BIODIVERSIDADE E PADRÕES DE DISTRIBUIÇÃO DA ANUROFAUNA DO PARQUE NACIONAL DAS EMAS E ENTORNO

Katia Kopp

Goiânia

2009
BIODIVERSIDADE E PADRÕES DE DISTRIBUIÇÃO DA ANUROFAUNA DO PARQUE NACIONAL DAS EMAS E ENTORNO

Katia Kopp

Orientador: Dr. Rogério Pereira Bastos

Tese apresentada ao Programa de Doutorado em Ciências Ambientais da Universidade Federal de Goiás, como requisito parcial para a obtenção do título de Doutor em Ciências Ambientais.

Goiânia
2009
“O homem é um animal com instintos primários de sobrevivência. Por isso, seu engenho desenvolveu-se primeiro e a alma depois, e o progresso da ciência está bem mais adiantado que seu comportamento ético.”

Charles Chaplin
ÍNDICE

Agradecimentos .. 5

Introdução Geral ... 7

Área de Estudo .. 15

Descrição dos corpos d’água amostrados ... 17

Espécies de anuros registradas ... 20

Comparação da anurofauna do PNE com outras localidades ... 35

Referências Bibliográficas ... 39

Anexo 1 – Corpos d’água amostrados .. 55

Anexo 2 – Espécies registradas .. 57

Capítulo I - Composição e diversidade de anfíbios anuros em ambientes preservados e perturbados no Cerrado do Estado de Goiás, Centro-Oeste do Brasil. 62

Abstract ... 63

Resumo ... 64

Introdução .. 65

Materiais e Métodos .. 67

Resultados .. 71

Discussão .. 72

Agradecimentos .. 78

Referências Bibliográficas ... 78

Capítulo II - Distribuição temporal e diversidade de modos reprodutivos de anfíbios anuros no Parque nacional das emas e entorno, Estado de Goiás. 99
AGRADECIMENTOS

Aos meus pais, Nilza e Alcides, por apoiarem as minhas escolhas e por servirem de exemplo de determinação e ética. Obrigada por tudo!

Aos meus irmãos, Shirley, Rose, Alcides e Nívea, pelos bons momentos que sempre passamos juntos. Pelas palavras de apoio nas horas difíceis e por simplesmente existirem. Minha vida é sempre melhor com vocês!

Ao meu amado Kleber, pelo carinho excepcional, pelo grande amor, companhersimo e por ter me agüentado nos dias de estresse. Minha vida só é completa ao teu lado. Te amo!

Aos meus lindos sobrinhos, Erwin, Kássia, Júlia, Alícia e Felipe, por alegrarem a minha vida com suas personalidades únicas e jeitinhos tão especiais.

Ao meu orientador Rogério Pereira Bastos pela orientação, oportunidades, ensinamentos e confiança em meu trabalho.

As minhas ex-orientadoras Sônia Cechin e Paula Eterovick, por terem acreditado em mim e me ensinado a amar a herpetologia. Serei sempre grata a vocês!

Aos grandes amigos Lorena e Eduardo por terem sido meus guias e companheiros logo que cheguei a Goiás e, por toda a ajuda e incentivo.

Aos amigos do laboratório de Comportamento Animal: Luciana, Taís, Jade, Priscilla, Alessandro, Juliana e Tatiana pelos bons momentos de convivência.

Aos meus amigos de longa data e com os quais sei que sempre posso contar: Tiago Gomes dos Santos, Márcia Spies, Luciane Ayres, Carolina Sokolowicz, Milena Wachlevski, Luciana Barçante e Paula Eterovick. Obrigada pela amizade de vocês. Ela é essencial para a manutenção da minha sanidade mental!
Aos meus ajudantes de campo, André, Luciana, Juliana, Tatiana, Diogo, Fabiana, Charles e Raniel. Esse trabalho não seria possível sem a ajuda de vocês!

Um agradecimento especial ao André por ser sempre tão prestativo e ter me ajudado em quase todas as coletas mesmo nem trabalhando com sapos! Você é maravilhoso!

A todos os meus colegas do curso de Doutorado em Ciências Ambientais. A amizade de vocês foi essencial para tornar esses quatro anos mais agradáveis.

A Óreades e a Conservação Internacional do Brasil e a toda a sua equipe pelo apoio logístico e financeiro ao fornecer bolsas a Luciana e Juliana.

A todos os professores do curso de doutorado em Ciências Ambientais por todos seus ensinamentos e ao secretário do curso, Noé por ser sempre tão prestativo.

Aos funcionários do Parque Nacional das Emas por serem sempre tão atenciosos e prestativos e por muitas vezes, me livrarem de enrascadas!

Ao ex-diretor do Parque Nacional das Emas, Rogério de Oliveira, por permitir a realização desse estudo no parque.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelas bolsas concedidas.

Ao maravilhoso Estado de Goiás por ter me concedido tantas coisas boas e por servir de morada para espécies tão interessantes de “sapinhos”!

A todos os sapos, rãs e pererecas que me aturaram invadindo suas moradas e por alegrarem minha vida toda a vez que ouço um canto ao longe!
INTRODUÇÃO GERAL

A ecologia de comunidades identifica os mecanismos que estabelecem as espécies dentro de grupos que interagem entre si sendo que vários fatores podem contribuir no estabelecimento dessas comunidades (Donnelly & Guyer, 1994). Crump (1982) enfoca que a ecologia de comunidades é, principalmente, o estudo da interação das espécies mais do que o estudo das populações individualmente.

Entre os anfíbios anuros, as principais interações ocorrem durante o período de reprodução no qual um grande número de indivíduos está presente no agregado reprodutivo (Aichinger, 1987). A composição de espécies varia ao longo desse período, e efeitos na estrutura da comunidade, tais como oscilação e sobreposição do uso de recursos, podem ser observados (Crump, 1982).

Estudos de comunidades de anuros podem fornecer dados a respeito da diversidade local (riqueza, abundância e equitabilidade), da distribuição espacial e temporal e da diversidade acústica das espécies (Aichinger, 1987; Cardoso et al., 1989; Aichinger, 1992; Cardoso & Martins, 1987; Nascimento et al., 1994; Pombal, 1997). Um fator considerado como um dos principais responsáveis pela coexistência das espécies em uma taxocenose é a partição de recursos existentes no ambiente.

A coexistência interspecífica de anuros relaciona-se a fatores como a partilha espacial e temporal de recursos (Cardoso et al., 1989; Pombal, 1997) além da utilização do espaço acústico pelos indivíduos (Cardoso & Martins, 1987; Cardoso & Haddad, 1992). A partilha espacial compreende a exploração de vários microambientes como sítios reprodutivos que são usados de forma diferente por cada espécie (Duellman & Trueb, 1994).
Em relação a partilha temporal, condições físicas do local podem estar diretamente relacionadas e as espécies adaptam-se a microambientes sob condições específicas. Para certas espécies tanto o período da atividade reprodutiva quanto a densidade populacional podem estar associados principalmente à disponibilidade de água (Prado, et al., 2000) e/ou a ocorrências de altas precipitações pluviométricas, além de outros fatores.

Estudos de distribuição espacial e temporal das espécies de anuros muitas vezes revelam segregação quanto ao uso dos sítios de vocalização e temporada reprodutiva (Crump, 1974; Cardoso et al., 1989; Pombal, 1997; Cardoso & Vielliard, 1990; Nascimento et al., 1994). No entanto, embora a partilha temporal tenha grande importância como mecanismo de isolamento reprodutivo, reduzindo as interações entre as espécies (Crump, 1982), Blair (1961) argumenta que esta pode ser considerada de importância secundária, já que a grande maioria das espécies neotropicais tem grande sobreposição de atividades durante a estação chuvosa e não hibridiza. Desta forma, a partilha acústica poderia ser indicada como um dos fatores de maior importância no processo de isolamento reprodutivo dos anuros (Bernarde & Dos Anjos, 1999; Cardoso & Vielliard, 1990; Pombal 1997).

A diversidade de modos reprodutivos também tem grande influência na diversidade de espécies em uma área e na utilização dos recursos ambientais. Segundo Crump (1982), quanto mais diversificados forem os modos reprodutivos de uma taxocenose, maior o número de espécies que conseguem coexistir. Além disso, as preferências das espécies por determinados tipos de recursos também pode influenciar nos padrões de partição (Wisheu, 1998).

Para os girinos, considera-se que os principais recursos partilhados são espaço, tempo e alimento (Heyer, 1976; Toft, 1985; Inger et al., 1986). No entanto, os padrões

A predação, a competição e a duração do habitat são considerados os principais fatores responsáveis pela estruturação das comunidades de girinos e vários estudos realizados têm utilizado esses fatores para explicar os padrões de distribuição das espécies nos corpos d’água e entre eles (Heyer et al., 1975; Morin, 1983; Magnusson & Hero, 1991; Gascon, 1992; Wellborn et al., 1996; Azevedo-Ramos et al., 1999; Azevedo-Ramos & Magnusson, 1999). Ambientes aquáticos temporários tendem a ser mais imprevisíveis tanto no espaço quanto no tempo e contêm também um número imprevisível de predadores e competidores (Alford, 1999), embora alguns autores considerem que esses ambientes ofereçam menor risco de predação quando comparados com corpos d’água permanentes (Heyer et al., 1975; Skelly, 1997; Skelly & Werner, 1990).

A heterogeneidade ambiental tem sido reconhecida como uma boa explicação para a variação na diversidade de espécies (Huston, 1994; Hazell et al., 2001), e muitos estudos já desenvolvidos no Brasil (e.g. Cardoso et al., 1989; Pombal, 1997; Brandão & Araújo, 1998; Bernarde & Kokubum, 1999) revelaram que os ambientes mais complexos permitem a coexistência de um maior número de espécies de anuros quando
comparados com os ambientes homogêneos, pois disponibilizam um número maior de microambientes. No entanto, embora a alta riqueza de espécies de anuros registrada em várias regiões brasileiras possa ser atribuída à heterogeneidade ambiental, esta correlação em sido pouco testada (e.g. Gascon, 1991; Eterovick, 2003; Vasconcelos & Rossa-Feres, 2005; Santos et al., 2007).

Atualmente, são conhecidas no mundo um total de 6433 espécies de anfíbios, destas, 5679 pertencem à Ordem Anura, 580 à Ordem Caudata, e 174 à Ordem Gymnophiona (Frost, 2009). No Brasil foram registradas até o momento 849 espécies de anfíbios, o que o torna o país de maior diversidade de espécies (SBH, 2009). Para o bioma Cerrado estima-se que podem ser encontradas 141 espécies de anfíbios, sendo 47 espécies endêmicas (Bastos, 2007).

Apesar da grande diversidade de espécies atualmente descritas, e do número de estudos sobre a anurofauna do Brasil ter aumentado, ainda é fato que os estudos de comunidades de anfíbios nas regiões tropicais são bastante incipientes quando comparados à diversidade de espécies aí encontradas (Nascimento et al., 1994; Arzabe 1999; Bernarde & Machado, 2001; Ávila & Ferreira, 2004). Segundo Silvano & Segalla (2005), existem poucas informações a respeito da distribuição geográfica, história natural, história de vida ou ecologia e, além disso, muitos estudos importantes não foram publicados.

Em relação ao bioma Cerrado percebe-se que essa região é ainda pobremente conhecida em termos zoológicos sendo que extensas áreas ainda não foram amostradas e novas espécies são descritas a cada ano (Colli et al., 2002). Estudos realizados na região do Cerrado incluem os trabalhos de Bastos et al. (2003), Guimarães & Bastos (2003), Martins & Jim (2003), Silveira (2006), Brasileiro et al. (2005), sobre história
natural de algumas espécies, e de Bastos et al. (2003), Diniz et al. (2004a,b), Eterovick & Sazima (2004), Giaretta et al. (2008), sobre estrutura de comunidades.

O Cerrado é a maior região de savana tropical na América do Sul, com cerca de 2 milhões de km². Este bioma inclui grande parte do Brasil Central e partes do nordeste do Paraguai e leste da Bolívia, ocupando uma posição central na América do Sul e, por isso, seus limites encontram os de biomas de terras baixas do continente. Ao norte, o Cerrado possui limites com a Amazônia, a nordeste com a Caatinga, a leste e sudeste com a Floresta Atlântica e a sudoeste com o Chaco e o Pantanal. Nenhum outro bioma sul-americano possui esta diversidade de contatos biogeográficos com biomas tão distintos (Silva & Santos, 2005).

Em sua maior parte, o complexo vegetacional do Cerrado está localizado no Planalto Central do Brasil, no qual em termos fitofisionômicos, predominam as formações savânicas, que se caracterizam por um estrato arbóreo de densidade variável e um estrato arbustivo-herbáceo dominado por gramíneas. Apesar das características fascinantes do bioma Cerrado, a distribuição e a evolução da biota do Cerrado continuam ainda muito pouco investigadas, com um esforço científico inferior ao que foi alocado para se compreender a evolução das ricas florestas sul-americanas (Silva, 1995a).

Devido às aptidões naturais e às tecnologias desenvolvidas e amplamente difundidas para o aproveitamento agropecuário da região, em pouco tempo de exploração, o Cerrado já ocupa posição de destaque no cenário agrícola brasileiro, sendo atualmente responsável por aproximadamente 25% da produção de grãos e 40% do rebanho nacional (Embrapa Cerrados, 2002). Cerca de metade dos 2 milhões de km² originais do Cerrado foram transformados em pastagens plantadas, culturas anuais e outros tipos de uso (Klink & Machado, 2005).
Segundo Salati et al. (1999), a possibilidade de manutenção da sustentabilidade dos ecossistemas produtivos dentro de uma escala de tempo de décadas ou séculos, especialmente daqueles relacionados com a produção agrícola, dependerá de avanços tecnológicos, de mudanças de estruturas sociais e institucionais, bem como da implementação de mecanismos de proteção dos recursos naturais centrados na conservação do solo, dos recursos hídricos e da biodiversidade.

Ponderando que apenas 1,2% da vegetação do Cerrado estão protegidos por lei em áreas de conservação (Myers et al., 2000; Primack & Rodrigues, 2001), prevê-se a possibilidade da extinção de muitas espécies antes mesmo de serem conhecidas, devido à fragilização dos ecossistemas. De acordo com Myers et al. (2000), é fundamental identificar áreas com concentrações excepcionais de espécies endêmicas e que experimentam perda de habitats para tentar evitar esta extinção.

Em função do grande número de espécies endêmicas o Cerrado brasileiro foi incluído entre os 25 “hotspots” de diversidade mais importantes do mundo (Myers et al., 2000). No entanto, mesmo informações básicas sobre a história natural da maioria das espécies da herpetofauna desse bioma são praticamente inexistentes (Colli et al., 2002). O conhecimento limitado e subestimativas da riqueza de comunidades do Cerrado comprometem inferências a respeito das relações ecológicas entre as espécies e a proposta de planos de manejo e conservação das mesmas.

Em vista da constante degradação dos ecossistemas hoje se constata a situação de declínio mundial das populações de anfíbios (Wake, 1991; Juncá, 2001; Mendelson III et al., 2006). Fatores como a fragmentação de habitats (levando a perda de habitats, dispersão e conseqüente diminuição da abundância e riqueza das espécies) e os desmatamentos são colocados como os grandes responsáveis pela perda de diversidade
e extinções locais das espécies de anfíbios anuros no mundo todo (Hitchings & Beebee, 1997; Johnston & Frid, 2002; Eterovick et al., 2005; Funk et al., 2005).

Informações sobre história natural e ecologia, necessárias para conservação, estão disponíveis para apenas uma pequena fração de espécies animais, geralmente aquelas grandes ou comuns, e relativamente fáceis de serem estudadas (Greene, 1994). Segundo Wilson (1992), o estudo da biodiversidade, seja sobre composição e distribuição de espécies ou ecologia de comunidades, está entre os objetivos básicos da Estratégia Global para a Biodiversidade e deve ser assumido como de principal relevância pelos órgãos ambientais dos países.

A manutenção da diversidade biológica representa uma estratégia necessária à sustentação de um processo destinado à transformação da sociedade, com implicações de ordem política, social, econômica e ambiental (Brennan, 1992; Bressan, 1991, 1996; Furtado, 1991; Moraes, 1992). Deve-se, sobretudo articular e complementar os papéis do Estado e da sociedade organizada em torno do planejamento e do controle ambiental (Moraes, 1992; Bressan, 1991). Um modelo para gestão racional da natureza deve expressar um desejo de apreensão dos sistemas ecológicos em sua totalidade e, com igual ênfase, deve incorporar a dimensão espacial como realidade social, redefinida a cada período histórico (Bressan, 1996).

Considerada como Região de Importância Biológica Extremamente Alta (MMA, 2002), o Parque Nacional de Emas (PNE), localizado no bioma Cerrado e onde o estudo foi realizado, é uma área prioritária para a realização de estudos, pois além da sua biodiversidade elevada, a área encontra-se ameaçada pela expansão desordenada das atividades agropecuárias em seu entorno. Estudos sobre a anurofauna do PNE são escassos e geralmente compreendem amostragens pontuais realizadas por pesquisadores durante a amostragem de outros grupos animais.
Conservar grupos biológicos que nem sempre possuem uma boa aceitação frente à sociedade e aos órgãos financiadores, como os anfíbios, por exemplo, é de extrema importância para a manutenção da própria qualidade de vida humana no planeta, pois devido a suas características peculiares de ciclo de vida e fisiologia estão entre os primeiros organismos a sentirem os efeitos da degradação ambiental. O conhecimento de como as comunidades de anuros se comportam e se estruturam em diferentes tipos de ambientes pode servir de base para previsões acerca das melhores estratégias para a conservação e manutenção de habitats e espécies a eles associadas (Kopp & Eterovick, 2006).

Dessa forma, os trabalhos aqui apresentados abordam aspectos referentes a distribuição espacial e temporal da anurofauna associada a corpos d’água preservados e alterados localizados no interior e entorno do PNE, respectivamente. A primeira parte deste trabalho corresponde a uma caracterização da área de estudo, bem como uma descrição dos corpos d’água amostrados. A segunda parte corresponde a uma lista comentada, com informações sobre a história natural das 25 espécies registradas.

No primeiro capítulo, é apresentada a lista de espécies registradas, e a estrutura das comunidades é analisada pela determinação de: (i) riqueza e composição taxonômica das comunidades de anfíbios anuros em doze corpos d’água localizados em áreas preservadas e perturbadas, (ii) diferença entre a estrutura das comunidades de anuros de áreas preservadas e alteradas, (iii) relação entre a riqueza de espécies e a heterogeneidade ambiental. No segundo capítulo, é estudada a distribuição temporal e a diversidade de modos reprodutivos dos anfíbios anuros registrados nos doze corpos d’água amostrados. No terceiro capítulo, a utilização dos microambientes pelos anuros adultos e suas larvas é avaliada para verificar: (i) se diferentes espécies de anuros diferem no uso dos microambientes nos corpos d’água amostrados, (ii) se espécies
ocorrentes em ambientes preservados e perturbados diferem na utilização dos microambientes.

ÁREA DE ESTUDO

O estudo foi realizado no Parque Nacional das Emas (PNE) e em áreas do entorno dominadas por agricultura e pastagem no sudoeste do Estado de Goiás, Brasil Central. O clima da região é do tipo Tropical Quente e Úmido (Aw na classificação de Köppen) e caracteriza-se por uma estação seca de maio a setembro e uma estação chuvosa de outubro a abril (Nimer, 1989), com temperaturas variando entre 22 e 24°C e precipitação de 1500 mm a 1700 mm, concentrada de outubro a março. Na estação seca a precipitação é sempre inferior a 60 mm (Ramos-Neto & Pivello, 2000).

O Parque Nacional das Emas está localizado na região central do bioma Cerrado (17°49′–18°28′S e 52°39′–53°10′W) e é a maior (132,133 ha) e mais importante área de Cerrado protegida devido a sua diversa fauna e flora (IBDF, 1981; Redford & Fonseca, 1986). Um gradiente de tipos abertos de savana (68.1%) e savana densa (cerrado sensu stricto; 25.1%) pode ser encontrado no parque, assim como campos úmidos (4.9%) e florestas ripárias e mesófilas (1.2%) (Ramos-Neto & Pivello, 2000).

No entorno do PNE, com exceção do limite nordeste, todos os demais estão sendo utilizados para a agricultura e pecuária extensivas. A exploração das áreas adjacentes ao parque teve início na década de 1960 e atualmente, no município de Mineiros, 78% dos estabelecimentos agropecuários estão ocupados por lavouras e pastagem e só 22% possuem áreas de matas; em Chapadão do Céu, praticamente 100% dos estabelecimentos estão ocupados por lavouras e pastagens (IBGE, 2006).
A coleta de dados foi realizada em doze corpos d’água independentes (mais de 1 km de distância entre eles), seis preservados e seis perturbados, localizados no interior e entorno do Parque Nacional das Emas (Figura 1). Os corpos d’água amostrados no entorno do parque estão localizados nos municípios de Chapadão do Céu e Mineiros (Figura 1, Tabela I). As áreas conservadas e perturbadas amostradas foram similares em termos de elevação, clima e topografia.

Figura 1. Mapa de situação do Parque Nacional das Emas e corpos d’água amostrados no sudoeste do Estado de Goiás, Brasil. Bi1 a Bi6 = corpos d’água localizados no interior do PNE (preservados); Be1 a Be6 = corpos d’água localizados no entorno do PNE (perturbados).
Tabela 1. Corpos d’água amostrados no interior e entorno do Parque Nacional das Emas (PNE) e principais características. Bi1 a Bi6 = corpos d’água localizados no interior do PNE (preservados); Be1 a Be6 = corpos d’água localizados no entorno do PNE (pertubados); PER = corpo d’água permanente; TLD = corpo d’água temporário de longa duração (superior a cinco meses); TCD = corpo d’água temporário de curta duração (inferior a cinco meses).

<table>
<thead>
<tr>
<th>Corpos d’água</th>
<th>Localização Geográfica</th>
<th>Hidroperíodo</th>
<th>Área (m²)</th>
<th>Profundidade máxima (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi1</td>
<td>18° 16' 17''S; 52° 50' 35''W</td>
<td>PER</td>
<td>1986.62</td>
<td>0,95</td>
</tr>
<tr>
<td>Bi2</td>
<td>18° 15' 19''S; 52° 54' 30''W</td>
<td>TLD</td>
<td>2933.61</td>
<td>0,38</td>
</tr>
<tr>
<td>Bi3</td>
<td>18° 10' 56''S; 52° 44' 32''W</td>
<td>PER</td>
<td>3215.09</td>
<td>0,34</td>
</tr>
<tr>
<td>Bi4</td>
<td>18° 18' 07''S; 52° 57' 56''W</td>
<td>TCD</td>
<td>4660.49</td>
<td>0,46</td>
</tr>
<tr>
<td>Bi5</td>
<td>17° 55' 45''S; 52° 58' 04''W</td>
<td>PER</td>
<td>1407.68</td>
<td>0,36</td>
</tr>
<tr>
<td>Bi6</td>
<td>17° 54' 04''S; 52° 59' 55''W</td>
<td>PER</td>
<td>1650.16</td>
<td>0,27</td>
</tr>
<tr>
<td>Be1</td>
<td>18° 22' 40''S; 52° 43' 51''W</td>
<td>PER</td>
<td>3057.12</td>
<td>0,36</td>
</tr>
<tr>
<td>Be2</td>
<td>18° 26' 01''S; 52° 36' 10''W</td>
<td>PER</td>
<td>3188.18</td>
<td>0,34</td>
</tr>
<tr>
<td>Be3</td>
<td>18° 25' 13''S; 52° 35' 00''W</td>
<td>PER</td>
<td>6600.63</td>
<td>0,42</td>
</tr>
<tr>
<td>Be4</td>
<td>18° 24' 02''S; 52° 41' 00''W</td>
<td>PER</td>
<td>3476.11</td>
<td>0,34</td>
</tr>
<tr>
<td>Be5</td>
<td>17° 53' 37''S; 53° 07' 27''W</td>
<td>PER</td>
<td>6692.63</td>
<td>0,26</td>
</tr>
<tr>
<td>Be6</td>
<td>17° 37' 14''S; 52° 55' 10''W</td>
<td>PER</td>
<td>3678.56</td>
<td>0,54</td>
</tr>
</tbody>
</table>

DESCRIÇÃO DOS CORPOS D'ÁGUA AMOSTRADOS

Entre os doze corpos d’água amostrados (Anexo 1), nem todos foram exclusivamente áreas brejosas - alguns eram poças associadas a brejos. No entanto, para facilitar a representação dos pontos no mapa, todos foram chamados de brejos.

Corpos d’água preservados
Brejo no interior 1 - BI1: formado por duas poças que se unem durante a estação chuvosa e formam grande área brejosa. A vegetação marginal é composta basicamente por gramíneas, arbustos e árvores típicas de mata de galeria. Está localizado em uma matriz de campo úmido. Permanece com água durante todo o ano (Figura A).

Brejo no interior 2 – BI2: área brejosa extensa localizada às margens do Rio Formoso, composta basicamente por gramíneas e arbustos esparsos. Permanece com água durante mais de cinco meses no ano e está localizado em uma matriz de campo úmido (Figura B).

Brejo no interior 3 – BI3: área brejosa extensa composta basicamente por gramíneas. Suas margens são cercadas por Cerradão. Permanece com água durante todo o ano e está localizado em campo úmido (Figura C).

Brejo interior 4 – BI4: área brejosa localizada em fitofisionomia denominada Cerrado hiperestacional descrito por Batalha et al. (2004) e composta basicamente por gramíneas. Permanece com água durante menos de cinco meses no ano (Figura D).

Brejo no interior 5 – BI5: área brejosa localizada no interior de mata de galeria. Localizado próximo a nascente do rio Jacuba. Permanece com água durante todo o ano (Figura E).

Brejo no interior 6 - BI6: área brejosa localizada as margens de mata de galeria em matriz de campo úmido. É composto predominantemente por gramíneas e alguns
arbustos da Família Melostomataceae dispersos. Permanece com água durante todo o ano (Figura F).

Corpos d’água perturbados

Brejo no entorno 1 – BE1: extensa área brejosa localizada próximo a uma vereda e a uma lavoura de soja. Na época da estação seca, é utilizado como pasto para o gado. A vegetação é composta predominantemente por gramíneas e arbustos de Melostomataceae dispersos. Permanece com água durante todo o ano (Figura G).

Brejo no entorno 2 – BE2: lagoa de grandes proporções formada pelo represamento de uma vereda. Nas suas margens há a formação de extensa área brejosa. Localizada em área antropizada próximo a um balneário, suas margens são formadas basicamente por gramíneas e mata de galeria na margem sudeste. Permanece com água durante todo o ano (Figura H).

Brejo no entorno 3 – BE3: lagoa localizada às margens de mata de galeria e em matriz de pastagem. A vegetação de suas margens é composta predominantemente por gramíneas exóticas e arbustos. Também possui mata de galeria que forma um semicírculo ao redor da poça. Permanece com água durante todo o ano (Figura I).

Brejo no entorno 4 – BE4: área brejosa localizada próximo a área urbana de Chapadão do Céu composta basicamente por gramíneas e arbustos esparsos. Seu solo é revolvido constantemente pelos moradores para a retirada de minhocas utilizadas para a pesca. Permanece com água durante todo o ano (Figura J).
Brejo no entorno 5 – BE5: área brejosa localizada próximo ao Rio Araguaia composta predominantemente por gramíneas e arbustos esparsos. Embora a região onde estava o brejo seja composta por pastagem, o local onde o mesmo se encontra está localizado em matriz de campo úmido. Permanece com água durante todo o ano (Figura K).

Brejo no entorno 6 – BE6: poça localiza em área de pastagem. Suas margens são compostas basicamente por gramíneas, arbustos e mata de galeria. Permanece com água durante todo o ano (Figura L).

ESPÉCIES DE ANUROS REGISTRADAS

Foram registradas nos 12 corpos d’água amostrados no PNE e entorno 25 espécies de anfíbios anuros pertencentes a nove gêneros de cinco famílias (Bufonidae, Hylidae, Leiuperidae, Leptodactylidae e Microhylidae; Tabela 2, Anexo 2).

Tabela 2 - Espécies de anuros registradas nos 12 corpos d’água amostrados no interior e entorno do Parque Nacional das Emas, sudoeste do Estado de Goiás, Brasil.

<table>
<thead>
<tr>
<th>Bufonidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinella schneideri (Werner, 1894)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hylidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendropsophus cruzi (Pombal & Bastos, 1998)</td>
<td></td>
</tr>
<tr>
<td>Dendropsophus jimi (Napoli & Caramaschi, 1999)</td>
<td></td>
</tr>
<tr>
<td>Dendropsophus minutus (Peters, 1872)</td>
<td></td>
</tr>
<tr>
<td>Hypsiboas albopunctatus (Spix, 1824)</td>
<td></td>
</tr>
<tr>
<td>Hypsiboas lundii (Bokermann & Sazima, 1973)</td>
<td></td>
</tr>
<tr>
<td>Hypsiboas raniceps (Cope, 1862)</td>
<td></td>
</tr>
<tr>
<td>Scinax fuscobgainatus (Lutz, 1925)</td>
<td></td>
</tr>
<tr>
<td>Scinax fuscovarius (Lutz, 1925)</td>
<td></td>
</tr>
<tr>
<td>Scinax gr. ruber (Laurenti, 1768)</td>
<td></td>
</tr>
</tbody>
</table>

Leiuperidae
Eupemphix nattereri (Steindachner, 1863)
Physalaemus centralis Bokermann, 1962
Physalaemus cuvieri Fitzinger, 1826
Pseudopaludicola cf. mystacalis (Cope, 1887)
Pseudopaludicola saltica (Cope, 1887)
Pseudopaludicola aff. falcipes

LEPTODACTYLIDAE
Leptodactylus furnarius Sazima & Bokermann, 1978
Leptodactylus fuscus (Schneider, 1799)
Leptodactylus hylaedactylus (Cope, 1868)
Leptodactylus labyrinthicus (Spix, 1824)
Leptodactylus martinezi Bokermann, 1956
Leptodactylus ocellatus (Linnaeus, 1758)
Leptodactylus podicipinus (Cope, 1862)
Leptodactylus sertanejo Giaretta & Costa, 2007

MICROHYLIDAE
Elachistocleis cf. ovalis (Schneider, 1799)

__

Bufonidae

1. Rhinella schneideri (Figura A) – Essa espécie possui ampla distribuição ocorrendo nas regiões Centro-Oeste, Sudeste e Nordeste do Brasil, além da Argentina, Bolívia, Paraguai e Uruguai. São animais de grande porte (machos com cerca de 100 mm de comprimento e fêmeas com 120 mm). São animais terrícolas e possuem hábitos noturnos. Durante o dia se abrigam sob troncos, frestas ou rochas. Reproduzem-se em poças permanentes e temporárias e nas margens de riachos. Os machos vocalizam principalmente dentro da água com a parte posterior do corpo submersa. Possuem amplexo axilar que é realizado dentro da água. A desova é depositada em cordões gelatinosos que ficam
aderidos a vegetação aquática. Possui boa adaptação a ambientes antropizados sendo bastante comum no Estado de Goiás. Durante esse estudo foi encontrada em corpos d’água permanentes localizados em áreas antropizadas no entorno do PNE.

Referências: Bastos et al., 2003; Aquino et al., 2004a; Eterovick & Sazima, 2004; Achaval & Olmos, 2007; Rocha et al., 2007; Frost, 2009.

Hylidae

2. *Dendropsophus cruzi* (Figura C) – Possui como localidade-tipo a Floresta Nacional de Silvânia no Estado de Goiás. Essa espécie também é registrada no Estado de Mato Grosso do Sul e Tocantins no Brasil, e na Província de Velasco na Bolívia. É uma espécie de pequeno porte na qual o comprimento-rostro-cloacal dos machos varia entre 16,3 e 19,4 mm e das fêmeas entre 21,3 a 25,0 mm. Possuem hábito noturno e os machos vocalizam geralmente na vegetação marginal de corpos d’água temporários ou permanentes. O amplexo é axilar. Nesse estudo, foi registrada apenas em um dos corpos d’água alterados.

Referências: Bastos et al., 2003; Bastos et al., 2004a; Frost, 2009.

3. *Dendropsophus jimi* (Figura D) – Essa espécie distribui-se pelos estados de São Paulo, Minas Gerais e Mato Grosso do Sul no Brasil, e também reportado para a província de Amambay, leste-central do Paraguai. É uma espécie caracterizada pelo pequeno tamanho, cujos machos variam de 17,6 a 20,9 mm de comprimento-rostro-cloacal e as fêmeas, de 20,6 a 22,3 mm. São animais arborícolas e possuem hábitos noturnos. Os machos vocalizam sobre vegetação marginal, principalmente gramíneas e arbustos até mais de 1m de altura do solo.
O amplexo é axilar e a desova é depositada na água. Possuem boa adaptação a áreas antropizadas e foram registrados tanto em ambientes preservados quanto alterados.

4. *Dendropsophus minutus* (Figura E) – É uma espécie de ampla distribuição na América do Sul, ocorrendo em áreas do leste dos Andes colombianos, Venezuela, ao sul de Trinidad passando pelo Equador, Peru, Brasil, Bolívia, leste do Paraguai, Uruguai e Argentina. São animais de pequeno porte (machos com comprimento variando entre 20-23 mm e fêmeas entre 24-26 mm). São arborícolas e possuem hábitos noturnos. Durante o dia descansam na vegetação. Reproduzem-se em poças e brejos temporários ou permanentes e também em remansos de riachos cercados por vegetação arbustiva. Vocalizam sobre a vegetação marginal dos corpos d’água ou em vegetação aquática flutuante. Os machos são territoriais e possuem comportamento agressivo que inclui vocalizações e lutas corporais. O amplexo é axilar e os ovos são depositados em aglomerados depositados diretamente na água aderidos à vegetação. Essa espécie possui boa adaptação a ambientes antrópicos e foi registrada tanto em corpos d’água preservados quanto alterados.

5. *Hypsiboas albopunctatus* (Figura F) – Essa espécie ocorre nas regiões Centro-Oeste, Sul, Sudeste e Norte do Brasil e na Argentina, Paraguai, Bolívia e
Uruguai. É uma espécie de porte médio (machos com cerca de 65 mm e fêmeas com 53 mm). Reproduzem-se em riachos e poças ou brejos temporários ou permanentes. Os machos vocalizam a alturas variadas, utilizando como sítios de vocalização desde o solo até arbustos e ramos de árvores. O amplexo é axilar e a desova é depositada em forma de monocamada flutuante diretamente na água entre pedras ou vegetação. Adaptam-se bem a distúrbios antrópicos e foram registradas tanto em ambientes preservados quanto alterados.

Referências: Bastos et al, 2003; Aquino et al., 2004b; Eterovick & Sazima, 2004; Frost, 2009.

6. *Hypsiboas lundii* (Figura G) - É uma espécie que se distribui pelo bioma Cerrado nas regiões central e sudeste Brasil, nos estado de Goiás, Minas Gerais, São Paulo e também no Distrito Federal. São animais de grande porte (os machos possuem um comprimento-roestro-cloacal que varia entre 54,0 e 70,8 mm e nas fêmeas varia entre 54,3 e 66,1 mm). Os machos vocalizam ao longo do ano em ramos da vegetação marginal de riachos em florestas primárias e secundárias a alturas variadas que podem ultrapassar os 4 m. A desova é depositada em uma estrutura denominada de “panela”, uma depressão que o macho cava e constrói com lama em margens de corpos d’água. Em seguida, com o decorrer das chuvas, esta panela é rompida ou acaba sendo inundada pelas chuvas e os girinos são carreados para o corpo d’água adjacente onde terminam seu desenvolvimento.

7. *Hypsiboas raniceps* (Figura H) – É uma espécie que possui ampla distribuição geográfica ocorrendo na Amazônia colombiana, Venezuela, Guiana Francesa, leste do Brasil, Paraguai, nordeste da Argentina e leste da Bolívia. O comprimento-rostro-cloacal dos indivíduos varia entre 7,44 e 8,05 cm nas fêmeas e 6,84 e 7,24 cm nos machos. Os machos são territoriais e utilizam principalmente ramos de vegetação arbustiva como sítios de vocalização, mas também podem vocalizar sobre o chão. Possuem amplexo axilar. Essa espécie pode ser encontrada em diversos tipos de habitats tais como florestas, lagoas, poças e rios. Também podem ocorrer em regiões degradadas e áreas urbanas. Nesse estudo foi registrada apenas em um corpo d’água alterado.

Referências: Guimarães, 2001; La Marca *et al*., 2004a; Frost, 2009.

8. *Scinax fuscomarginatus* (Figura I) - Distribui-se pelas regiões central, sudeste e leste do Brasil, leste da Bolívia e Paraguai e nordeste da Argentina. É uma espécie de pequeno porte (o comprimento-rostro-cloacal dos indivíduos varia entre 23,17 e 23,47 mm para as fêmeas e 22,21 e 22,98 mm para os machos). Os machos vocalizam na vegetação marginal ou vegetação aquática flutuante a alturas variando de poucos centímetros até mais de 1m. O amplexo é axilar e a desova é depositada diretamente na água. Essa espécie pode resistir a um certo nível de perturbação antrópica. Nesse estudo, foram registradas em ambientes preservados e alterados.

Referências: Bastos *et al*., 2003; Colli *et al*., 2004a; Toledo & Haddad, 2005; Frost, 2009.
9. *Scinax fuscovarius* (Figura J) - Esta espécie possui ampla distribuição ocorrendo nas regiões sul, sudeste e centro-oeste do Brasil, norte da Argentina e Uruguai e leste da Bolívia. Espécie de porte médio com comprimento dos machos variando de 37 a 47 mm e das fêmeas variando de 42 a 48 mm. Os machos vocalizam na vegetação marginal ou no solo escondidos sob tufos de gramíneas. O amplexo é axilar e a desova é depositada aderida a vegetação aquática em corpos d’água lênticos temporários ou permanentes. Essa espécie possui boa adaptação a ambientes antropizados, sendo bastante comum também em áreas urbanas. Nesse estudo foi registrada apenas em brejos perturbados.

10. *Scinax gr. ruber* (Figura K) – A sistemática do grupo *ruber* é bastante complexa desta forma é necessário um maior número de exemplares, informações sobre girinos e registros de vocalização, para que se chegue em nível de identificação específico. Em geral indivíduos deste grupo habitam uma grande variedade de ambientes desde o interior de florestas até áreas abertas. Essa espécie geralmente se reproduz em poças ou brejos temporários ou permanentes. Podem ser também encontrados em áreas antropizadas e em habitações humanas como construções e banheiros.

Referências: Bastos *et al.*, 2003; Eterovich & Sazima, 2004; Solís *et al.*, 2008.

Leiuperidae
11. *Eupemphix nattereri* (Figura L) - É uma espécie que se distribui pelas regiões sudeste e central do Brasil, leste do Paraguai e da Bolívia. São animais de de tamanho médio (os machos possuem cerca de 37 mm e fêmeas 43 mm). É uma espécie de reprodução explosiva cujos machos vocalizam principalmente flutuando na superfície da água, ocupando as margens de poças e brejos em áreas abertas. O amplexo é do tipo axilar e os ovos são depositados em ninhos de espuma sobre a água. Nesse estudo, foi registrada apenas em corpos d’água perturbados.

Referências: Bastos *et al*., 2003; Aquino *et al*., 2004d; Frost, 2009.

12. *Physalaemus centralis* (Figura M) – Essa espécie possui distribuição no Brasil central, além do leste do Paraguai e Bolívia. É uma espécie de porte médio para o gênero, sendo que os machos possuem um comprimento-rostro-cloacal médio de 36,30 mm e as fêmeas de 34,5 mm. Reproduzem-se em poças e brejos temporários e permanentes. Os machos se agregam em arenas e vocalizam escondidos em meio a vegetação da margem ou do interior do corpo d’água. O amplexo é axilar e a desova em ninho de espuma é depositada na água ancorada na vegetação. Nesse estudo, foram registrados em corpos d’água preservados e perturbados.

Referências: Bastos *et al*., 2003; Colli *et al*., 2004c; Brasileiro & Martins, 2006; Frost, 2009.

13. *Physalaemus cuvieri* (Figura N) - Distribui-se pelas regiões nordeste, sul e central do Brasil, Argentina, leste do Paraguai, Bolívia, e possíveis regiões do sudeste da Venezuela. São animais de tamanho médio para o gênero (machos
atingem cerca de 30 mm e fêmeas 32 mm). Reproduzem-se em brejos e poças temporários e permanentes. Os machos vocalizam nas margens dos corpos d’água, expostos ou escondidos sob a vegetação, flutuando na água de pequenas cavidades naturais ou geradas pelas pegadas de animais. O amplexo é axilar e a desova em ninho de espuma é depositada sobre a água, ancorada na vegetação. Possuem boa adaptação a modificações antrópicas e foram registrados tanto em corpos d’água preservados quanto perturbados.

Referências: Bastos et al., 2003; Eterovick & Sazima, 2004; Mijares et al., 2004; Achaval & Olmos, 2007; Frost, 2009.

Referências: Duré et al., 2004; Frost, 2009; Lavilla et al., 2004b.

15. *Pseudopaludicola saltica* (Figura P) – Esta espécie ocorre nas regiões sudeste e central do Brasil nos Estados de São Paulo, Minas Gerais, Mato Grosso, Goiás e Distrito Federal. É uma espécie que apresenta hábito tanto diurno quanto noturno e se reproduz em poças temporárias e brejos vocalizando no chão próximo a filetes de água. A desova é depositada sobre vegetação aquática
submersa. Adapta-se bem a distúrbios antrópicos. Nesse estudo foi registrada apenas em um ambiente preservado.

Leptodactylidae

17. *Leptodactylus furnarius* (Figura R) - Esta espécie distribui-se pelas regiões central e sudeste do Brasil, também pelo Uruguai, centro-leste do Paraguai e nordeste da Argentina. São animais de médio porte (machos com aproximadamente 38 mm de comprimento e fêmeas com 44 mm). Reproduzem-se em poças ou brejos temporários ou permanentes. Os machos vocalizam no solo úmido ou encharcado, expostos ou escondidos sob vegetação ou no interior de ninhos de barro construídos por eles. O amplexo é axilar e a desova em ninho de espuma é depositada no interior dos ninhos de barro escavados pelo macho em locais encharcados ou inundáveis. Adaptam-se bem a distúrbios antrópicos e foram registrados tanto em corpos d’água preservados quanto alterados.
Referências: Kokubum, 2001; Colli *et al.*, 2004b; Eterovick & Sazima, 2004; Achaval & Olmos, 2007; Frost, 2009.

18. *Leptodactylus fuscus* (Figura S) – Essa espécie ocorre em áreas de savanas a partir do Panamá, leste dos Andes, sul e sudeste do Brasil, Bolívia, Paraguai, Argentina e Trinidad e Tobago. Espécie de porte médio para o gênero (machos com comprimento variando entre 44-47 mm e fêmeas entre 45-47 mm). Reproduzem-se em poças e brejos temporários e permanentes. Os machos vocalizam no solo próximo aos corpos d’água sob vegetação rasteira ou expostos. O amplexo é axilar e a desova em ninho de espuma é depositada em tocas subterrâneas construídas pelos machos. Os girinos permanecem na toca até que a água da chuva a invada e os carreie para os corpos d’água. É uma espécie bem adaptável que pode sobreviver em ambientes alterados. Essa espécie foi registrada tanto em corpos d’água preservados quanto alterados.

Referências: Reynolds *et al.*, 2004; Carvalho *et al.*, 2008; Frost, 2009.

19. *Leptodactylus hylaedactylus* (Figura T) – Essa espécie distribui-se por áreas da floresta amazônica do sudeste da Colômbia e leste da Venezuela, Guianas, leste e centro do Brasil, Amazônia equatoriana, Peru e Bolívia. Espécie de pequeno porte para a família Leptodactylidae (machos com 22-24 mm de comprimento e fêmeas com 26-27 mm). Reproduzem-se em áreas brejosas e bordas de matas. Durante o dia o macho vocaliza escondido sob touceiras de capim ou outro tipo de vegetação rasteira. A noite vocaliza empoleirado sobre as touceiras de capim, na maioria das vezes. Os machos escavam buracos no solo onde as fêmeas desovam em ninho de espuma. Os girinos completam a metamorfose dentro do
ninho. Essa espécie foi registrada tanto em ambientes preservados quanto perturbados.

Referências: Bastos et al., 2003; La Marca et al., 2004b; Frost, 2009.

20. *Leptodactylus labyrinthicus* (Figura U) – Esta espécie distribui-se pelas caatingas e cerrados no Norte, Nordeste, Centro-Oeste e Sudeste do Brasil e também na Argentina, Bolívia, Paraguai e Venezuela. São animais de grande porte (machos atingem cerca de 152 mm de comprimento e fêmeas 148 mm). Reproduz-se em corpos d’água permanentes ou temporários como lagoas e brejos utilizando depressões no chão, ou vocalizando sobre a água rasa com a cabeça fora d’água. O amplexo é axilar e a desova em ninho de espuma é depositada nas margens dos corpos d’água em touceiras de capim. Quando o nível da água sobe, o ninho é inundado e os girinos ocupam os brejos ou poças. É uma espécie muito adaptável e ocupa uma grande variedade de ambientes abertos. Nesse estudo foi registrada em ambientes preservados e alterados.

Referências: Bastos et al., 2003; Eterovick & Sazima, 2004; Zina & Haddad, 2005; Frost, 2009; Heyer et al., 2008.

Referências: Bastos et al., 2004b; Frost, 2009.
22. *Leptodactylus ocellatus* (Figura X) - Esta espécie ocorre amplamente pela América do Sul e leste dos Andes. Animais de grande porte (machos atingem até 116 mm e fêmeas 100 mm). Reproduzem-se em poças ou brejos ou remansos de riachos temporários ou permanentes. Os machos vocalizam dentro da água a baixas profundidades ou no solo úmido. O amplexo é axilar e o macho possui membros posteriores muito desenvolvidos que auxiliam a fêmea a expulsar os ovos. A desova em ninho de espuma flutuante é depositada entre a vegetação. Essa espécie é bem adaptada a modificações e distúrbios no hábitat, e pode ser encontrada em jardins rurais, habitats secundários e áreas urbanas. Foi registrada em ambientes perturbados e preservados.

23. *Leptodactylus podicipinus* (Figura Y) - Esta espécie distribui-se por formações abertas do sul do Paraguai ao Uruguai, Argentina, Bolívia, Brasil central e oriental ocorrendo também em áreas de igarapés de Belém e do Amazonas. Espécie de pequeno porte para a família Leptodactylidae com comprimento que varia de 30 a 40 mm. Reproduzem-se em poças, brejos e riachos temporários e permanentes. Os machos vocalizam embaixo de plantas nas margens dos corpos d’água ou parcialmente submersos. O amplexo é axilar e a desova é depositada em ninho de espuma flutuante. Aparentemente se adapta bem a áreas com distúrbios antropogênicos. Nesse estudo foi registrada em ambientes preservados e perturbados.

Referências: Heyer *et al.*, 2004b; Achaval & Olmos, 2007; Frost, 2009.
24. *Leptodactylus sertanejo* (Figuras Z, Z1 e Z2) - Conhecido a partir da localidade tipo no município de Uberlândia, Minas Gerais, Brasil. Acredita-se que as populações distribuídas no Cerrado e atualmente chamadas de *Leptodactylus jolyi*, sejam de fato *L. sertanejo*. Machos adultos possuem um comprimento-rostro-cloacal médio de 51,0 mm e as fêmeas de 54,3 mm. Os machos vocalizam em áreas de densa vegetação, dentro de câmaras subterrâneas (Figura Z2) ou expostos, próximos a corpos d’água temporários. A desova é depositada em câmaras subterrâneas localizadas próximo ao corpo d’água (Figura Z2). Nesse estudo foi registrada apenas em um corpo d’água preservado.

Referências: Giaretta & Costa, 2007; Frost, 2009; Giaretta, 2008.

Microhylidae

2. *Elachistocleis cf. ovalis* (Figura B) - É uma espécie de ampla distribuição ocorrendo no Brasil nos estados do Sul, Sudeste, Centro-Oeste e Nordeste e em outros países tais como Bolívia, Colômbia, Panamá, Trinidad e Tobago, Paraguai, Venezuela, Guiana Francesa, Guiana e Suriname. Apresentam pequeno porte com comprimento que varia de 20 a 30 mm nos machos e de 25 a 45 mm nas fêmeas. São animais fossoriais de hábitos noturnos sendo que, durante o dia, se escondem em abrigos no chão ou se enterram em solo úmido. Reproduzem-se em poças e brejos temporários e permanentes. Os machos vocalizam na água rasa em posição quase vertical, apenas com a cabeça e membros anteriores fora da água. Também podem vocalizar no solo encharcado escondidos sob a vegetação. O amplexo é axilar sendo que o macho se adere ao corpo da fêmea, e a desova é depositada na superfície da água rasa. Essa espécie
apresenta boa adaptação a ambientes antrópicos e nesse estudo foi registrada tanto em ambientes preservados quanto alterados.

COMPARAÇÃO DA ANUROFAUNA DO PNE COM OUTRAS LOCALIDADES

Com o objetivo de determinar a similaridade da anurofauna do PNE com outras localidades situadas em diferentes fitofisionomias do país, a composição das assembléias registrada no estudo foi comparada com aquela de cinco localidades de Cerrado (Rio Manso, Strüssmann, 2000; Silvânia, Bastos et al., 2003; Serra do Cipó, Eterovick e Sazima, 2004; Estação Ecológica de Itirapina, Brasileiro et al., 2005 e João Pinheiro, Silveira, 2006), duas localidades da Caatinga (Maturéia e São José do Bonfim, Arzabe, 1999), uma de Pantanal (Corumbá, Prado et al., 2005), uma de Pampa (Santa Maria, Santos et al., 2008), cinco localidades de ambientes originalmente florestais (Londrina, Machado et al., 1999; Parque Estadual Intervales, Bertoluci & Rodrigues, 2002; Floresta Nacional Edmundo Navarro de Andrade, Toledo et al., 2003; Nova Itapirema, Vasconcelos & Rossa-Feres, 2005 e Santa Fé do Sul, Santos et al., 2007). Esses dois últimos trabalhos foram realizados em áreas perturbadas formadas basicamente por pastagens, embora originalmente pertencessem a fitofisionomia de Floresta Estacional Semidecídua (FES). Dessa forma, são citadas dentro da fisionomia de FES, mas incluídas na categoria de ambientes perturbados (Tabela 3).

A similaridade entre as comunidades foi calculada utilizando o Coeficiente de Semelhança Biogeográfica (CSB) (Duellman, 1990). A matriz de similaridade (CSB) foi representada com posterior análise de agrupamento por pesos proporcionais (WPGMA) (Sokal & Michener, 1958). Segundo Valentin (1995), esse tipo de agrupamento é o mais indicado para evitar o efeito do tamanho das amostras (riqueza de espécies nas diferentes localidades) sobre a análise. Para verificar a influência da distância geográfica sobre a matriz de similaridade na composição faunística entre as localidades estudadas (CSB) foi realizado o teste de Mantel (Manly, 1994) com 10.000
permutações. A distância geográfica (em Km) entre pares de localidades foi medida no programa MapSource (Garmin, 2005).

Tabela 3. Localidades cuja anurofauna foi comparada com a encontrada no PNE e entorno, Estado de Goiás, Brasil.

<table>
<thead>
<tr>
<th>Tipo de formação</th>
<th>Fisiomonia</th>
<th>Local</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambientes abertos</td>
<td>Caatinga</td>
<td>São José do Bonfim, PB</td>
<td>SJB</td>
</tr>
<tr>
<td></td>
<td>Caatinga</td>
<td>Maturéia, PB</td>
<td>MAT</td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>Rio Manso, MT</td>
<td>MAN</td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>Estação Ecológica de Itirapina, SP</td>
<td>ITI</td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>João Pinheiro, MG</td>
<td>JPI</td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>Serra do Cipó, MG</td>
<td>SCI</td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>Floresta Nacional de Silvânia, GO</td>
<td>SIL</td>
</tr>
<tr>
<td></td>
<td>Pampa</td>
<td>Santa Maria, RS</td>
<td>SMA</td>
</tr>
<tr>
<td></td>
<td>Pantanal</td>
<td>Corumbá, MS</td>
<td>COR</td>
</tr>
<tr>
<td>Ambientes florestais</td>
<td>Floresta</td>
<td>Parque Estadual Intervales, SP</td>
<td>INT</td>
</tr>
<tr>
<td></td>
<td>Atlântica</td>
<td>Floresta Estadual</td>
<td>EDN</td>
</tr>
<tr>
<td></td>
<td>Estacional</td>
<td>Floresta Estacional Edmundo Navarro de Andrade, SP</td>
<td>EDN</td>
</tr>
<tr>
<td></td>
<td>Semidecídua</td>
<td>Floresta</td>
<td>LON</td>
</tr>
<tr>
<td></td>
<td>Floresta</td>
<td>Estacional Londrina, PR</td>
<td>LON</td>
</tr>
<tr>
<td></td>
<td>Estacional</td>
<td>Semidecídua Nova Itapirema, SP</td>
<td>NIT</td>
</tr>
<tr>
<td>Ambientes perturbados</td>
<td>Floresta</td>
<td>Santa Fé do Sul, SP</td>
<td>SFE</td>
</tr>
<tr>
<td></td>
<td>Estacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semidecídua</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resultados e Discussão

A análise da similaridade da composição de espécies de anfíbios anuros do PNE e entorno com a de outras áreas estudadas em diferentes fitofisionomias do país evidenciou a formação de dois agrupamentos com similaridade superior a 50% (Figura 2): 1) representado por comunidades pertencentes à Floresta Estacional Semidecidual (inclusive aquelas convertidas em áreas agropastoris) e ao Cerrado; 2) representado pelas duas comunidades da Caatinga (MAT e SJB).

A similaridade na composição taxonômica esteve positivamente correlacionada com a distância geográfica entre as áreas comparadas ($r = -0.62; p = 0.0004$), ou seja, comunidades mais próximas foram mais similares (Figura 2).

Esse fato demonstra que as assembléias aparentam ser espacialmente estruturadas (Legendre & Fortin, 1989; Ernst & Rödel, 2008). Esse resultado também foi encontrado por Ernst & Rödell (2008) em estudo realizado na África e Guiana Central.

A maior similaridade na composição faunística do presente estudo com áreas de Floresta Estacional Semidecidual parece estar associada ao clima dessas regiões uma vez que áreas de Cerrado e Floresta Estacional Semidecidual apresentam distribuição sazonal das chuvas (Colli et al., 2002; Prado et al., 2005; Santos & Rossa-Feres, 2007) o que limita a atividade da maioria dos anuros à estação chuvosa. De fato, os anuros encontrados nesses tipos de fitofisionomias apresentam, muitas vezes, adaptações similares às condições ambientais (e.g., desova em ninho de espuma, estivação durante a estação seca). Uma maior similaridade nas formações vegetais também pode influenciar a composição das comunidades como sugerido por Zina et al. (2007).
Figura 2. Similaridade (CSB) na composição taxonômica da anurofauna do PNE e entorno, sudoeste de Goiás, com outras áreas de diferentes fitofisionomias do país. R = coeficiente de correlação cofenético. As abreviaturas seguem a Tabela 3.
REFERÊNCIAS BIBLIOGRÁFICAS

American Museum of Natural History, New York, USA.

(Minas Gerais). In: III Congresso Brasileiro de Herpetologia, Belém/PA. Resumos do III Congresso Brasileiro de Herpetologia.

