>L₄ x 400 de N</td>
<td>4,20</td>
<td>0,49</td>
<td>0,26</td>
<td>0,22</td>
<td>0,28</td>
<td>0,87</td>
</tr>
</tbody>
</table>
6 CONCLUSÃO

O experimento demonstrou que a temperatura, a altura de corte em torno de 30cm e o intervalo de corte de 28 dias são fatores limitantes na produção de massa verde, no período da seca, não permitindo estabelecer uma melhor combinação de lâmina de irrigação e adubação nitrogenada para o período analisado. A falta de pesquisas na avaliação de produção em sistemas irrigados no Cerrado, dificulta ainda a certificação da real viabilidade econômica desta prática, devendo ainda serem realizadas mais pesquisas para obter bases concretas na recomendação desta prática.

A utilização do sistema de gotejamento na irrigação de pastagem ainda necessita de mais estudos, pois foram observadas dificuldades na avaliação da real quantidade de água aplicada, no sistema enterrado.
7. REFERÊNCIAS BIBLIOGRÁFICAS

CAPÍTULO III

AVALIAÇÃO DE DIFERENTES LÂMINAS DE ÁGUA E DE DOSES DE NITROGÊNIO NA COMPOSIÇÃO BROMATOLÓGICA DO CAPIM MOMBAÇA

1. RESUMO

Avaliou-se o efeito de diferentes lâminas de água e de doses de nitrogênio na composição bromatológica do capim *Panicum maximum* Jaqc. cv. Mombaça. A forrageira foi submetida aos seguintes tratamentos: 5 lâminas de irrigação (L₀, L₁, L₂, L₃ e L₄ correspondendo respectivamente a sem irrigação, 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Etpc)) nas parcelas, aplicados por gotejamento, e a 4 doses de adubação nitrogenada (100, 200, 300 e 400 kg/ha/ano de nitrogênio) nas subparcelas, que foram divididas em 7 aplicações realizadas logo após os cortes. O período de descanso utilizado foi de 28 dias, sendo a massa forrageira cortada a aproximadamente 30 cm do solo. O delineamento utilizado foi de blocos casualizados em parcelas subdivididas avaliados em 6 épocas diferentes, compreendendo o período da seca na região. Houve diferenças significativas (P<0,05) para lâminas de irrigação nos meses de maio, junho e julho sobre o teor de matéria seca (% de MS), em abril, maio, junho e outubro sobre o teor de proteína bruta (%) e em abril e outubro sobre o teor da fibra em detergente neutro (FDN) (%). Os resultados mostraram que o decréscimo da produção de MS (t/ha), causadas pelas baixas temperaturas, altura de corte da forrageira e o período de descanso ocasionou aumento no teor de MS (%) na forrageira, devido ao envelhecimento dos tecidos causados pela paralisação do crescimento. A adubação nitrogenada mostrou efeito significativo (P<0,05), para o teor de proteína bruta nos meses de junho, setembro e outubro, verificou-se aumento progressivo do teor em função do aumento das doses nitrogenadas. As baixas temperaturas, o manejo de irrigação, a altura de rebaixamento de 30 cm do solo e o período de descanso de 28 dias, interferem na produção de matéria seca, limitando a utilização desta técnica em certas regiões. A utilização do sistema de gotejamento na irrigação de pastagem não está bem definida tendo sido encontradas dificuldades na avaliação da correta aplicação de água.

PALAVRA CHAVE: Mombaça, Composição bromatológica, Irrigação
2. ABSTRACT

The best combinations of different sheets of water were evaluated and of doses of nitrogen in the composition of the grass of the grass Panicum maximum Jaqc. cv. Mombaça. The grass was submitted to the following treatments: 5 irrigation sheets (portions L₀, L₁, L₂, L₃ and L₄ corresponding her/it respectively without irrigation, 30%, 60%, 90% and 120% of the evaporation and potential perspiration of the culture (Etpc)), applied for leak, and to 4 doses of manuring of nitrogen (subportions 100, 200, 300 and 400 kg/ha/year of nitrogen) that were divided in 7 applied doses after the cuts. The period of used rest was of 28 days, being approximately the mass cut grass the 30 cm of the soil. The used complet randomized blocks in portions subdivided appraised in 6 different times understanding the period of the drought in the area. There were significant differences (P<0.05) for irrigation sheets the months of May, June and July on the matter tenor dries (% of MS), April, May, June and October on the tenor of rude protein (%) and in April and October on the tenor of the fiber in neutral detergent (FDN) (%). The results showed that the decrease of the production of MS (t/ha) it caused increase in the tenor of MS (%) in the grass. an inverse relationship was verified between the tenor of PB and the tenor of FDN in the grass. The manuring of nitrogen showed significant effect (P<0.05), for the tenor of rude protein the months of June, September and October, where the increments of the doses of manuring of nitrogen increased the percentage of rude protein in the grass. The paralysis factors and irrigation handling can interfere in the composition of the grass of the grass, could restrict the irrigation use in certain areas. The use of the leak system in the pasture irrigation is not very defined having been had difficulties in the evaluation of the correct application of water.
3. INTRODUÇÃO

A forrageira ofertada ao animal desempenha papel fundamental na dieta, podendo ser o único meio de alimentação em várias explorações pecuárias no Brasil. Atualmente as pastagens desempenham importante papel na alimentação bovina, sendo a forma mais econômica de produção.

A produção animal, em pasto, apresenta uma sequência lógica onde a forragem produzida tem que ser consumida para gerar o produto animal, mas nem sempre o resultado da produção está de acordo com as expectativas, porque a forragem ofertada ao animal tem baixa qualidade. Numa dieta onde a fonte principal é a pastagem deve-se levar em conta a qualidade da forragem produzida.

As forrageiras tropicais apresentam valores nutritivos baixos, que estão associados aos reduzidos teores de proteína e minerais e ao altos teores de fibras. No amadurecimento da forrageira, a produção dos componentes potencialmente digeríveis tende a decrescer, enquanto a fração indigerível aumenta, ocasionando decréscimos na digestibilidade (EUCLIDES, 1995).

A utilização de gramíneas como o Panicum maximum, em um sistema irrigado e bem manejado, proporciona altas produções de forragem com qualidade. EUCLIDES, (1995) avaliando forrageiras do gênero Panicum, encontrou variações na porcentagem de proteína bruta de 16% a 19%, para gramíneas imaturas. A utilização do cultivar Mombaça, nestes sistemas, se deve a sua grande produção de matéria seca conjuntamente com a boa qualidade da forragem (JANK, 1995). BARBOSA e EUCLIDES (1997), avaliando o capim Mombaça com 35 dias de rebrota, sob pastejo, observaram teores médios de proteína bruta de 11,6 % nas folhas e 4,3 % nos colmos e teores de FDN de 70,9 % nas folhas e 78,7 % nos colmos. Nas TABELAS BRASILEIRAS DE COMPOSIÇÃO DE ALIMENTOS PARA BOVINOS (2002), os valores médios observados para o capim Mombaça são de 11,40 % de proteína bruta e de 72,40 % da fibra em detergente neutro, para a forrageira cortada com 30 dias.

Geralmente, as limitações na produção de forragem de qualidade, estão associadas à deficiência hídrica, à baixa fertilidade do solo e ao mau manejo das pastagens. A utilização de adubação conjuntamente com a irrigação torna-se essencial para se manter um sistema produtivo, dando destaque para o nitrogênio. O nitrogênio assume um papel importantíssimo no crescimento e na produção das plantas, sendo o principal constituinte
das proteínas e participante ativo na síntese e composição da matéria orgânica que forma a estrutura vegetal (RAVEN et al., 2001).

Atualmente, as pesquisas desenvolvidas no Brasil, avaliando a irrigação de forrageiras, não retratam a realidade dessa técnica de produção, na região central do Brasil, pois são feitas em regiões onde a estacionalidade é afetada principalmente por temperaturas abaixo de 15ºC e luminosidade insuficiente. As pesquisas com as melhores doses de adubação nitrogenada, para o capim Mombaça, estão definindo níveis para sistemas intensivos de pastejo sem irrigação, não havendo ainda informações sobre a interação da adubação nitrogenada com a irrigação. A determinação da melhor combinação de lâmina de água e adubação nitrogenada, é essencial para uma maior eficiência e economia em um sistema pastoril irrigado e de produção intensiva.

Desta forma buscou-se, neste trabalho, determinar as melhores combinações de diferentes lâminas de água e doses de nitrogênio, na composição bromatológica do capim Panicum maximum cv. Mombaça, visando estabelecer o manejo intensivo para a região Centro-Oeste.
4. MATERIAL E MÉTODOS

O experimento foi realizado na Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás, localizada na latitude S 16º 36´e longitude W 49º 16´e uma altitude de 727 m, no município de Goiânia.

Segundo a classificação de Köepen, o clima da região é do tipo Aw (quente e semi-úmido, com estação seca bem definida nos meses de maio a setembro). A temperatura média anual é de 23,2 ºC, com média mínima anual de 17,9 ºC. A precipitação média anual da região é de 1759,9 mm (BRASIL, 1992).

O solo da área é um Latossolo Vermelho distrófico argissólico. Para a obtenção das informações para o planejamento e manejo da irrigação, foi realizada a caracterização física e físico-hídrica do solo, considerando-se as camadas de 0-20 cm e de 20-40 cm de profundidade, utilizando a metodologia da EMBRAPA (1979). Determinou-se a densidade do solo e a curva de retenção de água (ANEXO 1, QUADRO 1 e FIGURA 14) Fez-se, também, análise do solo para fins de fertilidade e classe textural da área experimental, no Laboratório de Análise de Solo e Foliar da Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás, que apresentou os dados demonstrados na TABELA 1.

TABELA 1- Características químicas e físicas do solo da área experimental

<table>
<thead>
<tr>
<th>Bloco</th>
<th>pH</th>
<th>Ca (cmol_c/dm³)</th>
<th>Mg</th>
<th>Al</th>
<th>H+ Al</th>
<th>CT (%)</th>
<th>P mg/dm³</th>
<th>K (%)</th>
<th>MO (%)</th>
<th>V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2</td>
<td>2,2</td>
<td>1,5</td>
<td>0</td>
<td>3,1</td>
<td>7,2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>2,1</td>
<td>1,4</td>
<td>0</td>
<td>3,9</td>
<td>7,7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
<td>2,2</td>
<td>1,3</td>
<td>0</td>
<td>2,8</td>
<td>6,8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>1,8</td>
<td>1,0</td>
<td>0</td>
<td>3,1</td>
<td>6,3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argila (%)</th>
<th>Limo (%)</th>
<th>Areia (%)</th>
<th>Matéria orgânica (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37,0</td>
<td>9,0</td>
<td>54,0</td>
<td>1,7</td>
</tr>
</tbody>
</table>

A área foi preparada convencionalmente com aração (arado de disco) e gradagem (grade niveladora).
4.1 INSTALAÇÃO E CONDUÇÃO DO EXPERIMENTO

O sistema de irrigação empregado no experimento foi o gotejamento, utilizando tubos gotejadores da marca T-TAPE modelo 508, com espaçamento entre os gotejadores de 30 cm. A vazão aplicada por gotejador foi da ordem de um litro por hora, o que equivale para o espaçamento de 1,2 m a uma intensidade de aplicação de 2,8 mm/h com pressão de serviço de 5 mca. O sistema de gotejamento foi implantado no mês de outubro de 2001 a uma profundidade aproximada de 20 cm e com espaçamento entre os tubos gotejadores de 1,2 metro.

A semeadura foi realizada no dia 22 de janeiro de 2002, com sementes de valor cultural da ordem de 32%. Foram aplicados 110 kg/ha de P₂O₅ mais 50 kg/ha de FTE BR-12, na ocasião da semeadura. Fez-se uma adubação nitrogenada de cobertura aos 35 dias após a semeadura, utilizando 40 kg/ha de N, na forma de sulfato de amônio, de acordo com VILELA et al. (2000).

O espaçamento utilizado entre linhas foi de 30 cm com estande de 40 a 50 plântulas/m². A área do experimento é de 1800 m². As unidades experimentais (subparcelas) são de 3 m x 2 m, totalizando 6m². A subparcela útil considerada no experimento foi de 1,65 m².

As doses utilizadas na adubação nitrogenada, tendo como fonte a uréia, foram de 100, 200, 300 e 400 kg/ha de nitrogênio, que correspondem, respectivamente, a N₁, N₂, N₃ e N₄. As doses iniciais (de abril a julho) foram divididas por sete, mas as doses aplicadas em setembro e outubro tiveram o incremento da adubação de agosto (a adubação de agosto foi dividida entre setembro e outubro), que não foi efetuada por falta de produção de massa. A última aplicação foi realizada em outubro não sendo avaliada a sua produção. As adubações foram realizadas, no máximo cinco dias após os cortes. Os níveis de irrigação foram constituídos de quatro lâminas, estabelecidas com base na evaporação do Tanque Classe A (ECA). As lâminas aplicadas foram L₁, L₂, L₃ e L₄ correspondendo respectivamente a 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Et_{pc}). A irrigação foi realizada sempre que a Et_{pc} acumulada em um determinado período, aproximou-se de 50% da capacidade de armazenamento de água no solo, até a profundidade de 40 cm (ANEXO 2, QUADROS 2 e 3).

O Et_{pc} foi calculada pela seguinte fórmula:

\[
ET_{pc} = \text{ECA} \times K_c \times K_p,
\]

em que:

ET_{pc}: evapotranspiração potencial da cultura (mm);
ECA: Evaporação do Tanque Classe A (mm);
Kc: Coeficiente da cultura, em função de dias após o corte;
Kp: Coeficiente do tanque Classe A.

O Kc utilizado foi o descrito por LOURENÇO et al. (2001), para a cultura de capim *Panicum maximum* cv. Tanzânia, para diferentes dias após o corte.

Foi utilizado, também, um tratamento sem irrigação, testemunha (L₀), que recebeu as doses de nitrogênio de 100, 200, 300, 400 kg/ha/ano, parceladas nos meses de março, abril e maio simulando um sistema intensivo sem irrigação. Para o cálculo da lâmina de irrigação foi considerada a precipitação pluvial do período.

A capacidade de armazenamento de água no solo foi determinada por:

$$CA = (\theta_{cc} - \theta_{pmp})Z$$

Em que:

- CA: Capacidade de armazenamento de água no solo (mm);
- \(\theta_{cc}\): umidade do solo na sua capacidade máxima de reter água (tensão 10 kPa), m\(^3\).m\(^{-3}\);
- \(\theta_{pmp}\): umidade do solo no ponto de murcha permanente (tensão 1500 kPa), m\(^3\).m\(^{-3}\);
- Z: Profundidade do solo considerada (mm).

Durante a condução do experimento, de abril a outubro de 2002, foram registradas as precipitações pluviais e as temperaturas médias das máximas e das mínimas, pela estação meteorológica situada na Escola de Agronomia e Engenharia de Alimentos da UFG (FIGURA 1).
FIGURA 1: Temperatura média das máximas e mínimas (ºC) e precipitação (mm) no período de abril a outubro de 2002

4.2 AVALIAÇÃO DO EXPERIMENTO

Os dados para avaliação dos efeitos dos tratamentos foram obtidos pelos cortes da forrageira nas subparcelas. A altura do corte da massa forrageira foi de aproximadamente 30 cm do solo. O corte de uniformização ocorreu no dia 28 de março de 2002, sendo os cortes subseqüentes de avaliação, realizados de 28 em 28 dias, no período que compreendeu de 24 de abril a 09 de outubro de 2002 (TABELA 2). No mês de agosto de 2002, não houve avaliação, pois a forrageira em todas as subparcelas não atingiu a altura suficiente para a realização do corte. A irrigação após o dia 14 de agosto de 2002, para o cálculo do Kc, fixou-se o DAP (dias após o pastejo), em 28 dias, devido ao baixo desenvolvimento da área foliar, até a avaliação de setembro.

Após a realização dos cortes, a forragem era embalada em sacos plásticos e conduzida ao Laboratório de Solos da Escola de Agronomia e Engenharia de Alimentos da UFG, onde foi determinada a sua massa, para a determinação da produção de matéria verde
Após esta determinação foram retiradas subamostras de massa de aproximadamente 250 g, para a determinação da matéria seca a 60ºC em estufa de ventilação forçada.

TABELA 2 - Datas das realizações da semeadura, do corte de uniformização e dos cortes de avaliação de produção do capim Mombaça

<table>
<thead>
<tr>
<th>Evento</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semeadura do experimento</td>
<td>22 de janeiro de 2002</td>
</tr>
<tr>
<td>Corte de uniformização do experimento</td>
<td>28 de março de 2002</td>
</tr>
<tr>
<td>1º avaliação</td>
<td>24 de abril de 2002</td>
</tr>
<tr>
<td>2º avaliação</td>
<td>22 de maio de 2002</td>
</tr>
<tr>
<td>3º avaliação</td>
<td>19 de junho de 2002</td>
</tr>
<tr>
<td>4º avaliação</td>
<td>17 de julho de 2002</td>
</tr>
<tr>
<td>5º avaliação</td>
<td>11 de setembro de 2002</td>
</tr>
<tr>
<td>6º avaliação</td>
<td>09 de outubro de 2002</td>
</tr>
</tbody>
</table>

Após a secagem por 72 horas as amostras foram retiradas da estufa e aproximadamente 30 minutos após, foi determinada a sua massa. Toda a forragem colhida foi moída e passada em peneira de 1 mm para as posteriores análises. A matéria seca foi estimada de acordo com SILVA e QUEIROZ (2002).

Os teores de proteína bruta (PB), foram determinados pelo Método de MICRO KJELDAHL e os teores de fibra em detergente neutro (FDN), pela metodologia proposta por SILVA e QUEIROZ (2002), foram determinadas no Laboratório do Departamento de Produção Animal da Escola de Veterinária da Universidade Federal de Goiás.

4.4 PROCEDIMENTO ESTATÍSTICO

O experimento foi conduzido num delineamento experimental de blocos casualizados com parcelas subdivididas, dentro de cada época de avaliação (meses de abril, maio, junho, julho, setembro e outubro). Avaliou-se a produção de MS do capim *Panicum maximum* Jacq. cv. Mombaça com período de descanso de 28 dias e altura de corte de aproximadamente 30 cm do solo. Nas parcelas foram avaliadas as láminas de irrigação (L₀, L₁, L₂, L₃ e L₄ correspondendo respectivamente a sem irrigação, 30%, 60%, 90% e 120% da evapotranspiração potencial da cultura (Etpc)) e nas subparcelas as doses de adubação nitrogenada (N₁, N₂, N₃ e N₄ , que corresponderam respectivamente a 100, 200, 300 e 400 kg/ha de nitrogênio).
Para a análise estatística foi utilizado o Programa SAS, versão 8.0 e para a análise de comparação das médias foi utilizado o Teste de T pelo LSMEANS do SAS versão 8.0. As regressões foram realizadas no SAEG, versão 8.0, (cópia de demonstração).
5. RESULTADOS E DISCUSSÃO

5.1 MATÉRIA SECA (MS) NA FORRAGEIRA

Os efeitos dos tratamentos nos teores de MS, foram prejudicados por fatores como a estacionalidade e o manejo da forrageira.

A análise de variância referente ao teor de MS na forrageira mostrou efeito significativo (P<0,05) das lâminas de irrigação, apenas nas épocas de maio, junho e julho (TABELA 11 e 12). Nas épocas em que houve efeito das lâminas de irrigação (maio, junho e julho), observou-se decréscimo no teor de MS com o aumento das lâminas de irrigação, com exceção da L4, no mês de junho, que foi superior ao teor verificado na L3 (FIGURA 6). As respostas da irrigação em função do teor de MS, mostram que o descanso de 28 dias, a altura de corte de aproximadamente 30 cm e a estacionalidade nestas épocas, provocaram um aumento no teor de MS. Mesmo com a baixa produção, as lâminas de irrigação tiveram uma influência no teor de MS (ao aumento da quantidade de água aplicada, o teor de MS decrescia), devido a produção estar mais composta de folhas (FIGURA 7).

FIGURA 6- Teor médio de matéria seca e produção média de matéria seca do *Panicum maximum* cv. Mombaça nas diferentes lâminas de irrigação, em diferentes épocas de avaliação

SANTOS et al. (1998), em avaliação de Mombaça irrigado, de setembro a abril, e com período de descanso de 35 dias, encontraram teores de 19,67% de MS na
ferrageira com produção de 5,63 t/ha/corte, em um período de avaliação com ocorrência de chuvas. Valores médios em capim Tanzânia, na parte da folha, de 22,16 % de MS e na planta inteira de 27,35 % de MS e em Mombaça destinado para silagem, na planta inteira, valores de 22,98% de matéria seca são encontrados nas TABELAS BRASILEIRAS DE COMPOSIÇÃO DE ALIMENTOS PARA BOVINOS, (2002).

TABELA 11- Análise de variância do teor de matéria seca (%) em função de diferentes lâminas de irrigação, em diferentes épocas de avaliação

<table>
<thead>
<tr>
<th>Época</th>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetição</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>4</td>
<td>3,1444</td>
<td>1,88ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>0,9601</td>
<td>0,58ns</td>
<td>6,51</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>1,0405</td>
<td>0,62ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>45</td>
<td>1,6683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>4</td>
<td>23,3503</td>
<td>16,32*</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>1,9360</td>
<td>1,35ns</td>
<td>5,06</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>1,1594</td>
<td>0,81ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>45</td>
<td>1,4308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>4</td>
<td>146,6399</td>
<td>14,50*</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>3,5867</td>
<td>0,35ns</td>
<td>8,79</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>1,6842</td>
<td>0,17ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>45</td>
<td>10,1156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>1</td>
<td>165,4662</td>
<td>22,94*</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>6,8044</td>
<td>0,94ns</td>
<td>8,02</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>3</td>
<td>3,9633</td>
<td>0,55ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>18</td>
<td>7,2131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>2</td>
<td>67,2756</td>
<td>1,31ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>74,6961</td>
<td>1,45ns</td>
<td>20,40</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>6</td>
<td>59,7056</td>
<td>1,16ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>27</td>
<td>51,4609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação</td>
<td></td>
<td>4</td>
<td>48,9758</td>
<td>1,70ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (A)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação</td>
<td></td>
<td>3</td>
<td>22,0421</td>
<td>0,77ns</td>
<td>16,95</td>
</tr>
<tr>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>25,8310</td>
<td>0,90ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (B)</td>
<td></td>
<td>45</td>
<td>28,7962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significância a 5 %. ns Não significativo a 1 e 5%.
TABELA 12- Comparação das médias do teor de matéria seca (%), obtidas nas láminas de irrigação em diferentes épocas

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ (sem irrig.)</td>
<td>19,50</td>
<td>25,42a</td>
<td>40,69a</td>
<td>-</td>
<td>-</td>
<td>32,33</td>
</tr>
<tr>
<td>L₁ (30%)</td>
<td>19,83</td>
<td>24,24b</td>
<td>37,91b</td>
<td>-</td>
<td>-</td>
<td>31,56</td>
</tr>
<tr>
<td>L₂ (60%)</td>
<td>20,50</td>
<td>23,29c</td>
<td>34,68bc</td>
<td>-</td>
<td>35,04</td>
<td>30,59</td>
</tr>
<tr>
<td>L₃ (90%)</td>
<td>19,38</td>
<td>22,53c</td>
<td>33,40c</td>
<td>35,75a</td>
<td>37,28</td>
<td>34,19</td>
</tr>
<tr>
<td>L₄ (120%)</td>
<td>20,00</td>
<td>22,65d</td>
<td>34,34c</td>
<td>31,205b</td>
<td>33,19</td>
<td>29,60</td>
</tr>
</tbody>
</table>

Valores seguidas pelas mesmas letras na coluna não diferem entre si ao nível de 5%.

FIGURA 7- Teor de matéria seca de *Panicum maximum* cv. Mombaça, em função das láminas de irrigação, no mês de junho.

Na TABELA 13, está apresentado o modelo exploratório que explica a variação do teor médio de matéria seca no mês junho, nas láminas de irrigação. No mês de julho, nas láminas L₀, L₁ e L₂, não houve produção suficiente para análise, não sendo realizada a regressão.
TABELA 13- Modelo exploratório da época de junho referente ao teor médio de matéria seca (%) do capim *Panicum maximum cv.* Mombaça, em função das láminas de irrigação (mm), com os respectivos valores do coeficiente de correlação (R^2), número de observações (n), desvio padrão (S %) e valor de F

$$MS\, (\%) = a + bL + cL^2$$

<table>
<thead>
<tr>
<th>Coeficientes do Modelo</th>
<th>Parâmetros Estatísticos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Junho</td>
</tr>
<tr>
<td>a 40,9831</td>
<td>R^2 0,98</td>
</tr>
<tr>
<td>b -0,199160</td>
<td>n 5</td>
</tr>
<tr>
<td>c 0,001372</td>
<td>S 3,0274</td>
</tr>
</tbody>
</table>

Significância a 5%

Não houve efeito significativo (P>0,05) na regressão de maio, não sendo possível estabelecer uma relação funcional entre porcentagem de matéria seca (%) e lámina de irrigação (mm).

Não houve efeito significativo (P>0,05) para as doses de adubação nitrogenada sobre os teores de matéria seca e para as interações entre láminas de irrigação e adubação nitrogenada (TABELA 11). Esta falta de significância pode ser explicada pelos efeitos marcantes da estacionalidade (baixas temperaturas), do período de descanso de 28 dias e da altura de corte de aproximadamente 30 cm, não ocorrendo respostas às adubações nitrogenadas. Os valores das médias dos teores de matéria seca nas doses de adubação nitrogenada e nas combinações de lámina e adubação encontram-se no ANEXO 3, TABELAS 20 e 21.

5.2 PROTEÍNA BRUTA (PB) NA FORRAGEIRA

Pelos dados da FIGURA 8 observa-se que houve decréscimo no teor de PB na forrageira, nos meses de junho e julho, devido ao baixo desenvolvimento foliar causado pela estacionalidade. Nos meses seguintes, setembro e outubro, com o crescimento da produção e a ocorrência de novas folhas, os teores de PB, na forrageira, aumentaram.
A análise de variância referente ao teor médio de proteína bruta na forrageira, mostrou efeito significativo (P<0,05) para as lâminas de irrigação apenas nos meses de abril, maio, junho e outubro (TABELA 14). A estacionalidade, conjuntamente com o manejo da irrigação fizeram com que os teores de PB na forrageira não tivessem uma relação funcional com as lâminas de irrigação. Nos meses de julho e setembro, a estacionalidade e o manejo da forrageira, ocasionaram a falta de tratamentos e os teores de PB aproximados. Observou-se no mês de abril, que o teor médio de proteína bruta foi maior na lâmina L₀ (TABELA 15). Isto ocorreu devido à quantidade de adubação nitrogenada anual, ter sido concentrada em três parcelas (março, abril e maio), para simular uma pastagem rotacionada, sem irrigação.

FIGURA 8- Teor médio de proteína bruta de *Panicum maximum* cv. Mombaça em função das lâminas de irrigação e as produções médias verificadas nas diferentes épocas de avaliação
TABELA 14- Análise de variância para o teor de proteína bruta (%) na MS em função de diferentes lâminas de irrigação, em diferentes épocas de avaliação

<table>
<thead>
<tr>
<th>Época</th>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repetição</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>12,9815</td>
<td>7,60*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>12,9815</td>
<td>7,60*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>4,6568</td>
<td>2,73 ns</td>
<td>11,44</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>1,2508</td>
<td>0,73 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>1,7084</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>5,6321</td>
<td>2,82*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>7,3082</td>
<td>2,79*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>4,3736</td>
<td>2,19 ns</td>
<td>11,34</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>3,8046</td>
<td>1,90 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>1,9999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>9,5863</td>
<td>3,21*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>9,5863</td>
<td>3,21*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>4,9599</td>
<td>1,66 ns</td>
<td>20,96</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>3</td>
<td>0,5094</td>
<td>0,17 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>18</td>
<td>2,9884</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRRigação</td>
<td>2</td>
<td>18,4849</td>
<td>1,03*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>39,4929</td>
<td>2,21*</td>
<td>14,27</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>6</td>
<td>11,1348</td>
<td>0,62 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>27</td>
<td>2,8261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação</td>
<td>4</td>
<td>21,8857</td>
<td>14,61*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setembro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>76,5353</td>
<td>51,10*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>2,4712</td>
<td>1,65 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>1,4977</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significância a 5 %. ns Não significativo a 1 e 5%.
TABELA 15- Comparação das médias de proteína bruta (%) na MS obtidas nas diferentes
lâminas de irrigação em diferentes épocas

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ (sem irrig.)</td>
<td>12,70 a</td>
<td>12,64 a</td>
<td>9,22 c</td>
<td>-</td>
<td>-</td>
<td>12,84 d</td>
</tr>
<tr>
<td>L₁ (30%)</td>
<td>10,17 c</td>
<td>12,22 b</td>
<td>10,00 abc</td>
<td>-</td>
<td>-</td>
<td>15,88 a</td>
</tr>
<tr>
<td>L₂ (60%)</td>
<td>11,39 b</td>
<td>11,64 b</td>
<td>9,70 bc</td>
<td>-</td>
<td>11,48</td>
<td>15,33 ab</td>
</tr>
<tr>
<td>L₃ (90%)</td>
<td>11,60 b</td>
<td>13,25 a</td>
<td>11,00 a</td>
<td>7,69</td>
<td>12,35</td>
<td>14,99 bc</td>
</tr>
<tr>
<td>L₄ (120%)</td>
<td>11,27 b</td>
<td>12,61 a</td>
<td>10,37 ab</td>
<td>8,79</td>
<td>11,49</td>
<td>14,31 c</td>
</tr>
</tbody>
</table>

Valores seguidas pelas mesmas letras na mesma coluna não diferem entre si ao nível de

5%

Não houve efeito significativo (P>0,05) nas regressões para porcentagem de
proteína bruta, não havendo uma relação funcional entre teor de proteína bruta (%) e
lâmina de irrigação (mm).

O maior teor de proteína bruta verificado em maio, ocorreu devido a baixa
relação haste/folha observada na forrageira, tendo uma maior proporção de folhas na
produção. Em outubro com o incremento da produção e a ocorrência de novas folhas os
teores de PB também se elevaram Em junho foi observada uma relação baixa de
haste/folha, devido ao manejo da forrageira e da estacionalidade, mas a produção teve um
acréscimo de matéria morta, decrescendo os teores de proteína bruta nas produções. Estas
variações na proteína estão representadas na FIGURA 9.
FIGURA 9 - Teor de proteína bruta do *Panicum maximum* cv. Mombaça, em função das láminas de irrigação

Nos teores de proteína bruta, a análise de variância mostrou efeito significativo (P<0,05) para as adubações apenas nos meses de junho, setembro e outubro (TABELA 14). Verificou-se aumento linear no teor de proteína bruta em relação as doses de adubação nitrogenada (FIGURA 10). Não houve significância (P>0,05) para os meses de abril, maio e julho, mas os teores médios de proteína bruta observados foram maiores dos que as encontrados na literatura (TABELA 16).

Nas avaliações da composição da forrageira, os valores de proteína bruta encontrados no experimento condizem com a literatura. EUCLIDES (1995) encontrou valores de 16,1% de proteína para o capim Tanzânia Imaturo. BARBOSA e EUCLIDES (1997) observaram médias de 11,6% e 4,3% de proteína bruta nas folhas e caules de capim Mombaça no período da primavera. MENEGATTI et al. (1998) verificaram em Coastercross e Tifton 68 acréscimos nos teores de proteína bruta na forrageira, com o aumento das
adubações nitrogenadas, no período de fevereiro ao final de maio (doses de 100 a 400kg/ha de N).

Em São Desidério, BA, MULLER (2000) encontrou em capim Mombaça, com período de descanso de 37 dias e adubações de nitrogênio de 30 kg/ha/corte, valores de 8,43 % de proteína na matéria seca na estação da primavera. COSTA et al. (2000) encontraram teores de 8,72 % de proteína bruta, para o Mombaça, no inverno.

\[y = 0,0151x + 10,898 \]
\[R^2 = 0,9937 \]

\[y = 0,008x + 9,7771 \]
\[R^2 = 0,9214 \]

\[y = 0,0053x + 8,7315 \]
\[R^2 = 0,9821 \]

FIGURA 10- Teor médio de proteína bruta na MS de Panicum maximum cv. Mombaça, nas diferentes doses de adubação nitrogenada (100, 200, 300 e 400 kg de N/ha)

TABELA 16- Comparação das médias de proteína bruta (%) obtidas nas diferentes doses de adubações em diferentes épocas

<table>
<thead>
<tr>
<th>Adubação</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N</td>
<td>11,24</td>
<td>11,82</td>
<td>9,20 b</td>
<td>7,27</td>
<td>10,36 b</td>
<td>12,55 d</td>
</tr>
<tr>
<td>200 kg de N</td>
<td>10,85</td>
<td>12,64</td>
<td>9,92 ab</td>
<td>8,07</td>
<td>11,80 a</td>
<td>13,72 c</td>
</tr>
<tr>
<td>300 kg de N</td>
<td>11,94</td>
<td>12,50</td>
<td>10,25 a</td>
<td>8,48</td>
<td>11,95 a</td>
<td>15,38 b</td>
</tr>
<tr>
<td>400 kg de N</td>
<td>11,67</td>
<td>12,93</td>
<td>10,86 a</td>
<td>9,15</td>
<td>12,94 a</td>
<td>17,03 a</td>
</tr>
</tbody>
</table>

Valores seguidos pelas mesmas letras na coluna não diferem entre si ao nível de 5%
Na TABELA 17, são apresentados os modelos exploratórios que melhor explicaram a variação da porcentagem de proteína bruta nos meses de junho, setembro e outubro nas diferentes doses de adubação nitrogenada.

TABELA 17 - Modelos exploratórios das épocas de junho, setembro e outubro referente a Porcentagem de proteína Bruta (%) do capim *Panicum maximum* cv. Mombaça, em função das doses de adubação nitrogenada, com os respectivos valores do coeficiente de correlação (R^2), número de observações (n), desvio padrão (S%) e valor de F.

<table>
<thead>
<tr>
<th></th>
<th>Junho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parâmetros do Modelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>8,730</td>
<td>9,790</td>
<td>10,9000</td>
</tr>
<tr>
<td>b</td>
<td>0,5340</td>
<td>0,0078</td>
<td>1,5100</td>
</tr>
<tr>
<td>Parâmetros Estatísticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0,98</td>
<td>0,92</td>
<td>0,99</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>0,6958</td>
<td>1,0630</td>
<td>1,9558</td>
</tr>
<tr>
<td>F</td>
<td>106,72**</td>
<td>22,44*</td>
<td>304,01*</td>
</tr>
</tbody>
</table>

*Significância a 5% ** Significância a 1%

As regressões dos dados dos teores de proteína bruta em função das doses de adubação nitrogenada mostraram uma resposta linear e crescente, para os meses de junho, setembro e outubro com o aumento do teor proteína bruta. Não houve significância para a interação entre lâminas de irrigação e doses de adubação nitrogenada ($P>0,05$). Os dados referentes as médias obtidas nas combinações de lâminas de irrigação e doses de adubação estão apresentados no ANEXO 3, TABELA 22.

5.3 FIBRA EM DETERGEnte NEUTRO (FDN) NA FORRAGENIR

Na avaliação da forrageira, foi observado que a estacionalidade e o manejo da forrageira afetaram os teores de FDN, fazendo com que estes aumentassem de julho em diante, quando o crescimento foliar parou. Os efeitos da estacionalidade somente cessaram a partir do mês de outubro quando a temperatura média subiu.
Figura 11 - Teores médios de FDN (%) na MS, do Panicum maximum cv. Mombaça, verificadas nas diferentes épocas de avaliação

A análise de variância referente aos teores médios de FDN, nas diferentes épocas, mostrou diferença significativa (P<0,05) para as láminas de irrigação apenas nos meses de abril e outubro, quando não houve estacionalidade (TABELA 18). Nestes meses houve relação inversa do teor de FDN com o teor de proteína bruta. Em abril, a produção teve em sua composição, acréscimos de colmos e de inflorescências, aumentando os teores de FDN. Nos meses seguintes, principalmente depois de maio os teores de FDN foram afetados pelas baixas temperaturas e manejo das forrageira, vindo a decrescer somente em outubro como é mostrado na FIGURA 12.
TABELA 18- Análise de variância para o teor médio de fibra em detergente neutro (FDN) (%) em função de diferentes lâminas de irrigação em diferentes épocas de avaliação

<table>
<thead>
<tr>
<th>Época</th>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repetição</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td>Irrigação</td>
<td>4</td>
<td>49,3000</td>
<td>3,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>7,8786</td>
<td>0,59 ns</td>
<td>4,84</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>13,9288</td>
<td>1,04 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>13,4514</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maio</td>
<td>Irrigação</td>
<td>4</td>
<td>22,0697</td>
<td>1,56 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>15,1649</td>
<td>1,08 ns</td>
<td>5,36</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>11,8327</td>
<td>0,84 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>14,1027</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junho</td>
<td>Irrigação</td>
<td>4</td>
<td>123,4956</td>
<td>2,47 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>19,0852</td>
<td>0,38 ns</td>
<td>10,52</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>28,2379</td>
<td>0,56 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>50,0489</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julho</td>
<td>Irrigação</td>
<td>1</td>
<td>8,2846</td>
<td>0,29 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>81,1031</td>
<td>2,79 ns</td>
<td>7,27</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>3</td>
<td>35,4866</td>
<td>1,22 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>18</td>
<td>29,0681</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setembro</td>
<td>Irrigação</td>
<td>2</td>
<td>18,4819</td>
<td>1,03 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>39,4929</td>
<td>2,21 ns</td>
<td>5,64</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>6</td>
<td>11,1348</td>
<td>0,62 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>27</td>
<td>17,8747</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outubro</td>
<td>Irrigação</td>
<td>4</td>
<td>29,9463</td>
<td>5,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (A)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adubação</td>
<td>3</td>
<td>5,7125</td>
<td>1,02 ns</td>
<td>3,20</td>
</tr>
<tr>
<td></td>
<td>Irrigação x Adubação</td>
<td>12</td>
<td>10,2941</td>
<td>1,85 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resíduo (B)</td>
<td>45</td>
<td>5,5774</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significância a 5 %. ns Não significativo a 1 e 5%.
Não houve efeito significativo (P>0,05) nas regressões para os teores de FDN nos meses de abril e outubro, não sendo possível estabelecer uma relação funcional entre o FDN (%) e as lâminas de irrigação (mm). Os valores encontrados para FDN em função das lâminas de irrigação condizem com a literatura (TABELA 19). Em experimento desenvolvido em Pirassununga, com período de descanso de 28 e 35 dias verificou-se uma melhora nos teores de FDN, com a diminuição do período de descanso, com composição de FDN de 77,62% (HERLING et al., 2000). Em avaliação de *Brachiaria brizantha* cv. Marandu, submetida a diferentes tensões hídricas, não houve diferença significativa nas tensões de água aplicada para o FDN (tensões de 35 a 500 Kpa) (MARCELINO, 2001). Para Mombaça, com 30 dias de idade, foi registrado nas TABELAS BRASILEIRAS DE COMPOSIÇÃO DE ALIMENTOS PARA BOVINOS, (2002) valor de 72,40% de FDN.
Não houve significância (P>0,05) para as doses de adubação nitrogenada e para interação entre lâminas e adubação, no teor de FDN (TABELA 18). Os valores médios dos teores de FDN em função das doses de adubação nitrogenada e das combinações encontram-se no ANEXO 3, TABELAS 23 e 24.

TABELA 19- Comparação das médias do teor da fibra em detergente neutro (%) obtidas nas diferentes lâminas de irrigação em diferentes épocas

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ (sem irrig.)</td>
<td>73,13 c</td>
<td>68,84</td>
<td>67,06</td>
<td>-</td>
<td>-</td>
<td>76,01 a</td>
</tr>
<tr>
<td>L₁ (30%)</td>
<td>77,14 a</td>
<td>68,92</td>
<td>68,71</td>
<td>-</td>
<td>-</td>
<td>73,76 b</td>
</tr>
<tr>
<td>L₂ (60%)</td>
<td>76,73 ab</td>
<td>71,54</td>
<td>64,37</td>
<td>-</td>
<td>74,92</td>
<td>73,23 b</td>
</tr>
<tr>
<td>L₃ (90%)</td>
<td>76,35 ab</td>
<td>69,83</td>
<td>64,94</td>
<td>74,63</td>
<td>73,84</td>
<td>72,30 b</td>
</tr>
<tr>
<td>L₄ (120%)</td>
<td>74,16 bc</td>
<td>70,79</td>
<td>71,13</td>
<td>73,61</td>
<td>75,99</td>
<td>73,93 b</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras na coluna não diferem entre si ao nível de 5%
6 CONCLUSÃO

No experimento não houve uma melhor combinação para a composição bromatológica do capim Mombaça. O experimento demonstrou que a temperatura é um fator limitante na produção de massa verde, ocasionando falta de respostas a adubação e a irrigação na produção e composição da forrageira. Outro fator limitante na produção de massa verde foi o manejo empregado na forrageira, onde períodos de descanso de 28 dias demonstraram ser insuficientes, para a produção de massa, no período de maio a setembro e a altura de corte de aproximadamente 30 cm do solo demonstrou não estimular o perfilhamento prejudicando assim a emissão e desenvolvimento dos perfilhos. A falta de pesquisas confiáveis na avaliação de produção em sistemas irrigados no Cerrado, dificulta ainda a certificação da real viabilidade econômica desta prática, devendo ser realizadas mais pesquisas para se ter bases concretas na recomendação desta prática.

A utilização do sistema de gotejamento na irrigação de pastagem ainda tem que ser muito bem estudado pois foram observadas dificuldades na avaliação da real quantidade de água aplicada, devido o sistema estar enterrado a 20 cm de profundidade, para simular uma pastagem irrigado por gotejamento.
7. REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO 1

QUADRO 1- Curva de retenção de água em um Latossolo Vermelho distrófico argilossólico

<table>
<thead>
<tr>
<th>Dados para a obtenção das curvas</th>
<th>Parâmetros para a curva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θresidual</td>
</tr>
<tr>
<td>Curva de retenção de água no solo de 0-20 cm</td>
<td>0,23</td>
</tr>
<tr>
<td>Curva de retenção de água no solo de 20-40 cm</td>
<td>0,278</td>
</tr>
</tbody>
</table>

Fórmula para o cálculo da umidade (θ) em função da tensão de água no solo (T)

θ = θr + (θs - θr)/(1 + (α x T)^n)^m

<table>
<thead>
<tr>
<th>Potencial matricial</th>
<th>(kPa)</th>
<th>Curva 1</th>
<th>Curva 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>0,347281</td>
<td>0,369326</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,346642</td>
<td>0,364664</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,322409</td>
<td>0,331933</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0,266895</td>
<td>0,308017</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,239788</td>
<td>0,294023</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>0,230001</td>
<td>0,278047</td>
</tr>
</tbody>
</table>

FIGURA 14- Curva de retenção de água no solo em duas profundidades diferentes em um Latossolo Vermelho distrófico argilossólico
ANEXO 2

QUADRO 2- Precipitação pluvial e total de lâmina aplicada por tratamento, durante a avaliação do experimento

<table>
<thead>
<tr>
<th>Época (2002)</th>
<th>Precipitação do período (mm)</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 de março a 23 de abril</td>
<td>26,4</td>
<td>16,16</td>
<td>29,90</td>
<td>48,48</td>
<td>64,64</td>
</tr>
<tr>
<td>24 de abril a 21 de maio</td>
<td>8,00</td>
<td>28,68</td>
<td>87,36</td>
<td>86,05</td>
<td>114,73</td>
</tr>
<tr>
<td>17 de julho a 10 de setembro</td>
<td>57,00</td>
<td>52,63</td>
<td>105,00</td>
<td>157,9</td>
<td>210,5</td>
</tr>
<tr>
<td>11 de setembro a 9 de outubro</td>
<td>77,8</td>
<td>33,46</td>
<td>66,91</td>
<td>100,37</td>
<td>133,83</td>
</tr>
</tbody>
</table>

QUADRO 3– Coeficiente da cultura (Kc), para dias após o pastejo (DAP), utilizados no experimento

<table>
<thead>
<tr>
<th>DAP</th>
<th>Kc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,37</td>
</tr>
<tr>
<td>2</td>
<td>0,40</td>
</tr>
<tr>
<td>3</td>
<td>0,42</td>
</tr>
<tr>
<td>4</td>
<td>0,44</td>
</tr>
<tr>
<td>5</td>
<td>0,46</td>
</tr>
<tr>
<td>6</td>
<td>0,49</td>
</tr>
<tr>
<td>7</td>
<td>0,51</td>
</tr>
<tr>
<td>8</td>
<td>0,53</td>
</tr>
<tr>
<td>9</td>
<td>0,56</td>
</tr>
<tr>
<td>10</td>
<td>0,58</td>
</tr>
<tr>
<td>11</td>
<td>0,60</td>
</tr>
<tr>
<td>12</td>
<td>0,63</td>
</tr>
<tr>
<td>13</td>
<td>0,65</td>
</tr>
<tr>
<td>14</td>
<td>0,67</td>
</tr>
</tbody>
</table>

Kc = 0,0229*DAP+0,3503

DAP: Dias após o pastejo
Kc: coeficiente do capim Panicum maximum cv. Tânzania
ANEXO 3

<table>
<thead>
<tr>
<th>TABELA 20- Médias do teor matéria seca (%) obtidas nas doses de adubação em diferentes épocas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adubação</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>100 kg de N/ano</td>
</tr>
<tr>
<td>200 kg de N/ano</td>
</tr>
<tr>
<td>300 kg de N/ano</td>
</tr>
<tr>
<td>400 kg de N/ano</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABELA 21- Médias do teor de matéria seca (%) das interações de lâminas de água e adubação nitrogenada nas diferentes épocas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrig. X Adub.</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₂ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 500 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABELA 22- Médias do teor de proteína bruta (%) das interações láminas de água e adubação nitrogenada nas diferentes épocas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrig. X Adub.</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
<tr>
<td>L₀ x 100 de N</td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
</tr>
</tbody>
</table>
TABELA 23- Médias da fibra em detergente neutro (%) obtidas nas diferentes doses de adubações em diferentes épocas

<table>
<thead>
<tr>
<th>Adubação</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N</td>
<td>75,22</td>
<td>68,97</td>
<td>66,79</td>
<td>78,27</td>
<td>76,37</td>
<td>73,33</td>
</tr>
<tr>
<td>200 kg de N</td>
<td>76,43</td>
<td>70,39</td>
<td>66,68</td>
<td>74,98</td>
<td>72,59</td>
<td>74,58</td>
</tr>
<tr>
<td>300 kg de N</td>
<td>75,06</td>
<td>69,62</td>
<td>66,71</td>
<td>74,15</td>
<td>76,35</td>
<td>73,62</td>
</tr>
<tr>
<td>400 kg de N</td>
<td>75,29</td>
<td>70,96</td>
<td>66,80</td>
<td>70,53</td>
<td>74,36</td>
<td>73,86</td>
</tr>
</tbody>
</table>

TABELA 24- Médias do teor de fibra em detergente neutro (%) das interações láminas de irrigação e adubação nitrogenada nas diferentes épocas

<table>
<thead>
<tr>
<th>Irrig. x Adub.</th>
<th>Abril</th>
<th>Maio</th>
<th>Junho</th>
<th>Julho</th>
<th>Setembro</th>
<th>Outubro</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₀ x 100 de N</td>
<td>74,91</td>
<td>68,81</td>
<td>66,20</td>
<td>-</td>
<td>75,75</td>
<td></td>
</tr>
<tr>
<td>L₀ x 200 de N</td>
<td>75,34</td>
<td>68,29</td>
<td>67,95</td>
<td>-</td>
<td>-</td>
<td>78,01</td>
</tr>
<tr>
<td>L₀ x 300 de N</td>
<td>70,70</td>
<td>66,74</td>
<td>67,69</td>
<td>-</td>
<td>-</td>
<td>75,85</td>
</tr>
<tr>
<td>L₀ x 400 de N</td>
<td>71,57</td>
<td>71,54</td>
<td>66,39</td>
<td>-</td>
<td>-</td>
<td>74,43</td>
</tr>
<tr>
<td>L₁ x 100 de N</td>
<td>75,87</td>
<td>67,82</td>
<td>70,07</td>
<td>-</td>
<td>-</td>
<td>71,18</td>
</tr>
<tr>
<td>L₁ x 200 de N</td>
<td>78,75</td>
<td>70,74</td>
<td>64,51</td>
<td>-</td>
<td>-</td>
<td>75,05</td>
</tr>
<tr>
<td>L₁ x 300 de N</td>
<td>75,14</td>
<td>66,15</td>
<td>73,97</td>
<td>-</td>
<td>-</td>
<td>73,82</td>
</tr>
<tr>
<td>L₁ x 400 de N</td>
<td>78,79</td>
<td>70,97</td>
<td>66,30</td>
<td>-</td>
<td>-</td>
<td>74,99</td>
</tr>
<tr>
<td>L₂ x 100 de N</td>
<td>78,36</td>
<td>70,87</td>
<td>64,26</td>
<td>-</td>
<td>78,78</td>
<td>74,86</td>
</tr>
<tr>
<td>L₂ x 200 de N</td>
<td>77,44</td>
<td>71,12</td>
<td>65,61</td>
<td>-</td>
<td>72,20</td>
<td>72,37</td>
</tr>
<tr>
<td>L₂ x 300 de N</td>
<td>76,52</td>
<td>74,10</td>
<td>65,69</td>
<td>-</td>
<td>75,46</td>
<td>73,83</td>
</tr>
<tr>
<td>L₂ x 400 de N</td>
<td>74,61</td>
<td>70,06</td>
<td>61,93</td>
<td>-</td>
<td>73,24</td>
<td>71,84</td>
</tr>
<tr>
<td>L₃ x 100 de N</td>
<td>73,84</td>
<td>67,63</td>
<td>63,17</td>
<td>78,22</td>
<td>74,94</td>
<td>72,08</td>
</tr>
<tr>
<td>L₃ x 200 de N</td>
<td>76,02</td>
<td>70,59</td>
<td>64,79</td>
<td>73,73</td>
<td>71,96</td>
<td>71,59</td>
</tr>
<tr>
<td>L₃ x 300 de N</td>
<td>78,40</td>
<td>70,71</td>
<td>62,62</td>
<td>72,60</td>
<td>74,47</td>
<td>70,94</td>
</tr>
<tr>
<td>L₃ x 400 de N</td>
<td>77,15</td>
<td>70,39</td>
<td>69,17</td>
<td>73,98</td>
<td>74,00</td>
<td>74,58</td>
</tr>
<tr>
<td>L₄ x 100 de N</td>
<td>73,14</td>
<td>69,74</td>
<td>70,24</td>
<td>78,32</td>
<td>75,39</td>
<td>72,75</td>
</tr>
<tr>
<td>L₄ x 200 de N</td>
<td>74,62</td>
<td>71,20</td>
<td>70,53</td>
<td>73,35</td>
<td>73,62</td>
<td>75,88</td>
</tr>
<tr>
<td>L₄ x 300 de N</td>
<td>74,55</td>
<td>70,39</td>
<td>73,56</td>
<td>75,70</td>
<td>79,11</td>
<td>73,66</td>
</tr>
<tr>
<td>L₄ x 400 de N</td>
<td>74,34</td>
<td>71,84</td>
<td>70,21</td>
<td>67,08</td>
<td>75,85</td>
<td>73,45</td>
</tr>
</tbody>
</table>
ANEXO 4

TABELA 16- Análise de variância da matéria seca (%) em diferentes épocas de avaliação.

<table>
<thead>
<tr>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigação (1ª época)</td>
<td>4</td>
<td>3,1444</td>
<td>1,88*</td>
<td>6,5091</td>
</tr>
<tr>
<td>Adubação (1ª época)</td>
<td>3</td>
<td>0,9601</td>
<td>0,58*</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (1ª época)</td>
<td>12</td>
<td>1,0405</td>
<td>0,62*</td>
<td></td>
</tr>
<tr>
<td>Resíduo (1ª época)</td>
<td>45</td>
<td>1,6683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (1ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (2ª época)</td>
<td>4</td>
<td>23,3503</td>
<td>16,32*</td>
<td>5,0627</td>
</tr>
<tr>
<td>Adubação (2ª época)</td>
<td>3</td>
<td>1,9360</td>
<td>1,35</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (2ª época)</td>
<td>12</td>
<td>1,1594</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>Resíduo (2ª época)</td>
<td>45</td>
<td>1,4308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (2ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (3ª época)</td>
<td>4</td>
<td>146,6399</td>
<td>14,50*</td>
<td>8,7855</td>
</tr>
<tr>
<td>Adubação (3ª época)</td>
<td>3</td>
<td>3,5867</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (3ª época)</td>
<td>12</td>
<td>1,6842</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>Resíduo (3ª época)</td>
<td>45</td>
<td>10,1156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (3ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (4ª época)</td>
<td>1</td>
<td>165,4662</td>
<td>22,94*</td>
<td>8,0233</td>
</tr>
<tr>
<td>Adubação (4ª época)</td>
<td>3</td>
<td>6,8044</td>
<td>0,94</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (4ª época)</td>
<td>3</td>
<td>3,9633</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Resíduo (4ª época)</td>
<td>18</td>
<td>7,2131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (4ª época)</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (5ª época)</td>
<td>2</td>
<td>67,2756</td>
<td>1,31</td>
<td>20,3971</td>
</tr>
<tr>
<td>Adubação (5ª época)</td>
<td>3</td>
<td>74,6961</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (5ª época)</td>
<td>6</td>
<td>59,7056</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>Resíduo (5ª época)</td>
<td>27</td>
<td>51,4609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (5ª época)</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (6ª época)</td>
<td>4</td>
<td>48,9758</td>
<td>1,70</td>
<td>16,9515</td>
</tr>
<tr>
<td>Adubação (6ª época)</td>
<td>3</td>
<td>22,0421</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (6ª época)</td>
<td>12</td>
<td>25,8310</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>Resíduo (6ª época)</td>
<td>45</td>
<td>28,7962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (6ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* siginificância a 5%.

ns Não significativo a 1 e 5%.
TABELA 17- Comparação das médias de matéria seca (%), obtidas nas lâminas de irrigação em diferentes épocas.

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>1º época</th>
<th>2º época</th>
<th>3º época</th>
<th>4º época</th>
<th>5º época</th>
<th>6º época</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (sem irrig.)</td>
<td>19,5025b</td>
<td>25,4154a</td>
<td>40,6870a</td>
<td>-</td>
<td>-</td>
<td>32,3319ab</td>
</tr>
<tr>
<td>1 (30%)</td>
<td>19,8272ab</td>
<td>24,2433b</td>
<td>37,9053b</td>
<td>-</td>
<td>-</td>
<td>31,5606ab</td>
</tr>
<tr>
<td>2 (60%)</td>
<td>20,5001a</td>
<td>23,2915c</td>
<td>34,6772bc</td>
<td>-</td>
<td>35,0369a</td>
<td>30,5953ab</td>
</tr>
<tr>
<td>3 (90%)</td>
<td>19,3824b</td>
<td>22,5322c</td>
<td>33,4028c</td>
<td>35,7479a</td>
<td>37,2837a</td>
<td>34,1922a</td>
</tr>
<tr>
<td>4 (120%)</td>
<td>20,0042ab</td>
<td>22,6532d</td>
<td>34,3358c</td>
<td>31,2000a</td>
<td>33,1891a</td>
<td>29,6015b</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)

TABELA 18- Comparação das médias das matérias secas (%) obtidas nas doses de adubações em diferentes épocas.

<table>
<thead>
<tr>
<th>Adubação</th>
<th>1º época</th>
<th>2º época</th>
<th>3º época</th>
<th>4º época</th>
<th>5º época</th>
<th>6º época</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N/ano</td>
<td>20,1367 a</td>
<td>23,8734 a</td>
<td>36,6178 a</td>
<td>33,6333 a</td>
<td>38,8973 a</td>
<td>32,7780a</td>
</tr>
<tr>
<td>200 kg de N/ano</td>
<td>19,8746 a</td>
<td>23,2710 a</td>
<td>35,8373 a</td>
<td>33,2449 a</td>
<td>34,1105 a</td>
<td>32,3167a</td>
</tr>
<tr>
<td>300 kg de N/ano</td>
<td>19,7267 a</td>
<td>23,9021 a</td>
<td>36,5154 a</td>
<td>32,3972 a</td>
<td>34,0582 a</td>
<td>30,8749a</td>
</tr>
<tr>
<td>400 kg de N/ano</td>
<td>19,6351 a</td>
<td>23,4619 a</td>
<td>35,8360 a</td>
<td>34,6204 a</td>
<td>33,6136 a</td>
<td>30,6556a</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)

TABELA 19- Médias de matéria seca (%) das interações de lâminas de água e adubação nitrogenada nas diferentes épocas.

<table>
<thead>
<tr>
<th>Irrig. x Adub.</th>
<th>1º época</th>
<th>2º época</th>
<th>3º época</th>
<th>4º época</th>
<th>5º época</th>
<th>6º época</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0 x 100 de N</td>
<td>20,0150</td>
<td>26,1319</td>
<td>40,8148</td>
<td>-</td>
<td>-</td>
<td>32,8609a</td>
</tr>
<tr>
<td>L0 x 200 de N</td>
<td>19,4354</td>
<td>24,5392</td>
<td>40,6518</td>
<td>-</td>
<td>-</td>
<td>34,3331</td>
</tr>
<tr>
<td>L0 x 300 de N</td>
<td>19,7352</td>
<td>25,7580</td>
<td>41,1670</td>
<td>-</td>
<td>-</td>
<td>32,3278</td>
</tr>
<tr>
<td>L0 x 400 de N</td>
<td>18,8245</td>
<td>25,2324</td>
<td>40,1144</td>
<td>-</td>
<td>-</td>
<td>29,8057</td>
</tr>
<tr>
<td>L1 x 100 de N</td>
<td>19,9597</td>
<td>23,4927</td>
<td>37,8595</td>
<td>-</td>
<td>-</td>
<td>31,3990</td>
</tr>
<tr>
<td>L1 x 200 de N</td>
<td>20,0138</td>
<td>24,8375</td>
<td>37,0046</td>
<td>-</td>
<td>-</td>
<td>33,5523</td>
</tr>
<tr>
<td>L1 x 300 de N</td>
<td>19,6244</td>
<td>24,6618</td>
<td>38,3550</td>
<td>-</td>
<td>-</td>
<td>31,3506</td>
</tr>
<tr>
<td>L1 x 400 de N</td>
<td>19,7107</td>
<td>23,9811</td>
<td>38,4022</td>
<td>-</td>
<td>-</td>
<td>29,9406</td>
</tr>
<tr>
<td>L2 x 100 de N</td>
<td>21,1305</td>
<td>23,8031</td>
<td>35,3552</td>
<td>-</td>
<td>34,5624</td>
<td>33,7883</td>
</tr>
<tr>
<td>L2 x 200 de N</td>
<td>20,9186</td>
<td>22,4246</td>
<td>33,4551</td>
<td>-</td>
<td>35,0859</td>
<td>29,8536</td>
</tr>
<tr>
<td>L2 x 300 de N</td>
<td>19,6364</td>
<td>23,8197</td>
<td>34,8786</td>
<td>-</td>
<td>35,5824</td>
<td>30,2609</td>
</tr>
<tr>
<td>L2 x 400 de N</td>
<td>20,3149</td>
<td>23,1187</td>
<td>35,0200</td>
<td>-</td>
<td>34,9168</td>
<td>28,4784</td>
</tr>
<tr>
<td>L3 x 100 de N</td>
<td>19,7538</td>
<td>23,1757</td>
<td>34,4585</td>
<td>36,7453</td>
<td>47,3974</td>
<td>32,5928</td>
</tr>
<tr>
<td>L3 x 200 de N</td>
<td>19,6020</td>
<td>21,8633</td>
<td>33,5384</td>
<td>34,6729</td>
<td>33,3437</td>
<td>32,7114</td>
</tr>
<tr>
<td>L3 x 300 de N</td>
<td>18,8051</td>
<td>22,7823</td>
<td>33,2582</td>
<td>34,8599</td>
<td>35,1745</td>
<td>32,4876</td>
</tr>
<tr>
<td>L3 x 400 de N</td>
<td>19,3687</td>
<td>22,3074</td>
<td>32,3596</td>
<td>36,7135</td>
<td>33,2192</td>
<td>38,9768</td>
</tr>
<tr>
<td>L4 x 100 de N</td>
<td>19,8244</td>
<td>22,7638</td>
<td>34,6045</td>
<td>30,5213</td>
<td>34,7322</td>
<td>33,2488</td>
</tr>
<tr>
<td>L4 x 200 de N</td>
<td>19,4034</td>
<td>22,6903</td>
<td>34,5368</td>
<td>31,8169</td>
<td>33,9018</td>
<td>31,1332</td>
</tr>
<tr>
<td>L4 x 300 de N</td>
<td>20,8322</td>
<td>22,4886</td>
<td>34,9182</td>
<td>29,9345</td>
<td>31,4176</td>
<td>27,9473</td>
</tr>
<tr>
<td>L4 x 400 de N</td>
<td>19,9568</td>
<td>22,6701</td>
<td>33,2838</td>
<td>32,5272</td>
<td>32,7048</td>
<td>26,0767</td>
</tr>
<tr>
<td>Causa da Variação</td>
<td>GL</td>
<td>QM</td>
<td>F</td>
<td>CV (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (1ª época)</td>
<td>4</td>
<td>12,9815</td>
<td>7,60*</td>
<td>11,4355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (1ª época)</td>
<td>3</td>
<td>4,6568</td>
<td>2,73m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (1ª época)</td>
<td>12</td>
<td>1,2508</td>
<td>0,73m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (1ª época)</td>
<td>45</td>
<td>1,7084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (1ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (2ª época)</td>
<td>4</td>
<td>5,6321</td>
<td>2,82*</td>
<td>11,3355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (2ª época)</td>
<td>3</td>
<td>4,3736</td>
<td>2,19m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (2ª época)</td>
<td>12</td>
<td>3,8046</td>
<td>1,90m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (2ª época)</td>
<td>45</td>
<td>1,9999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (2ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (3ª época)</td>
<td>4</td>
<td>7,3082</td>
<td>2,79*</td>
<td>16,0748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (3ª época)</td>
<td>3</td>
<td>9,6305</td>
<td>3,68*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (3ª época)</td>
<td>12</td>
<td>4,2456</td>
<td>1,62m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (3ª época)</td>
<td>45</td>
<td>2,6167</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (3ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (4ª época)</td>
<td>1</td>
<td>9,5863</td>
<td>3,21*</td>
<td>20,9629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (4ª época)</td>
<td>3</td>
<td>4,9599</td>
<td>1,66m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (4ª época)</td>
<td>3</td>
<td>0,5094</td>
<td>0,17m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (4ª época)</td>
<td>18</td>
<td>2,9884</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (4ª época)</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (5ª época)</td>
<td>2</td>
<td>18,4849</td>
<td>1,03m</td>
<td>14,2723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (5ª época)</td>
<td>3</td>
<td>39,4929</td>
<td>2,21m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (5ª época)</td>
<td>6</td>
<td>11,1348</td>
<td>0,62m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (5ª época)</td>
<td>27</td>
<td>2,8261</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (5ª época)</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (6ª época)</td>
<td>4</td>
<td>21,8857</td>
<td>14,61*</td>
<td>8,3396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adubação (6ª época)</td>
<td>3</td>
<td>76,5353</td>
<td>51,10*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (6ª época)</td>
<td>12</td>
<td>2,4712</td>
<td>1,65m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (6ª época)</td>
<td>45</td>
<td>1,4977</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (6ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* significância a 5 %.
ns Não significativo a 1 e 5%.
TABELA 21- Comparação das médias de proteína bruta (%) obtidas nas lâminas de irrigação em diferentes épocas.

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>1ª época</th>
<th>2ª época</th>
<th>3ª época</th>
<th>4ª época</th>
<th>5ª época</th>
<th>6ª época</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (sem irrig.)</td>
<td>12,7001 a</td>
<td>12,6365 a</td>
<td>9,2199 c</td>
<td>-</td>
<td>-</td>
<td>12,8443 d</td>
</tr>
<tr>
<td>1 (30%)</td>
<td>10,1738 c</td>
<td>12,2290 b</td>
<td>10,0074 abc</td>
<td>-</td>
<td>-</td>
<td>15,8813 a</td>
</tr>
<tr>
<td>2 (60%)</td>
<td>11,3971 b</td>
<td>11,6419 b</td>
<td>9,7072 bc</td>
<td>-</td>
<td>-</td>
<td>15,3314 ab</td>
</tr>
<tr>
<td>3 (90%)</td>
<td>11,6021 b</td>
<td>13,2537 a</td>
<td>10,0074 a</td>
<td>7,6961 a</td>
<td>12,3593 a</td>
<td>14,9996 bc</td>
</tr>
<tr>
<td>4 (120%)</td>
<td>11,2769 b</td>
<td>12,6195 a</td>
<td>10,3764 ab</td>
<td>8,7938 a</td>
<td>11,4903 a</td>
<td>14,3164 c</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)

TABELA 22- Comparação das médias de proteína bruta (%) obtidas nas doses de adubações em diferentes épocas.

<table>
<thead>
<tr>
<th>Adubação</th>
<th>1ª época</th>
<th>2ª época</th>
<th>3ª época</th>
<th>4ª época</th>
<th>5ª época</th>
<th>6ª época</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N/ano</td>
<td>11,2450 ab</td>
<td>11,8277 b</td>
<td>9,2009 b</td>
<td>7,2728 b</td>
<td>10,3675 b</td>
<td>12,5558 d</td>
</tr>
<tr>
<td>200 kg de N/ano</td>
<td>10,8510 b</td>
<td>12,6424 ab</td>
<td>9,9268 ab</td>
<td>8,0713 ab</td>
<td>11,8037 a</td>
<td>13,7236 c</td>
</tr>
<tr>
<td>300 kg de N/ano</td>
<td>11,9484 a</td>
<td>12,5030 ab</td>
<td>10,2592 a</td>
<td>8,4882 ab</td>
<td>11,9595 a</td>
<td>15,3804 b</td>
</tr>
<tr>
<td>400 kg de N/ano</td>
<td>11,6754 a</td>
<td>12,9313 a</td>
<td>10,8657 a</td>
<td>9,1536 a</td>
<td>12,9488 a</td>
<td>17,0386 a</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)

TABELA 23- Médias das proteína bruta (%) das interações lâminas de água e adubação nitrogenada nas diferentes épocas.

<table>
<thead>
<tr>
<th>Irrig. x Adub.</th>
<th>1ª época</th>
<th>2ª época</th>
<th>3ª época</th>
<th>4ª época</th>
<th>5ª época</th>
<th>6ª época</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0 x 100 de N</td>
<td>11,9260</td>
<td>12,1572</td>
<td>8,9139</td>
<td>-</td>
<td>-</td>
<td>11,0165</td>
</tr>
<tr>
<td>L0 x 200 de N</td>
<td>12,1932</td>
<td>12,5725</td>
<td>8,7233</td>
<td>-</td>
<td>-</td>
<td>12,1534</td>
</tr>
<tr>
<td>L0 x 300 de N</td>
<td>13,0070</td>
<td>11,7082</td>
<td>8,9356</td>
<td>-</td>
<td>-</td>
<td>13,6500</td>
</tr>
<tr>
<td>L0 x 400 de N</td>
<td>13,7043</td>
<td>14,1081</td>
<td>10,3070</td>
<td>-</td>
<td>-</td>
<td>14,5572</td>
</tr>
<tr>
<td>L1 x 100 de N</td>
<td>9,9018</td>
<td>12,3734</td>
<td>9,8712</td>
<td>-</td>
<td>-</td>
<td>13,2953</td>
</tr>
<tr>
<td>L1 x 200 de N</td>
<td>9,9150</td>
<td>12,3681</td>
<td>10,2206</td>
<td>-</td>
<td>-</td>
<td>15,9337</td>
</tr>
<tr>
<td>L1 x 300 de N</td>
<td>10,6085</td>
<td>11,8665</td>
<td>10,0039</td>
<td>-</td>
<td>-</td>
<td>16,3609</td>
</tr>
<tr>
<td>L1 x 400 de N</td>
<td>10,2698</td>
<td>12,3129</td>
<td>9,9340</td>
<td>-</td>
<td>-</td>
<td>17,9351</td>
</tr>
<tr>
<td>L2 x 100 de N</td>
<td>10,8139</td>
<td>9,6118</td>
<td>7,0972</td>
<td>-</td>
<td>9,5138</td>
<td>12,6703</td>
</tr>
<tr>
<td>L2 x 200 de N</td>
<td>10,8920</td>
<td>12,6402</td>
<td>10,9951</td>
<td>-</td>
<td>11,3555</td>
<td>14,1149</td>
</tr>
<tr>
<td>L2 x 300 de N</td>
<td>11,5699</td>
<td>11,7696</td>
<td>10,2285</td>
<td>-</td>
<td>12,2441</td>
<td>16,2684</td>
</tr>
<tr>
<td>L2 x 400 de N</td>
<td>12,3124</td>
<td>12,5459</td>
<td>10,5079</td>
<td>-</td>
<td>12,8340</td>
<td>18,2719</td>
</tr>
<tr>
<td>L3 x 100 de N</td>
<td>11,8773</td>
<td>12,8470</td>
<td>9,6388</td>
<td>6,5733</td>
<td>11,2868</td>
<td>13,1795</td>
</tr>
<tr>
<td>L3 x 200 de N</td>
<td>10,6068</td>
<td>14,2325</td>
<td>11,0088</td>
<td>7,8083</td>
<td>12,8703</td>
<td>14,6786</td>
</tr>
<tr>
<td>L3 x 300 de N</td>
<td>12,6900</td>
<td>13,0434</td>
<td>10,7203</td>
<td>8,0786</td>
<td>12,2370</td>
<td>15,3249</td>
</tr>
<tr>
<td>L3 x 400 de N</td>
<td>11,2344</td>
<td>12,8921</td>
<td>12,6557</td>
<td>8,3424</td>
<td>13,0429</td>
<td>16,8155</td>
</tr>
<tr>
<td>L4 x 100 de N</td>
<td>11,7059</td>
<td>12,1490</td>
<td>10,4836</td>
<td>7,9724</td>
<td>10,3018</td>
<td>12,6174</td>
</tr>
<tr>
<td>L4 x 200 de N</td>
<td>10,6783</td>
<td>11,4037</td>
<td>8,6863</td>
<td>8,3343</td>
<td>11,1854</td>
<td>11,7373</td>
</tr>
<tr>
<td>L4 x 300 de N</td>
<td>11,8669</td>
<td>14,1276</td>
<td>11,4075</td>
<td>8,9038</td>
<td>11,3974</td>
<td>15,2977</td>
</tr>
<tr>
<td>L4 x 400 de N</td>
<td>10,8564</td>
<td>12,7976</td>
<td>10,9239</td>
<td>9,9648</td>
<td>13,0765</td>
<td>17,6133</td>
</tr>
</tbody>
</table>
TABELA 24- Análise de variância para a fibra em detergente neutro (%) em diferentes épocas de avaliação.

<table>
<thead>
<tr>
<th>Causa da Variação</th>
<th>GL</th>
<th>QM</th>
<th>F</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigação (1ª época)</td>
<td>4</td>
<td>49,3000</td>
<td>3,67*</td>
<td>4,8573</td>
</tr>
<tr>
<td>Adubação (1ª época)</td>
<td>3</td>
<td>7,8786</td>
<td>0,59**</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (1ª época)</td>
<td>12</td>
<td>13,9288</td>
<td>1,04**</td>
<td></td>
</tr>
<tr>
<td>Resíduo (1ª época)</td>
<td>45</td>
<td>13,4514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (1ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (2ª época)</td>
<td>4</td>
<td>22,0697</td>
<td>1,56**</td>
<td>5,365642</td>
</tr>
<tr>
<td>Adubação (2ª época)</td>
<td>3</td>
<td>15,1649</td>
<td>0,38ns</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (2ª época)</td>
<td>12</td>
<td>11,8327</td>
<td>0,84ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (2ª época)</td>
<td>45</td>
<td>14,1027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (2ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (3ª época)</td>
<td>4</td>
<td>123,4956</td>
<td>2,47**</td>
<td>10,5199</td>
</tr>
<tr>
<td>Adubação (3ª época)</td>
<td>3</td>
<td>19,0852</td>
<td>0,38ns</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (3ª época)</td>
<td>12</td>
<td>28,2379</td>
<td>0,56ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (3ª época)</td>
<td>45</td>
<td>50,0489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (3ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (4ª época)</td>
<td>1</td>
<td>8,2846</td>
<td>0,29ns</td>
<td>7,2732</td>
</tr>
<tr>
<td>Adubação (4ª época)</td>
<td>3</td>
<td>81,1031</td>
<td>2,79**</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (4ª época)</td>
<td>3</td>
<td>55,4866</td>
<td>1,22**</td>
<td></td>
</tr>
<tr>
<td>Resíduo (4ª época)</td>
<td>18</td>
<td>29,0681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (4ª época)</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (5ª época)</td>
<td>2</td>
<td>18,4819</td>
<td>1,03ns</td>
<td>5,6428</td>
</tr>
<tr>
<td>Adubação (5ª época)</td>
<td>3</td>
<td>39,4929</td>
<td>2,21**</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (5ª época)</td>
<td>6</td>
<td>11,1348</td>
<td>0,62ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (5ª época)</td>
<td>27</td>
<td>17,8747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (5ª época)</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigação (6ª época)</td>
<td>4</td>
<td>29,9463</td>
<td>5,37*</td>
<td>3,1979</td>
</tr>
<tr>
<td>Adubação (6ª época)</td>
<td>3</td>
<td>5,1725</td>
<td>1,02ns</td>
<td></td>
</tr>
<tr>
<td>Irrigação x Adubação (6ª época)</td>
<td>12</td>
<td>10,2941</td>
<td>1,85ns</td>
<td></td>
</tr>
<tr>
<td>Resíduo (6ª época)</td>
<td>45</td>
<td>5,5774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (6ª época)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* siginificância a 5 %.

ns Não significativo a 1 e 5%.

TABELA 25- Comparação das médias da fibra em detergente neutro (%) obtidas nas lâminas de irrigação em diferentes épocas.

<table>
<thead>
<tr>
<th>Lâmina</th>
<th>1ª época</th>
<th>2ª época</th>
<th>3ª época</th>
<th>4ª época</th>
<th>5ª época</th>
<th>6ª época</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (sem irrig.)</td>
<td>73,1351 c</td>
<td>68,8497 b</td>
<td>67,0660 ab</td>
<td>-</td>
<td>-</td>
<td>76,0158 a</td>
</tr>
<tr>
<td>1 (30%)</td>
<td>77,1406 a</td>
<td>68,9244 ab</td>
<td>68,7151 ab</td>
<td>-</td>
<td>-</td>
<td>73,7652 b</td>
</tr>
<tr>
<td>2 (60%)</td>
<td>76,7344 ab</td>
<td>71,5455 a</td>
<td>64,3797 b</td>
<td>-</td>
<td>-</td>
<td>74,9265 a</td>
</tr>
<tr>
<td>3 (90%)</td>
<td>76,3593 ab</td>
<td>69,8339 ab</td>
<td>64,9419 b</td>
<td>74,6373 a</td>
<td>73,8484 a</td>
<td>72,3014 b</td>
</tr>
<tr>
<td>4 (120%)</td>
<td>74,1664 bc</td>
<td>70,7948 ab</td>
<td>71,1394 a</td>
<td>73,6197 a</td>
<td>75,9980 a</td>
<td>73,9398 b</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)
TABELA 26- Comparação das médias da fibra em detergente neutro (%) obtidas nas doses de adubações em diferentes épocas.

<table>
<thead>
<tr>
<th>Adubação</th>
<th>1º época</th>
<th>2º época</th>
<th>3º época</th>
<th>4º época</th>
<th>5º época</th>
<th>6º época</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg de N/ano</td>
<td>75,2278 a</td>
<td>68,9779 a</td>
<td>66,7934 a</td>
<td>78,2747 a</td>
<td>76,3747 a</td>
<td>73,3317 a</td>
</tr>
<tr>
<td>200 kg de N/ano</td>
<td>76,4376 a</td>
<td>70,3915 a</td>
<td>66,6842 a</td>
<td>74,9877 ab</td>
<td>72,5976 b</td>
<td>74,5833 a</td>
</tr>
<tr>
<td>300 kg de N/ano</td>
<td>75,0675 a</td>
<td>69,6205 a</td>
<td>66,7115 a</td>
<td>74,1530 ab</td>
<td>76,3555 a</td>
<td>73,6254 a</td>
</tr>
<tr>
<td>400 kg de N/ano</td>
<td>75,2958 a</td>
<td>70,9661 a</td>
<td>68,8046 a</td>
<td>70,5389 b</td>
<td>74,3694 ab</td>
<td>73,8628 a</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)

TABELA 27- Médias das fibras em detergente neutro (%) das interações lâminas de água e adubação nitrogenada nas diferentes épocas.

<table>
<thead>
<tr>
<th>Irrig. x Adub.</th>
<th>1º época</th>
<th>2º época</th>
<th>3º época</th>
<th>4º época</th>
<th>5º época</th>
<th>6º época</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0 x 100 de N</td>
<td>74,9150</td>
<td>68,8125</td>
<td>66,2097</td>
<td>-</td>
<td>-</td>
<td>75,7575</td>
</tr>
<tr>
<td>L0 x 200 de N</td>
<td>75,3440</td>
<td>68,2968</td>
<td>67,9584</td>
<td>-</td>
<td>-</td>
<td>78,0159</td>
</tr>
<tr>
<td>L0 x 300 de N</td>
<td>70,7098</td>
<td>66,7408</td>
<td>67,6993</td>
<td>-</td>
<td>-</td>
<td>75,8540</td>
</tr>
<tr>
<td>L0 x 400 de N</td>
<td>71,5715</td>
<td>71,5486</td>
<td>66,3968</td>
<td>-</td>
<td>-</td>
<td>74,4360</td>
</tr>
<tr>
<td>L1 x 100 de N</td>
<td>75,8704</td>
<td>67,8216</td>
<td>70,0728</td>
<td>-</td>
<td>-</td>
<td>71,1895</td>
</tr>
<tr>
<td>L1 x 200 de N</td>
<td>78,7535</td>
<td>70,7480</td>
<td>64,5128</td>
<td>-</td>
<td>-</td>
<td>75,0528</td>
</tr>
<tr>
<td>L1 x 300 de N</td>
<td>75,1427</td>
<td>66,1512</td>
<td>73,9727</td>
<td>-</td>
<td>-</td>
<td>73,8241</td>
</tr>
<tr>
<td>L1 x 400 de N</td>
<td>78,7959</td>
<td>70,9767</td>
<td>66,3020</td>
<td>-</td>
<td>-</td>
<td>74,9943</td>
</tr>
<tr>
<td>L2 x 100 de N</td>
<td>78,3619</td>
<td>70,8757</td>
<td>64,2690</td>
<td>-</td>
<td>78,7821</td>
<td>74,8684</td>
</tr>
<tr>
<td>L2 x 200 de N</td>
<td>74,4148</td>
<td>71,1201</td>
<td>65,6199</td>
<td>-</td>
<td>72,2080</td>
<td>72,3764</td>
</tr>
<tr>
<td>L2 x 300 de N</td>
<td>76,5232</td>
<td>74,1047</td>
<td>65,6990</td>
<td>-</td>
<td>75,4687</td>
<td>73,8356</td>
</tr>
<tr>
<td>L2 x 400 de N</td>
<td>74,6107</td>
<td>70,0685</td>
<td>61,9307</td>
<td>-</td>
<td>73,2472</td>
<td>71,8467</td>
</tr>
<tr>
<td>L3 x 100 de N</td>
<td>73,8479</td>
<td>67,6342</td>
<td>63,1734</td>
<td>78,2225</td>
<td>74,9451</td>
<td>72,0860</td>
</tr>
<tr>
<td>L3 x 200 de N</td>
<td>76,0283</td>
<td>70,5922</td>
<td>64,7971</td>
<td>73,7351</td>
<td>71,9649</td>
<td>71,5905</td>
</tr>
<tr>
<td>L3 x 300 de N</td>
<td>78,4043</td>
<td>70,7144</td>
<td>62,6200</td>
<td>72,6029</td>
<td>74,4781</td>
<td>70,9450</td>
</tr>
<tr>
<td>L3 x 400 de N</td>
<td>77,1569</td>
<td>70,3951</td>
<td>69,1772</td>
<td>73,9889</td>
<td>74,0057</td>
<td>74,5840</td>
</tr>
<tr>
<td>L4 x 100 de N</td>
<td>73,1439</td>
<td>69,7458</td>
<td>70,2421</td>
<td>78,3269</td>
<td>75,3970</td>
<td>72,7574</td>
</tr>
<tr>
<td>L4 x 200 de N</td>
<td>74,6205</td>
<td>71,2002</td>
<td>70,5329</td>
<td>73,3598</td>
<td>73,6200</td>
<td>75,8807</td>
</tr>
<tr>
<td>L4 x 300 de N</td>
<td>74,5572</td>
<td>70,3916</td>
<td>73,5663</td>
<td>75,7031</td>
<td>79,1196</td>
<td>73,6684</td>
</tr>
<tr>
<td>L4 x 400 de N</td>
<td>73,3440</td>
<td>71,8417</td>
<td>70,2164</td>
<td>67,0890</td>
<td>75,8553</td>
<td>73,4530</td>
</tr>
</tbody>
</table>

Médias de lâminas seguidas pelas mesmas letras não diferem entre si ao nível de 5% (0,05)