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Abstract

In this thesis, we will study three versions of the Newton method for solving problems in two

contexts, namely Euclidean and Riemannian. In the Euclidean context, we will present the

Newton method with feasible inexact projections for solving generalized equations subject

to a set of constraints. Under local assumptions, the linear or superlinear convergence

of a sequence generated by the proposed method is established. Next, a version of the

inexact Newton method with feasible inexact projections for solving constrained smooth

and nonsmooth equations is presented. Using suitable assumptions, the linear or superlinear

convergence of a sequence generated by the method is proved. Furthermore, to illustrate

the practical behavior of the proposed method, some numerical experiments are reported.

Under another perspective, the last version of the Newton method to be investigated is

an extension of the nonsmooth Newton method itself from the Euclidean context to the

Riemannian, objecting to find a singularity of a special class of locally Lipschitz continuous

vector fields. In particular, this method retrieves the classical nonsmooth Newton method

to solve a system of nonsmooth equations. The well-definedness of the sequence generated

by the method is ensured and the convergence analysis of the method is made under local

and semi-local assumptions.

Keywords: Newton method, Feasible inexact projection, Riemannian manifolds, Vector

fields, Convergence analysis.
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Resumo

Nesta tese, estudaremos três versões do método de Newton para resolver problemas em

dois contextos, a saber, Euclidiano e Riemanniano. No contexto Euclidiano, apresentaremos

o método de Newton com projeções inexatas viáveis para resolver equações generalizadas

sujeitas à um conjunto de restrições. Sob hipóteses locais, a convergência linear ou

superlinear de uma sequência gerada pelo método proposto é estabelecida. Em seguida, uma

versão do método de Newton inexato com projeções inexatas viáveis para resolver equações

restritas diferenciáveis e não-diferenciáveis é apresentada. Usando hipóteses adequadas, a

convergência linear ou superlinear de uma sequência gerada pelo método é provada. Além

disso, para ilustrar o comportamento prático do método, alguns experimentos numéricos

são reportados. Sob uma outra perspectiva, a última versão do método de Newton a ser

investigada é uma extensão do próprio método de Newton não-diferenciável do contexto

Euclidiano para o Riemanniano, objetivando encontrar uma singularidade de uma classe

especial de campos de vetores localmente Lipschitz cont́ınuos. Em particular, este método

recupera o clássico método de Newton não-diferenciável para resolver um sistema de equações

não-diferenciáveis. A boa definição da sequência gerada pelo método é garantida e a análise

de convergência do método é feita sob hipóteses locais e semi-locais.

Palavras-chave: Médodo de Newton, Projeção inexata viável, Variedades riemannianas,

Campos de vetores, Análise de convergência.
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Chapter 1

Introduction

This thesis investigates the local and/or semi-local behavior of three versions of the Newton

method to solve problems in two contexts. Newton method and the inexact Newton method

with feasible inexact projections are proposed for solving, respectively, generalized equations,

and smooth and nonsmooth equations, both subject to a set of constraints, and defined on

Euclidean space. Another method studied in this thesis is the nonsmooth Newton method

for finding singularities of a special class of locally Lipschitz continuous vector fields on a

complete Riemannian manifold. In particular, this method can be seen as an extension to

the Riemannian setting of the method studied in [76].

In Chapter 2, we recall some notations, definitions and preliminary results used throughout

this thesis.

Chapter 3 addresses the Newton method with feasible inexact projections (Newton-InexP

method) for solving generalized equations subject to a set of constraints, i.e., for solving the

problem of finding x ∈ Rn such that

x ∈ C, f(x) + F (x) 3 0, (1.1)

where f : Ω→ Rm is a continuously differentiable function, Ω ⊆ Rn is an open set, C ⊂ Ω is a

closed convex set, and F : Ω ⇒ Rm is a set-valued mapping with closed nonempty graph. As

far as we know, this is the first time the problem (1.1) has been studied, thus being one of our

contributions. However, it is worth mentioning that the applications of the Newton method

and its variations for solving the problem (1.1) when C = Rn have been investigated in many

studies, including but not limited to [2,3,28,30,36,39,40]. Constrained Variational Inequality

Problem, see [16], and in particular, Split Variational Inequality Problem, see [16,52], can be

stated as special cases of the constrained generalized equation (1.1). Further details are given

in Section 3.3. It is known that if F is the zero mapping, i.e., F ≡ {0}, then problem (1.1)

reduces to a constrained system of nonlinear equations, i.e., to solve f(x) = 0 such that
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x ∈ C. This class of problems has been addressed in several studies, and various methods

have been proposed for solving them, see, for example, [7, 10,49,50,60,66,69].

Newton method for solving unconstrained generalized equations, i.e., when C = Rn in the

problem (1.1), which has its origin in the work of N. H. Josephy [58], is formulated as follows.

For the current iterate xk ∈ Rn, the next iterate xk+1 is computed as a point satisfying the

following inclusion

f(xk) + f ′(xk)(x− xk) + F (x) 3 0, k = 0, 1, . . . , (1.2)

where f ′ is the derivative of the function f . Note that at each iteration, a partially linearized

inclusion at the current iterate has to be solved. The method (1.2) can be seen as a model for

various iterative procedures in numerical nonlinear programming. For instance, when F ≡
{0}, this method corresponds to the usual Newton method for solving a system of nonlinear

equations. If F is the product of the negative orthant in Rs with the origin at Rm−s, i.e.,

F = Rs
−×{0}m−s, then (1.2) becomes the Newton method for solving a system of nonlinear

equalities and inequalities, see [20]. On the other hand, if C = Rn, the problem (1.1)

may represent the Karush–Kuhn–Tucker optimality conditions for a nonlinear programming

problem, and then (1.2) describes the well-known sequential quadratic programming method,

see [31, p. 384] and [29,56].

Motivated by the method described above, we propose the Newton-InexP method for

solving the problem (1.1). Taking into account that the Newton iterates satisfying (1.2) can

be infeasible for the constraint set, a procedure is applied in order to get them back to the

feasible set. In this thesis, we introduce the concept of a feasible inexact projection, which

we will be adopt in the proposed methods. We remark that the concept of feasible inexact

projection also accepts an exact projection, which can be adopted when it is easily obtained.

For instance, the exact projections onto a box constraint or Lorentz cone are very easily

obtained; see [72, p. 520] and [46, Proposition 3.3], respectively. It is worth mentioning that

a feasible inexact projection on C can be computed by any method that minimize efficiently

a quadratic function subject to C, by introducing a suitable error criteria. For instance, if

the set C is polyhedral, then some iterations of an interior point method or active set method

can be performed for finding a feasible inexact projection, see [51, 72, 87]. If C is a simple

compact convex set, then the Frank-Wolfe method has been used recently to find a feasible

inexact projection, see, for example, [49,50,61].

Our aim in Chapter 4 is to study the inexact Newton method with feasible inexact

projections (inexact Newton-InexP method) for solving smooth and nonsmooth equations

subject to a set of constraints, i.e., to find x ∈ Rn that solves the following constrained

equation

x ∈ C, f(x) = 0, (1.3)
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where f : Ω → Rn is a locally Lipschitz continuous function, Ω ⊆ Rn is an open set

and C ⊂ Ω is a nonempty closed convex set. It is worth pointing out that if C = Rn,

then problem (1.3) reduces to unconstrained smooth and nonsmooth equations. If f is

a continuously differentiable function, then problem (1.3) reduces to a constrained smooth

equation, which can be easily found in the literature, see, for example, [8,9,44,66,70]. Besides

its own importance, one of the main motivations to study constrained equations is that they

appear in applications when we need to solve real-life problems, for which, only the solutions

belonging to a constraint set have physical meaning. For further details, see [59]. Moreover,

important problems in mathematical programming can be reformulated equivalently as a

constrained nonsmooth equation, for instance, the inequality feasibility problem, see [75]. It

is worth mentioning also that the nonlinear complementarity problem, systems of equalities

and inequalities and, in particular, the Karush-Kuhn-Tucker systems can be reformulated in

an appropriate manner as a constrained nonsmooth equation, see [33,42,43,53,60].

J. M. Mart́ınez and L. Qi [67] presented a version of the inexact Newton method for solving

unconstrained nonsmooth equations, i.e., the following problem

f(x) = 0, (1.4)

where f : Ω → Rn is a locally Lipschitz continuous function and Ω ⊆ Rn is an open set.

In particular, the inexact Newton method for solving the problem (1.4) has the following

formal formulation. For the current iterate xk ∈ Rn, the next iterate is any point xk+1 ∈ Rn

satisfying the relative residual error criteria

‖f(xk) + Vk(xk+1 − xk)‖ ≤ ηk‖f(xk)‖, (1.5)

where ηk ∈ [0, 1) is the relative residual error tolerance and Vk is an element of the Clarke

generalized Jacobian of f at xk. For a definition of the Clarke generalized Jacobian,

see Definition 2.1.7, which was presented by F. H. Clarke [18]. More versions of inexact

Newton-type methods for solving the problem (1.4) include, but are not limited to, those

in [13,14,34,80,81].

The problem (1.3) has been addressed in several studies, and several similar methods

and/or variants of (1.5) have been proposed for solving it. See, for example, the exact/inexact

Newton-like methods in [49, 50, 66], projected Levenberg–Marquardt-type methods in [6, 7],

and trust-region methods in [8, 9]. In particular, the method proposed in [7] combines

a Levenberg–Marquardt-type method with an inexact projection, which also accepts an

infeasible inexact projection. In the present thesis, we propose a scheme for solving the

problem (1.3), which we call the inexact Newton-InexP method, that also uses the concept

of inexact projection. However, inexact projections used in this scheme are always feasible.

In essence, the proposed method combines the inexact Newton method (1.5) with a procedure
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to obtain feasible inexact projections onto a set C and thus to ensure the feasibility of the

iterates. An issue to consider is the inexact solution in (1.5), which has an advantage over the

exact solution, see [25]. This advantage appears more explicitly in practical implementations

of the method, because finding an exact solution of linear approximations of equation (1.4)

can be computationally expensive for large-scale problems. Thus, in the present thesis, we

consider that from the current iterate, the next iterate is any point in C satisfying the relative

residual error criteria (1.5). We remark that if C = Rn, the inexact Newton-InexP method

becomes the classical inexact Newton method applied for solving unconstrained smooth

and nonsmooth equations. From the theoretical viewpoint, i.e., in the convergence analysis

presented, to guarantee local efficiency of the proposed method, we assume appropriate

assumptions, such as regularity and semismoothness. Under the regularity assumption,

we ensure that a sequence generated by the method is well-defined. The semismoothness

assumption is of particular interest owing to the key role it plays in the convergence of our

method; in particular, this property is essential for fast local convergence. To illustrate the

robustness and efficiency of our method, we present some preliminary numerical experiments

of the proposed method for solving constrained absolute value equation (CAVE). We also

compare the performance of the proposed method with the inexact Newton method with

feasible exact projections.

Chapter 5 presents the nonsmooth Newton method for finding a singularity of a special

class of vector fields defined on a complete Riemannian manifold M , i.e., for finding a point

p ∈M satisfying the equation

X(p) = 0, (1.6)

where X is a locally Lipschitz continuous vector field defined on M .

It is well-known that the Newton method is the most popular method for finding a

singularity of a differentiable vector field. Its origins go back to the work of M. Shub

[79]; see also [47, 64, 82, 85, 88]. This method became popular owing to its attractive

convergence properties under suitable assumptions. For instance, in the previously cited

works, the (superlinear and/or quadratic) local convergence of a sequence generated by the

Newton method has been established under the invertibility assumption of the covariant

derivative of the vector field at its singularity, and/or Lipschitz-like conditions on the

covariant derivative of the vector field. Recently, in [35] were established local properties

of the Newton method under the invertibility assumption of the covariant derivative of the

vector field at its singularity. Basically, in the Newton method the vector field is replaced

by an approximation depending on the current iterate, and then the original problem is

converted in an approximated problem, which can be solved more easily. The solution of

this approximated problem is then taken as a new iterate and the process is repeated.

The success of the Newton method for finding a singularity of a differentiable vector
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field has motivated us to propose and analyze the nonsmooth Newton method for finding

a singularity of a locally Lipschitz continuous vector field. To present our method, we first

generalize some results of nonsmooth analysis, from the Euclidean context to the Riemannian

setting. In particular, we discuss the concept and main properties of the locally Lipschitz

continuous vector fields defined on complete Riemannian manifolds, such as the Clarke

generalized covariant derivative and Rademacher theorem. In particular, this derivative

can be viewed as a natural generalization to Riemannian setting of the Clarke generalized

Jacobian. The concept of the Clarke generalized covariant derivative has already appeared

in [48, 77]. In this thesis, we show its existence using a version of Rademacher theorem in

the Riemannian setting, which is one of our contributions. In the following, we introduce in

the Riemannian settings an important subclass of locally Lipschitz continuous vector fields,

namely the semismooth and µ-order semismooth vector fields. As well as in the Euclidean

context, these concepts play an important role in the convergence analysis of our method.

The essence of the nonsmooth Newton method is similar to the classical case, however, in

the approximated problem, we combine the exponential mapping on the manifold with an

element of the Clarke generalized covariant derivative of the vector field. This is because the

covariant derivative of a locally Lipschitz continuous vector field may not exist. It is worth

pointing out that, when the vector field is continuously differentiable, our method reduces

to the classical Newton method. From the theoretical viewpoint, we present a local and

semi-local convergence analysis of the proposed method under mild assumptions.

We finish this thesis with some remarks and future work in Chapter 6. It is worth

mentioning that the results of this thesis gave rise to three scientific papers. One of which

is already published, namely [23], and the other two are under review, namely [21, 22]. The

cited papers have been submitted to important journals of international circulation in the

area of optimization.
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Chapter 2

Notations and preliminary results

In this chapter, we review some notations, definitions and preliminary results used

throughout this text. Initially, we recall some concepts of the Euclidean space and in the

sequence, we discuss some basic concepts of the Riemannian geometry.

2.1 Euclidean space

The following notations, definitions, and results are used throughout of Chapters 3 and

4. For further details, see [18, 31, 34]. We begin with some concepts of analysis and of a

set-valued mapping.

The open and closed balls of radius δ > 0, centered at x are defined respectively by

Bδ(x) := {y ∈ Rn : ‖x− y‖ < δ}, Bδ[x] := {y ∈ Rn : ‖x− y‖ ≤ δ}.

The vector space consisting of all continuous linear mappings A : Rn → Rm is denoted by

L(Rn,Rm), and the norm of A is defined by

‖A‖ := sup {‖Ax‖ : ‖x‖ ≤ 1}.

Let Ω ⊆ Rn be an open set and f : Ω→ Rm be a differentiable function at all x ∈ Ω. Then,

the derivative of f at x is the linear mapping f ′(x) : Rn → Rm, which is continuous. The

graph of the set-valued mapping F : Rn ⇒ Rm is the set

gphF := {(x, u) ∈ Rn × Rm : u ∈ F (x)} .

The domain and range of the set-valued mapping F are, respectively, the sets

domF := {x ∈ Rn : F (x) 6= ∅}, rgeF := {u ∈ Rm : u ∈ F (x) for some x ∈ Rn}.
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The inverse of the mapping F is the set-valued mapping F−1 : Rm ⇒ Rn defined by

F−1(u) := {x ∈ Rn : u ∈ F (x)} and the partial linearization of f + F at x ∈ Ω is the

set-valued mapping Lf+F (x, ·) : Ω ⇒ Rm defined by

Lf+F (x, y) := f(x) + f ′(x)(y − x) + F (y). (2.1)

For the sets C and D in Rn, the distance from x to D and the excess of C beyond D are

defined respectively by

d(x,D) := inf
y∈D
‖x− y‖, e(C,D) := sup

x∈C
d(x,D), (2.2)

where the convention is adopted that d(x,D) = +∞ when D = ∅, e(∅, D) = 0 when D 6= ∅,

and e(∅,∅) = +∞. In the following, we present the notion of metric regularity, which plays

an important role in Chapter 3.

Definition 2.1.1 Let Ω ⊂ Rn be an open set. A set-valued mapping G : Ω ⇒ Rm is said to

be metrically regular at x̄ ∈ Ω for ū ∈ Rm when ū ∈ G(x̄), the graph of G is locally closed at

(x̄, ū), and there exist constants κ ≥ 0, a > 0, and b > 0 such that Ba[x̄] ⊂ Ω and

d(x,G−1(u)) ≤ κ d(u,G(x)), ∀ (x, u) ∈ Ba[x̄]×Bb[ū].

Moreover, if the mapping Bb[ū] 3 u 7→ G−1(u) ∩ Ba[x̄] is single-valued, then G is called

strongly metrically regular at x̄ ∈ Ω for ū ∈ Rm, with associated constants κ ≥ 0, a > 0, and

b > 0.

When the mapping Bb[ū] 3 u 7→ G−1(u) ∩ Ba[x̄] in Definition 2.1.1 is single-valued, then

for the sake of simplicity we hereafter adopt the notation w = G−1(u) ∩ Ba[x̄] instead of

{w} = G−1(u) ∩Ba[x̄].

Remark 2.1.2 If G is strongly metrically regular at x̄ ∈ Ω for ū ∈ Rm with constants

κ ≥ 0, a > 0, and b > 0, then the mapping Bb[ū] 3 u 7→ G−1(u) ∩Ba[x̄] is single-valued and

Lipschitz continuous on Bb[ū] with Lipschitz constant κ [31, Proposition 3G.1, p. 193], i.e.,∥∥G−1(u) ∩Ba[x̄]−G−1(v) ∩Ba[x̄]
∥∥ ≤ κ‖u− v‖, ∀ u, v ∈ Bb[ū].

Next, we present a generalization of the contraction mapping principle for set-valued

mappings. For a prove of this, see [31, Theorem 5E.2, p. 313].

Theorem 2.1.3 Let Φ : Rn ⇒ Rn be a set-valued mapping and let x̄ ∈ Rn. Suppose that

there exist scalars ρ > 0 and λ ∈ (0, 1) such that the set gph Φ ∩ (Bρ[x̄] × Bρ[x̄]) is closed

and the following conditions hold:
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(i) d(x̄,Φ(x̄)) ≤ ρ(1− λ);

(ii) e (Φ(p) ∩Bρ[x̄],Φ(q)) ≤ λ‖p− q‖ for all p, q ∈ Bρ[x̄].

Then, Φ has a fixed point in Bρ[x̄]. That is, there exists y ∈ Bρ[x̄] such that y ∈ Φ(y).

In the following, we define the concepts of locally Lipschitz continuous and directionally

differentiable functions, which plays an important role in our study, more specifically, in

Chapter 4.

Definition 2.1.4 A function f : Ω→ Rm is said to be Lipschitz continuous on a set Ω ⊆ Rn,

if there is a constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω.

Given x ∈ Ω, if there exists δ > 0 such that f is Lipschitz continuous on Bδ(x), then f is

said to be Lipschitz continuous at x. Moreover, if for all x ∈ Ω, f is Lipschitz continuous at

x, then f is said to be locally Lipschitz continuous on Ω.

Remark 2.1.5 According to Rademacher theorem, see [32, Theorem 2, p. 81], locally

Lipschitz continuous functions are differentiable almost everywhere.

Definition 2.1.6 Let Ω ⊆ Rn be an open set. The directional derivative of a function

f : Ω→ Rm at x ∈ Ω in the direction h ∈ Rn is defined by

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
,

whenever the limit exists. If f ′(x;h) exists for every h, then f is said to be directionally

differentiable at x.

We end this section by defining the Clarke generalized Jacobian of a function, which has

appeared in [18]. This Jacobian requires only local Lipschitz continuity of the function f

and its well-definedness is ensured by Rademacher theorem.

Definition 2.1.7 The Clarke generalized Jacobian of a locally Lipschitz continuous function

f at x is a set-valued mapping ∂f : Rn ⇒ Rm defined as

∂f(x) := co

{
H ∈ Rm×n : ∃ {xk} ⊂ Df , lim

k→+∞
xk = x, H = lim

k→+∞
f ′(xk)

}
,

where “ co” represents the convex hull, Rm×n is the set consisting of all m×n matrices, and

Df denotes the set of points at which f is differentiable.
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Remark 2.1.8 It is worth mentioning that if f is continuously differentiable at x, then

∂f(x) = {f ′(x)}. Otherwise, ∂f(x) could contain other elements different from f ′(x),

even if f is differentiable at x, see [18, Example 2.2.3, p. 33]. Furthermore, the Clarke

generalized Jacobian is a subset of Rm×n nonempty, convex, compact in the usual sense. We

also remind that the set-valued mapping ∂f is closed and upper semicontinuous, see [18,

Proposition 2.6.2, p. 70].

2.2 Riemannian geometry

In this section, we recall some notations, definitions and basic properties of Riemannian

manifolds used throughout of Chapter 5. They can be found in many books on Riemannian

geometry, see, for example, [62, 78, 84]. We begin this section by presenting the concepts of

charts and smoothness of a mapping defined between manifolds.

Definition 2.2.1 A chart on a n-dimensional smooth manifold M is a pair (U,ϕ), where U

is an open subset of M and the coordinate mapping ϕ : U → Û is a smooth homeomorphism

from U to an open subset Û = ϕ(U) ⊆ Rn.

Definition 2.2.2 Let N and M be manifolds of finite dimension and F : N → M be a

continuous mapping. We say that F is smooth at p ∈ N , if there exist smooth charts (U,ϕ)

containing p and (W,ψ) containing F (p) such that F (U) ⊆ W and the composite mapping

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W ) is smooth at ϕ(p).

Remark 2.2.3 The definition of smoothness of a mapping F : N → M at a point is

independent of the choice of charts, see [84, Proposition 6.7, p. 61]. A diffeomorphism of

manifolds is a bijective smooth mapping F : N → M whose inverse F−1 is also smooth.

According to [84, Proposition 6.10, p. 63] coordinate mappings are diffeomorphisms and,

in particular, are continuously differentiable.

Let M be a n-dimensional smooth Riemannian manifold with Riemannian metric denoted

by 〈·, ·〉 and the corresponding norm by ‖ · ‖. The length of a piecewise smooth curve

γ : [a, b]→M joining p to q in M , i.e., γ(a) = p and γ(b) = q is defined by

`(γ) :=

∫ a

b

‖γ′(t)‖ dt.

The Riemannian distance between p and q is defined as d(p, q) = infγ∈Γp,q `(γ), where Γp,q
is the set of all piecewise smooth curves in M joining points p and q. This distance induces

the original topology on M , namely (M,d) is a complete metric space and the bounded and

11



closed subsets are compact. The open and closed balls of radius r > 0, centred at p are

defined respectively by

Br(p) := {q ∈M : d(p, q) < r} , Br[p] := {q ∈M : d(p, q) ≤ r} .

Denote the tangent space at point p by TpM , the tangent bundle by TM :=
⋃
p∈M TpM and

a vector field by a mapping X : M → TM such that X(p) ∈ TpM . Let γ be a curve joining

the points p and q in M , and let∇ be the Levi-Civita connection associated to (M, 〈·, ·〉). For

each t ∈ [a, b], ∇ induces a linear isometry between the tangent spaces Tγ(a)M and Tγ(t)M ,

relative to 〈·, ·〉, defined by Pγ,a,tv = Y (t), where Y is the unique vector field on γ such that

∇γ′(t)Y (t) = 0 and Y (a) = v. This isometry is called parallel transport along the segment γ

joining γ(a) to γ(t). It can be showed that Pγ, b1, b2 ◦Pγ, a, b1 = Pγ, a, b2 and Pγ, b, a = P−1
γ, a, b. For

simplicity and convenience, whenever there is no confusion, we consider the notation Pγ,p,q
instead of Pγ, a, b, where γ is a segment joining p to q with γ(a) = p and γ(b) = q. We use the

short notation Ppq instead of Pγ,p,q whenever there exists an unique geodesic segment joining

p to q.

Remark 2.2.4 For any n-dimensional smooth manifold M ; the tangent bundle TM has

a natural topology and smooth structure that make it into a 2n-dimensional smooth

manifold. With respect to this structure, the projection π : TM → M is smooth, see [63,

Proposition 3.18, p. 66].

The standard Riemannian distance dTM on the tangent bundle TM can be defined as

follows: given u, v ∈ TM , then dTM is defined by

dTM(u, v) := inf

{√
`2(γ) + ‖Pγ,πu,πvu− v‖2 : γ ∈ Γπu,πv

}
, (2.3)

where Γπu,πv is the set of all piecewise smooth curves in M joining the points πu to πv,

whose derivative is never zero, see [15, Appendix, p. 240].

A vector field Y along a smooth curve γ in M is said to be parallel when ∇γ′Y = 0. If γ′

itself is parallel, we say that γ is a geodesic. The geodesic equation∇γ′γ
′ = 0 is a second-order

nonlinear ordinary differential equation, so the geodesic γ is determined by its position p

and velocity v at p. It is easy to check that ‖γ′‖ is constant. The restriction of a geodesic to

a closed bounded interval is called a geodesic segment. A geodesic segment joining p to q in

M is said to be minimal if its length is equal to d(p, q) and, in this case, it will be denoted

by γpq. A Riemannian manifold is complete if its geodesics γ(t) are defined for any value of

t ∈ R. The Hopf-Rinow theorem asserts that any pair of points in a complete Riemannian

manifold M can be joined by a (not necessarily unique) minimal geodesic segment.

From now on, M denotes a n-dimensional smooth and complete Riemannian manifold.

Owing to the completeness of the Riemannian manifold M , the exponential mapping at p,
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expp : TpM → M can be given by expp v = γ(1), where γ is the geodesic defined by its

position p and velocity v at p and γ(t) = expp(tv) for any value of t. The inverse of the

exponential mapping (if exists) is denote by exp−1
p . Let p ∈ M , the injectivity radius of M

at p is defined by

rp := sup
{
r > 0 : expp|Br(0p)

is a diffeomorphism
}
,

where 0p denotes the origin of the TpM and Br(0p) := {v ∈ TpM : ‖v − 0p‖ < r}.
A neighborhood W of p ∈ M is said to be normal neighborhood of p if there exists a

neighborhood U of the origin in TpM such that expp : U → W is a diffeomorphism.

Furthermore, if W is a normal neighborhood of each of its points, then W is said to be

totally normal neighborhood.

Remark 2.2.5 For p̄ ∈ M , the above definition implies that if 0 < δ < rp̄, then

expp̄Bδ(0p̄) = Bδ(p̄) is a totally normal neighborhood. Hence, for all p, q ∈ Bδ(p̄), there

exists a unique geodesic segment γ joining p to q, which is given by γpq(t) = expp(t exp−1
p q),

for all t ∈ [0, 1] and d(p, q) = ‖ exp−1
p q‖.

In the following, we present a quantity, which plays an important role in Chapter 5, it was

defined in [24].

Definition 2.2.6 Let p ∈ M and rp be the radius of injectivity of M at p. Define the

quantity Kp by

Kp := sup

{
d(expq u, expq v)

‖u− v‖
: q ∈ Brp(p), u, v ∈ TqM, u 6= v, ‖v‖ ≤ rp, ‖u− v‖ ≤ rp

}
.

In the following remark, we show that an estimative for the value of Kp can be found for

Riemannian manifolds with non-negative sectional curvature.

Remark 2.2.7 The number Kp measures how fast the geodesics spread apart in M . In

particular, when u = 0 or more generally when u and v are on the same line through 0,

d(expq u, expq v) = ‖u − v‖. Hence, Kp ≥ 1, for all p ∈ M . When M has non-negative

sectional curvature, the geodesics spread apart less than the rays [26, Chapter 5], i.e.,

d(expp u, expp v) ≤ ‖u− v‖ and, in this case, Kp = 1 for all p ∈M .

The directional derivative of X at p in the direction v ∈ TpM is defined by

∇X(p, v) := lim
t→0+

1

t

[
Pexpp(tv)pX(expp(tv))−X(p)

]
∈ TpM, (2.4)

whenever the limit exists, where Pexpp(tv)p denotes the parallel transport along γ(t) =

expp(tv). If this directional derivative exists for every v, then X is said to be directionally
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differentiable at p. Denote by X (M) the space of the differentiable vector fields on M . For

each X ∈ X (M), the covariant derivative of X determined by the Levi-Civita connection ∇
defines at each p ∈M a linear mapping ∇X(p) : TpM → TpM given by

∇X(p)v := ∇YX(p),

where Y is a vector field such that Y (p) = v. Furthermore, ∇X(p, v) = ∇X(p)v, see [83,

Proposition 3, p. 234]. To state the following result, we need to define the norm of a linear

mapping.

Definition 2.2.8 Let p ∈M , the norm of a linear mapping A : TpM → TpM is defined by

‖A‖ := sup {‖Av‖ : v ∈ TpM, ‖v‖ = 1} .

We end this section with the well-known Banach lemma. For a prove of it see [73,

Lemma 2.3.2, p. 45].

Lemma 2.2.9 Let A, B be linear operators in TpM . If A is nonsingular and holds

‖A−1‖‖B − A‖ < 1, then B is nonsingular, and

‖B−1‖ ≤ ‖A−1‖
1− ‖A−1(B − A)‖

.
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Chapter 3

Newton method with feasible inexact

projections for solving constrained

generalized equations

In this chapter, we propose a version of the Newton method for solving constrained

generalized equations, i.e., for solving the problem (1.1). Basically, the proposed method can

be seen as a combination of the classical Newton method applied for solving unconstrained

generalized equations with a procedure to obtain a feasible inexact projection. Our goal

is to present an analysis of the behavior of a sequence generated by this method. For

this purpose, using the contraction mapping principle, we establish a local convergence

analysis of our method under appropriate assumptions, namely metric regularity or strong

metric regularity and Lipschitz continuity. Furthermore, concrete examples of constrained

generalized equations are presented.

3.1 Newton-InexP method and its convergence analysis

In this section, we present the Newton-InexP method for solving the problem (1.1). We

also study the local convergence of a sequence generated by this method. Our analysis

is performed under assumptions of metric regularity and strong metric regularity for an

approximation of the set-valued mapping f + F and assuming the Lipschitz continuity of

the derivative f ′. To ensure the feasibility of the Newton iterates, our method incorporates

a procedure to obtain a feasible inexact projection onto the feasible set. Next, we introduce

the concept of a feasible inexact projection, which will play an important role throughout

the thesis.
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Definition 3.1.1 Let C ⊂ Rn be a closed convex set, x ∈ C, and θ ≥ 0. The feasible inexact

projection mapping relative to x with error tolerance θ, denoted by PC(·, x, θ) : Rn ⇒ C, is

the set-valued mapping defined as follows:

PC(y, x, θ) :=
{
w ∈ C : 〈y − w, z − w〉 ≤ θ‖y − x‖2, ∀ z ∈ C

}
.

Each point w ∈ PC(y, x, θ) is called a feasible inexact projection of y onto C with respect to

x and with error tolerance θ.

Since C ⊂ Rn is a closed convex set, [12, Proposition 2.1.3, p. 201] implies that for each

y ∈ Rn we have PC(y) ∈ PC(y, x, θ), where PC denotes the exact projection mapping onto

C. Therefore, PC(y, x, θ) 6= ∅ for all y ∈ Rn and x ∈ C. If θ = 0 in Definition 3.1.1, then

PC(y, x, 0) = {PC(y)} for all y ∈ Rn and x ∈ C. We use PC(y, x, 0) = PC(y) instead of

PC(y, x, 0) = {PC(y)}.

Remark 3.1.2 It is worth mentioning that the concept of inexact projection has been

considered before; see, for example, [7]. However, in general, those inexact projections are

infeasible and, thus, different from the above concept.

Conditional gradient procedure (CondG procedure); see, for instance, [45, 61], which is

based on Frank-Wolfe method, is an example of the procedure for obtaining feasible inexact

projections onto special compact sets C. For a general overview of this method, see [12].

For the sake of completeness, we present the CondG procedure in the following. For this,

we assume the existence of a linear optimization oracle (or simply LO oracle) capable of

minimizing linear functions over the constraint set C. Next, we formally describe the CondG

procedure algorithm with y ∈ Rn, x ∈ C and ε ≥ 0 as the input data.

Algorithm 3.1.3 CondG procedure x+ = CondG (y, x, ε)

Step 0. Set w1 = x and k = 1.

Step 1. Use a LO oracle to compute an optimal solution zk and the optimal value g∗k as

zk := arg min
z∈C
〈y − wk, z − wk〉, g∗k := 〈y − wk, zk − wk〉. (3.1)

Step 2. If g∗k ≤ ε, set x+ := wk and stop; otherwise, compute αk ∈ (0, 1] and wk+1 as

αk := min

{
1,

g∗k
‖zk − wk‖2

}
, wk+1 := wk + αk(zk − wk). (3.2)
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Step 3. Set k ← k + 1, and go to Step 1.

In the following, we describe the main features of the CondG procedure; for further details,

see [61].

Remark 3.1.4 Let y ∈ Rn and ϕ : Rn → R be defined by ϕ(z) := ‖y − z‖2/2. It is worth

mentioning that the above CondG procedure can be viewed as a specialized version of the

classic conditional gradient method, see [12, p. 215], applied to problem minz∈C ϕ(z). In

particular, it can be easily seen in (3.1) that zk is equivalent to minz∈C〈ϕ′(wk), z−wk〉. The

stepsize αk given in (3.2) is obtained using exact minimization, i.e., αk = arg minα∈[0,1] ϕ(wk+

α(zk − wk)). Note that, if the CondG procedure computes the optimal value g∗k satisfying

g∗k ≤ ε, then it obtains wk ∈ C and the procedure terminates. Otherwise, computes αk, which

is well-defined and belongs to (0, 1] due to g∗k > ε ≥ 0. Since zk, wk ∈ C we have wk+1 ∈ C,

thus the CondG procedure generates a sequence in C. Finally, note that CondG (y, x, 0) =

PC(y), and therefore x+ = CondG (y, x, ε) can be seen as an approximation of the projection

PC(y) onto C.

The next result plays an important role in the subsequent analysis, in particular, for this

and the next chapter. It presents a basic property of the feasible inexact projection, the

proof is similar to [50, Lemma 4]. For the sake of completeness, we decide to present the

proof here.

Lemma 3.1.5 Let y, ỹ ∈ Rn, x, x̃ ∈ C, and θ ≥ 0. Then, for any w ∈ PC(y, x, θ), we have

‖w − PC(ỹ, x̃, 0)‖ ≤ ‖y − ỹ‖+
√

2θ‖y − x‖.

Proof. To simplify the notation, we set w̃ = PC(ỹ, x̃, 0), and take w ∈ PC(y, x, θ). First,

note that ‖y− ỹ‖2 = ‖(y−w)− (ỹ− w̃)‖2 + ‖w− w̃‖2 + 2〈(y− ỹ)− (w− w̃), w− w̃〉, which

implies that

‖w − w̃‖2 ≤ ‖y − ỹ‖2 + 2〈y − w, w̃ − w〉+ 2〈ỹ − w̃, w − w̃〉.

Because w̃ = PC(ỹ, x̃, 0) and w ∈ PC(y, x, θ), by using Definition 3.1.1 and the fact that

w̃, w ∈ C, we can conclude that

〈y − w, w̃ − w〉 ≤ θ‖y − x‖2, 〈ỹ − w̃, w − w̃〉 ≤ 0.

Thus, the combination of these three previous inequalities yields

‖w − w̃‖2 ≤ ‖y − ỹ‖2 + 2θ‖y − x‖2,
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and then ‖w − w̃‖ ≤ ‖y − ỹ‖+
√

2θ‖y − x‖, giving the desired inequality. �

The conceptual Newton-InexP algorithm, for solving the problem (1.1), with x0 ∈ C and

{θk} ⊂ [0,+∞) as the input data, is formally described as follows.

Algorithm 3.1.6 Newton-InexP method

Step 0. Let x0 ∈ C and {θj} ⊂ [0,+∞) be given, and set k = 0.

Step 1. If f(xk) + F (xk) 3 0, then stop; otherwise, compute yk ∈ Rn such that

f(xk) + f ′(xk)(yk − xk) + F (yk) 3 0. (3.3)

Step 2. If yk ∈ C, set xk+1 = yk; otherwise, use a procedure to obtain PC(yk, xk, θk) ∈ C a

feasible inexact projection of yk onto C relative to xk with relative error tolerance θk;

and set

xk+1 ∈ PC (yk, xk, θk) . (3.4)

Step 3. Set k ← k + 1, and go to Step 1.

Remark 3.1.7 In Step 1 of Algorithm 3.1.6, we check if the current iterate xk is a solution

of problem (1.1). Otherwise, we compute a point yk satisfying the inclusion (3.3). Since the

point yk in Step 1 may be infeasible for the constraint set C, the Newton-InexP method

applies a procedure to obtain a feasible inexact projection, and consequently the new iterate

xk+1 on C. In particular, the point xk+1 obtained in (3.4) is an approximate feasible solution

for the projection subproblem minz∈C{‖z− yk‖2/2}, satisfying the condition 〈yk − xk+1, z−
xk+1〉 ≤ θk‖yk − xk‖2 for any z ∈ C. As we will see, the specific choice of the tolerance θk is

essential to establish the local convergence of the Newton-InexP method. Whenever F ≡ {0}
and the CondG procedure is used to obtain xk+1 ∈ PC (yk, xk, θk), the Algorithm 3.1.6 reduces

to the one proposed in [50].

In the following, we state our main theorem for the Newton-InexP method. The proof

constitutes a combination of the results that will be studied in the sequel.

Theorem 3.1.8 Let Ω ⊂ Rn be an open set, f : Ω → Rm be continuously differentiable in

Ω, and F : Ω ⇒ Rm be a set-valued mapping with closed graph. Assume that C ⊂ Ω is a

closed convex set, x∗ ∈ C, f(x∗) + F (x∗) 3 0, there exists L > 0 such that

‖f ′(x)− f ′(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω, (3.5)
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and the set-valued mapping Ω 3 y 7→ Lf+F (x∗, y) is metrically regular at x∗ for 0, with

constants κ > 0, a > 0, and b > 0. Let r := sup {t ∈ R : Bt(x∗) ⊂ Ω}, {θk} ⊂ [0, 1/2) and

r∗ := min

r, 2
(

1−
√

2θ̃
)

(
3−

√
2θ̃
)
κL

, a,

√
2b

3L

 , θ̃ := sup
k
θk <

1

2
. (3.6)

Then, for every x0 ∈ C ∩ Br∗(x∗)\{x∗}, there exists a sequence {xk} generated by the

Newton-InexP method, associated to {θk} and starting at x0, which is contained in Br∗(x∗)∩C
and converges to x∗ with the following rate of convergence:

‖xk+1 − x∗‖ ≤
[(

1 +
√

2θk

) κL‖xk − x∗‖
2(1− κL‖xk − x∗‖)

+
√

2θk

]
‖xk − x∗‖, (3.7)

for all k = 0, 1, . . .. As a consequence, if limk→+∞ θk = 0 then {xk} converges to x∗
superlinearly. In particular, if θk = 0 for all k = 0, 1 . . ., then

‖xk+1 − x∗‖ ≤
3κL

2
‖xk − x∗‖2, k = 0, 1, . . . , (3.8)

and {xk} converges to x∗ quadratically. Furthermore, if the mapping Lf+F (x∗, ·) is strongly

metrically regular at x∗ for 0, then x∗ is the unique solution of (1.1) in Br∗(x∗), and every

sequence generated by the Newton-InexP method associated to {θk} and starting at x0 ∈
C ∩Br∗(x∗)\{x∗} satisfies (3.7) and converges to x∗.

Remark 3.1.9 In particular, (3.7) implies that lim supk→+∞[‖xk+1 − x∗‖/‖xk − x∗‖] ≤√
2θ̂, where θ̂ = lim supk→+∞ θk. Note that if C = Rn, then θk ≡ 0, and using [31,

Theorem 3E.7, p. 178], we can conclude with some adjustment that Theorem 3.1.8 reduces

to [28, Theorem 1]. If yk ∈ C in the Newton-InexP method for all k = 0, 1, . . ., then the

procedure to obtain a feasible inexact projection plays no role. In this case, the convergence

rate is quadratic, as in (3.8).

Henceforth, we assume that all the assumptions of Theorem 3.1.8 hold except the strong

metric regularity, which will be considered to hold only when explicitly stated.

3.2 Preliminary results

In this section, our goal is to prove some preliminary results necessary in order to prove

Theorem 3.1.8. We begin with a technical result that will be useful in our context.

Lemma 3.2.1 The following inequality holds: ‖f(q)−f(p)−f ′(p)(q−p)‖ ≤ (L/2)‖q−p‖2,

for all p, q ∈ Br(x∗). Moreover, if ‖p− x∗‖ < r∗, then

‖f(x∗)− f(p)− f ′(p)(z − p) + f ′(x∗)(z − x∗)‖ < b, ∀ z ∈ Br∗(x∗).
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Proof. Because q+(1−τ)(p−q) ∈ Br(x∗) for all τ ∈ [0, 1] and f is continuously differentiable

in Ω, applying the fundamental theorem of calculus and the properties of the norm, we obtain

‖f(q)− f(p)− f ′(p)(q − p)‖ ≤
∫ 1

0

‖f ′(p)− f ′(q + (τ − 1)(q − p))‖ ‖q − p‖ dτ.

On the other hand, by using (3.5) and performing the integration, the last inequality leads

to the first inequality of the lemma. We proceed to prove the second inequality. For this

purpose, let 0 < ‖p− x∗‖ < r∗ and 0 < ‖z − x∗‖ < r∗. By applying the triangle inequality,

we have

‖f(x∗)− f(p)− f ′(p)(z − p) + f ′(x∗)(z − x∗)‖ ≤
‖f(x∗)− f(p)− f ′(p)(x∗ − p)‖+ ‖f ′(p)− f ′(x∗)‖ ‖x∗ − z‖. (3.9)

Hence, the first inequality of this lemma together with the Lipschitz condition in (3.5) implies

that

‖f(x∗)− f(p)− f ′(p)(x∗ − p)‖+‖f ′(p)− f ′(x∗)‖ ‖x∗−z‖ ≤
L

2
‖x∗−p‖2+L‖x∗−p‖‖x∗−z‖.

Therefore, by combining this inequality with (3.9), we conclude that

‖f(x∗)− f(p)− f ′(p)(z − p) + f ′(x∗)(z − x∗)‖ ≤
L

2
‖x∗ − p‖2 + L‖x∗ − p‖‖x∗ − z‖.

Taking into account that ‖p − x∗‖ < r∗, ‖z − x∗‖ < r∗ and r∗ ≤
√

2b/3L, the desired

inequality follows from the last inequality. Thus, the proof of the lemma is complete. �

To state the next result, for each fixed x ∈ Rn we define the following auxiliary set-valued

mapping Φx : Ω ⇒ Rn:

Φx(y) := Lf+F (x∗, f(x∗)− f(x)− f ′(x)(y − x) + f ′(x∗)(y − x∗))−1
, (3.10)

where Rm 3 u 7→ Lf+F (x∗, u)−1 := {z ∈ Rn : u ∈ Lf+F (x∗, z)} is the inverse of Lf+F defined

in (2.1). Therefore, y ∈ Φx(y) if and only if x and y satisfy the following inclusion:

f(x) + f ′(x)(y − x) + F (y) 3 0,

i.e., y is the next Newton iterate from x. In the next lemma, we establish the existence

of a fixed point of Φx for all x in a suitable neighborhood of x∗. Moreover, we present an

important bound on the distance between x∗ and this fixed point, and establish its uniqueness

under strong metric regularity. The statement of this result is as follows.
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Lemma 3.2.2 If 0 < ‖x− x∗‖ < r∗, then there exists a fixed point y ∈ Φx(y) such that

‖y − x∗‖ ≤
κL‖x− x∗‖2

2(1− κL‖x− x∗‖)
. (3.11)

In particular, this implies that y ∈ Br∗(x∗). In addition, if Lf+F (x∗, ·) is strongly metrically

regular at x∗ for 0, then for all x ∈ Br∗(x∗) the mapping Φx has only one fixed point in

Br∗(x∗) satisfying (3.11).

Proof. To prove the first part of the lemma, we will first prove the following two inequalities:

(i) d (x∗,Φx(x∗)) ≤ ρ (1− κL‖x− x∗‖);

(ii) e (Φx(p) ∩Bρ[x∗],Φx(q)) ≤ κL‖x− x∗‖ ‖p− q‖ , ∀ p, q ∈ Bρ[x∗],

where the scalar ρ > 0 is defined by

ρ :=
κL‖x− x∗‖2

2(1− κL‖x− x∗‖)
. (3.12)

In order to prove item (i), first note that the definition of the mapping Φx given in (3.10)

implies that

d(x∗,Φx(x∗)) = d
(
x∗, Lf+F (x∗, f(x∗)− f(x)− f ′(x)(x∗ − x))−1

)
.

Thus, taking into account that the second part of Lemma 3.2.1 with p = x and z = x∗
implies that ‖f(x∗) − f(x) − f ′(x)(x∗ − x)‖ < b, and considering that x∗ ∈ Ba[x∗] and

0 ∈ Lf+F (x∗, x∗), we can apply Definition 2.1.1 to conclude that

d (x∗,Φx(x∗)) ≤ κ ‖f(x∗)− f(x)− f ′(x)(x∗ − x)‖ .

Since Lemma 3.2.1 with p = x and q = x∗ also implies that

‖f(x∗)− f(x)− f ′(x)(x∗ − x)‖ ≤ (L/2)‖x∗ − x‖2,

combining the two last inequalities, we obtain d(x∗,Φx(x∗)) ≤ (κL/2)‖x− x∗‖2, which after

some manipulation, yields

d(x∗,Φx(x∗)) ≤
κL‖x− x∗‖2

2(1− κL‖x− x∗‖)
(1− κL‖x− x∗‖) .

This inequality, together with definition given in (3.12), proves item (i). To prove item

(ii), we take p, q ∈ Bρ[x∗]. Owing to definition given in (3.12), taking into account that

r∗ ≤ 2/(3κL) and ‖x− x∗‖ < r∗, we can verify that ρ < r∗. Thus, Lemma 3.2.1 implies that

‖f(x∗)− f(x)− f ′(x)(p− x) + f ′(x∗)(p− x∗)‖ < b,
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and

‖f(x∗)− f(x)− f ′(x)(q − x) + f ′(x∗)(q − x∗)‖ < b.

Because e(∅,Φx(q)) = 0, we can assume without loss of generality that Φx(p) ∩ Ba[x∗] 6= ∅
for all p ∈ Bρ[x∗]. Let z ∈ Φx(p) ∩ Ba[x∗]. Then, from Definition 2.1.1 with x̄ = x∗, ū = 0,

x = z, u = f(x∗)− f(x)− f ′(x)(q − x) + f ′(x∗)(q − x∗), and G = Lf+F (x∗, ·), we have

d(z,Φx(q)) ≤ κd (f(x∗)− f(x)− f ′(x)(q − x) + f ′(x∗)(q − x∗), Lf+F (x∗, z)) .

Since z ∈ Φx(p) implies that f(x∗)− f(x)− f ′(x)(p− x) + f ′(x∗)(p− x∗) ∈ Lf+F (x∗, z), by

using the definition of distance given in (2.2), we obtain

d (f(x∗)− f(x)− f ′(x)(q − x) + f ′(x∗)(q − x∗), Lf+F (x∗, z)) ≤ ‖[f ′(x)− f ′(x∗)](p− q)‖ .

Hence, combining the two last inequalities, we conclude that

d(z,Φx(q)) ≤ κ ‖[f ′(x)− f ′(x∗)](p− q)‖ .

Taking the supremum with respect to z ∈ Φx(p)∩Ba[x∗] in the last inequality and using the

definition of excess given in (2.2), we have

e (Φx(p) ∩Ba[x∗],Φx(q)) ≤ κ ‖[f ′(x)− f ′(x∗)](p− q)‖ .

Since ρ < r∗ ≤ a, we have e(Φx(p) ∩ Bρ[x∗],Φx(q)) ≤ e(Φx(p) ∩ Ba[x∗],Φx(q)). Hence, from

the last inequality and the properties of the norm, we obtain

e (Φx(p) ∩Bρ[x∗],Φx(q)) ≤ κ ‖f ′(x)− f ′(x∗)‖ ‖p− q‖.

By using the fact that f ′ is Lipschitz continuous with constant L > 0, the latter inequality

becomes

e (Φx(p) ∩Bρ[x∗],Φx(q)) ≤ κL‖x− x∗‖‖p− q‖,

and thus item (ii) is proved. Because r∗ ≤ 2/(3κL) implies that κL‖x − x∗‖ < 1, we can

apply Theorem 2.1.3 with Φ = Φx, x̄ = x∗, and λ = κL‖x−x∗‖ to conclude that there exists

y ∈ Bρ[x∗], i.e., the inequality (3.11) holds, with that y ∈ Φx(y). To prove that y ∈ Br∗(x∗),

we use the fact that r∗ ≤ 2/(3κL) and (3.11) to conclude that

‖y − x∗‖ ≤
κLr∗

2(1− κLr∗)
‖x− x∗‖ ≤ ‖x− x∗‖ < r∗,

which implies the desired result. Therefore, the proof of the first part of the lemma is

complete. Now, we assume that Lf+F (x∗, ·) is strongly metrically regular at x∗ for 0. Suppose

that there exist ŷ and ỹ ∈ Bρ[x∗] ⊂ Br∗(x∗) such that ŷ ∈ Φx(ŷ) and ỹ ∈ Φx(ỹ). We know

that the mapping z 7→ Lf+F (x∗, z)
−1∩Ba[x∗] is single-valued on Bb[0], and thus the definition
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of Φx in (3.10) and the second part of Lemma 3.2.1 imply that ŷ = Φx(ŷ) and ỹ = Φx(ỹ).

Using the definition of excess in (2.2), item (ii), and the fact that r∗ ≤ 2/(3κL), we obtain

‖ŷ − ỹ‖ = e(Φx(ŷ) ∩Bρ[x∗],Φx(ỹ)) ≤ κL‖x− x∗‖ ‖ŷ − ỹ‖ < ‖ŷ − ỹ‖ ,

which is a contradiction. Thus, ŷ = ỹ, and the proof is concluded. �

The next lemma plays an important role in the convergence analysis. In particular, it will

be used to prove the well-definedness of the sequence {xk} ⊂ Br∗(x∗)∩C and its convergence

to a solution of problem (1.1).

Lemma 3.2.3 If θ ≥ 0, x ∈ C ∩ Br∗(x∗)\{x∗} and y ∈ Φx(y) satisfies (3.11), then it holds

that

‖w − x∗‖ ≤
[(

1 +
√

2θ
) κL‖x− x∗‖

2(1− κL‖x− x∗‖)
+
√

2θ

]
‖x−x∗‖, ∀ w ∈ PC(y, x, θ). (3.13)

In addition, if θ < 1/2, then PC(y, x, θ) ⊂ Br∗(x∗) ∩ C.

Proof. Take w ∈ PC(y, x, θ). Then, applying Lemma 3.1.5 with ỹ = x∗ and x̃ = x∗, we have

‖w − PC (x∗, x∗, 0)‖ ≤ ‖y − x∗‖+
√

2θ (‖x− x∗‖+ ‖y − x∗‖) . (3.14)

On the other hand, because ‖x−x∗‖ < r∗, by applying Lemma 3.2.2 and some manipulations,

we conclude that

‖w − PC (x∗, x∗, 0)‖ ≤
[(

1 +
√

2θ
) κL‖x− x∗‖

2(1− κL‖x− x∗‖)
+
√

2θ

]
‖x− x∗‖.

Hence, owing to the fact that PC(x∗, x∗, 0) = x∗, the last inequality and (3.14) yield (3.13).

The conditions (3.6) imply that (1 +
√

2θ)[(κL‖x − x∗‖)/(2(1 − κL‖x − x∗‖))] +
√

2θ < 1.

Thus, it follows from (3.13) that

‖w − x∗‖ < ‖x− x∗‖, ∀ w ∈ PC(y, x, θ),

and because ‖x − x∗‖ < r∗ we obtain that PC(y, x, θ) ⊂ Br∗(x∗). Because PC(y, x, θ) ⊂ C,

the last statement of the lemma follows, which concludes the proof. �

Now, let us study the uniqueness of the solution for the problem (1.1) in the neighborhood

Br∗(x∗).

Lemma 3.2.4 If the mapping Lf+F (x∗, ·) is strongly metrically regular at x∗ for 0, then x∗
is the unique solution of (1.1) in Br∗(x∗).
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Proof. Let x̂ be a solution of (1.1) in Br∗(x∗). Thus, ‖x̂ − x∗‖ < r∗ ≤
√

2b/3L, which

together with the first part of Lemma 3.2.1 implies that

‖f(x̂)− f(x∗)− f ′(x∗)(x̂− x∗)‖ ≤
L

2
‖x̂− x∗‖2 < b. (3.15)

Moreover, considering that x∗ ∈ Br∗ [x∗] and r∗ ≤ a, we can apply Definition 2.1.1 to conclude

that

d(x∗, Lf+F (x∗,−f(x̂) + f(x∗) + f ′(x∗)(x̂− x∗))−1) ≤
κd(−f(x̂) + f(x∗) + f ′(x∗)(x̂− x∗), Lf+F (x∗, x∗)).

Thus, owing to the fact that 0 ∈ Lf+F (x∗, x∗), we can apply the first inequality in (3.15)

and the definition of distance given in (2.2) to conclude that

d(x∗, Lf+F (x∗,−f(x̂) + f(x∗) + f ′(x∗)(x̂− x∗))−1) ≤ κL

2
‖x̂− x∗‖2.

On the other hand, because the mapping Lf+F (x∗, ·) is strongly metrically regular at x∗ for

0, the mapping z 7→ Lf+F (x∗, z)
−1 ∩Ba[x∗] is single-valued on Bb[0]. Furthermore, we know

that 0 ∈ f(x̂) + F (x̂) = f(x̂) − f(x∗) − f ′(x∗)(x̂ − x∗) + Lf+F (x∗, x̂). Hence, we conclude

that x̂ = Lf+F (x∗,−f(x̂) + f(x∗) + f ′(x∗)(x̂−x∗))−1, and we obtain from the last inequality

that

‖x̂− x∗‖ ≤
κL

2
‖x̂− x∗‖2.

If ‖x̂− x∗‖ 6= 0, then last inequality implies that ‖x̂− x∗‖ ≥ 2/(κL) > 2/(3κL) ≥ r∗, which

is absurd, because ‖x̂−x∗‖ < r∗. Therefore, ‖x̂−x∗‖ = 0, and thus x∗ is the unique solution

of problem (1.1) in Br∗(x∗). �

Our final task in this section is to prove Theorem 3.1.8. The proof comprises a convenient

combination of Lemmas 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Proof of Theorem 3.1.8

Proof. First, we will show by induction on k that there exists a sequence {xk} generated by

the Newton-InexP method for solving the problem (1.1), associated to {θk} and starting in

x0, which satisfies the following two conditions:

xk+1 ∈ Br∗(x∗) ∩ C,

‖xk+1 − x∗‖ ≤
[(

1 +
√

2θk

) κL‖xk − x∗‖
2(1− κL‖xk − x∗‖)

+
√

2θk

]
‖xk − x∗‖,

(3.16)

for all k = 0, 1, . . .. Take x0 ∈ C∩Br∗(x∗)\{x∗} and k = 0. Because ‖x0−x∗‖ < r∗, applying

the first part of Lemma 3.2.2 with x = x0, we obtain that there exists y0 ∈ Φx0(y0) such that
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y0 ∈ Br∗(x∗). If y0 ∈ C, then x1 = y0 ∈ Br∗(x∗)∩C, and by using (3.11) we can conclude that

(3.16) holds for k = 0. Otherwise if y0 /∈ C, then take x1 ∈ PC(y0, x0, θ0). Moreover, by using

the first part of Lemma 3.2.3 with x = x0, we obtain that (3.16) holds for k = 0. Furthermore,

the conditions (3.6) imply that (1 +
√

2θ0)[(κL‖x0−x∗‖)/(2(1−κL‖x0−x∗‖))] +
√

2θ0 < 1,

and so the second part of Lemma 3.2.3 give us that x1 ∈ Br∗(x∗) ∩ C. Therefore, there

exits x1 satisfying (3.16) for k = 0. Assume for induction that the two assertions in (3.16)

hold for k = 0, 1, . . . , j − 1. Because xj ∈ Br∗(x∗) ∩ C, we can apply Lemma 3.2.2 with

x = xj to conclude that there exists yj ∈ Φxj(yj) such that yj ∈ Br∗(x∗). If yj ∈ C, then

xj+1 = yj ∈ Br∗(x∗) ∩ C, and (3.11) implies that (3.16) holds for k = j. Otherwise, if

yj /∈ C then take xj+1 ∈ PC(yj, xj, θj). Hence, using first part of Lemma 3.2.3 we obtain

that the inequality in (3.16) holds for k = j. Because the conditions (3.6) implies that

(1+
√

2θj)[(κL‖xj−x∗‖)/(2(1−κL‖xj−x∗‖))]+
√

2θj < 1, the second part of Lemma 3.2.3

yields that xj+1 ∈ Br∗(x∗) ∩ C. Thus, there exists xj+1 satisfying (3.16) for k = j, and

the induction step is complete. Therefore, there exists a sequence {xk} generated by the

Newton-InexP method solving the problem (1.1), associated to {θk} and starting in x0, and

it satisfies the two conditions in (3.16). Now, we proceed to prove that the sequence {xk}
converges to x∗. Indeed, because ‖xk − x∗‖ < r∗ for all k = 0, 1, . . ., θ̃ = supk θk < 1/2 and

r∗ ≤ [2(1−
√

2θ̃)]/[(3−
√

2θ̃)κL], we conclude from the inequality in (3.16) that

‖xk+1 − x∗‖ < ‖xk − x∗‖.

This implies that the sequence {‖xk − x∗‖} converges. Let us say that t∗ = limk→+∞ ‖xk −
x∗‖ ≤ ‖x0 − x∗‖ < r∗. Because {xk} ⊂ Br∗(x∗) ∩ C, we can conclude that t∗ < r∗. On

the other hand, by combining the inequality in (3.16) with the second condition in (3.6), we

obtain

‖xk+1 − x∗‖ ≤
[(

1 +
√

2θ̃
) κL‖xk − x∗‖

2(1− κL‖xk − x∗‖)
+
√

2θ̃

]
‖xk − x∗‖,

for all k = 0, 1, . . .. Thus, taking the limit in this inequality as k goes to +∞, we have

t∗ ≤
[(

1 +
√

2θ̃
) κLt∗

2(1− κLt∗)
+
√

2θ̃

]
t∗.

If t∗ 6= 0, we obtain from the last inequality that [2(1 −
√

2θ̃)]/[(3 −
√

2θ̃)κL] ≤ t∗, which

contradicts the first assertion in (3.6), because t∗ < r∗. Hence, t∗ = 0, and consequently the

sequence {xk} converges to x∗. In particular, if limk→+∞ θk = 0, then by taking the limit

in (3.7) as k goes to +∞ we obtain that lim supk→+∞[‖xk+1 − x∗‖/‖xk − x∗‖] = 0, i.e., the

sequence {xk} converges to x∗ superlinearly. On the other hand, if θk = 0 for all k = 0, 1, . . .,

then θ̃ = 0. Hence, from (3.7) and the first equality in (3.6), we have

‖xk+1 − x∗‖ ≤
3κL

2
‖xk − x∗‖2
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for all k = 0, 1, . . ., and consequently {xk} converges to x∗ quadratically. Furthermore, if

the mapping Lf+F (x∗, ·) is strongly metrically regular at x∗ for 0, then Lemma 3.2.4 implies

that x∗ is the unique solution of problem (1.1) in Br∗(x∗). To prove the last statement of the

theorem, take x0 ∈ C ∩ Br∗(x∗)\{x∗}. Then, the second part of Lemma 3.2.2 implies that

there exist a unique y0 ∈ Bρ0(x∗) such that y0 ∈ Φx0(y0), i.e., there exists a unique solution

y0 of (3.3) for k = 0, where

ρ0 :=
κL‖x0 − x∗‖2

2(1− κL‖x0 − x∗‖)
.

Furthermore, Lemma 3.2.3 implies that every x1 ∈ PC(y0, x0, θ0) satisfies (3.7) for k = 0.

Thus, proceeding by induction, we can prove that the every sequence {xk} generated by the

Newton-InexP method, associated to {θk} and starting in x0, satisfies (3.7), and by using

similar argument as above, we can prove that such a sequence converges to x∗. Therefore,

the proof of the theorem is complete. �

3.3 Application and some examples

In this section, we present an application of Theorem 3.1.8 when F is a maximal monotone

operator. To this end, we begin by presenting a class of mappings f and F for which the

set-valued mapping defined in (2.1) is strongly metrically regular. The next result is a version

of [40, Remark 4] for strongly metrically regular mappings, and its proof will be included

here for the sake of completeness. See also [86, Lemma 2.2].

Proposition 3.3.1 Let F : Rn ⇒ Rn be a maximal monotone mapping and f : Rn → Rn be

a continuously differentiable function. Assume that x∗ ∈ Rn and β > 0 satisfy the following

condition:

〈f ′(x∗) p, p〉 ≥ β‖p‖2, ∀ p ∈ Rn. (3.17)

Then, rgeLf+F (x∗, ·) = Rn, and for any x̄ ∈ Rn and ū ∈ Lf+F (x∗, x̄), the set-valued mapping

Lf+F (x∗, ·) : Rn ⇒ Rn is strongly metrically regular at x̄ ∈ Rn for ū ∈ Rn, with constants

κ = 1/β, a = +∞, and b = +∞.

Proof. First, we will prove that rgeLf+F (x∗, ·) = Rn. For this, let 0 < µ < 2β/‖f ′(x∗)‖2, take

x̂ ∈ Rn, and define the mapping Rn 3 y 7→ Φ(y) := (I+µF )−1(µx̂+y−µ[f(x∗)+f ′(x∗)(y−
x∗)]). Because F is a maximal monotone mapping, according to [31, Theorem 6C.4, p. 387]

the mapping (I + µF )−1 is single-valued and Lipschitz continuous on Rn with constant 1.

Thus, for any y, z ∈ Rn, we have

‖Φ(y)− Φ(z)‖2 ≤ ‖y − z − µf ′(x∗)(y − z)‖2

= ‖y − z‖2 − 2µ〈f ′(x∗)(y − z), y − z〉+ µ2‖f ′(x∗)(y − z)‖2.
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Using the inequality (3.17) in the last relation, we obtain that

‖Φ(y)− Φ(z)‖2 ≤
(
1− 2βµ+ µ2‖f ′(x∗)‖2

)
‖y − z‖2.

Considering that 0 < µ < 2β/‖f ′(x∗)‖2, we have λ2 := (1− 2βµ+ µ2‖f ′(x∗)‖2) < 1. Thus,

we conclude that ‖Φ(y) − Φ(z)‖ ≤ λ‖y − z‖ for all y, z ∈ Rn. Therefore, by the Banach

contraction principle, see [31, Theorem 1A.3, p. 17], there exists x ∈ Rn such that x = Φ(x),

which implies that x̂ = Lf+F (x∗, x), and thus rgeLf+F (x∗, ·) = Rn. We proceed to prove

that the graph of Lf+F (x∗, ·) is locally closed at (x̄, ū), i.e., there exists a neighborhood U
of (x̄, ū) such that the intersection gphLf+F (x∗, ·) ∩ U is closed. Indeed, let {(x̄k, ūk)} ⊂
gphLf+F (x∗, ·) ∩ U be a sequence such that limk→+∞ x̄k = x̄ and limk→+∞ ūk = ū. By

the definition of the graph of a set-valued mapping, we have ūk ∈ Lf+F (x∗, x̄k) for all

k = 0, 1, . . .. Hence, by using definition given in (2.1) we obtain that ūk ∈ f(x∗)+f ′(x∗)(x̄k−
x∗) + F (x̄k) for all k = 0, 1, . . .. Because F is a maximal monotone mapping, according

to [4, Proposition 6.1.3, p. 185] it has closed graph, and thus we can take the limit in

the last inclusion to conclude that ū ∈ f(x∗) + f ′(x∗)(x̄ − x∗) + F (x̄). This implies that

ū ∈ Lf+F (x∗, x̄), and the desired statement follows. Now, we will prove that the mapping

Rn 3 x 7→ Lf+F (x∗, x) is metrically regular at x̄ ∈ Rn for ū ∈ Rn with constants κ = 1/β,

a = +∞, and b = +∞. For this, take arbitrary x, u ∈ Rn. Because rgeLf+F (x∗, ·) = Rn,

there exists y ∈ Rn such that u ∈ Lf+F (x∗, y). Thus, we can take wy ∈ F (y) such that

u = f(x∗) + f ′(x∗)(y − x∗) +wy. Moreover, for every arbitrary v ∈ Lf+F (x∗, x), we can find

wx ∈ F (x) such that v = f(x∗) + f ′(x∗)(x− x∗) + wx. Thus, the monotonicity of F implies

that

〈f ′(x∗)(x− y), x− y〉 ≤ 〈f ′(x∗)(x− y), x− y〉+ 〈wx − wy, x− y〉
= 〈f(x∗) + f ′(x∗)(x− x∗) + wx − f(x∗)− f ′(x∗)(y − x∗)− wy, x− y〉.
= 〈v − u, x− y〉
≤ ‖v − u‖‖x− y‖.

On the other hand, (3.17) yields that β‖x − y‖2 ≤ 〈f ′(x∗)(x − y), x − y〉, which combined

with the last inequality gives

β‖x− y‖2 ≤ ‖v − u‖‖x− y‖.

Since u ∈ Lf+F (x∗, y), it follows that if x = y then x ∈ Lf+F (x∗, u)−1. In this case, we can

conclude that d (x, Lf+F (x∗, u)−1) = 0 ≤ d (u, Lf+F (x∗, x)) /β. Thus, we assume that x 6= y,

and so

‖x− y‖ ≤ 1

β
‖v − u‖, ∀ v ∈ Lf+F (x∗, x).

Because u ∈ Lf+F (x∗, y), the definition of distance given in (2.2) and the latter inequality

imply that

d
(
x, Lf+F (x∗, u)−1

)
≤ 1

β
d (u, Lf+F (x∗, x)) , ∀ x, u ∈ Rn.
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To conclude the proof, it remains to prove that the mapping z 7→ Lf+F (x∗, z)
−1 is

single-valued from Rn to Rn. Take z ∈ Rn, x1 ∈ Lf+F (x∗, z)
−1, and x2 ∈ Lf+F (x∗, z)

−1.

For i = 1, 2, find vi ∈ F (xi) such that z = f(x∗) + f ′(x∗)(xi− x∗) + vi. Thus, (3.17) and the

monotonicity of F imply that

β‖x1 − x2‖2 ≤ 〈f ′(x∗)(x1 − x2), x1 − x2〉
≤ 〈f ′(x∗)(x1 − x2), x1 − x2〉+ 〈v1 − v2, x1 − x2〉
= 〈f(x∗) + f ′(x∗)(x1 − x∗) + v1 − (f(x∗) + f ′(x∗)(x2 − x∗) + v2), x1 − x2〉
= 0

Yielding that x1 = x2, so that Lf+F (x∗, ·)−1 is a single-valued mapping. Therefore, the proof

is concluded. �

From now on, ND : Rn ⇒ Rn denotes the normal cone mapping of a closed convex set

D ⊂ Rn, which is defined by

ND(x) :=

 {z : 〈z, y − x〉 ≤ 0, ∀ y ∈ D} if x ∈ D,

∅ otherwise.

In the following result, we present a particular instance of Theorem 3.1.8.

Theorem 3.3.2 Let C and D be convex sets in Rn such that C is closed and C ⊂ D, and let

h : Rn → Rn be a continuously differentiable function. Assume that x∗ ∈ C, h(x∗)+ND(x∗) 3
0, and there exist β > 0 and L > 0 such that

〈h′(x∗) p, p〉 ≥ β‖p‖2, ‖h′(x)− h′(y)‖ ≤ L‖x− y‖, ∀ p, x, y ∈ Rn.

Let {θk} ⊂ [0, 1/2) be such that θ̃ := supk θk < 1/2 and r∗ := [2(1−
√

2θ̃)β]/[(3−
√

2θ̃)L].

Then, every sequence {xk} generated by the Newton-InexP method to solve (1.1), associated

to {θk} and starting in x0 ∈ C ∩Br∗(x∗)\{x∗}, converges to x∗, and the rate of convergence

is as follows:

‖xk+1 − x∗‖ ≤
[(

1 +
√

2θk

) L‖xk − x∗‖
2(β − L‖xk − x∗‖)

+
√

2θk

]
‖xk − x∗‖, k = 0, 1, . . . .

As a consequence, if limk→+∞ θk = 0, then {xk} converges to x∗ superlinearly. In particular,

if θk = 0 for all k = 0, 1 . . ., then

‖xk+1 − x∗‖ ≤
3L

2β
‖xk − x∗‖2, k = 0, 1, . . . ,

and the sequence {xk} converges to x∗ quadratically.
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Proof. Because the normal cone mapping ND is maximal monotone, see, for example, [4,

Corollary 6.3.1, p. 192], we can use Proposition 3.3.1 to obtain that the set-valued mapping

Lh+ND
(x∗, ·) : Rn ⇒ Rn is strongly metrically regular at x∗ ∈ Rn for 0 ∈ Rn, with constants

κ = 1/β, a = +∞, and b = +∞. On the other hand, because x∗ ∈ C is such that

h(x∗)+ND(x∗) 3 0, h has a Lipschitz continuous derivative on Rn and x0 ∈ C∩Br∗(x∗)\{x∗}.
Therefore, we can apply Theorem 3.1.8 to obtain the desired result. �

We end this section by presenting two examples from the literature that can be seen as

particular cases of constrained generalized equations. We begin by presenting the so-called

Constrained Variational Inequality Problem (CVIP), see, for example, [16].

Example 3.3.3 Let U and Ω be closed convex sets in Rn and h : Rn → Rn be a continuous

function. The CVIP is defined as:

find x∗ ∈ U ∩ Ω such that 〈h(x∗), x− x∗〉 ≥ 0, ∀ x ∈ U. (3.18)

The problem (3.18) can be rewritten equivalently as:

find x∗ ∈ U ∩ Ω such that h(x∗) +NU(x∗) 3 0.

Then, (3.18) can be seen as a special instance of the constrained generalized equation (1.1).

Observe that the classical variational inequality problem it is not equivalent to the above

CVIP, since in (3.18) the point x∗ must belongs to U ∩ Ω.

In the next example, we describe the Split Variational Inequality Problem (SVIP), which

can be rewritten as a special case of the CVIP. See [16, 52] for an extensive discussion on

this problem.

Example 3.3.4 Let U ⊂ Rn and Ω ⊂ Rm be nonempty, closed convex sets, and consider

A : Rn → Rm a linear mapping. Given functions f : Rn → Rn and g : Rm → Rm, the SVIP

is formulated as follows: Find a point x∗ ∈ U such that

〈f(x∗), x− x∗〉 ≥ 0, ∀ x ∈ U,

and such that the point y∗ = Ax∗ ∈ Ω satisfies

〈g(y∗), y − y∗〉 ≥ 0, ∀ y ∈ Ω.

By taking Rnm := Rn × Rm, D := U × Ω and V := {w = (x, y) ∈ Rnm : Ax = y} the SVIP

is equivalent to the following CVIP:

find w∗ ∈ D ∩ V such that 〈h(w∗), w − w∗〉 ≥ 0, ∀ w ∈ D, (3.19)
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where w = (x, y) and h : Rnm → Rnm is defined by h(x, y) := (f(x), g(y)), see [16,

Lemma 5.1]. Therefore, from Example 3.3.3 and (3.19), the SVIP is equivalent to the

following constrained generalized equation:

find w∗ ∈ D ∩ V such that h(w∗) +ND(w∗) 3 0,

where D := U × Ω, V := {w = (x, y) ∈ Rnm : Ax = y} and h : Rnm → Rnm is defined by

h(x, y) = (f(x), g(y)).

It is worth noting that SVIP is quite general and includes several problems as special cases.

For instance, Split Minimization Problem and Common Solutions to Variational Inequalities

Problem, see, for example, [1, 16, 17,71].
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Chapter 4

Inexact Newton method with feasible

inexact projections for solving

constrained equations

In this chapter, we propose an inexact Newton method with feasible inexact projections for

solving constrained smooth and nonsmooth equations, i.e, for solving the problem (1.3). Our

goal is to show that, under the assumption of smoothness or semismoothness of the function

that defines the equation and its regularity at the solution, a sequence generated by the

method converges to a solution with linear, superlinear, or quadratic rate. Two applications

for the main theorems are provided: one is for semismooth functions and the other is for

functions whose derivatives satisfy a radial Hölder condition. To illustrate the practical

behavior of the proposed method, some numerical experiments are reported. In particular,

we compare the efficiency and robustness of the inexact Newton method with feasible inexact

projections (Inexact Newton-InexP method) with the inexact Newton method with feasible

exact projections (Inexact Newton-ExP method) for solving one class of problems.

4.1 Inexact Newton-InexP method and its convergence

analysis

In this section, we present the inexact Newton-InexP method for solving the problem (1.3),

where the function f is locally Lipschitz continuous. Basically, the inexact Newton-InexP

method combines the inexact version of Newton method for solving unconstrained equations

(see, for instance, [34,67]) with a procedure to obtain a feasible inexact projection.

In the following, we formally describe the inexact Newton-InexP algorithm for solving the
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problem (1.3), with x0 ∈ C, θ > 0, η > 0, {θk} ⊂ [0, θ), and {ηk} ⊂ [0, η) as the input data.

Algorithm 4.1.1 Inexact Newton-InexP method

Step 0. Let θ > 0, η > 0, x0 ∈ C, {θk} ⊂ [0, θ), and {ηk} ⊂ [0, η) be given and set k = 0.

Step 1. If f(xk) = 0, then stop; otherwise, choose an element Vk ∈ ∂f(xk) and compute

yk ∈ Rn such that

‖f(xk) + Vk(yk − xk)‖ ≤ ηk‖f(xk)‖. (4.1)

Step 2. If yk ∈ C, set xk+1 = yk; otherwise, use a procedure to obtain PC(yk, xk, θk) ∈ C a

feasible inexact projection of yk onto C relative to xk with relative error tolerance θk;

and set

xk+1 ∈ PC (yk, xk, θk) .

Step 3. Set k ← k + 1, and go to Step 1.

Below, we describe the main features of the inexact Newton-InexP method.

Remark 4.1.2 In inexact Newton-InexP method, we first check whether the current iterate

xk is a solution of problem (1.3); otherwise, we compute yk satisfying the relative residual

error criteria (4.1). The forcing sequence {ηk} is used to control the level of accuracy. In

particular, as we will show, the specific choice of this sequence is essential to establish the

local convergence of the inexact Newton-InexP method. It is worth pointing out that if ηk = 0

for all k = 0, 1, . . . (i.e., exact version of the Newton-InexP method), then yk is obtained by

solving for y the system f(xk) + Vk(y− xk) = 0. Note that to ensure the well-definedness of

yk the Clarke generalized Jacobian must be nonempty, see [18, Proposition 2.6.2, p. 70], and

all Vk ∈ ∂f(xk) must be nonsingular, for any k = 0, 1, . . .. As the point yk can be infeasible

with respect to the set of constraints C, the inexact Newton-InexP method uses a procedure

to obtain a feasible inexact projection, and consequently the new iterate xk+1 belongs to C.

The choice of the tolerance θk is also important in obtaining the local convergence of the

inexact Newton-InexP method. Finally, we remark that if f is a continuously differentiable

function, ηk = 0 for all k = 0, 1, . . ., and the procedure to obtain PC(yk, xk, θk) is the CondG

procedure, then our method is equivalent to the method proposed in [50]. On the other

hand, if f is a nonsmooth function, C = Rn and ηk = θk = 0 for all k = 0, 1, . . ., our method

reduces to Newton method proposed in [76].

Next, we state and prove our first local convergence result for a sequence generated by

the inexact Newton-InexP method. In this case, we assume that f : Ω → Rn is a locally

Lipschitz continuous function, but not continuously differentiable.
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Theorem 4.1.3 Let Ω ⊆ Rn be an open set, C ⊂ Ω be a closed convex set, and f : Ω→ Rn

be a locally Lipschitz continuous function. Suppose that x∗ ∈ C and f(x∗) = 0. Let Γ > 0

and 0 < r ≤ r∗ := sup {t ∈ R : Bt(x∗) ⊂ Ω} such that

‖f(x)− f(x∗)‖ ≤ Γ‖x− x∗‖, ∀ x ∈ Br(x∗). (4.2)

Assume that each Vx∗ ∈ ∂f(x∗) is nonsingular and let λx∗ ≥ max{‖V −1
x∗ ‖ : Vx∗ ∈ ∂f(x∗)}.

Moreover, there exist ε > 0 and 0 < δ ≤ min{r, 1} such that for all x ∈ Bδ(x∗), Vx ∈ ∂f(x)

is nonsingular and there hold

‖V −1
x ‖ ≤

λx∗
1− ελx∗

, (4.3)

‖f(x∗)− f(x)− Vx(x∗ − x)‖ ≤ ε‖x− x∗‖1+µ, 0 ≤ µ ≤ 1. (4.4)

Let 0 < θ < 1/2. Furthermore, assume that η > 0 and ε > 0 satisfy the following conditions

η <
1−
√

2θ

λx∗Γ
(

1 +
√

2θ
) , ε <

1

2λx∗

[(
1−
√

2θ
)
− ηλx∗Γ

(
1 +
√

2θ
)]
. (4.5)

Then, every sequence {xk} generated by Algorithm 4.1.1 starting in x0 ∈ C ∩ Bδ(x∗)\{x∗},
with 0 ≤ ηk < η and 0 ≤ θk < θ, for all k = 0, 1, . . ., belongs to Bδ(x∗) ∩ C, satisfies

‖xk+1 − x∗‖ ≤
[
λx∗ [ηkΓ + ε‖xk − x∗‖µ]

1− ελx∗

(
1 +

√
2θk

)
+
√

2θk

]
‖xk − x∗‖, (4.6)

for all k = 0, 1, . . ., and converges linearly to x∗. As a consequence, if limk→+∞ θk = 0

and limk→+∞ ηk = 0, then {xk} converges superlinearly to x∗. Furthermore, letting ηk <

min{η‖f(xk)‖µ, η} and θk < min{θ‖f(xk)‖2µ, θ}, the convergence of {xk} to x∗ is of the

order of 1 + µ.

Proof. We show by induction on k that if x0 ∈ C ∩ Bδ(x∗)\{x∗}, then every sequence {xk}
generated by Algorithm 4.1.1 belongs to Bδ(x∗)∩C and satisfies (4.6). Indeed, set k = 0, and

take θ0 ≥ 0, η0 ≥ 0, x0 ∈ C ∩Bδ(x∗)\{x∗} and V0 := Vx0 ∈ ∂f(x0). Owing to ‖x0− x∗‖ < δ,

we obtain that Vx0 is nonsingular and then y0 given in (4.1) is well-defined for k = 0. As

f(x∗) = 0, we have

y0 − x∗ = V −1
x0

(
[f(x0) + Vx0(y0 − x0)] + [f(x∗)− f(x0)− Vx0(x∗ − x0)]

)
.

Taking the norm on both sides of the last inequality and using the triangular inequality, we

conclude that

‖y0 − x∗‖ ≤
∥∥V −1

x0

∥∥ [∥∥f(x0) + Vx0(y0 − x0)
∥∥+

∥∥f(x∗)− f(x0)− Vx0(x∗ − x0)
∥∥].
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Thus, using (4.1) with k = 0 and the assumptions (4.3) and (4.4) with x = x0, we obtain

that

‖y0 − x∗‖ ≤
λx∗

1− ελx∗

[
η0‖f(x0)‖+ ε‖x0 − x∗‖1+µ

]
.

As f(x∗) = 0, from (4.2) we have ‖f(x0)‖ ≤ Γ‖x0− x∗‖. Hence, the last inequality becomes

‖y0 − x∗‖ ≤
λx∗ [η0Γ + ε‖x0 − x∗‖µ]

1− ελx∗
‖x0 − x∗‖. (4.7)

Taking any x1 ∈ PC(y0, x0, θ0) and applying Lemma 3.1.5 with y = y0, x = x0, θ = θ0,

ỹ = x∗ and x̃ = x∗, we have

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+
√

2θ0 ‖y0 − x0‖ ≤ ‖y0 − x∗‖
(

1 +
√

2θ0

)
+
√

2θ0 ‖x0 − x∗‖ .

Combining (4.7) with the last inequality, we obtain that

‖x1 − x∗‖ ≤
λx∗ [η0Γ + ε‖x0 − x∗‖µ]

1− ελx∗
‖x0 − x∗‖

(
1 +

√
2θ0

)
+
√

2θ0 ‖x0 − x∗‖ ,

which is equivalent to (4.6) with k = 0. Since δ ≤ 1, η0 < η, and θ0 < θ, by using (4.5), we

obtain

λx∗ [η0Γ + ε‖x0 − x∗‖µ]

1− ελx∗

(
1 +

√
2θ0

)
+
√

2θ0 <
λx∗ [ηΓ + ε]

1− ελx∗

(
1 +
√

2θ
)

+
√

2θ < 1.

Thus, because x0 ∈ Bδ(x∗), we obtain from (4.6) with k = 0 that ‖x1 − x∗‖ < ‖x0−x∗‖ < δ.

As PC(y0, x0, θ0) belongs to C and x1 ∈ PC (y0, x0, θ0), we conclude that x1 belongs to

Bδ(x∗) ∩ C, which completes the induction step for k = 0. The general induction step

is completely analogous. Therefore, every sequence {xk} generated by Algorithm 4.1.1 is

contained in Bδ(x∗) ∩ C and satisfies (4.6). We proceed to prove that the sequence {xk}
converges to x∗. As δ ≤ 1, 0 ≤ θk < θ, and 0 ≤ ηk < η for all k = 0, 1, . . ., it follows from

(4.6) and (4.5) that

‖xk+1 − x∗‖ <
[
λx∗ [ηΓ + ε]

1− ελx∗

(
1 +
√

2θ
)

+
√

2θ

]
‖xk − x∗‖ < ‖xk − x∗‖, (4.8)

for all k = 0, 1, . . . . This implies that the sequence {‖xk − x∗‖} converges. Let us say that

t̄ := limk→+∞ ‖xk − x∗‖ ≤ δ. Thus, taking the limit in (4.8) as k goes to +∞, we have

t̄ ≤
[
λx∗ [ηΓ + ε]

1− ελx∗

(
1 +
√

2θ
)

+
√

2θ

]
t̄,

If t̄ 6= 0, then (4.5) implies that t̄ < t̄, which is absurd. Hence, t̄ = 0 and {xk} converges

linearly to x∗. Now, we assume that limk→+∞ θk = 0 and limk→+∞ ηk = 0. Thus, for µ = 0,

it follows from (4.6) that

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

=
ελx∗

1− ελx∗
,
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and, by taking into account that ε > 0 is any number satisfying (4.5), we conclude that

{xk} converges superlinearly to x∗. For 0 < µ ≤ 1 it follows straight from (4.6) that

{xk} converges superlinearly to x∗. Finally, we assume that ηk < min{η‖f(xk)‖µ, η} and

θk < min{θ‖f(xk)‖2µ, θ}. Considering that {xk} belongs to Bδ(x∗), f(x∗) = 0, and δ ≤ r, it

follows from (4.2) that ‖f(xk)‖ ≤ Γ‖xk−x∗‖ for all k = 0, 1, . . .. Hence, ηk < ηΓµ‖xk−x∗‖µ

and θk < θΓ2µ‖xk − x∗‖2µ for all k = 0, 1, . . .. Then, (4.6) implies that

‖xk+1 − x∗‖ <
[
λx∗ [ηΓ1+µ + ε]

1− ελx∗

(
1 + Γµ

√
2θ‖xk − x∗‖µ

)
+ Γµ

√
2θ

]
‖xk − x∗‖1+µ,

for all k = 0, 1, . . .. Therefore, {xk} converges to x∗ with order 1 + µ, and the proof of the

theorem is complete. �

In the following remark, we present a particular case of Theorem 4.1.3, i.e., when the

projection and Newton method are exact.

Remark 4.1.4 Note that the mapping (0, 1/2) 3 θ 7→ (1 −
√

2θ)/λx∗Γ(1 +
√

2θ) is

decreasing. Thus, from the first inequality in (4.5), we conclude that if θ approaches the

upper bound 1/2, then η approaches the lower bound 0. Therefore, in Algorithm 4.1.1, the

most inexact is the projection, the least inexact has to be the Newton direction. Moreover,

it follows from (4.6) that if θk ≡ 0 and ηk ≡ 0 in Theorem 4.1.3, then for 0 < µ ≤ 1, the

convergence rate is 1 + µ as follows

‖xk+1 − x∗‖ ≤
ελx∗

1− ελx∗
‖xk − x∗‖1+µ, k = 0, 1, . . . .

Hence, ε in the second inequality in (4.5) is related to the bound for convergence rate.

Next, we state and prove our second local convergence result for a sequence generated by

the inexact Newton-InexP method. In this case, we assume that f : Ω→ Rn is a continuously

differentiable function.

Theorem 4.1.5 Let Ω ⊆ Rn be an open set, C ⊂ Ω be a closed convex set, and f : Ω→ Rn

be a continuously differentiable function. Suppose that x∗ ∈ C and f(x∗) = 0. Let Γ > 0

and 0 < r ≤ r∗ := sup {t ∈ R : Bt(x∗) ⊂ Ω} such that

‖f(x)− f(x∗)‖ ≤ Γ‖x− x∗‖, ∀ x ∈ Br(x∗). (4.9)

Assume that f ′(x∗) is nonsingular and there exist 0 < µ ≤ 1, K > 0, and 0 < δ̂ ≤ r such

that for all x ∈ Bδ̂(x∗), f ′(x) is nonsingular and there hold

‖f ′(x)−1‖ ≤ ‖f ′(x∗)−1‖
1−K‖f ′(x∗)−1‖‖x− x∗‖µ

, (4.10)

‖f(x∗)− f(x)− f ′(x)(x∗ − x)‖ ≤ µK

1 + µ
‖x− x∗‖1+µ. (4.11)
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Furthermore, let 0 < θ < 1/2, η > 0, and δ > 0 satisfying the following conditions

η <
1−
√

2θ

Γ‖f ′(x∗)−1‖
(

1 +
√

2θ
) , (4.12)

δ < min

δ̂,
(1 + µ)

[(
1−
√

2θ
)
− ηΓ‖f ′(x∗)−1‖

(
1 +
√

2θ
)]

K
[
1 + 2µ−

√
2θ
]
‖f ′(x∗)−1‖

1/µ
 . (4.13)

Then, every sequence {xk} generated by Algorithm 4.1.1 starting in x0 ∈ C ∩ Bδ(x∗)\{x∗},
with 0 ≤ ηk < η and 0 ≤ θk < θ for all k = 0, 1, . . ., is contained in Bδ(x∗) ∩ C, satisfies

‖xk+1 − x∗‖ ≤[
‖f ′(x∗)−1‖[ηkΓ(1 + µ) + µK‖xk − x∗‖µ]

(1 + µ)[1−K‖f ′(x∗)−1‖‖xk − x∗‖µ]

(
1 +

√
2θk

)
+
√

2θk

]
‖xk − x∗‖, (4.14)

for all k = 0, 1, . . ., and converges linearly to x∗. As a consequence, if limk→+∞ θk = 0

and limk→+∞ ηk = 0, then {xk} converges superlinearly to x∗. Furthermore, letting ηk <

min{η‖f(xk)‖µ, η} and θk < min{θ‖f(xk)‖2µ, θ}, the convergence of {xk} to x∗ is of the

order of 1 + µ.

Proof. First, note that as f is continuously differentiable at x, we have ∂f(x) = {f ′(x)}. We

show by induction on k that if x0 ∈ C ∩ Bδ(x∗)\{x∗}, then every sequence {xk} generated

by Algorithm 4.1.1 is contained in Bδ(x∗) ∩C and satisfies (4.14). To this end, take θ0 ≥ 0,

η0 ≥ 0, x0 ∈ C ∩ Bδ(x∗)\{x∗}, and set k = 0. Owing to ‖x0 − x∗‖ < δ, we obtain that

f ′(x0) is nonsingular. Consequently, (4.1) with k = 0 and V0 = f ′(x0), implies that y0 is

well-defined. Because f(x∗) = 0, after some algebraic manipulations, we have

y0 − x∗ = f ′(x0)−1
(

[f(x0) + f ′(x0)(y0 − x0)] + [f(x∗)− f(x0)− f ′(x0)(x∗ − x0)]
)
.

Taking the norm on both sides of the last inequality and using the triangular inequality, we

conclude that

‖y0 − x∗‖ ≤
∥∥f ′(x0)−1

∥∥ [∥∥f(x0) + f ′(x0)(y0 − x0)
∥∥+

∥∥f(x∗)− f(x0)− f ′(x0)(x∗ − x0)
∥∥].

Using (4.1) with k = 0 and V0 = f ′(x0), and the assumptions (4.10) and (4.11) with x = x0,

we obtain that

‖y0 − x∗‖ ≤
‖f ′(x∗)−1‖

1−K‖f ′(x∗)−1‖‖x0 − x∗‖µ

[
η0‖f(x0)‖+

µK

1 + µ
‖x0 − x∗‖1+µ

]
. (4.15)

Owing to f(x∗) = 0, from (4.9) we conclude that ‖f(x0)‖ ≤ Γ‖x0 − x∗‖. Hence, (4.15)

becomes

‖y0 − x∗‖ ≤
‖f ′(x∗)−1‖[η0Γ(1 + µ) + µK‖x0 − x∗‖µ]

(1 + µ)[1−K‖f ′(x∗)−1‖‖x0 − x∗‖µ]
‖x0 − x∗‖. (4.16)
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On the other hand, letting x1 ∈ PC(y0, x0, θ0), Lemma 3.1.5 with y = y0, x = x0, θ = θ0,

ỹ = x∗, and x̃ = x∗, implies that

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+
√

2θ0 ‖y0 − x0‖ ≤ ‖y0 − x∗‖
(

1 +
√

2θ0

)
+
√

2θ0 ‖x0 − x∗‖ .

Thus, combining the inequality (4.16) with the last inequality, we conclude that

‖x1 − x∗‖ ≤
‖f ′(x∗)−1‖[η0Γ(1 + µ) + µK‖x0 − x∗‖µ]

(1 + µ)[1−K‖f ′(x∗)−1‖‖x0 − x∗‖µ]
‖x0 − x∗‖

(
1 +

√
2θ0

)
+
√

2θ0 ‖x0 − x∗‖ ,

which it is equivalent to (4.14) for k = 0. As η0 < η and θ0 < θ, by using (4.12) and (4.13),

we have

‖f ′(x∗)−1‖[η0Γ(1 + µ) + µK‖x0 − x∗‖µ]

(1 + µ)[1−K‖f ′(x∗)−1‖‖x0 − x∗‖µ]

(
1 +

√
2θ0

)
+
√

2θ0 <

‖f ′(x∗)−1‖[ηΓ(1 + µ) + µKδµ]

(1 + µ)[1−K‖f ′(x∗)−1‖δµ]

(
1 +
√

2θ
)

+
√

2θ < 1.

Then, because x0 ∈ Bδ(x∗), we obtain from (4.14) with k = 0, that ‖x1 − x∗‖ < ‖x0−x∗‖ <
δ. As PC(y0, x0, θ0) belongs to C and x1 ∈ PC (y0, x0, θ0), we conclude that x1 belongs to

Bδ(x∗) ∩ C, which completes the induction step for k = 0. The general induction step

is completely analogous. Therefore, every sequence {xk} generated by Algorithm 4.1.1 is

contained in Bδ(x∗) ∩ C and satisfies (4.14). Now, we proceed to prove that the sequence

{xk} converges to x∗. As 0 ≤ θk < θ and 0 ≤ ηk < η for all k = 0, 1, . . ., it follows from

(4.14) that

‖xk+1 − x∗‖ <
[
‖f ′(x∗)−1‖[ηΓ(1 + µ) + µK‖xk − x∗‖µ]

(1 + µ)[1−K‖f ′(x∗)−1‖‖xk − x∗‖µ]

(
1 +
√

2θ
)

+
√

2θ

]
‖xk − x∗‖,

for all k = 0, 1, . . .. On the other hand, using (4.12) and (4.13) in the last inequality we

obtain that ‖xk+1 − x∗‖ < ‖xk − x∗‖ for all k = 0, 1, . . .. This implies that the sequence

{‖xk − x∗‖} converges. Let us say that t̄ := limk→+∞ ‖xk − x∗‖ ≤ δ. Thus, taking the limit

in the last inequality as k goes to +∞, we obtain

t̄ ≤
[
‖f ′(x∗)−1‖[ηΓ(1 + µ) + µKt̄µ]

(1 + µ)[1−K‖f ′(x∗)−1‖t̄µ]

(
1 +
√

2θ
)

+
√

2θ

]
t̄,

If t̄ 6= 0, then (4.12) and (4.13) imply that t̄ < t̄, which is absurd. Hence, t̄ = 0 and

consequently {xk} converge linearly to x∗. Assuming that limk→+∞ θk = 0 and limk→+∞ ηk =

0, it follows from (4.14) that

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.
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Hence, the sequence {xk} converges superlinearly to x∗. Now, we assume that ηk <

min{η‖f(xk)‖µ, η} and θk < min{θ‖f(xk)‖2µ, θ}. Considering that {xk} belongs to Bδ(x∗),

f(x∗) = 0, and δ < r, it follows from (4.9) that ‖f(xk)‖ ≤ Γ‖xk − x∗‖ for all k = 0, 1, . . ..

Thus, ηk < ηΓµ‖xk−x∗‖µ and θk < θΓ2µ‖xk−x∗‖2µ for all k = 0, 1, . . .. Then, (4.14) implies

that

‖xk+1 − x∗‖ <[
‖f ′(x∗)−1‖[ηΓ1+µ(1 + µ) + µK]

(1 + µ)[1−K‖f ′(x∗)−1‖‖xk − x∗‖µ]

(
1 + Γµ

√
2θ‖xk − x∗‖µ

)
+ Γµ

√
2θ

]
‖xk − x∗‖1+µ,

for all k = 0, 1, . . .. Therefore, {xk} converges to x∗ with order 1 + µ, which complete the

proof of the theorem. �

In the following remark, we present a particular case of Theorem 4.1.5, where the projection

and Newton method are exact.

Remark 4.1.6 In Theorem 4.1.5, if we take θk ≡ 0 and ηk ≡ 0, then for 0 < µ ≤ 1, the

convergence rate is 1 + µ as follows

‖xk+1 − x∗‖ ≤
µK‖f ′(x∗)−1‖

(1 + µ)[1−K‖f ′(x∗)−1‖‖xk − x∗‖µ]
‖xk − x∗‖1+µ, k = 0, 1, . . . .

4.2 Special cases

In this section, we present two special cases: one of Theorem 4.1.3 and one of Theorem 4.1.5.

We begin by presenting the special case of Theorem 4.1.3.

4.2.1 Under semismooth condition

In this section, we present a local convergence theorem for the inexact Newton-InexP method

for solving constrained semismooth equations. The semismoothness plays an important role,

since the Newton method is still applicable and converges locally with superlinear rate to a

regular solution. Let us first to present the concept of regularity.

Definition 4.2.1 Let Ω ⊆ Rn be an open set. A function f : Ω → Rn locally Lipschitz

continuous is said to be regular at x∗ ∈ Ω if every Vx∗ ∈ ∂f(x∗) is nonsingular. If f is

regular at all points of Ω, the function f is said to be regular on Ω.

In the following, our first task is to prove that locally Lipschitz continuous functions satisfy

the inequality (4.3) near a regular point for every 0 < ε < 1/λx∗ . First, we remind that ∂f(x)
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is a nonempty and compact set for all x ∈ Ω, see [18, Proposition 2.6.2, p. 70]. The statement

of the result is as follows.

Lemma 4.2.2 Let Ω ⊆ Rn be an open set and f : Ω → Rn be a locally Lipschitz

continuous function. If f is regular at x∗ ∈ Ω, then for every 0 < ε < 1/λx∗, where

λx∗ ≥ max{‖V −1
x∗ ‖ : Vx∗ ∈ ∂f(x∗)}, there exists δ > 0 such that f is regular on Bδ(x∗) and

there holds

‖V −1
x ‖ ≤

λx∗
1− ελx∗

, ∀ x ∈ Bδ(x∗), ∀ Vx ∈ ∂f(x). (4.17)

Proof. As f is regular at x∗ ∈ Ω and ∂f(x∗) is a nonempty and compact set, λx∗ > 0 is

well-defined. On the other hand, it follows from [18, Proposition 2.6.2, p. 70] that ∂f is

upper semicontinuous at x∗. Thus, for every ε > 0 there exists δ > 0 such that

∂f(x) ⊂
{
Vx ∈ Rn×n : ‖Vx − Vx∗‖ < ε for some Vx∗ ∈ ∂f(x∗)

}
, ∀ x ∈ Bδ(x∗).

Hence, for each Vx ∈ ∂f(x) and 0 < ε < 1/λx∗ , there exists Vx∗ ∈ ∂f(x∗) that is nonsingular

such that ‖V −1
x∗ ‖‖Vx − Vx∗‖ < ελx∗ < 1. Thus, applying the Banach lemma, see [31, Lemma

5A.4, p. 282], we conclude that Vx is nonsingular and

‖V −1
x ‖ ≤

‖V −1
x∗ ‖

1− ‖V −1
x∗ ‖‖Vx − Vx∗‖

.

Therefore, considering that ‖V −1
x∗ ‖ ≤ λx∗ the inequality (4.17) follows, and the proof of the

lemma is complete. �

In the following, we present a class of functions satisfying the inequality (4.4), namely the

semismooth functions. There are several equivalent definitions for semismooth functions,

here we use that given in [31, p. 411]. For an extensive study on semismooth functions, see,

for example, [34].

Definition 4.2.3 Let Ω ⊆ Rn be an open set. A function f : Ω→ Rn that is locally Lipschitz

continuous on Ω and directionally differentiable in every direction is said to be semismooth

at x∗ ∈ Ω when for every ε > 0 there exists δ > 0 such that

‖f(x∗)− f(x)− Vx(x∗ − x)‖ ≤ ε‖x− x∗‖, ∀ x ∈ Bδ(x∗), ∀ Vx ∈ ∂f(x),

and is said to be µ-order semismooth at x∗ ∈ Ω, for 0 < µ ≤ 1 when there exist ε > 0 and

δ > 0 such that

‖f(x∗)− f(x)− Vx(x∗ − x)‖ ≤ ε‖x− x∗‖1+µ, ∀ x ∈ Bδ(x∗), ∀ Vx ∈ ∂f(x).

Next, we state and prove the local convergence result of the inexact Newton-InexP method

for solving constrained semismooth equations, which is a consequence of Lemma 4.2.2 and

Theorem 4.1.3.
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Theorem 4.2.4 Let Ω ⊆ Rn be an open set, C ⊂ Ω be a closed convex set, and f : Ω→ Rn

be semismooth and regular at x∗ ∈ Ω. Let Γ > 0 and 0 < r ≤ r∗ := sup {t ∈ R : Bt(x∗) ⊂ Ω}
such that

‖f(x)− f(x∗)‖ ≤ Γ‖x− x∗‖, ∀ x ∈ Br(x∗).

Take θ > 0 and η > 0 such that

θ <
1

2
, η <

1−
√

2θ

λx∗Γ
(

1 +
√

2θ
) .

Assume that x∗ ∈ C and f(x∗) = 0. Then, there exists 0 < δ ≤ r such that every sequence

{xk} generated by Algorithm 4.1.1 starting in x0 ∈ C ∩ Bδ(x∗)\{x∗}, with 0 ≤ θk < θ and

0 ≤ ηk < η for all k = 0, 1, . . ., belongs to Bδ(x∗) ∩ C and converges linearly to x∗. If

limk→+∞ θk = 0 and limk→+∞ ηk = 0, then {xk} converges superlinearly to x∗. In addition, if

f is µ-order semismooth at x∗, ηk < min{η‖f(xk)‖µ, η}, and θk < min{θ‖f(xk)‖2µ, θ}, then

the convergence of {xk} to x∗ is of the order of 1 + µ.

Proof. Because the function f is semismooth and regular at x∗ ∈ Ω, we can take

λx∗ ≥ max{‖V −1
x∗ ‖ : Vx∗ ∈ ∂f(x∗)}. Take 0 < ε < 1/λx∗ . Then, from Lemma 4.2.2

and Definition 4.2.3, there exists 0 < δ ≤ min{r, 1} satisfying the inequalities (4.3) and (4.4)

for µ = 0. In addition, if f is µ-order semismooth, we conclude also from Lemma 4.2.2 and

Definition 4.2.3 that there exists 0 < δ ≤ min{r, 1} satisfying the inequalities (4.3) and (4.4)

for 0 < µ ≤ 1. Therefore, f satisfies all conditions of Theorem 4.1.3 and by reducing ε > 0

so that it satisfies the second inequality in (4.5) the desired result follows. �

In the following remark, we show that with some adjustments Theorem 4.2.4 reduces to

some well-known results.

Remark 4.2.5 It is worth mentioning that if C = Rn and θk = 0 for all k = 0, 1, . . ., then

with some adjustments Theorem 4.2.4 reduces to [67, Theorem 3]; see also [34, Theorem 7.5.5,

p. 694]. If C = Rn, ηk = θk = 0 for all k = 0, 1, . . ., then Theorem 4.2.4 reduces to [76,

Theorem 3.2], see also [34, Theorem 7.5.3, p. 693]. Finally, if C = Rn, f is a continuously

differentiable function, f ′(x∗) is nonsingular, and θk = ηk = 0 for all k = 0, 1, . . ., then the

theorem above reduces to the first part of [12, Proposition 1.4.1, p. 90].

4.2.2 Under radial Hölder condition on the derivative

In this section, we present a local convergence theorem for the inexact Newton-InexP method

under the radial Hölder condition on the derivative. We begin by presenting the definition

of the radial Hölder condition.
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Definition 4.2.6 Let Ω ⊆ Rn be an open set and f : Ω→ Rn be a continuously differentiable

function. The derivative f ′ satisfies the radial Hölder condition at x∗ ∈ Ω if there exist K > 0

and 0 < µ ≤ 1 such that

‖f ′(x)− f ′(x∗ + τ(x− x∗))‖ ≤ K(1− τµ)‖x− x∗‖µ,

for all x ∈ Ω and τ ∈ [0, 1] such that x∗ + τ(x− x∗) ∈ Ω.

Our first task is to prove that continuously differentiable functions with radially Hölder

derivative satisfies the inequality (4.10) around regular points.

Lemma 4.2.7 Let Ω ⊆ Rn be an open set and f : Ω → Rn be a continuously differentiable

function. Assume that f ′ is nonsingular and radially Hölder at x∗ ∈ Ω, with constants K > 0

and 0 < µ ≤ 1. Take

0 < r̂ <
1

(K‖f ′(x∗)−1‖)1/µ
. (4.18)

Then, f ′(x) is nonsingular for all x ∈ Br̂(x∗), and there holds∥∥f ′(x)−1
∥∥ ≤ ‖f ′(x∗)−1‖

1−K‖f ′(x∗)−1‖‖x− x∗‖µ
, ∀ x ∈ Br̂(x∗).

Proof. Using that f ′ is nonsingular and radially Hölder at x∗ ∈ Ω, with constants K > 0

and 0 < µ ≤ 1, and taking into account (4.18), we have

‖f ′(x∗)−1‖‖f ′(x)− f ′(x∗)‖ ≤ K‖f ′(x∗)−1‖‖x− x∗‖µ < K‖f ′(x∗)−1‖r̂µ < 1,

for all x ∈ Br̂(x∗). Therefore, the desired result follows by applying the Banach lemma,

see [31, Lemma 5A.4, p. 282]. �

The next lemma establishes that continuously differentiable functions with radially Hölder

derivative satisfy (4.11); its proof follows the same idea as [12, Proposition 1.4.1, p. 90] and

will be included here for the sake of completeness.

Lemma 4.2.8 Let Ω ⊆ Rn be an open set, x∗ ∈ Ω, r∗ := sup{t ∈ R : Bt(x∗) ⊂ Ω} and

f : Ω → Rn be a continuously differentiable function. Assume that f ′ is radially Hölder at

x∗, with constants K > 0 and 0 < µ ≤ 1. Then it holds that

‖f(x∗)− f(x)− f ′(x)(x∗ − x)‖ ≤ µK

1 + µ
‖x− x∗‖1+µ, ∀ x ∈ Br∗(x∗).

Proof. Note that ‖f(x∗)− f(x)− f ′(x)(x∗ − x)‖ = ‖f(x)− f(x∗)− f ′(x)(x− x∗)‖. Because

x∗ + τ(x− x∗) ∈ Br∗(x∗), for all τ ∈ [0, 1], the fundamental theorem of calculus implies that

‖f(x)− f(x∗)− f ′(x)(x− x∗)‖ ≤
∫ 1

0

‖f ′(x∗ + τ(x− x∗))− f ′(x)‖‖x− x∗‖dτ.
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Owing to f ′ be radially Hölder at x∗ ∈ Ω with constants K > 0 and 0 < µ ≤ 1, we have

‖f(x)− f(x∗)− f ′(x)(x− x∗)‖ ≤
∫ 1

0

K(1− τµ)‖x− x∗‖1+µdτ.

Therefore, performing the integration the desired result follows. �

Now, we are ready to present a local convergence theorem on the inexact Newton-InexP

method for a continuously differentiable function f such that the derivative f ′ is radially

Hölder. The statement of the result is as follows.

Theorem 4.2.9 Let Ω ⊆ Rn be an open set, C ⊂ Ω be a closed convex set, and f : Ω→ Rn

be a continuously differentiable function such that f ′ is nonsingular and radially Hölder

at x∗ ∈ Ω, with constants K > 0 and 0 < µ ≤ 1. Let Γ > 0 and 0 < r ≤ r∗ :=

sup {t ∈ R : Bt(x∗) ⊂ Ω} such that

‖f(x)− f(x∗)‖ ≤ Γ‖x− x∗‖, ∀ x ∈ Br(x∗).

Let θ > 0 and η > 0 such that

θ <
1

2
, η <

1−
√

2θ

Γ‖f ′(x∗)‖
(

1 +
√

2θ
) .

Assume that x∗ ∈ C and f(x∗) = 0. Then, there exists 0 < δ ≤ r such that every sequence

{xk} generated by Algorithm 4.1.1 starting in x0 ∈ C ∩ Bδ(x∗)\{x∗}, with 0 ≤ θk < θ and

0 ≤ ηk < η for all k = 0, 1, . . ., belongs to Bδ(x∗) ∩ C and converges linearly to x∗. As a

consequence, if limk→+∞ θk = 0 and limk→+∞ ηk = 0, then {xk} converges superlinearly to x∗.

In addition, if ηk < min{η‖f(xk)‖µ, η} and θk < min{θ‖f(xk)‖2µ, θ}, then the convergence

of {xk} to x∗ is of the order of 1 + µ.

Proof. Let 0 < r̂ < 1/[(K‖f ′(x∗)−1‖)1/µ] and 0 < δ̂ ≤ min{r̂, r}. Then, from Lemmas 4.2.7

and 4.2.8, we conclude that f satisfies the conditions (4.10) and (4.11) in Bδ̂(x∗). Therefore,

f satisfies all conditions of Theorem 4.1.5 and by taking δ > 0 satisfying (4.13) the desired

result follows. �

In the following remark, we show that with some adjustments, Theorem 4.2.9 has as

particular instances some well-known results.

Remark 4.2.10 It is worth mentioning that if C = Rn and ηk = θk = 0 for all k = 0, 1, . . .,

then Theorem 4.2.9 reduces to the second part of [12, Proposition 1.4.1, p. 90]. If the

procedure to obtain the feasible inexact projection is the CondG procedure and ηk = 0 for

all k = 0, 1, . . ., then Theorem 4.2.9 reduces to [50, Theorem 7]. Finally, if the procedure to

obtain the feasible inexact projection is the CondG procedure, then with some adjustments

Theorem 4.2.9 reduces to [49, Corollary 2].
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4.3 Numerical experiments

In this section, we report some numerical experiments that show the computational feasibility

of the inexact Newton-ExP method and inexact Newton-InexP method on one class of

problems, which we call the CAVEs. It is worth mentioning that works dealing with the

Newton method to solve absolute value equation (AVE) include [11, 65]. The CAVE is

described as

find x ∈ C such that Ax− |x| = b,

where C := {x ∈ Rn :
∑n

i=1 xi ≤ d, xi ≥ −1, i = 1, 2, . . . , n}, A ∈ Rn×n, b ∈ Rn ≡
Rn×1, d ∈ R, and |x| denotes the vectors whose i-th component is equal to |xi|. In our

implementation, the CAVEs have been generated randomly. We used the Matlab routine

sprand to construct matrix A. In particular, this routine generates a sparse matrix with

predefined dimension, density, and singular values. Initially, we defined the dimension n and

randomly generated the vector of singular values from a uniform distribution on (0, 1). To

ensure that ‖A−1‖ < 1/3, i.e., so that the assumptions of [11, Theorem 2] are fulfilled, we

rescale the vector of singular values by multiplying it by 3 divided by the minimum singular

value multiplied by a random number in the interval (0, 1). To generate the vector b and

the constant d, we chose a random solution x∗ from a uniform distribution on (0.1, 300) and

computed b = Ax∗ − |x∗| and d =
∑n

i=1(x∗)i, where (x∗)i denotes the i-th component of the

vector x∗. In both methods, x0 = (d/2n, d/2n, . . . , d/2n) was defined as the starting point,

the initialization data θ was taken equal to 10−1 and 10−8 for the methods with inexact and

exact projection, respectively, and η was taken equal to 0.9999[(1 −
√

2θ)/0.5Γ(1 +
√

2θ)]

with Γ = ‖A‖+1. We stopped the execution of Algorithm 4.1.1 at xk, declaring convergence

if

‖Axk − |xk| − b‖ < 10−6.

In case this stopping criterion was not respected, the method stopped when a maximum

of 50 iterations had been performed. The procedure to obtain feasible projections used in

our implementation was the CondG Procedure; see, for example, [61]. In particular, this

procedure stopped when either the stopping criterion, i.e., the condition 〈yk − xk+1, z −
xk+1〉 ≤ θk‖yk − xk‖2 was satisfied for all z ∈ C and k = 0, 1, . . . or a maximum of 100

iterations was performed. For this class of problems, an element of the Clarke generalized

Jacobian (see [11,65]) is given by

V = A− diag(sgn(x)), x ∈ Rn,

where diag(αi) denotes a diagonal matrix with diagonal elements α1, α2, . . . , αn and sgn(x)

denotes a vector with components equal to −1, 0 or 1 depending on whether the

corresponding component of the vector x is negative, zero or positive.
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The inexact Newton-ExP and inexact Newton-InexP methods requires the linear system

f(xk) + Vk(yk − xk) = 0 to be solved approximately, in the sense of (4.1). Matlab has

several iterative methods for solving linear equations. For our class of problems, the routine

lsqr was the most efficient; thus, in all tests, we used lsqr as an iterative method to solve

linear equations approximately. In particular, this routine is an algorithm for sparse linear

equations and sparse least squares; for further details, see, for example, [74]. We compare

the efficiency and robustness of the methods using the performance profiles graphics, see

[27]. The efficiency is related to the percentage of problems for which the method was the

fastest, whereas robustness is related to the percentage of problems for which the method

found a solution. In a performance profile, efficiency and robustness can be accessed on

the extreme left (at 1 in domain) and right of the graphic, respectively. The numerical

results were obtained using Matlab version R2016a on a 2.5GHz Intel R© CoreTM i5 2450M

computer with 6GB of RAM and Windows 7 ultimate system and are freely available from

https://orizon.mat.ufg.br/admin/pages/11432-codes.

Figure 4.1 reports a comparison, using performance profiles, between the inexact

Newton-ExP and inexact Newton-InexP methods for solving CAVEs of dimensions 1000,

5000, 8000, and 10000. We generated 200 CAVEs with dimensions 1000 and 5000, and 100

CAVEs with dimensions 8000 and 10000. The density of the matrix A was taken equal

to 0.003, as well as in [11]. This means that only about 0.3% of the elements of A are

nonnull. To obtain the CPU time more accurately, we run each test problem 10 times and

we define the corresponding CPU time as the median of these measurements. Analyzing

Figure 4.1, we see that the inexact Newton-InexP method is more efficient than the inexact

Newton-ExP method on the set of test problems. In particular, the efficiencies of the inexact

Newton method with the exact and inexact projections are, respectively, 30.5% and 69.5%

for problems of dimension 1000, 31.0% and 69.0% for problems of dimension 5000, 41.0%

and 59.0% for problems of dimension 8000, and 30.0% and 70.0% for problems of dimension

10000. Thus, we can conclude that for this class of test problem the parameter θ and

consequently η given in (4.5) limit the effectiveness of the method.

44



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

Performance ratio - time

0

0.2

0.4

0.6

0.8

1

S
ol

ve
d 

pr
ob

le
m

s 
(%

)

Inexact Newton-ExP method
Inexact Newton-InexP method

(a) n = 1000

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Performance ratio - time

0

0.2

0.4

0.6

0.8

1

S
ol

ve
d 

pr
ob

le
m

s 
(%

)

Inexact Newton-ExP method
Inexact Newton-InexP method

(b) n = 5000
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Figure 4.1: Performance profile comparing the inexact Newton-ExP method versus inexact

Newton-InexP method for CAVEs using CPU time as performance measurement.

Table 4.1 lists, for each method, the percentage of problems solved “%”, the average

numbers of iterations “Iter”, and the average times in seconds “Time”. As can be seen, the

robustness is 100.0% for both methods. The average numbers of iterations is approximately 7

and 6 for the exact and inexact versions, respectively. Moreover, with respect to the average

time, it is possible to observe a certain trend, that is, as the dimension of the problem

increases, the performance of the inexact Newton-InexP method becomes better compared

with the inexact Newton-ExP method.
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Inexact Newton-ExP method Inexact Newton-InexP method

Dimension % Iter Time % Iter Time

1000 100.0 6.61 0.58 100.0 5.50 0.56

5000 100.0 6.70 11.67 100.0 5.67 11.48

8000 100.0 6.90 30.76 100.0 5.81 30.42

10000 100.0 6.88 46.66 100.0 5.77 45.27

Table 4.1: Performance of the inexact Newton-ExP method versus the inexact Newton-InexP

method

The results discussed above allow us to conclude that the use of the inexact projection

can make the inexact Newton method more efficient for solving some constrained problems.

Thus, we can say that the inexact Newton-InexP method may be a robust and efficient tool

for solving other classes of nonsmooth functions subject to a set of constraints.
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Chapter 5

Nonsmooth Newton method for

finding a singularity of a special class

of vector fields on Riemannian

manifolds

In this chapter, we extend some results of nonsmooth analysis from the Euclidean context

to the Riemannian setting. In particular, we discuss the concept and some properties

of a locally Lipschitz continuous vector field defined on a Riemannian manifold, such as

Clarke generalized covariant derivative, upper semicontinuity of this covariant derivative

and Rademacher theorem. We also present a version of the nonsmooth Newton method for

finding a singularity of a special class of locally Lipschitz continuous vector fields. Under mild

conditions, we establish the well-definedness and local convergence of a sequence generated by

this method in a neighborhood of a singularity. In particular, a local convergence theorem for

semismooth vector fields is presented. Under Kantorovich-type assumptions the convergence

of the sequence generated by the nonsmooth Newton method to a solution is established,

and its uniqueness in a suitable neighborhood of the starting point is verified. Furthermore,

a class of examples of locally Lipschitz continuous vector field satisfying the assumptions of

the convergence theorems is presented.

5.1 Nonsmooth analysis in Riemannian manifolds

The goal of this section is to extend some basic results of nonsmooth analysis from linear

context to Riemannian setting. In particular, we study the basic properties of the locally

47



Lipschitz continuous vector fields in Riemannian setting, a generalization of Rademacher

theorem and introduce the concept of Clarke generalized covariant derivative to this new

context. A comprehensive study of nonsmooth analysis in a linear context can be found

in [18]. We begin with the definition of a locally Lipschitz continuous vector field. This

concept was introduced in [19] for gradient vector fields and its extension to general vector

fields can be found in [15, p. 241].

Definition 5.1.1 A vector field X on M is said to be Lipschitz continuous on Ω ⊂ M , if

there exists a constant L > 0 such that for p, q ∈M and all γ geodesic segment joining p to

q, there holds

‖Pγ,p,qX(p)−X(q)‖ ≤ L `(γ), ∀ p, q ∈ Ω.

Given p ∈M , if there exists δ > 0 such that X is Lipschitz continuous on Bδ(p), then X is

said to be Lipschitz continuous at p. Moreover, if for all p ∈ M , X is Lipschitz continuous

at p, then X is said to be locally Lipschitz continuous on M .

Let dTM be the Riemannian distance on tangent bundle TM . Let us define the concept

of Lipschitz continuity of a vector field defined on a Riemannian manifold as a mapping

between the metric spaces (M,d) and (TM, dTM). The formal definition is as follows.

Definition 5.1.2 A vector field X on M is said to be metrically Lipschitz continuous on

Ω ⊂M , if there exists a constant L > 0 such that

dTM(X(p), X(q)) ≤ Ld(p, q), ∀ p, q ∈ Ω.

Given p ∈M , if there exists δ > 0 such that X is metrically Lipschitz continuous on Bδ(p),

then X is said to be metrically Lipschitz continuous at p. Moreover, if for all p ∈ M , X is

metrically Lipschitz continuous at p, then X is said to be locally metric Lipschitz continuous

on M .

It is an immediate consequence from the last definition that all metrically Lipschitz

continuous vector fields are continuous. In the following result, we present a relationship

between the Definitions 5.1.1 and 5.1.2.

Theorem 5.1.3 If X is Lipschitz continuous with constant L > 0, then X is also metrically

Lipschitz continuous with constant
√

1 + L2. As a consequence, if X is locally Lipschitz

continuous on M , then X is also locally metric Lipschitz continuous on M .

Proof. Because M is a complete manifold, πX(p) = p and πX(q) = q, it follows from

definition (2.3) that

dTM(X(p), X(q)) ≤
√
d2(p, q) + ‖Pγ,p,qX(p)−X(q)‖2, ∀ p, q ∈M, (5.1)
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where γ is the minimal geodesic segment joining p to q. Considering that X is a

Lipschitz continuous vector field with constant L > 0 from Definition 5.1.1, we have

‖Pγ,p,qX(p)−X(q)‖ ≤ Ld(p, q) for all p, q ∈M . Hence, inequality (5.1) becomes

dTM(X(p), X(q)) ≤
√

1 + L2 d(p, q),

for all p, q ∈ M . Consequently, by using Definition 5.1.2, we conclude that X is metrically

Lipschitz continuous with constant
√

1 + L2. Therefore, the proof of the first part is

concluded. The proof of the second part is similar. �

In the next definition, we present the notion of sets of measure zero to manifolds, which

has appeared in [63,78].

Definition 5.1.4 A subset E ⊆M has measure zero in M if for every smooth chart (U,ϕ)

for M , the subset ϕ(E ∩ U) ⊆ Rn has n-dimensional measure zero.

Let X be a locally Lipschitz continuous vector field on M . Throughout this chapter, DX
is the set defined by

DX := {p ∈M : X is differentiable at p}.

Locally Lipschitz continuous vector fields are in general non-differentiable, however, they are

almost everywhere differentiable with respect to the Riemannian measure (see the concept of

Riemannian measure in [78, p. 61]), i.e., the set M\DX has measure zero. This result follows

from Rademacher theorem, which is one of our contributions. A version of this theorem for

locally Lipschitz continuous vector fields is given below.

Theorem 5.1.5 If X is a locally Lipschitz continuous vector field on M , then X is almost

everywhere differentiable on M .

Proof. As M is a n-dimensional smooth manifold then the tangent bundle TM is

2n-dimensional smooth manifold. First note that Theorem 5.1.3 implies that X is a

continuous vector field. Let (U,ϕ) and (W,ψ) be smooth charts for M and TM , respectively,

such that X(U) ⊆ W and consider the composite mapping ψ ◦ X ◦ ϕ−1 : ϕ(U) → ψ(W ).

We proceed to prove that the mapping ψ ◦ X ◦ ϕ−1 is locally Lipschitz continuous on

ϕ(U). According to [84, Proposition 6.10, p. 63], we obtain that the coordinate mappings

ϕ−1 : ϕ(U) → U and ψ : W → ψ(W ) are diffeomorphisms and, in particular, continuously

differentiable. Take z ∈ ϕ(U) and ρ > 0 such that Bρ[z] ⊂ ϕ(U). Since Bρ[z] is a compact

set and the derivative of ϕ−1 is a continuous mapping in Bρ[z], from Mean Value Inequality

(see [5, Theorem 2.14]) there exists L1 > 0 such that

d(ϕ−1(x), ϕ−1(y)) ≤ L1 d̂(x, y), ∀ x, y ∈ Bρ[z],
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where d̂ is the Euclidean distance in Rn. On the other hand, Theorem 5.1.3 implies that X is

a locally metric Lipschitz continuous vector field on ϕ(U), then shrinking ρ > 0 if necessary,

we conclude that there exists L2 > 0 such that

dTM

(
X ◦ ϕ−1(x), X ◦ ϕ−1(y)

)
≤ L2 d

(
ϕ−1(x), ϕ−1(y)

)
, ∀ x, y ∈ Bρ[z].

Because X(ϕ−1(Bρ[z])) is a compact set and the derivative of ψ is a continuous mapping in

X(ϕ−1(Bρ[z])) again using Mean Value Inequality there exists L3 > 0 such that

d̃(ψ ◦X ◦ ϕ−1(x), ψ ◦X ◦ ϕ−1(y)) ≤ L3 dTM(X ◦ ϕ−1(x), X ◦ ϕ−1(y)), ∀ x, y ∈ Bρ[z],

where d̃ is the Euclidean distance in R2n. Combining the three last inequalities, we obtain

that

d̃(ψ ◦X ◦ ϕ−1(x), ψ ◦X ◦ ϕ−1(y)) ≤ L̃ d̂(x, y), ∀ x, y ∈ Bρ[z],

where L̃ = L1L2L3 > 0. Hence, the mapping ψ ◦X ◦ ϕ−1 is locally Lipschitz continuous on

ϕ(U) ⊆ Rn. Therefore, from Rademacher theorem, see [32, Theorem 2, p. 81], we obtain

that ψ ◦ X ◦ ϕ−1 is almost everywhere differentiable on ϕ(U). Since the charts (U,ϕ) and

(W,ψ) are arbitrary, we conclude that X is almost everywhere differentiable on M . �

Based on the definition presented in [48], we introduce the concept of Clarke generalized

covariant derivative of a locally Lipschitz continuous vector field and explore some of its

properties. For a comprehensive study about Clarke generalized Jacobian in linear space,

see, for example, [18].

Definition 5.1.6 The Clarke generalized covariant derivative of a locally Lipschitz

continuous vector field X is a set-valued mapping ∂X : M ⇒ TM defined as

∂X(p) := co

{
H ∈ L(TpM) : ∃ {pk} ⊂ DX , lim

k→+∞
pk = p, H = lim

k→+∞
Ppkp∇X(pk)

}
,

where “co” represents the convex hull and L(TpM) denotes the vector space consisting of all

linear operator from TpM to TpM .

From Definition 5.1.6 and [35, Corollary 3.1], it is clear that if X is differentiable near p,

and its covariant derivative is continuous at p, then ∂X(p) = {∇X(p)}. In the following

proposition, we show important results of the Clarke generalized covariant derivative. In

particular, that ∂X(p) is a nonempty subset for all p ∈M , and that the set-valued mapping

∂X is locally bounded and closed, which is a generalization of [18, Proposition 2.6.2, items

(a), (b) and (c), p. 70]. These results will be very useful throughout this chapter. Similar

results have already been extended to functions defined on a Riemannian manifold, see [54,

Theorem 2.9].
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Proposition 5.1.7 Let X be locally Lipschitz continuous vector field on M . The following

statements are valid for any p ∈M :

(i) ∂X(p) is a nonempty, convex and compact subset of L(TpM);

(ii) the set-valued mapping ∂X : M ⇒ TM is locally bounded, i.e., for all δ > 0 there

exists a L > 0 such that for all q ∈ Bδ(p) and V ∈ ∂X(q), there holds ‖V ‖ ≤ L;

(iii) the mapping ∂X is upper semicontinuous at p, i.e., for every scalar ε > 0 there exists

a 0 < δ < rp, and such that for all q ∈ Bδ(p),

Pqp∂X(q) ⊂ ∂X(p) +Bε(0),

where Bε(0) := {V ∈ L(TpM) : ‖V ‖ < ε}. Consequently, the set-valued mapping

∂X is closed at p, i.e., if limk→+∞ pk = p, Vk ∈ ∂X(pk) for all k = 0, 1, . . ., and

limk→+∞ PpkpVk = V , then V ∈ ∂X(p).

Proof. To prove item (i), we define the following auxiliary set

∂BX(p) :=

{
H ∈ L(TpM) : ∃ {pk} ⊂ DX , lim

k→+∞
pk = p, H = lim

k→+∞
Ppkp∇X(pk)

}
.

As TpM is a finite dimensional space and ∂X(p) is the convex hull in L(TpM) of the set

∂BX(p), then ∂X(p) must be convex. Our next goal is to prove that ∂X(p) is compact.

Owing to the convex hull of a compact set be compact, it is sufficient to prove that ∂BX(p)

is bounded and closed. Our first task is to prove that ∂BX(p) is bounded. For this end, take

p ∈ DX and v ∈ TpM . Because ∇X(p)v = ∇X(p, v) using definition (2.4), the fact that

X is a locally Lipschitz continuous vector field on M , and the definition of the exponential

mapping, we obtain that

‖∇X(p)v‖ = lim
t→0+

∥∥∥∥1

t

[
Pexpp(tv)pX(expp(tv))−X(p)

]∥∥∥∥ ≤ L‖v‖,

where L > 0 is the Lipschitz constant of X around p. Hence, from Definition 2.2.8 we

conclude that ‖∇X(p)‖ ≤ L, which implies that ∂BX(p) is a bounded set. To prove that

∂BX(p) is closed, let {H`} be a sequence in ∂BX(p) such that lim`→+∞H` = H. Because

{H`} ⊂ ∂BX(p) there exists a sequence {pk,`} such that

lim
k→+∞

pk,` = p and lim
k→+∞

Ppk,`p∇X(pk,`) = H`,

for each fixed `. Therefore, limk→+∞ pk,k = p and limk→+∞ Ppk,kp∇X(pk,k) = H, and then

H ∈ ∂BX(p). Consequently, ∂BX(p) is a compact set. To prove that ∂X(p) is a nonempty

set, first note that Theorem 5.1.5 implies that X is almost everywhere differentiable on M ,
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i.e., the set M\DX has measure zero. According to [63, Proposition 6.8, p. 128], DX is dense

in M . Then, for any fixed point p ∈ M there exists a sequence {pk} ⊂ DX that converges

to p. Since ∇X is bounded in norm by the Lipschitz constant and the parallel transport

is an isometry, the sequence {Ppkp∇X(pk)} must have at least one accumulation point, and

thus ∂X(p) is indeed a nonempty set. To prove item (ii), take δ > 0, p ∈M and L > 0 the

Lipschitz constant of X around p. The same argument used to prove item (i) shows that

‖∇X(q̄)‖ ≤ L for all q̄ ∈ Bδ(p) ∩ DX . Let q ∈ Bδ(p) and V ∈ ∂X(q). Then, there exist

H1, . . . , Hm ∈ ∂BX(q) and α1, . . . , αm ∈ [0, 1] such that V =
∑m

`=1 α`H` and
∑m

`=1 α` = 1.

As H1, . . . , Hm ∈ ∂BX(q) there exists a sequence {qk,`} ⊂ Bδ(p)∩DX with limk→+∞ qk,` = q

such that

V =
m∑
`=1

α` lim
k→+∞

Pqk,`q∇X(qk,`).

Owing to {qk,`} ⊂ Bδ(p) ∩ DX we have ‖∇X(qk,`)‖ ≤ L. Therefore, using that the parallel

transport is an isometry, the properties of the norm and that
∑m

`=1 α` = 1, we conclude of

the last equality that

‖V ‖ =

∥∥∥∥∥
m∑
`=1

α` lim
k→+∞

Pqk,`q∇X(qk,`)

∥∥∥∥∥ ≤
m∑
`=1

α` lim
k→+∞

∥∥Pqk,`q∇X(qk,`)
∥∥ ≤ L,

which is the desired inequality. To prove item (iii), suppose by contradiction that for a given

ε > 0 and all 0 < δ < rp there exists q ∈ Bδ(p) such that

Pqp∂X(q) 6⊂ ∂X(p) +Bε(0).

Hence, there exists a sequence {qk} ⊂ DX such that limk→+∞ qk = p and Pqkp∇X(qk) /∈
∂X(p)+Bε(0). On the other hand, item (ii) implies that ∂X is a locally bounded set-valued

mapping. As the parallel transport is an isometry we have {Pqkp∇X(qk)} is a bounded

sequence. Thus, we can extract {Pqk`p∇X(qk`)} a convergent subsequence of {Pqkp∇X(qk)},
let us say that {Pqk`p∇X(qk`)} converges to some H. From Definition 5.1.6 we obtain that

H ∈ ∂X(p), which is a contradiction. Therefore, ∂X is a upper semicontinuous mapping at

p. The last part of item (iii) it is an immediate consequence of the first part, and the proof

of the proposition is complete. �

5.2 Nonsmooth Newton method

In this section, we present the nonsmooth Newton method for finding a singularity of locally

Lipschitz continuous vector fields X defined on a Riemannian manifold M , i.e., for solving

the problem (1.6). We study the local and semi-local properties of a sequence generated by

the method. The nonsmooth Newton algorithm for solving the problem (1.6), with p0 ∈ M
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as the input data, is formally described as follows.

Algorithm 5.2.1 Nonsmooth Newton method

Step 0. Let p0 ∈M be given, and set k = 0.

Step 1. If X(pk) = 0, stop.

Step 2. Choose a Vk ∈ ∂X(pk) and compute

pk+1 = exppk(−V −1
k X(pk)). (5.2)

Step 3. Set k ← k + 1, and go to Step 1.

This method is a natural extension to the Riemannian setting of the Newton method

introduced in [76]. Note that to guarantee the well-definedness of the method, there are

two issues which deserve attention in each iteration k. The Clarke generalized covariant

derivative ∂X(pk) must be a nonempty subset, which has already been proven in item (i)

of Proposition 5.1.7, and all Vk ∈ ∂X(pk) must be nonsingular. In the following section,

we study the well-definedness and convergence of a sequence generated by the nonsmooth

Newton method.

5.3 Local convergence analysis

In this section, we present the local convergence analysis of Algorithm 5.2.1. To this end,

we assume that p∗ ∈ M is a solution of problem (1.6). First, we show that under some

assumptions, the sequence generated by this algorithm starting from a suitable neighborhood

of p∗ is well-defined and converges to p∗ with rate of the order of 1 + µ. We begin by

introducing the concept of regularity.

Definition 5.3.1 We say that a vector field X on M is regular at p ∈M if all Vp ∈ ∂X(p)

are nonsingular. If X is regular at every point of Ω ⊆M , we say that X is regular on Ω.

In the following, we study the behavior of a sequence generated by the nonsmooth Newton

method for a special class of vector field in a neighborhood of a regular point. For this

purpose, we assume that X is a locally Lipschitz continuous vector field on M . Consider the

following condition:

53



A1. Let p̄ ∈ M , 0 < δ < rp̄, X be regular on Bδ(p̄), λp̄ ≥ max{‖V −1
p̄ ‖ : Vp̄ ∈ ∂X(p̄)} and

ε > 0 satisfying ελp̄ < 1. Moreover, for all p, q ∈ Bδ(p̄) and Vp ∈ ∂X(p) there hold

‖V −1
p ‖ ≤

λp̄
1− ελp̄

, (5.3)∥∥X(q)− Ppq
[
X(p) + Vp exp−1

p q
]∥∥ ≤ ε d(p, q)1+µ, 0 ≤ µ ≤ 1. (5.4)

Let 0 < δ < rp̄ be given by above assumption and NX : Bδ(p̄) ⇒ M be the Newton

iteration mapping for the vector field X defined by

NX(p) :=
{

expp(−V −1
p X(p)) : Vp ∈ ∂X(p)

}
.

The above assumption guarantee, in particular, that X is regular in a neighborhood of p̄

and, consequently, the Newton iteration mapping is well-defined. Therefore, one can apply

a single Newton iteration on any p ∈ Bδ(p̄) to obtain NX(p), which may be not included in

Bδ(p̄). Thus, this is enough to guarantee the well-definedness of only one iteration. In the

following result, we establish that the Newtonian iterations may be repeated indefinitely in

a suitable neighborhood of p̄.

Lemma 5.3.2 Suppose that p∗ ∈ M is a solution of problem (1.6), X satisfies A1 and the

constants ε > 0, 0 < δ < rp∗, and 0 ≤ µ ≤ 1 satisfy ελp∗(1 + δµKp∗) < 1. Then, there exists

δ̂ > 0 such that X is regular on Bδ̂(p∗) and

d
(
expp(−V −1

p X(p)), p∗
)
≤ ελp∗Kp∗

1− ελp∗
d(p, p∗)

1+µ, ∀ p ∈ Bδ̂(p∗), ∀ Vp ∈ ∂X(p). (5.5)

Consequently, NX is well-defined on Bδ̂(p∗) and NX(p) ⊂ Bδ̂(p∗) for all p ∈ Bδ̂(p∗).

Proof. Assume without loss of generality that X satisfies A1 with p̄ = p∗ and q = p∗.

Consider the constants ε > 0, 0 < δ < rp∗ and 0 ≤ µ ≤ 1. Since X(p∗) = 0 and the parallel

transport is an isometry, we conclude that∥∥V −1
p X(p) + exp−1

p p∗
∥∥ ≤ ∥∥V −1

p

∥∥∥∥X(p∗)− Ppp∗
[
X(p) + Vp exp−1

p p∗
]∥∥

≤ ελp∗
1− ελp∗

d(p, p∗)
1+µ,

(5.6)

for all p ∈ Bδ(p∗) and Vp ∈ ∂X(p). Hence, (5.6) implies that there exists 0 < δ̂ < δ such

that ‖V −1
p X(p) + exp−1

p p∗‖ ≤ rp∗ for all p ∈ Bδ̂(p∗) and Vp ∈ ∂X(p). Thus, considering that

‖ exp−1
p p∗‖ = d(p, p∗) < rp∗ , we can use Definition 2.2.6 with p = p∗, q = p, u = −V −1

p X(p)

and v = exp−1
p p∗ to obtain that

d
(
expp(−V −1

p X(p)), p∗
)
≤ Kp∗

∥∥−V −1
p X(p)− exp−1

p p∗
∥∥ ,
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for all p ∈ Bδ̂(p∗) and Vp ∈ ∂X(p). Therefore, the combination of the last inequality with

(5.6) yields (5.5). Owing to 0 < δ̂ < δ and X be regular on Bδ(p∗), we conclude that NX is

well-defined on Bδ̂(p∗). Moreover, since ελp∗(1 + δµKp∗) < 1 and 0 < δ̂ < δ, we have from

(5.5) that d
(
expp(−V −1

p X(p)), p∗
)
< d(p, p∗) for all p ∈ Bδ̂(p∗) and Vp ∈ ∂X(p). Thus, we

obtain that NX(p) ⊂ Bδ̂(p∗) for all p ∈ Bδ̂(p∗), and the proof of the lemma is complete. �

Now, we are ready to establish the main result of this section, its proof is a straight

application of Lemma 5.3.2.

Theorem 5.3.3 Suppose that p∗ ∈ M is a solution of problem (1.6), X satisfies A1 and

the constants ε > 0, 0 < δ < rp∗, and 0 ≤ µ ≤ 1 satisfy ελp∗(1 + δµKp∗) < 1. Then, there

exists 0 < δ̂ < δ such that for each p0 ∈ Bδ̂(p∗)\{p∗} the sequence {pk} in Algorithm 5.2.1

is well-defined, belongs to Bδ̂(p∗) and converges to p∗ with order 1 + µ as follows

d (pk+1, p∗) ≤
ελp∗Kp∗

1− ελp∗
d(pk, p∗)

1+µ, k = 0, 1, . . . . (5.7)

Proof. The definition of the Newton iteration mapping NX implies that the sequence

generated by Algorithm 5.2.1 is equivalently stated as

pk+1 ∈ NX(pk), k = 0, 1, . . . . (5.8)

Hence, by using (5.8), we can apply Lemma 5.3.2 to conclude that there exists 0 < δ̂ < δ

such that if p0 ∈ Bδ̂(p∗)\{p∗}, then the sequence {pk} in Algorithm 5.2.1 is well-defined,

belongs to Bδ̂(p∗) and satisfies the inequality (5.7). Because {pk} belongs to Bδ̂(p∗) and

ελp∗(1 + δµKp∗) < 1, we obtain from (5.7) that

d (pk+1, p∗) <
ελp∗ δ̂

µKp∗

1− ελp∗
d(pk, p∗) < d(pk, p∗), k = 0, 1, . . . .

Therefore, we conclude that {pk} converges to p∗ with order 1 + µ as (5.7). �

Remark 5.3.4 Note that if µ = 0 in Theorem 5.3.3, then the inequality (5.7) holds for

any ε > 0 satisfying ελp∗(1 + Kp∗) < 1, independently of the scalar δ̂ > 0. Therefore, (5.7)

implies that the sequence {pk} converges superlinearly to p∗.

5.3.1 Local convergence for semismooth vector fields

In this section, we present a local convergence theorem for the nonsmooth Newton method for

finding a singularity of semismooth vector fields. Semismoothness in Euclidean setting was

originally introduced by Mifflin [68] for scalar-valued functions and subsequently extended by

Qi and Sun [76] for vector-valued functions. The extension of the concept of semismoothness
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to the Riemannian settings is presented in this section. As occur in the Euclidean context,

semismooth vector fields are in general nonsmooth. However, as we shall show, the Newton

method is still applicable and converges locally with superlinear rate to a regular solution.

Before, we state formally the concept of semismoothness in the Riemannian setting, let us

first show that locally Lipschitz continuous vector fields are regular near regular points. The

statement of the result is as follows.

Lemma 5.3.5 Let X be a locally Lipschitz continuous vector field on M . Assume that X

is regular at p∗ ∈ M and let λp∗ ≥ max{‖V −1
p∗ ‖ : Vp∗ ∈ ∂X(p∗)}. Then, for every ε > 0

satisfying ελp∗ < 1 there exists 0 < δ < rp∗ such that X is regular on Bδ(p∗) and

‖V −1
p ‖ ≤

λp∗
1− ελp∗

, ∀ p ∈ Bδ(p∗), ∀ Vp ∈ ∂X(p). (5.9)

Proof. Let ε > 0 such that ελp∗ < 1. Because X is a locally Lipschitz continuous vector

field, it follows from item (iii) of Proposition 5.1.7 that there exists a 0 < δ < rp∗ such that

Ppp∗∂X(p) ⊂ ∂X(p∗) + {V ∈ L(Tp∗M) : ‖V ‖ < ε} for all p ∈ Bδ(p∗), i.e.,

∂X(p) ⊂ {V ∈ L(TpM) : ‖Ppp∗V − Vp∗‖ < ε for some Vp∗ ∈ ∂X(p∗)} , ∀ p ∈ Bδ(p∗).

This inclusion implies that for each p ∈ Bδ(p∗) and Vp ∈ ∂X(p), there exists Vp∗ ∈ ∂X(p∗)

nonsingular such that ‖V −1
p∗ ‖‖Ppp∗Vp − Vp∗‖ < ελp∗ < 1. Thus, taking into account that the

parallel transport is an isometry, it follows from Lemma 2.2.9 that Vp is nonsingular and

‖V −1
p ‖ ≤

‖V −1
p∗ ‖

1− ‖V −1
p∗ ‖‖Ppp∗Vp − Vp∗‖

.

Therefore, considering that ‖V −1
p∗ ‖ ≤ λp∗ and ‖Ppp∗Vp − Vp∗‖ < ε, (5.9) follows. �

In the following, let us present a class of vector fields satisfying the condition A1, namely

the semismooth vector fields and µ-order semismooth vector fields. There exist, in the

Euclidean context, several equivalent definitions of the concept of semismoothness, see, for

example, [76]; see also [34, Definition 7.4.2, p. 677]. In the present thesis, we extend to the

Riemannian settings the concept of semismoothness adopted in [31, p. 411].

Definition 5.3.6 A vector field X on M , which is locally Lipschitz continuous at p∗ and

directionally differentiable at p ∈ M , for all directions in TpM , is said to be semismooth at

p∗ ∈M when for every ε > 0 there exists 0 < δ < rp∗ such that∥∥X(p∗)− Ppp∗
[
X(p) + Vp exp−1

p p∗
]∥∥ ≤ ε d(p, p∗),

for all p ∈ Bδ(p∗) and Vp ∈ ∂X(p). The vector field X is said to be µ-order semismooth at

p∗ ∈M , for 0 < µ ≤ 1, when there exist ε > 0 and 0 < δ < rp∗ such that∥∥X(p∗)− Ppp∗
[
X(p) + Vp exp−1

p p∗
]∥∥ ≤ ε d(p, p∗)

1+µ, (5.10)
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for all p ∈ Bδ(p∗) and Vp ∈ ∂X(p).

Next, we state and prove the local convergence theorem for the nonsmooth Newton method

for finding a singularity of semismooth vector fields and µ-order semismooth vector fields.

Theorem 5.3.7 Let X be a locally Lipschitz continuous vector field on M and p∗ ∈ M be

a solution of problem (1.6). Assume that X is semismooth and regular at p∗. Then, there

exists a δ > 0 such that for each p0 ∈ Bδ(p∗)\{p∗}, {pk} generated by Algorithm 5.2.1, is

well-defined, belongs to Bδ(p∗) and converges superlinearly to p∗. In addition, if X is µ-order

semismooth at p∗, then the convergence of {pk} to p∗ is of the order of 1 + µ.

Proof. Owing to X be semismooth and regular at p∗ ∈ M , we can take λp∗ ≥
max{‖V −1

p∗ ‖ : Vp∗ ∈ ∂X(p∗)}. Consider ε > 0 satisfying ελp∗(1 + Kp∗) < 1. Thus, from

Lemma 5.3.5 and Definition 5.3.6, we can take δ > 0 such that (5.3) and (5.4) hold for µ = 0.

Hence, condition A1 holds with p̄ = p∗ and q = p∗ for all p ∈ Bδ(p∗) and µ = 0. Therefore,

applying Theorem 5.3.3, we obtain that there exists 0 < δ̂ < δ such that every sequence

{pk} generated by Algorithm 5.2.1 with p0 ∈ Bδ̂(p∗)\{p∗} belongs to Bδ̂(p∗) and satisfies the

inequality (5.7). Hence, we have

d(pk+1, p∗)

d(pk, p∗)
≤ ελp∗Kp∗

1− ελp∗
, k = 0, 1, . . . .

Since the last inequality holds for any ε such that 0 < ε < 1/(λp∗(1 + Kp∗)), we conclude

that {pk} converges superlinearly to p∗. The proof of the second part is similar. Indeed, for

a given ε > 0 with ελp∗ < 1, take δ > 0 satisfying ελp∗(1 + δµKp∗) < 1 and such that (5.9)

and (5.10) hold. Then, we can apply Theorem 5.3.3 and the proof follows. �

We remark that with some adjustments Theorem 5.3.7 reduces to some well-known results.

Remark 5.3.8 It is well-known that the Newton method and its variants are quite efficient

for finding zero on nonlinear functions in Euclidean settings. This is because they have

an excellent convergence rate in a neighborhood of a zero. It was shown in [76] that

for a class of nonsmooth functions, namely semismooth functions, the convergence of the

nonsmooth Newton method still is guaranteed. The above theorem, allows us to conclude

that the generalization of the nonsmooth Newton method from the linear context to

Riemannian settings for finding singularities of semismooth vector fields still preserves its

main convergence properties. It is worth mentioning that if X is continuously differentiable,

then Theorem 5.3.7 reduces to the [35, Theorem 3.1]. If M = Rn, then Theorem 5.3.7

reduces to first part of [76, Theorem 3.2]; see also [34, Theorem 7.5.3, p. 693]. Finally, if X

is continuously differentiable and M = Rn, then the theorem above reduces to the first part

of [12, Proposition 1.4.1, p. 90].
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5.4 Semi-local convergence analysis

In this section, we state and prove the Kantorovich-type theorem for the nonsmooth Newton

method. This theorem ensures that the sequence generated by the method converges towards

a singularity of the vector field by using semi-local conditions. It is worth mentioning that

the theorem does not require a priori existence of a singularity, proving instead the existence

of the singularity and its uniqueness on some region. The statement of the theorem is as

follows.

Theorem 5.4.1 Let X be a locally Lipschitz continuous vector field on M and p0 ∈ M .

Suppose that X satisfies A1 with p̄ = p0, µ = 0 and δ > δ̄. Moreover, Bδ̄(p0) ⊂ M is a

totally normal neighborhood of the point p0, and the constants λp0 > 0, ε > 0 and 0 < δ̄ < rp0
are such that

ελp0 <
1

2
,

λp0
1− 2ελp0

‖X(p0)‖ ≤ δ̄. (5.11)

Then, the sequence {pk} in Algorithm 5.2.1 is well-defined, belongs to Bδ̄(p0) and converge

towards the unique solution p∗ of problem (1.6) in Bδ̄[p0]. Furthermore, the following error

estimate holds

d(pk, p∗) ≤
ελp0

1− 2ελp0
d(pk, pk−1), k = 1, 2, . . . . (5.12)

Proof. Firstly, let us prove by induction that the sequence {pk} in Algorithm 5.2.1 is

well-defined, belongs to Bδ̄(p0) and satisfies

d(pk+1, pk) ≤
(

ελp0
1− ελp0

)k
δ̄

(
1− 2ελp0
1− ελp0

)
, k = 0, 1, . . . . (5.13)

Let V0 ∈ ∂X(p0) and note that the condition A1 implies that V0 is nonsingular and

‖V −1
0 ‖ ≤ λp0/(1− ελp0). Hence, by using (5.2), we obtain that the iterate p1 is well-defined.

Furthermore, (5.2), the definition of the exponential mapping, properties of the norm and

the inequalities in (5.11) imply that

d(p1, p0) = d
(
expp0(−V

−1
0 X(p0)), p0

)
≤∥∥−V −1

0 X(p0)
∥∥ ≤ λp0

1− ελp0
‖X(p0)‖ ≤ δ̄

(
1− 2ελp0
1− ελp0

)
< δ̄.

Therefore, the iterate p1 is well-defined, belongs to Bδ̄(p0) and (5.13) holds for k = 0. Assume

by induction that the iterates p1, . . . , p`−1 are well-defined, belongs to Bδ̄(p0) and (5.13) holds

for k = 1, . . . , `− 1. As p`−1 ∈ Bδ̄(p0) it follows from condition A1 that V`−1 is nonsingular

and, consequently, the iterate p` is well-defined. Thus, using the triangular inequality and
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the induction assumption, we have

d(p`, p0) ≤
∑̀
j=1

d(pj, pj−1) ≤ δ̄

(
1− 2ελp0
1− ελp0

)∑̀
j=1

(
ελp0

1− ελp0

)j−1

< δ̄. (5.14)

This implies that p` ∈ Bδ̄(p0). Since p` ∈ Bδ̄(p0) it follows from condition A1 that V` is

nonsingular and, consequently, the iterate p`+1 is well-defined. Moreover, also follows from

A1 that ‖V −1
` ‖ ≤ λp0/(1 − ελp0). Thus, by using (5.2), the definition of the exponential

mapping and properties of the norm, we have

d(p`+1, p`) = d
(
expp`(−V

−1
` X(p`)), p`

)
≤
∥∥−V −1

` X(p`)
∥∥ ≤ λp0

1− ελp0
‖X(p`)‖ . (5.15)

On the other hand, considering that Bδ̄(p0) is a totally normal neighborhood and that the

iterates p`−1, p` ∈ Bδ̄(p0), we conclude after some algebraic manipulations that

‖X(p`)‖ ≤
∥∥∥X(p`)− Pp`−1p`

[
X(p`−1) + V`−1 exp−1

p`−1
p`

]∥∥∥+
∥∥∥X(p`−1) + V`−1 exp−1

p`−1
p`

∥∥∥ .
Taking into account that (5.2) implies X(p`−1) + V`−1 exp−1

p`−1
p` = 0 the last inequality

becomes

‖X(p`)‖ ≤
∥∥∥X(p`)− Pp`−1p`

[
X(p`−1) + V`−1 exp−1

p`−1
p`

]∥∥∥ .
Using A1 with q = p`, p = p`−1 and Vp = V`−1, it follows from the latter inequality that

‖X(p`)‖ ≤ εd(p`, p`−1).

Therefore, combining the inequality ‖X(p`)‖ ≤ εd(p`, p`−1) with (5.15) and by using the

induction assumption, we conclude that

d(p`+1, p`) ≤
ελp0

1− ελp0
d(p`, p`−1) ≤

(
ελp0

1− ελp0

)`
δ̄

(
1− 2ελp0
1− ελp0

)
, (5.16)

and the induction proof is complete. Hence, using (5.16) and the same argument used to

prove (5.14), we obtain that p`+1 ∈ Bδ̄(p0). Therefore, the Newton iterates are well-defined,

belongs to Bδ̄(p0) and satisfy (5.13). We proceed to prove that the sequence {pk} converges.

Indeed, using the triangular inequality, and (5.13) for any k and s ∈ {0, 1, . . .}, we have

d(pk+s+1, pk) ≤
k+s∑
j=k

d(pj+1, pj) ≤ δ̄

(
1− 2ελp0
1− ελp0

) k+s∑
j=k

(
ελp0

1− ελp0

)j
< δ̄

(
ελp0

1− ελp0

)k
.

Because 2ελp0 < 1, we conclude that {pk} is a Cauchy sequence. This implies that the

sequence {pk} converges, let us say to some p∗ ∈ Bδ̄[p0]. Hence, owing to X be a locally

Lipschitz continuous vector field, item (ii) of Proposition 5.1.7 implies that {Vk} is bounded.

59



Therefore, using that X is continuous, the equality (5.2), some properties of the norm and

that the sequence {pk} converges to p∗, we have

0 ≤ ‖X(p∗)‖ = lim
k→+∞

‖X(pk)‖ = lim
k→+∞

∥∥−Vk exp−1
pk
pk+1

∥∥ ≤ lim
k→+∞

‖Vk‖ d(pk+1, pk) = 0,

consequently, X(p∗) = 0. Now, we are going to prove the uniqueness of the solution in

Bδ̄[p0]. For this purpose, assume that q ∈ Bδ̄[p0] is such that X(q) = 0. Take V∗ ∈ ∂X(p∗),

by assumption X is regular on Bδ(p0) and p∗ ∈ Bδ̄[p0] ⊂ Bδ(p0), then V∗ is nonsingular.

As X(p∗) = 0 and X(q) = 0, using condition A1 with p = p∗ and Vp = V∗, and some

manipulations, we obtain that

d(p∗, q) =
∥∥V −1
∗ V∗ exp−1

p∗ q
∥∥ ≤∥∥V −1

∗
∥∥ [ ∥∥X(q)− Pp∗q

[
X(p∗) + V∗ exp−1

p∗ q
]∥∥ ] ≤ ελp0

1− ελp0
d(p∗, q). (5.17)

Because ελp0 < 1/2, we conclude that d(p∗, q) = 0, i.e., q = p∗. Therefore, p∗ is the

unique solution of problem (1.6) in Bδ̄[p0]. It remains to show the error estimate, i.e., the

inequality (5.12). First note that using the same arguments to establish the first inequality

in (5.16), we can also prove that d(pi+1, pi) ≤ [ελp0/(1− ελp0)] d(pi, pi−1) for all i = 1, 2, . . .,

and thereby obtain

d(pk+j, pk+j−1) ≤
(

ελp0
1− ελp0

)j
d(pk, pk−1), j = 1, 2, . . . .

Hence, for any s ∈ {0, 1, . . .}, we can use the triangular inequality and the last inequality to

conclude that

d(pk+s+1, pk) ≤
k+s∑
j=k

d(pj+1, pj) ≤ d(pk, pk−1)
s+1∑
j=1

(
ελp0

1− ελp0

)j
<

ελp0
1− 2ελp0

d(pk, pk−1).

Taking the limit as s goes to +∞, we obtain the inequality (5.12), and the proof of the

theorem is complete. �

Remark 5.4.2 It is worth pointing out that for 0 < µ ≤ 1, we can not obtain (5.14) in

order to assure the well-definedness of iterate p`+1. Besides, for 0 < µ ≤ 1, we can not obtain

the uniqueness of the solution from (5.17). Therefore, a new argument will be needed to

extend Theorem 5.4.1 for 0 < µ ≤ 1.

5.5 Some examples

In this section, we present a class of examples of locally Lipschitz continuous vector fields on

the sphere satisfying the condition A1. For this purpose, we begin by presenting some basic
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definitions about the geometry of the sphere. For further details, see [37, 38] and references

therein.

Let 〈·, ·〉 be the usual inner product on Rn+1, with corresponding norm denoted by ‖ · ‖.
The n-dimensional Euclidean sphere and its tangent hyperplane at a point p are denoted,

respectively, by

Sn :=
{
p = (p1, . . . , pn+1) ∈ Rn+1 : ‖p‖ = 1

}
, TpSn :=

{
v ∈ Rn+1 : 〈p, v〉 = 0

}
.

Denotes by I the (n+1)×(n+1) identity matrix. The projection onto the tangent hyperplane

TpSn is the linear mapping defined by I−ppT : Rn+1 → TpSn, where pT denotes the transpose

of the vector p. Let Ω be an open set in Rn+1 such that Sn ⊂ Ω, and Y : Ω → Rn+1 be

any semismooth mapping; several examples can be found in [31,34,57]. Then, we define the

vector field X : Sn → Rn+1 as follows

X(p) := (I − ppT )Y (p).

Note that X(p) ∈ TpSn for all p ∈ Sn. The Clarke generalized covariant derivative of X at p

is given by

∂X(p) :=
(
I − ppT

)
∂Y (p)− pTY (p)I, (5.18)

where ∂Y (p) is the Clarke generalized covariant derivative of Y at p. Therefore, all Vp ∈
∂X(p) is a linear mapping Vp : TpSn → TpSn given by Vp :=

(
I − ppT

)
Ṽp − pTY (p)I, where

Ṽp ∈ ∂Y (p). Since Y is a locally Lipschitz continuous mapping, from Rademacher theorem,

see [32, Theorem 2, p. 81], we conclude that Y is almost everywhere differentiable. As I−ppT

is a differentiable mapping, we obtain that X is almost everywhere differentiable. Using the

fundamental theorem of calculus in Riemannian setting (see [41]), the fact that ∂Y (p) is

locally bounded and continuity of Y , we conclude that X is also locally Lipschitz continuous

vector field. Assume that X is regular at p̄ ∈ Ω and let λp̄ ≥ max{‖V −1
p̄ ‖ : Vp̄ ∈ ∂X(p̄)}.

Then, from Lemma 5.3.5 for every ε > 0 satisfying ελp̄ < 1, there exists 0 < δ < π (where

π is the injectivity radius of Sn) such that X is regular on Bδ(p̄) and for all p ∈ Bδ(p̄) and

Vp ∈ ∂X(p) the following holds

‖V −1
p ‖ ≤

λp̄
1− ελp̄

.

This implies that inequality (5.3) holds. On the other hand, because X is a composition of

semismooth mappings, we conclude that X is semismooth, see [57, Proposition 1.74, p. 54].

Hence, from Definition 5.3.6 inequality (5.4) holds. Therefore, the projected vector field X

satisfies the condition A1. In the following, we present a concrete example.

Example 5.5.1 Let Y : R2 → R2 be a semismooth mapping defined by Y (p) := Ap−|p|−b
with matrix A = diag(4, 3) and vector b = (b1, b2) ∈ R2, where diag(p1, p2) denotes a
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2 × 2 diagonal matrix with (i, i)-th entry equal to pi, i = 1, 2. Take p̄ = (0, 1) ∈ S2

and note that Y (p̄) = 0 for b = (0, 2). Some calculus show that the Clarke generalized

covariant derivative of Y at p̄ is given by ∂Y (p̄) = {diag(d, 2) : d ∈ [3, 5]}. Define X(p) :=

(I − ppT )Y (p) the vector field on S2. Therefore, using (5.18), we conclude that ∂X(p̄) =

{Vp̄ := diag(d − 2 + b2,−2 + b2) : d ∈ [3, 5]}. Note that all Vp̄ ∈ ∂X(p̄) are nonsingular as

a linear mapping Vp̄ : Tp̄S2 → Tp̄S2, where the tangent hyperplane at p̄ is given by Tp̄S2 :=

{v := (v1, 0) ∈ R2 : v1 ∈ R}. Hence, from Definition 5.3.1, we obtain that X is regular at

p̄ = (0, 1). Let λp̄ ≥ max{‖V −1
p̄ ‖ : Vp̄ ∈ ∂X(p̄)}. As X is a locally Lipschitz continuous

vector field, using Lemma 5.3.5 for every ε > 0 satisfying ελp̄ < 1, there exists 0 < δ < π

such that X is regular on Bδ(p̄) and for all p ∈ Bδ(p̄) and Vp ∈ ∂X(p) the following holds

‖Vp−1‖ ≤ λp̄/(1 − ελp̄). Because X is a semismooth vector field, we conclude that the

condition A1 holds.

It is worth pointing out that in the literature there exist other examples, see, for example,

[55].
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Chapter 6

Final remarks

In this thesis, we have proposed and studied three versions of the Newton method to solve

problems in two contexts. The convergence analysis for a sequence generated by these

methods was done under local and/or semi-local assumptions.

In Chapter 3, we have proposed a method for solving constrained generalized equations,

which we call the Newton-InexP method. As already mentioned, we have combined the

classical Newton method for solving unconstrained generalized equations with feasible

inexact projections. It is worth pointing out that Lemma 3.1.5 played a key role in the

proof of the main theorems of Chapters 3 and 4. In particular, under assumptions of metric

regularity and strong metric regularity, Theorem 3.1.8 establishes a local convergence analysis

of a sequence generated by the method. In future work, we aim to make this analysis under an

weaker assumption, namely strong metric subregularity, see, for example, [31]. Furthermore,

it is well-known that in practical implementations the inexact versions of the Newton method

have computational advantages compared with an exact one. Therefore, following the same

idea of Chapter 3 it would be interesting to study the inexact Newton method with feasible

inexact projections for solving constrained generalized equations. Inexact Newton method

for solving unconstrained generalized equations is formulated as follows. For the current

iterate xk ∈ Rn, the next iterate xk+1 is computed as a point satisfying(
f(xk) + f ′(xk)(x− xk) + F (x)

)
∩Rk(xk) 6= 0, k = 0, 1, . . . ,

where Rk : Rn ⇒ Rm is a sequence of set-valued mappings with closed graphs, which

represents the inexactness. For further details, see, for example, [28,30].

In Chapter 4, we have presented a method for solving constrained smooth and nonsmooth

equations, which we call the inexact Newton-InexP method. As mentioned in the

introduction, this method combines the classical exact/inexact Newton method for solving

nonsmooth equations with feasible inexact projections. In Theorems 4.1.3 and 4.1.5, we have
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shown that under mild assumptions, the exact/inexact Newton-InexP method for solving

constrained smooth and nonsmooth equations preserves the local convergence properties if

feasible inexact projections with suitable error (relative tolerance) are used. In particular,

under the standard nonsingularity condition, the superlinear/quadratic rate is preserved.

In this sense, we expect that our results become the first step towards a study of the

behavior of the Newton method and its variants (including, the Gauss–Newton method,

Levenberg–Marquardt method and trust region method), with feasible inexact projections,

under more reasonable regularity conditions. To show the practical behavior of the proposed

method, we have tested it on some medium and large-scale CAVEs. The numerical

experiments have shown that the dimension of the problem and the choice of the parameter

θ, which influences in the computing of η given in Theorem 4.1.3 limit the efficiency of the

proposed method. With respect to robustness, the numerical results have shown that the

inexact Newton-InexP method works quite well for solving this class of problems since all

test problems were resolved. In future work, we aim to investigate computationally the

behavior of the inexact Newton-InexP method for other class of problems, for example, the

inequality feasibility problem. Computational implementations of Algorithm 3.1.6 described

in Chapter 3 also is a line of future research.

Because the extension of results and methods from the Euclidean context to Riemannian

setting have been a promising possibility over the years, see, for example, [35, 48, 77, 82, 88],

in Chapter 5, we have studied the main properties of nonsmooth analysis for this context.

Firstly, we have extended to the Riemannian setting the concept and some properties of

the locally Lipschitz continuous vector fields. It is worth mentioning that the Rademacher

theorem, i.e., Theorem 5.1.5 is an essential tool to ensure the existence of the Clarke

generalized covariant derivative. In addition, a version of the nonsmooth Newton method

for finding a singularity of these vector fields was proposed. Under the regularity and

semismoothness assumptions the well-definedness and local convergence of a sequence

generated by the proposed method were established. Furthermore, a semi-local convergence

analysis was presented, see Theorem 5.4.1. We expect that the results of this chapter can

aid in the extensions of new results and methods of nonsmooth analysis to the Riemannian

context, for example, the mean value theorem as well as the inexact and globalized versions

of the nonsmooth Newton method.
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