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Abstract

In this thesis, we will study three versions of the Newton method for solving problems in two
contexts, namely Euclidean and Riemannian. In the Euclidean context, we will present the
Newton method with feasible inexact projections for solving generalized equations subject
to a set of constraints. Under local assumptions, the linear or superlinear convergence
of a sequence generated by the proposed method is established. Next, a version of the
inexact Newton method with feasible inexact projections for solving constrained smooth
and nonsmooth equations is presented. Using suitable assumptions, the linear or superlinear
convergence of a sequence generated by the method is proved. Furthermore, to illustrate
the practical behavior of the proposed method, some numerical experiments are reported.
Under another perspective, the last version of the Newton method to be investigated is
an extension of the nonsmooth Newton method itself from the Euclidean context to the
Riemannian, objecting to find a singularity of a special class of locally Lipschitz continuous
vector fields. In particular, this method retrieves the classical nonsmooth Newton method
to solve a system of nonsmooth equations. The well-definedness of the sequence generated
by the method is ensured and the convergence analysis of the method is made under local
and semi-local assumptions.

Keywords: Newton method, Feasible inexact projection, Riemannian manifolds, Vector
fields, Convergence analysis.
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Resumo

Nesta tese, estudaremos trés versoes do método de Newton para resolver problemas em
dois contextos, a saber, Euclidiano e Riemanniano. No contexto Euclidiano, apresentaremos
o método de Newton com projecoes inexatas vidveis para resolver equagoes generalizadas
sujeitas a um conjunto de restricoes. Sob hipdteses locais, a convergéncia linear ou
superlinear de uma sequéncia gerada pelo método proposto é estabelecida. Em seguida, uma
versao do método de Newton inexato com projecoes inexatas viaveis para resolver equagoes
restritas diferenciaveis e nao-diferenciaveis é apresentada. Usando hipoteses adequadas, a
convergencia linear ou superlinear de uma sequéncia gerada pelo método é provada. Além
disso, para ilustrar o comportamento pratico do método, alguns experimentos numéricos
sao reportados. Sob uma outra perspectiva, a tultima versao do método de Newton a ser
investigada é uma extensao do préprio método de Newton nao-diferencidavel do contexto
Euclidiano para o Riemanniano, objetivando encontrar uma singularidade de uma classe
especial de campos de vetores localmente Lipschitz continuos. Em particular, este método
recupera o classico método de Newton nao-diferenciavel para resolver um sistema de equagoes
nao-diferencidveis. A boa definicdo da sequéncia gerada pelo método é garantida e a andlise
de convergéncia do método é feita sob hipdteses locais e semi-locais.

Palavras-chave: Médodo de Newton, Projegao inexata viavel, Variedades riemannianas,
Campos de vetores, Andlise de convergeéncia.
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Chapter 1

Introduction

This thesis investigates the local and/or semi-local behavior of three versions of the Newton
method to solve problems in two contexts. Newton method and the inexact Newton method
with feasible inexact projections are proposed for solving, respectively, generalized equations,
and smooth and nonsmooth equations, both subject to a set of constraints, and defined on
Euclidean space. Another method studied in this thesis is the nonsmooth Newton method
for finding singularities of a special class of locally Lipschitz continuous vector fields on a
complete Riemannian manifold. In particular, this method can be seen as an extension to
the Riemannian setting of the method studied in [76].

In Chapter 2, we recall some notations, definitions and preliminary results used throughout
this thesis.

Chapter 3 addresses the Newton method with feasible inexact projections (Newton-InexP
method) for solving generalized equations subject to a set of constraints, i.e., for solving the
problem of finding x € R"™ such that

x e C, f(z)+ F(z) >0, (1.1)

where f : 0 — R™ is a continuously differentiable function, 2 C R" is an open set, C' C Q2 is a
closed convex set, and F : 2 = R™ is a set-valued mapping with closed nonempty graph. As
far as we know, this is the first time the problem (1.1) has been studied, thus being one of our
contributions. However, it is worth mentioning that the applications of the Newton method
and its variations for solving the problem (1.1) when C' = R™ have been investigated in many
studies, including but not limited to [2,3,28,30,36,39,40]. Constrained Variational Inequality
Problem, see [16], and in particular, Split Variational Inequality Problem, see [16,52], can be
stated as special cases of the constrained generalized equation (1.1). Further details are given
in Section 3.3. It is known that if F' is the zero mapping, i.e., F' = {0}, then problem (1.1)
reduces to a constrained system of nonlinear equations, i.e., to solve f(x) = 0 such that

3



x € (. This class of problems has been addressed in several studies, and various methods
have been proposed for solving them, see, for example, [7,10,49,50, 60,66, 69].

Newton method for solving unconstrained generalized equations, i.e., when C' = R™ in the
problem (1.1), which has its origin in the work of N. H. Josephy [58], is formulated as follows.
For the current iterate z; € R", the next iterate x;,; is computed as a point satisfying the
following inclusion

flxr) + f(xp)(x — x1) + F(x) 20, k=0,1,..., (1.2)

where f’ is the derivative of the function f. Note that at each iteration, a partially linearized
inclusion at the current iterate has to be solved. The method (1.2) can be seen as a model for
various iterative procedures in numerical nonlinear programming. For instance, when F' =
{0}, this method corresponds to the usual Newton method for solving a system of nonlinear
equations. If F'is the product of the negative orthant in R® with the origin at R™%, i.e.,
F =TR? x{0}™*, then (1.2) becomes the Newton method for solving a system of nonlinear
equalities and inequalities, see [20]. On the other hand, if C' = R", the problem (1.1)
may represent the Karush—-Kuhn—Tucker optimality conditions for a nonlinear programming
problem, and then (1.2) describes the well-known sequential quadratic programming method,
see [31, p. 384] and [29, 56].

Motivated by the method described above, we propose the Newton-InexP method for
solving the problem (1.1). Taking into account that the Newton iterates satisfying (1.2) can
be infeasible for the constraint set, a procedure is applied in order to get them back to the
feasible set. In this thesis, we introduce the concept of a feasible inexact projection, which
we will be adopt in the proposed methods. We remark that the concept of feasible inexact
projection also accepts an exact projection, which can be adopted when it is easily obtained.
For instance, the exact projections onto a box constraint or Lorentz cone are very easily
obtained; see [72, p. 520] and [46, Proposition 3.3|, respectively. It is worth mentioning that
a feasible inexact projection on C' can be computed by any method that minimize efficiently
a quadratic function subject to C', by introducing a suitable error criteria. For instance, if
the set C'is polyhedral, then some iterations of an interior point method or active set method
can be performed for finding a feasible inexact projection, see [51,72,87]. If C' is a simple
compact convex set, then the Frank-Wolfe method has been used recently to find a feasible
inexact projection, see, for example, [49,50,61].

Our aim in Chapter 4 is to study the inexact Newton method with feasible inexact
projections (inexact Newton-InexP method) for solving smooth and nonsmooth equations
subject to a set of constraints, i.e., to find x € R™ that solves the following constrained
equation

xz e C, f(z) =0, (1.3)



where f : Q@ — R" is a locally Lipschitz continuous function, 2 C R™ is an open set
and C' C Q is a nonempty closed convex set. It is worth pointing out that if C' = R",
then problem (1.3) reduces to unconstrained smooth and nonsmooth equations. If f is
a continuously differentiable function, then problem (1.3) reduces to a constrained smooth
equation, which can be easily found in the literature, see, for example, [8,9,44,66,70]. Besides
its own importance, one of the main motivations to study constrained equations is that they
appear in applications when we need to solve real-life problems, for which, only the solutions
belonging to a constraint set have physical meaning. For further details, see [59]. Moreover,
important problems in mathematical programming can be reformulated equivalently as a
constrained nonsmooth equation, for instance, the inequality feasibility problem, see [75]. Tt
is worth mentioning also that the nonlinear complementarity problem, systems of equalities
and inequalities and, in particular, the Karush-Kuhn-Tucker systems can be reformulated in
an appropriate manner as a constrained nonsmooth equation, see [33,42,43,53,60].

J. M. Martinez and L. Qi [67] presented a version of the inexact Newton method for solving
unconstrained nonsmooth equations, i.e., the following problem

f(z) =0, (1.4)

where f : 2 — R" is a locally Lipschitz continuous function and 2 C R” is an open set.
In particular, the inexact Newton method for solving the problem (1.4) has the following
formal formulation. For the current iterate z; € R", the next iterate is any point z;.; € R"
satisfying the relative residual error criteria

1S (2r) + Valzeea — )| < mell f (i)l (1.5)

where 7, € [0,1) is the relative residual error tolerance and Vj is an element of the Clarke
generalized Jacobian of f at x. For a definition of the Clarke generalized Jacobian,
see Definition 2.1.7, which was presented by F. H. Clarke [18]. More versions of inexact
Newton-type methods for solving the problem (1.4) include, but are not limited to, those
in [13, 14,34, 80,81].

The problem (1.3) has been addressed in several studies, and several similar methods
and /or variants of (1.5) have been proposed for solving it. See, for example, the exact/inexact
Newton-like methods in [49,50,66|, projected Levenberg—-Marquardt-type methods in [6, 7],
and trust-region methods in [8,9]. In particular, the method proposed in [7] combines
a Levenberg-Marquardt-type method with an inexact projection, which also accepts an
infeasible inexact projection. In the present thesis, we propose a scheme for solving the
problem (1.3), which we call the inexact Newton-InexP method, that also uses the concept
of inexact projection. However, inexact projections used in this scheme are always feasible.
In essence, the proposed method combines the inexact Newton method (1.5) with a procedure
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to obtain feasible inexact projections onto a set C' and thus to ensure the feasibility of the
iterates. An issue to consider is the inexact solution in (1.5), which has an advantage over the
exact solution, see [25]. This advantage appears more explicitly in practical implementations
of the method, because finding an exact solution of linear approximations of equation (1.4)
can be computationally expensive for large-scale problems. Thus, in the present thesis, we
consider that from the current iterate, the next iterate is any point in C satisfying the relative
residual error criteria (1.5). We remark that if C' = R", the inexact Newton-InexP method
becomes the classical inexact Newton method applied for solving unconstrained smooth
and nonsmooth equations. From the theoretical viewpoint, i.e., in the convergence analysis
presented, to guarantee local efficiency of the proposed method, we assume appropriate
assumptions, such as regularity and semismoothness. Under the regularity assumption,
we ensure that a sequence generated by the method is well-defined. The semismoothness
assumption is of particular interest owing to the key role it plays in the convergence of our
method; in particular, this property is essential for fast local convergence. To illustrate the
robustness and efficiency of our method, we present some preliminary numerical experiments
of the proposed method for solving constrained absolute value equation (CAVE). We also
compare the performance of the proposed method with the inexact Newton method with
feasible exact projections.

Chapter 5 presents the nonsmooth Newton method for finding a singularity of a special
class of vector fields defined on a complete Riemannian manifold M, i.e., for finding a point
p € M satisfying the equation

X(p) =0, (1.6)

where X is a locally Lipschitz continuous vector field defined on M.

It is well-known that the Newton method is the most popular method for finding a
singularity of a differentiable vector field. Its origins go back to the work of M. Shub
[79]; see also [47,64, 82,85, 88]. This method became popular owing to its attractive
convergence properties under suitable assumptions. For instance, in the previously cited
works, the (superlinear and/or quadratic) local convergence of a sequence generated by the
Newton method has been established under the invertibility assumption of the covariant
derivative of the vector field at its singularity, and/or Lipschitz-like conditions on the
covariant derivative of the vector field. Recently, in [35] were established local properties
of the Newton method under the invertibility assumption of the covariant derivative of the
vector field at its singularity. Basically, in the Newton method the vector field is replaced
by an approximation depending on the current iterate, and then the original problem is
converted in an approximated problem, which can be solved more easily. The solution of
this approximated problem is then taken as a new iterate and the process is repeated.

The success of the Newton method for finding a singularity of a differentiable vector



field has motivated us to propose and analyze the nonsmooth Newton method for finding
a singularity of a locally Lipschitz continuous vector field. To present our method, we first
generalize some results of nonsmooth analysis, from the Euclidean context to the Riemannian
setting. In particular, we discuss the concept and main properties of the locally Lipschitz
continuous vector fields defined on complete Riemannian manifolds, such as the Clarke
generalized covariant derivative and Rademacher theorem. In particular, this derivative
can be viewed as a natural generalization to Riemannian setting of the Clarke generalized
Jacobian. The concept of the Clarke generalized covariant derivative has already appeared
in [48,77]. In this thesis, we show its existence using a version of Rademacher theorem in
the Riemannian setting, which is one of our contributions. In the following, we introduce in
the Riemannian settings an important subclass of locally Lipschitz continuous vector fields,
namely the semismooth and p-order semismooth vector fields. As well as in the Euclidean
context, these concepts play an important role in the convergence analysis of our method.
The essence of the nonsmooth Newton method is similar to the classical case, however, in
the approximated problem, we combine the exponential mapping on the manifold with an
element of the Clarke generalized covariant derivative of the vector field. This is because the
covariant derivative of a locally Lipschitz continuous vector field may not exist. It is worth
pointing out that, when the vector field is continuously differentiable, our method reduces
to the classical Newton method. From the theoretical viewpoint, we present a local and
semi-local convergence analysis of the proposed method under mild assumptions.

We finish this thesis with some remarks and future work in Chapter 6. It is worth
mentioning that the results of this thesis gave rise to three scientific papers. One of which
is already published, namely [23], and the other two are under review, namely [21,22]. The
cited papers have been submitted to important journals of international circulation in the
area of optimization.



Chapter 2

Notations and preliminary results

In this chapter, we review some notations, definitions and preliminary results used
throughout this text. Initially, we recall some concepts of the Euclidean space and in the
sequence, we discuss some basic concepts of the Riemannian geometry.

2.1 Euclidean space

The following notations, definitions, and results are used throughout of Chapters 3 and
4. For further details, see [18,31,34]. We begin with some concepts of analysis and of a
set-valued mapping.

The open and closed balls of radius § > 0, centered at x are defined respectively by
Bs(z) :={y eR": |z —y| <}, Bs[z] :=={y e R": |lz —yll < d}.

The vector space consisting of all continuous linear mappings A : R" — R™ is denoted by
L(R™,R™), and the norm of A is defined by

[A[]:= sup {[[Az]| = [lz]| <1}

Let 2 C R™ be an open set and f : 2 — R™ be a differentiable function at all x € 2. Then,
the derivative of f at x is the linear mapping f’(z) : R"™ — R™, which is continuous. The
graph of the set-valued mapping F': R = R™ is the set

gph F:= {(z,u) e R" xR™: uw e F(x)}.
The domain and range of the set-valued mapping F' are, respectively, the sets
dom F:={x € R": F(z) # @}, rge F:={u € R™: u € F(x) for some x € R"}.
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The inverse of the mapping F is the set-valued mapping F~! : R™ = R" defined by
F'(u) :={zr € R": w € F(z)} and the partial linearization of f + F at x € Q is the
set-valued mapping Ly p(z,-) : 2 = R™ defined by

Lyip(w,y) = f(z) + f(x)(y —2) + F(y). (2.1)

For the sets C' and D in R", the distance from x to D and the excess of C' beyond D are
defined respectively by

d(xz,D) := inf ||z — y||, e(C, D) :=supd(z, D), (2.2)
yeD zeC
where the convention is adopted that d(z, D) = 400 when D = @, (@, D) = 0 when D # &,
and e(@, &) = +o0. In the following, we present the notion of metric regularity, which plays
an important role in Chapter 3.

Definition 2.1.1 Let Q C R"™ be an open set. A set-valued mapping G : 2 = R™ 1is said to
be metrically reqular at T € Q2 for u € R™ when u € G(Z), the graph of G is locally closed at
(z,u), and there exist constants k > 0, a > 0, and b > 0 such that B,[z] C Q and

d(z, G (u)) < kd(u,G(z)), V (z,u) € B,[z] x By[ul.

Moreover, if the mapping Bylu] 2 u +— G~ '(u) N B,[z] is single-valued, then G is called
strongly metrically regular at © € Q) for u € R™, with associated constants k > 0, a > 0, and
b> 0.

When the mapping By[i] > u — G~ (u) N B,[z] in Definition 2.1.1 is single-valued, then
for the sake of simplicity we hereafter adopt the notation w = G~'(u) N B,[z] instead of
{w} = G (u) N B,[z].

Remark 2.1.2 If G is strongly metrically regular at x € €2 for u € R™ with constants
k> 0,a>0,and b > 0, then the mapping By[u] > u — G~ (u) N B[] is single-valued and
Lipschitz continuous on Bp[u| with Lipschitz constant « [31, Proposition 3G.1, p. 193], i.e.,

HG_I(U) N B,[z] — G Hv) N Ba[f]H < Kllu—|, YV u,v € Byla).

Next, we present a generalization of the contraction mapping principle for set-valued
mappings. For a prove of this, see [31, Theorem 5E.2, p. 313].

Theorem 2.1.3 Let ® : R* = R" be a set-valued mapping and let * € R™. Suppose that
there exist scalars p > 0 and X € (0,1) such that the set gph® N (B,[Z] x B,[Z]) is closed
and the following conditions hold:



(i) d(z,®(z)) < p(1 = A);
(ir) e (®(p) N By[7], @(q)) < Allp — gl for all p,q € B,[z].
Then, ® has a fized point in B,[z]. That is, there exists y € B,[z]| such that y € ®(y).

In the following, we define the concepts of locally Lipschitz continuous and directionally
differentiable functions, which plays an important role in our study, more specifically, in
Chapter 4.

Definition 2.1.4 A function f : Q0 — R™ is said to be Lipschitz continuous on a set £ C R",
if there is a constant L > 0 such that

If(@) = fWl < Llz—yl, Vzye

Given x € ), if there exists 6 > 0 such that f is Lipschitz continuous on Bs(x), then f is
said to be Lipschitz continuous at x. Moreover, if for all x € ), f is Lipschitz continuous at
x, then f is said to be locally Lipschitz continuous on €.

Remark 2.1.5 According to Rademacher theorem, see [32, Theorem 2, p. 81], locally
Lipschitz continuous functions are differentiable almost everywhere.

Definition 2.1.6 Let €2 C R™ be an open set. The directional derivative of a function
f:Q—=R™ at x € Q) in the direction h € R™ is defined by

whenever the limit exists. If f'(x;h) exists for every h, then f is said to be directionally
differentiable at x.

We end this section by defining the Clarke generalized Jacobian of a function, which has
appeared in [18]. This Jacobian requires only local Lipschitz continuity of the function f
and its well-definedness is ensured by Rademacher theorem.

Definition 2.1.7 The Clarke generalized Jacobian of a locally Lipschitz continuous function
f at x is a set-valued mapping Of : R = R™ defined as

R mxn . : _ . : !/
of () == CO{H e R™": I{x;} C Df’kgrfooxk =z, H= kgrfoof (xk)} ,

where “co” represents the convex hull, R™*"™ is the set consisting of all m x n matrices, and
Dy denotes the set of points at which f is differentiable.
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Remark 2.1.8 It is worth mentioning that if f is continuously differentiable at z, then
Of(z) = {f'(z)}. Otherwise, f(x) could contain other elements different from f'(x),
even if f is differentiable at z, see [18, Example 2.2.3, p. 33|. Furthermore, the Clarke
generalized Jacobian is a subset of R™*™ nonempty, convex, compact in the usual sense. We
also remind that the set-valued mapping Of is closed and upper semicontinuous, see [18,
Proposition 2.6.2, p. 70].

2.2 Riemannian geometry

In this section, we recall some notations, definitions and basic properties of Riemannian
manifolds used throughout of Chapter 5. They can be found in many books on Riemannian
geometry, see, for example, [62,78,84]. We begin this section by presenting the concepts of
charts and smoothness of a mapping defined between manifolds.

Definition 2.2.1 A chart on a n-dimensional smooth manifold M is a pair (U, @), where U
1s an open subset of M and the coordinate mapping ¢ : U — U is a smooth homeomorphism
from U to an open subset U = p(U) C R™.

Definition 2.2.2 Let N and M be manifolds of finite dimension and F : N — M be a
continuous mapping. We say that F is smooth at p € N, if there exist smooth charts (U, p)
containing p and (W,1) containing F(p) such that F(U) C W and the composite mapping
o Fop™:pU)— (W) is smooth at p(p).

Remark 2.2.3 The definition of smoothness of a mapping F' : N — M at a point is
independent of the choice of charts, see [84, Proposition 6.7, p. 61]. A diffeomorphism of
manifolds is a bijective smooth mapping F' : N — M whose inverse F~! is also smooth.
According to [84, Proposition 6.10, p. 63] coordinate mappings are diffeomorphisms and,
in particular, are continuously differentiable.

Let M be a n-dimensional smooth Riemannian manifold with Riemannian metric denoted
by (-,-) and the corresponding norm by || - ||. The length of a piecewise smooth curve
v : [a,b] — M joining p to ¢ in M, i.e., v(a) = p and 7(b) = ¢ is defined by

() = / )t

The Riemannian distance between p and ¢ is defined as d(p, q) = inf ep, , (), where I,
is the set of all piecewise smooth curves in M joining points p and ¢. This distance induces
the original topology on M, namely (M, d) is a complete metric space and the bounded and

11



closed subsets are compact. The open and closed balls of radius r > 0, centred at p are
defined respectively by

B.(p):={qe M: d(p,q) <r}, B.lp| ={qe M : d(p,q) <r}.

Denote the tangent space at point p by T,,M, the tangent bundle by T'M := UpeM T,M and
a vector field by a mapping X : M — T'M such that X (p) € T,M. Let v be a curve joining
the points p and ¢ in M, and let V be the Levi-Civita connection associated to (M, (-, -)). For
each t € [a,b], V induces a linear isometry between the tangent spaces T’ )M and T, M,
relative to (-,-), defined by P, ,,v = Y (t), where Y is the unique vector field on ~ such that
VywY (t) =0 and Y(a) = v. This isometry is called parallel transport along the segment
joining ~(a) to y(t). It can be showed that Py, 4,0 Py a5, = Py a5, and Py o = P, . For
simplicity and convenience, whenever there is no confusion, we consider the notation P, ,,
instead of P, , p, where v is a segment joining p to ¢ with v(a) = p and v(b) = ¢q. We use the
short notation P, instead of P, , , whenever there exists an unique geodesic segment joining

p to gq.

Remark 2.2.4 For any n-dimensional smooth manifold M; the tangent bundle 7'M has
a natural topology and smooth structure that make it into a 2n-dimensional smooth
manifold. With respect to this structure, the projection = : TM — M is smooth, see [63,
Proposition 3.18, p. 66].

The standard Riemannian distance dr,, on the tangent bundle TM can be defined as
follows: given u,v € T'M, then d;,, is defined by

drp(u,v) = inf {\/62(7) + | Py rumott — 0|20 vy € mev} , (2.3)

where I';, -, is the set of all piecewise smooth curves in M joining the points 7u to mv,
whose derivative is never zero, see [15, Appendix, p. 240].

A vector field Y along a smooth curve v in M is said to be parallel when V., Y = 0. If /
itself is parallel, we say that y is a geodesic. The geodesic equation V.7 = 0 is a second-order
nonlinear ordinary differential equation, so the geodesic v is determined by its position p
and velocity v at p. It is easy to check that ||7/|| is constant. The restriction of a geodesic to
a closed bounded interval is called a geodesic segment. A geodesic segment joining p to ¢ in
M is said to be minimal if its length is equal to d(p, q) and, in this case, it will be denoted
by Ypg- A Riemannian manifold is complete if its geodesics y(t) are defined for any value of
t € R. The Hopf-Rinow theorem asserts that any pair of points in a complete Riemannian
manifold M can be joined by a (not necessarily unique) minimal geodesic segment.

From now on, M denotes a n-dimensional smooth and complete Riemannian manifold.
Owing to the completeness of the Riemannian manifold M, the exponential mapping at p,
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exp, : T,M — M can be given by exp,v = (1), where 7 is the geodesic defined by its
position p and velocity v at p and (t) = exp,(tv) for any value of ¢. The inverse of the
exponential mapping (if exists) is denote by exp, L Let p € M, the injectivity radius of M
at p is defined by

Tp 1= sup {r >0: expy, is a diffeomorphism} ,
BT(OP)

where 0, denotes the origin of the T,M and B,(0,) = {v € T,M : |jv—0,| < r}.
A neighborhood W of p € M is said to be normal neighborhood of p if there exists a
neighborhood U of the origin in T,M such that exp, : U — W is a diffeomorphism.
Furthermore, if W is a normal neighborhood of each of its points, then W is said to be
totally normal neighborhood.

Remark 2.2.5 For p € M, the above definition implies that if 0 < 6 < 75 then
exp, Bs(0;) = Bs(p) is a totally normal neighborhood. Hence, for all p,q € Bs(p), there
exists a unique geodesic segment v joining p to ¢, which is given by 7,,(t) = exp,(t exp, Lq),
for all ¢ € [0,1] and d(p, q) = ||exp,* ¢]|.

In the following, we present a quantity, which plays an important role in Chapter 5, it was
defined in [24].

Definition 2.2.6 Let p € M and r, be the radius of injectivity of M at p. Define the
quantity K, by

d(exp, u, exp, v)

K, = sup{ q€ B, (p), u,veT,M, u#v, ||[v] <1y, [Ju—2] < rp} )

lu = ol|
In the following remark, we show that an estimative for the value of K, can be found for
Riemannian manifolds with non-negative sectional curvature.

Remark 2.2.7 The number K, measures how fast the geodesics spread apart in M. In
particular, when v = 0 or more generally when v and v are on the same line through 0,
d(exp, u,exp,v) = ||lu —v||. Hence, K, > 1, for all p € M. When M has non-negative
sectional curvature, the geodesics spread apart less than the rays [26, Chapter 5], i.e.,
d(exp, u,exp,v) < |[u — v|| and, in this case, K, =1 for all p € M.

The directional derivative of X at p in the direction v € T,,M is defined by

1
VX(p,v) := lim 7 [Pexpp(w)pX(epr(tv)) — X(p)] e T,M, (2.4)

t—0t

whenever the limit exists, where Pexpp(w)p denotes the parallel transport along ~(t) =
exp,,(tv). If this directional derivative exists for every v, then X is said to be directionally
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differentiable at p. Denote by X (M) the space of the differentiable vector fields on M. For
each X € X (M), the covariant derivative of X determined by the Levi-Civita connection V
defines at each p € M a linear mapping VX(p) : T,M — T,M given by

VX (p)v:=VyX(p),

where Y is a vector field such that Y (p) = v. Furthermore, VX (p,v) = VX(p)v, see [83,
Proposition 3, p. 234]. To state the following result, we need to define the norm of a linear
mapping.

Definition 2.2.8 Let p € M, the norm of a linear mapping A : T,M — T,M s defined by

[A]] = sup {[[Av][ = v € T,M, [jo] =1} .

We end this section with the well-known Banach lemma. For a prove of it see [73,
Lemma 2.3.2, p. 45].

Lemma 2.2.9 Let A, B be linear operators in T,M. If A is nonsingular and holds
|A7Y|||B — A|| < 1, then B is nonsingular, and

Ay
[AT(B = A)]

1B~ <
1 —
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Chapter 3

Newton method with feasible inexact
projections for solving constrained
generalized equations

In this chapter, we propose a version of the Newton method for solving constrained
generalized equations, i.e., for solving the problem (1.1). Basically, the proposed method can
be seen as a combination of the classical Newton method applied for solving unconstrained
generalized equations with a procedure to obtain a feasible inexact projection. Our goal
is to present an analysis of the behavior of a sequence generated by this method. For
this purpose, using the contraction mapping principle, we establish a local convergence
analysis of our method under appropriate assumptions, namely metric regularity or strong
metric regularity and Lipschitz continuity. Furthermore, concrete examples of constrained
generalized equations are presented.

3.1 Newton-InexP method and its convergence analysis

In this section, we present the Newton-InexP method for solving the problem (1.1). We
also study the local convergence of a sequence generated by this method. Our analysis
is performed under assumptions of metric regularity and strong metric regularity for an
approximation of the set-valued mapping f + F' and assuming the Lipschitz continuity of
the derivative f’. To ensure the feasibility of the Newton iterates, our method incorporates
a procedure to obtain a feasible inexact projection onto the feasible set. Next, we introduce
the concept of a feasible inexact projection, which will play an important role throughout
the thesis.
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Definition 3.1.1 Let C' C R" be a closed convex set, x € C', and 0 > 0. The feasible inexact
projection mapping relative to x with error tolerance 0, denoted by Po(-,x,0) : R* = C, is
the set-valued mapping defined as follows:

Po(y,z,0) ={weC: (y—w,z—w) <l|ly—=zl>, VzeC}.

Fach point w € Po(y,x,0) is called a feasible inexact projection of y onto C' with respect to
x and with error tolerance 6.

Since C' C R™ is a closed convex set, [12, Proposition 2.1.3, p. 201] implies that for each
y € R™ we have Po(y) € Po(y,z, ), where Po denotes the exact projection mapping onto
C'. Therefore, Po(y,z,0) # @ for all y € R® and x € C. If # = 0 in Definition 3.1.1, then
Po(y,2,0) = {Pc(y)} for all y € R™ and = € C. We use Po(y,x,0) = Po(y) instead of

Pc(y,SC,O) = {PC(y)}

Remark 3.1.2 It is worth mentioning that the concept of inexact projection has been
considered before; see, for example, [7]. However, in general, those inexact projections are
infeasible and, thus, different from the above concept.

Conditional gradient procedure (CondG procedure); see, for instance, [45,61], which is
based on Frank-Wolfe method, is an example of the procedure for obtaining feasible inexact
projections onto special compact sets C. For a general overview of this method, see [12].
For the sake of completeness, we present the CondG procedure in the following. For this,
we assume the existence of a linear optimization oracle (or simply LO oracle) capable of
minimizing linear functions over the constraint set C'. Next, we formally describe the CondG
procedure algorithm with y € R, x € C' and € > 0 as the input data.

Algorithm 3.1.3 CondG procedure z, = CondG (y, =, €)

Step 0. Set w; =z and k = 1.

Step 1. Use a LO oracle to compute an optimal solution z; and the optimal value gj as

2y, 1= arg Tzfélg (y — wg, 2 — wy), gr, = (Y — Wi, 2K — Wy). (3.1)

Step 2. If g; <, set z; := wy, and stop; otherwise, compute oy € (0, 1] and wyy1 as

*

9k

‘=min< 1, ———
o mm{’uzk—ww

} , Wg+1 = Wk + ak(zk — wk). (32)
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Step 3. Set k <~ k+ 1, and go to Step 1.

In the following, we describe the main features of the CondG procedure; for further details,
see [61].

Remark 3.1.4 Let y € R" and ¢ : R" — R be defined by ¢(2) := ||y — z||?/2. It is worth
mentioning that the above CondG procedure can be viewed as a specialized version of the
classic conditional gradient method, see [12, p. 215|, applied to problem min.cc ¢(z). In
particular, it can be easily seen in (3.1) that z; is equivalent to min,ec(¢'(wy), 2 —wy). The
stepsize ay, given in (3.2) is obtained using exact minimization, i.e., oy, = arg minaeo,1) (Wi +
a(zr —wg)). Note that, if the CondG procedure computes the optimal value g satisfying
g; < €, then it obtains wy, € C and the procedure terminates. Otherwise, computes oy, which
is well-defined and belongs to (0, 1] due to g; > € > 0. Since zi, wy € C' we have w41 € C,
thus the CondG procedure generates a sequence in C. Finally, note that CondG (y, z,0) =
Pc(y), and therefore x; = CondG (y, , €) can be seen as an approximation of the projection
Pc(y) onto C.

The next result plays an important role in the subsequent analysis, in particular, for this
and the next chapter. It presents a basic property of the feasible inexact projection, the
proof is similar to [50, Lemma 4]. For the sake of completeness, we decide to present the
proof here.

Lemma 3.1.5 Lety,g € R", z,72 € C, and § > 0. Then, for any w € Po(y,z,0), we have

lw = Po(§.2,0)|l < ly =l + V20]ly — |-

Proof. To simplify the notation, we set w = Po(y,,0), and take w € Po(y,x,0). First,
note that ||y — 7[> = [|(y — w) — (5 — @)|I* + lw — @[* +2{(y — §) — (w — @), w — @), which
implies that

lw —@|* < [ly = gl + 2{y — w, @& — w) + 2(§ — D, w — D).

Because w = Po(g,%,0) and w € Po(y,z,0), by using Definition 3.1.1 and the fact that
w,w € C', we can conclude that

(y—w, @ —w) <Oly—z?, (§—b, w—w) <0
Thus, the combination of these three previous inequalities yields

lw —]* < [ly = FII* + 26]|ly — 2|,
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and then [jw — || < ||y — g|| + vV20||y — z||, giving the desired inequality. |

The conceptual Newton-InexP algorithm, for solving the problem (1.1), with xy € C' and
{0r} C [0, 400) as the input data, is formally described as follows.

Algorithm 3.1.6 Newton-InexP method

Step 0. Let 2y € C and {6,} C [0,400) be given, and set k£ = 0.

Step 1. If f(xy) + F(zx) 2 0, then stop; otherwise, compute y;, € R™ such that
flaw) + f(zr) (yp — z1) + Fy) 0. (3.3)

Step 2. If y, € C, set xp1 = yx; otherwise, use a procedure to obtain Po(yy, zk, ) € C a
feasible inexact projection of y, onto C' relative to x; with relative error tolerance 6y;
and set

Trp+1 € Po (yk; Tk, Hk) . (34)

Step 3. Set k < k+ 1, and go to Step 1.

Remark 3.1.7 In Step 1 of Algorithm 3.1.6, we check if the current iterate zj is a solution
of problem (1.1). Otherwise, we compute a point yj, satisfying the inclusion (3.3). Since the
point y; in Step 1 may be infeasible for the constraint set C, the Newton-InexP method
applies a procedure to obtain a feasible inexact projection, and consequently the new iterate
Zr41 on C. In particular, the point x;,; obtained in (3.4) is an approximate feasible solution
for the projection subproblem min.cc{||z — y&||?/2}, satisfying the condition (yx — p41, 2 —
Trp1) < Oil|lyr — zx|]? for any z € C. As we will see, the specific choice of the tolerance 6 is
essential to establish the local convergence of the Newton-InexP method. Whenever F' = {0}
and the CondG procedure is used to obtain zy1 € Po (Y, k, 0k), the Algorithm 3.1.6 reduces
to the one proposed in [50].

In the following, we state our main theorem for the Newton-InexP method. The proof
constitutes a combination of the results that will be studied in the sequel.

Theorem 3.1.8 Let Q2 C R™ be an open set, f : 2 — R™ be continuously differentiable in
Q, and F : Q@ = R™ be a set-valued mapping with closed graph. Assume that C' C Q is a
closed convex set, x, € C, f(x.)+ F(x.) 20, there exists L > 0 such that

1f (@) = fWll < Lz —yl, Vazye (3.5)
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and the set-valued mapping 2 > y — Lyip(zy,y) is metrically reqular at x. for 0, with
constants k >0, a >0, and b > 0. Let r :=sup{t € R: B(z,) C Q}, {0x} C [0,1/2) and

2(1-+v20 i
( ) a 2b , 0 :=supby < 1 (3.6)
k

<3—\/2_9~>1€L’ V3L 2

Then, for every xy € C N B, (x.)\{x.}, there exists a sequence {xy} generated by the

Ty :=min ¢ 7,

Newton-InexP method, associated to {0y} and starting at xqy, which is contained in B, (x.)NC
and converges to x, with the following rate of convergence:

KkL||x) — x|
—z. ] < |1+ /20 ) \/ 26 — x|, 3.7

for all k = 0,1,.... As a consequence, if limy_, .0, = 0 then {xy} converges to x,
superlinearly. In particular, if 0, =0 for all k =0,1..., then

3L I

|Tpr1 — x| < T||a:k—x* k=0,1,..., (3.8)

and {zy} converges to x, quadratically. Furthermore, if the mapping Ly p(x,,-) is strongly
metrically reqular at x. for 0, then x. is the unique solution of (1.1) in B, (x.), and every
sequence generated by the Newton-InexP method associated to {0y} and starting at xy €
CN B, (x)\{x.} satisfies (3.7) and converges to x.,.

Remark 3.1.9 In particular, (3.7) implies that limsup,_ . [lzkr — zi|/l|ze — 2] <

\/%, where 0 = limsup,_,, . 0. Note that if ¢ = R", then 6, = 0, and using [31,
Theorem 3E.7, p. 178], we can conclude with some adjustment that Theorem 3.1.8 reduces
to [28, Theorem 1]. If yr € C in the Newton-InexP method for all £ = 0,1,..., then the
procedure to obtain a feasible inexact projection plays no role. In this case, the convergence
rate is quadratic, as in (3.8).

Henceforth, we assume that all the assumptions of Theorem 3.1.8 hold except the strong
metric regularity, which will be considered to hold only when explicitly stated.

3.2 Preliminary results

In this section, our goal is to prove some preliminary results necessary in order to prove
Theorem 3.1.8. We begin with a technical result that will be useful in our context.

Lemma 3.2.1 The following inequality holds: || f(q) — f(p) — f'(p)(q—p)|| < (L/2)|lq —pl?,
for all p,q € B.(x,). Moreover, if ||p — x.|| < rs, then

1f(z) = f(p) = F'(P)(z = p) + f(@)(z =z )| <b, V2 € B ()
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Proof. Because g+ (1—7)(p—q) € B,.(z.) for all 7 € [0, 1] and f is continuously differentiable
in 2, applying the fundamental theorem of calculus and the properties of the norm, we obtain

(@)~ 10) — £ ) a—p)] < / 1) = Fa+ (=g - llg —pll dr

On the other hand, by using (3.5) and performing the integration, the last inequality leads
to the first inequality of the lemma. We proceed to prove the second inequality. For this
purpose, let 0 < [|[p — x,|| < r« and 0 < ||z — z.|| < .. By applying the triangle inequality,
we have

1f () = f(p) = F'(P)(z = p) + f'(2)(z — 2| <
1f () = f(p) = F'(0) (@ = D)+ 1 () = f (@) 2 = 2]l (3.9)

Hence, the first inequality of this lemma together with the Lipschitz condition in (3.5) implies
that

1f (z2) = f(p) = f'(0) (@ = D)IFILS (P) = f' (@) =2 < g!lw*—p\lz+L|!x*—pH . ==]|.

Therefore, by combining this inequality with (3.9), we conclude that

1/ (zs) = f(p) = f'(P)(z = p) + fl(w)(z — 2 )| < ng* —pl* + Lllz. — plllle. — 2|

Taking into account that ||p — z.|| < r., ||z — 24| < re and r, < /2b/3L, the desired
inequality follows from the last inequality. Thus, the proof of the lemma is complete. [ |

To state the next result, for each fixed x € R™ we define the following auxiliary set-valued
mapping &, : 2 = R™:

Oo(y) = Lyvr (@e, f(2.) = f(2) = f(@)(y =) + f (@) (y —2.) ", (3.10)

where R™ 3w+ Lpyp (z,,u) ' i= {2z € R": u € Ly, p(x.,2)}is the inverse of L p defined
n (2.1). Therefore, y € ®,(y) if and only if x and y satisfy the following inclusion:

fl@) + f(@)(y —2) + F(y) 20,

i.e., y is the next Newton iterate from z. In the next lemma, we establish the existence
of a fixed point of ®, for all x in a suitable neighborhood of x,. Moreover, we present an
important bound on the distance between z, and this fixed point, and establish its uniqueness
under strong metric regularity. The statement of this result is as follows.
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Lemma 3.2.2 If0 < ||z — z.|| < r«, then there exists a fized point y € ®,(y) such that

Lz — .
— kLllx — x.[])

ly — 2. < 20 (3.11)

In particular, this implies that y € B, (x,). In addition, if Ly p(z.,-) is strongly metrically
reqular at x, for 0, then for all x € B, (x.) the mapping ®, has only one fized point in
B, (z.) satisfying (3.11).

Proof. To prove the first part of the lemma, we will first prove the following two inequalities:
(i) d(zs, o(2.)) < p (1 — wLlfz — 2.));
(ii) e(Pa(p) N Bylz.], ®u(q)) < kLllx —z|lllp—qll,  Vp,q€ Bylx,

where the scalar p > 0 is defined by

KLlfs = o
= . 3.12
T P (3.12)

In order to prove item (i), first note that the definition of the mapping ®, given in (3.10)
implies that

d(zs, o(2.)) = d (24, Lprp(z, f(2) = f2) = (@) (@ — 2))7).

Thus, taking into account that the second part of Lemma 3.2.1 with p = z and z = =z,
implies that ||f(z.) — f(z) — f'(z)(z. — 2)|| < b, and considering that =, € B,[z.| and
0 € Liip(xy,2.), we can apply Definition 2.1.1 to conclude that

d (2, Px(2))) < [ f(2) — fl2) = f(@) (@ — @)
Since Lemma 3.2.1 with p = x and ¢ = z, also implies that
1/ (z.) = f2) = f'(2) (e — 2)|| < (L/2)[Jz. — 2|,

combining the two last inequalities, we obtain d(z,, ®,(x.)) < (kL/2)||x — z.||?, which after
some manipulation, yields

A, D, (1)) < kL||z — z.|?

1 —kL||lz —x.) -
_2(1—I<L||JT—$*||)( rL||z = a.)

This inequality, together with definition given in (3.12), proves item (i). To prove item
(ii), we take p,q € B,lz,]. Owing to definition given in (3.12), taking into account that
re <2/(3kL) and ||z — x| < r., we can verify that p < r.. Thus, Lemma 3.2.1 implies that

1f(2e) = f2) = f'(@)(p = 2) + f(z)(p — z)]| <,
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and
1f(zs) — f(x) — f'(2) (g — 2) + f(2)(g — 2)|| <D

Because e(@, ®,(q)) = 0, we can assume without loss of generality that ®,(p) N B,[z.] # @
for all p € B,[z.]. Let z € ®,(p) N By[x.]. Then, from Definition 2.1.1 with z = z,, u = 0,
r=2zu= f(z.) — f(z) — f'(z)(qg— ) + f'(x.)(¢ — z.), and G = Ly p(x,,-), we have

d(z, ®x(q)) < wd (f(2.) = fz) = f1(2)(q — o) + f(w)(q — @), Lysr(2e, 2))

Since z € ®,(p) implies that f(z,) — f(x) — f'(z)(p —z) + f'(x.)(p — x+) € Lyrp(zy, 2), by
using the definition of distance given in (2.2), we obtain

d(f(z.) = f(z) = f'(@)(q — 2) + f(2)(q = 2.), Lysr(s, 2) < ([f(2) = f(2)](p = @)l -

Hence, combining the two last inequalities, we conclude that

d(z, ®2(q)) <k ||[f'(z) = f'(z)](p — )

Taking the supremum with respect to z € ®,(p) N B,[z,] in the last inequality and using the
definition of excess given in (2.2), we have

e (®2(p) N Ba[z.], ®2(q)) < £ |[[f(z) = f(@)](p — @)l

Since p < r,. < a, we have e(®,(p) N B,lz.], P,(q)) < e(Py(p) N Bylz.], P2(q)). Hence, from
the last inequality and the properties of the norm, we obtain

e (®2(p) N Bylz.], @2(q)) < K [1f/(x) = f (@)l lp — all

By using the fact that f’ is Lipschitz continuous with constant L > 0, the latter inequality
becomes

e (®x(p) N Byl.], ®x(q)) < wllz — z.l[lp — ],

and thus item (ii) is proved. Because r, < 2/(3xL) implies that xL|z — .|| < 1, we can
apply Theorem 2.1.3 with ® = ®,, T = x,, and A = kL||x — z.|| to conclude that there exists
y € B,[z.], i.e., the inequality (3.11) holds, with that y € ®,(y). To prove that y € B, (x.),
we use the fact that r, < 2/(3xL) and (3.11) to conclude that

kLr
|y — 2 < 2 — |z — .|| < [l — .| <7,

1 —kLr,)
which implies the desired result. Therefore, the proof of the first part of the lemma is
complete. Now, we assume that Ly p(z,, -) is strongly metrically regular at x, for 0. Suppose
that there exist g and § € B,[z,] C B, (x.) such that y € ®,(y) and § € ¢,(g). We know
that the mapping z — Ly p(2., 2) "'NB,[z.] is single-valued on By[0], and thus the definition
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of ®, in (3.10) and the second part of Lemma 3.2.1 imply that § = ®,(9) and § = ®,(7).
Using the definition of excess in (2.2), item (ii), and the fact that r. < 2/(3xL), we obtain

19— 9l = e(®2(9) N Byl @2(9)) < wlljx — 2.l [g — gl < g =9l

which is a contradiction. Thus, ¥ = ¢, and the proof is concluded. [ |

The next lemma plays an important role in the convergence analysis. In particular, it will
be used to prove the well-definedness of the sequence {x;} C B, (z,)NC and its convergence
to a solution of problem (1.1).

Lemma 3.2.3 If0 >0, x € CN B, (x,)\{z.} and y € ®,(y) satisfies (3.11), then it holds
that

KLz — 2|
— < — . (3.
lw — .|| < {<1+\/29) S — o — 6T + V20| lr—a.]l,  Ywe Poly,z,0). (3.13)

In addition, if 0 < 1/2, then Po(y,z,0) C B, (z,) NC.
Proof. Take w € Po(y,x,0). Then, applying Lemma 3.1.5 with § = x, and & = x,, we have
lw = Po (4, 2., 0)|| < lly = 2.l| + V26 (|2 — 2| + [ly — 2.]) - (3.14)

On the other hand, because ||z —x.|| < r., by applying Lemma 3.2.2 and some manipulations,
we conclude that

wLlle =z,
lw — Po (2., 2., 0)|| < [(H\@) T —wITs =T V20 |l — .-

Hence, owing to the fact that Po(z., ., 0) = x,, the last inequality and (3.14) yield (3.13).
The conditions (3.6) imply that (1 + v20)[(kL||z — z.]))/(2(1 — kL||z — 2.|)))] + V260 < 1.
Thus, it follows from (3.13) that

lw =zl <l —al,  Vwe Pely,z,0),

and because ||z — z,|| < . we obtain that Po(y,z,0) C B, (z.). Because Po(y,z,0) C C,
the last statement of the lemma follows, which concludes the proof. |

Now, let us study the uniqueness of the solution for the problem (1.1) in the neighborhood
B, (z.).

Lemma 3.2.4 If the mapping Ly, p(x,,-) is strongly metrically reqular at x, for 0, then x,
is the unique solution of (1.1) in B, (z.).
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Proof. Let & be a solution of (1.1) in B, (x.). Thus, || — z.|| < r. < y/2b/3L, which
together with the first part of Lemma 3.2.1 implies that

178~ £ = P @ — )l < Sllé — ] < (315)

Moreover, considering that x, € B, [z,| and r. < a, we can apply Definition 2.1.1 to conclude
that

(@, Lyp(ze, —f(2) + f(22) + f/@) (@ —2.)7) <
Rd(=f(2) + f@.) + f/(2)(& = 22), L (s, 72)).

Thus, owing to the fact that 0 € Ly, p(z,,2,), we can apply the first inequality in (3.15)
and the definition of distance given in (2.2) to conclude that

(., Lyyp (o, —f(2) + fl22) + (@) (@ —2.)7") < %Hf — .

On the other hand, because the mapping Ly, p(x,,-) is strongly metrically regular at z, for
0, the mapping z +— Ly (2., 2) 7' N By[z.] is single-valued on B,[0]. Furthermore, we know
that 0 € f(z) + F(2) = f(2) — f(zs) — f'(x)(@ — 24) + Lyrp(zs, ). Hence, we conclude
that & = Ly p(@e, — f(2) + f(2.) + f'(2)(Z — 2,)) ', and we obtain from the last inequality
that 7
. Kis .
I .l < e — P

If || — x| # 0, then last inequality implies that || — .|| > 2/(kL) > 2/(3kL) > r., which
is absurd, because || — x.|| < r.. Therefore, || —z.|| = 0, and thus z, is the unique solution
of problem (1.1) in B, (z.). |

Our final task in this section is to prove Theorem 3.1.8. The proof comprises a convenient
combination of Lemmas 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Proof of Theorem 3.1.8

Proof. First, we will show by induction on k that there exists a sequence {xy} generated by
the Newton-InexP method for solving the problem (1.1), associated to {0} and starting in
xo, which satisfies the following two conditions:

Tk+1 € Br* (SC*) N 07

KLl .|
—xl< (1 26) 260 — x|,
o =2l < | (14 VB gt =k B o -

(3.16)

forall k =0,1,.... Take xg € CNB,, (z«)\{2z.} and k = 0. Because ||z¢— .|| < r., applying
the first part of Lemma 3.2.2 with = ¢, we obtain that there exists yo € ®,,(yo) such that
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Yo € By, (z4). Ifyp € C, then 1y = yo € B, (z.)NC, and by using (3.11) we can conclude that
(3.16) holds for k = 0. Otherwise if yy ¢ C, then take x1 € P (yo, xo,0y). Moreover, by using
the first part of Lemma 3.2.3 with x = z, we obtain that (3.16) holds for k£ = 0. Furthermore,
the conditions (3.6) imply that (1+ v/20,)[(kL |0 — .]|)/(2(1 — KL||xg — z.||))] + v200 < 1,
and so the second part of Lemma 3.2.3 give us that z; € B, (z.) N C. Therefore, there
exits z; satisfying (3.16) for £ = 0. Assume for induction that the two assertions in (3.16)
hold for k = 0,1,...,j — 1. Because z; € B, (z.) N C, we can apply Lemma 3.2.2 with
r = x; to conclude that there exists y; € ®,,(y;) such that y; € B, (v,). If y; € C, then
Tjy1 = y; € By.(z,) NC, and (3.11) implies that (3.16) holds for & = j. Otherwise, if
y; ¢ C then take z;41 € Po(yj,xj,0;). Hence, using first part of Lemma 3.2.3 we obtain
that the inequality in (3.16) holds for £ = j. Because the conditions (3.6) implies that
(14 /20;)[(kL||z; — x.]])/(2(1 — kL||z; — z.]|))] + 1/26; < 1, the second part of Lemma 3.2.3
yields that z;.; € B, (z.) N C. Thus, there exists x;;; satisfying (3.16) for £k = j, and
the induction step is complete. Therefore, there exists a sequence {x;} generated by the
Newton-InexP method solving the problem (1.1), associated to {0} and starting in x(, and
it satisfies the two conditions in (3.16). Now, we proceed to prove that the sequence {xj}
converges to ,. Indeed, because ||z — z.|| < r, for all k =0,1,..., § = sup, 6 < 1/2 and

r, < [2(1 = V20)]/[(3 — V'20)kL], we conclude from the inequality in (3.16) that
21 — 2| < ok — ..

This implies that the sequence {||zy — x.||} converges. Let us say that ¢, = limy_, o ||z —
|| < |lwo — x|l < ro. Because {xy} C B, (x.) N C, we can conclude that ¢, < r.. On
the other hand, by combining the inequality in (3.16) with the second condition in (3.6), we

- Lz, — z, =
||xk+1—x*||s[(1+\/2e) wlllze - | +\/29} Ty

2(1 — kL||xgp — x4)
for all K =0,1,.... Thus, taking the limit in this inequality as k goes to +o00, we have

[(+¢_) S+ ]

obtain

If ¢, # 0, we obtain from the last inequality that [2(1 — \/275)]/[(3 — \/2_5)/£L] < t., which
contradicts the first assertion in (3.6), because t, < r,. Hence, t, = 0, and consequently the
sequence {zy} converges to z,. In particular, if limy_, ., 0 = 0, then by taking the limit
in (3.7) as k goes to +00 we obtain that limsup,_,, [||zrt1 — z.||/||zx — 2] = 0, i.e., the
sequence {x} converges to x, superlinearly. On the other hand, if 6, = 0 for all k = 0,1, .. .,
then § = 0. Hence, from (3.7) and the first equality in (3.6), we have

3L
1 = 2l = ==l — .||
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for all k = 0,1,..., and consequently {z;} converges to z. quadratically. Furthermore, if
the mapping L, p(z,,-) is strongly metrically regular at x, for 0, then Lemma 3.2.4 implies
that x, is the unique solution of problem (1.1) in B, (z.). To prove the last statement of the
theorem, take o € C'N B, (x.)\{z.}. Then, the second part of Lemma 3.2.2 implies that
there exist a unique yo € B,,(z,) such that yo € ®,,(yo), i.e., there exists a unique solution
yo of (3.3) for k = 0, where
kL||zo — .|
2(1 = kL||wg — z.||)”
Furthermore, Lemma 3.2.3 implies that every z1 € Pc(yo, zo,0p) satisfies (3.7) for k = 0.

Po =

Thus, proceeding by induction, we can prove that the every sequence {x} generated by the
Newton-InexP method, associated to {0} and starting in x¢, satisfies (3.7), and by using
similar argument as above, we can prove that such a sequence converges to x,. Therefore,
the proof of the theorem is complete. |

3.3 Application and some examples

In this section, we present an application of Theorem 3.1.8 when F' is a maximal monotone
operator. To this end, we begin by presenting a class of mappings f and F' for which the
set-valued mapping defined in (2.1) is strongly metrically regular. The next result is a version
of [40, Remark 4] for strongly metrically regular mappings, and its proof will be included
here for the sake of completeness. See also [86, Lemma 2.2].

Proposition 3.3.1 Let F : R" = R" be a maximal monotone mapping and f : R" — R" be
a continuously differentiable function. Assume that x, € R" and 8 > 0 satisfy the following
condition:

(f'(@)p,p) = Blpl*,  VpeR™ (3.17)
Then, rge Ly p(x., ) =R", and for any = € R" and u € Ly p(z., T), the set-valued mapping
Liip(zy,-) : R® = R is strongly metrically regular at © € R™ for u € R™, with constants
k=1/8, a= 400, and b = +oc.

Proof. First, we will prove that rge Ly, (24, ) = R"™. For this, let 0 < p < 28/ f(.)|]?, take
# € R", and define the mapping R" 3 y +— ®(y) := (I 4+ puF) Y(uz+y— p[f(z.) + f(z)(y —
x,)]). Because F' is a maximal monotone mapping, according to [31, Theorem 6C.4, p. 387]
the mapping (I + pF)~! is single-valued and Lipschitz continuous on R”™ with constant 1.
Thus, for any y, 2 € R", we have

[@(y) — (2))1* < ly — 2 — uf' (x)(y — 2)|?
= lly — 21> = 2u{f"(x.)(y — 2),y — 2) + 2|/ (x.) (y — 2)|1*.
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Using the inequality (3.17) in the last relation, we obtain that

12(y) — @(2)|I* < (L= 28p+ p?|[ f'(x)]?) lly — =[1*.

Considering that 0 < pu < 28/ f'(z4)]|?, we have \? := (1 — 28u + p2|| f'(z.)]|?) < 1. Thus,
we conclude that [|[®(y) — ®(2)|] < M|y — z|| for all y, z € R™. Therefore, by the Banach
contraction principle, see [31, Theorem 1A.3, p. 17], there exists x € R" such that z = &(x),
which implies that & = Lyyp(x,, x), and thus rge Ly p(z,, ) = R". We proceed to prove
that the graph of Ly p(x,,-) is locally closed at (Z,a), i.e., there exists a neighborhood U
of (z,u) such that the intersection gph L. p(z,,-) NU is closed. Indeed, let {(Zy,ux)} C
gph Ly p(x,,-) NU be a sequence such that limy_, 7y = = and limy_, U = u. By
the definition of the graph of a set-valued mapping, we have 4, € Lyip(z,.,Zx) for all
k =0,1,.... Hence, by using definition given in (2.1) we obtain that uy € f(z.)+ f'(z.) (T —
xy) + F(Z) for all £ = 0,1,.... Because F' is a maximal monotone mapping, according
to [4, Proposition 6.1.3, p. 185] it has closed graph, and thus we can take the limit in
the last inclusion to conclude that @ € f(x.) + f'(z.)(Z — x.) + F(Z). This implies that
@ € Lyip(x,, ), and the desired statement follows. Now, we will prove that the mapping
R" 5 x — Lgip(x,, x) is metrically regular at z € R™ for u € R” with constants x = 1/0,
a = 400, and b = +oo. For this, take arbitrary z,u € R". Because rge Ly p(z,,-) = R",
there exists y € R” such that v € Ly p(x.,y). Thus, we can take w, € F(y) such that
u= f(z.)+ f'(x.)(y — x.) + w,. Moreover, for every arbitrary v € Ly p(z,, x), we can find
w, € F(x) such that v = f(z.) + f'(z.)(x — z.) + w,. Thus, the monotonicity of F' implies
that

(f'(@)(@ —y),z—y) < (f(@)(@—y)r—y) + (we —wy, z = y)

= (f(z) + fl@) (e — 2.) + we — fl2,) = f(@)(y — 22) —wy, 2 —y).

=(v—u,z—1y)

< v = ullllz =yl
On the other hand, (3.17) yields that 8|z — y[|* < (f'(z.)(z — y),z — y), which combined
with the last inequality gives

Bllz —yll* < llv = ullllz -yl

Since u € Ly p(x,y), it follows that if & = y then € Ly p(z.,u)~". In this case, we can
conclude that d (z, Lyip(z.,u)™) =0 < d (u, Lpyp(xs, 2)) /8. Thus, we assume that z # v,

and so ]
||l’—y|| < B||U_UH7 VUGLf+F(.T*,JI).

Because u € Lyip(z.,y), the definition of distance given in (2.2) and the latter inequality
imply that
d(u,Lip(z., x)), vV x,u € R"



To conclude the proof, it remains to prove that the mapping z + Lyip(x.,2)"" is
single-valued from R" to R". Take z € R™, 1 € Lyip(.,2)7", and 22 € Lyyp(zs,2)7 "
For i = 1,2, find v; € F(z;) such that z = f(x,) + f/'(x.)(x; — x4) + v;. Thus, (3.17) and the
monotonicity of F' imply that

Blley — ol < (f' (@) (21 — 22), 21 — 2)

< (f(z) (w1 — 22), 21 — @2) + (V1 — V2, T1 — T2)
(f(2) + f(@) (@1 — ) + o1 = (f(2e) + fl(x) (@ — 22) + 02), 11 — 22)
— 0

Yielding that @1 = x, so that Ly p(z., )" is a single-valued mapping. Therefore, the proof
is concluded. [ |

From now on, Np : R® = R"™ denotes the normal cone mapping of a closed convex set

D C R", which is defined by

z: (z,y—x)<0,Vye D} if xe€ D,
Np(a) = i By—m y € D}

%] otherwise.

In the following result, we present a particular instance of Theorem 3.1.8.

Theorem 3.3.2 Let C and D be convex sets in R™ such that C' is closed and C' C D, and let
h:R™ — R™ be a continuously differentiable function. Assume that x, € C, h(x,)+Np(z.) >
0, and there exist B > 0 and L > 0 such that

(W'(z)p,p) = BlIpll*, W (2) =Wl < Llle —yl,  VpayeR"

Let {6} € [0,1/2) be such that 6 := sup,, 6, < 1/2 and r, = [2(1 — \/i)ﬁ]/[(i’) - \/%)L]
Then, every sequence {xy} generated by the Newton-InexP method to solve (1.1), associated
to {0r} and starting in xo € C' N B, (x.)\{z.}, converges to ., and the rate of convergence
15 as follows:

Llzy — .|
< |(1 \me) 20 —nll, k=01,
|Zhr1 — 2| < [( + ¢) 3B = Ller — o)) + k| llze — 2|

As a consequence, if limy_, o 0, = 0, then {x}} converges to x, superlinearly. In particular,

if O =0 forall k=0,1..., then
L
||£L‘k+1—l'*|| < ﬁ”{[‘k—ZE*HQ, k:0717"‘7

and the sequence {xy} converges to x, quadratically.
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Proof. Because the normal cone mapping Np is maximal monotone, see, for example, [4,
Corollary 6.3.1, p. 192], we can use Proposition 3.3.1 to obtain that the set-valued mapping
Lping (24, ) : R" =2 R™ is strongly metrically regular at =, € R" for 0 € R", with constants
Kk = 1/8, a = 400, and b = +oo. On the other hand, because x, € C is such that
h(z.)+Np(z.) > 0, h has a Lipschitz continuous derivative on R” and xy € CNB,. (x.)\{z.}.
Therefore, we can apply Theorem 3.1.8 to obtain the desired result. [ |

We end this section by presenting two examples from the literature that can be seen as
particular cases of constrained generalized equations. We begin by presenting the so-called
Constrained Variational Inequality Problem (CVIP), see, for example, [16].

Example 3.3.3 Let U and ) be closed convex sets in R” and h : R®” — R" be a continuous
function. The CVIP is defined as:

find z,€UNQ such that (h(z,),z —z.) >0, Veel. (3.18)
The problem (3.18) can be rewritten equivalently as:
find z, € UNQ such that h(x,) + Ny(z,) 3 0.

Then, (3.18) can be seen as a special instance of the constrained generalized equation (1.1).
Observe that the classical variational inequality problem it is not equivalent to the above
CVIP, since in (3.18) the point =, must belongs to U N .

In the next example, we describe the Split Variational Inequality Problem (SVIP), which
can be rewritten as a special case of the CVIP. See [16,52] for an extensive discussion on
this problem.

Example 3.3.4 Let U C R™ and 2 C R™ be nonempty, closed convex sets, and consider
A :R" — R™ a linear mapping. Given functions f : R" — R" and ¢ : R™ — R™, the SVIP
is formulated as follows: Find a point x, € U such that

<f($*),$—l‘*>207 \V/ZL'EU,
and such that the point y, = Az, € ) satisfies

<9<y*)ay—y*> >0, Vye.

By taking R" :=R" xR™ D :=U x Q and V := {w = (z,y) € R" : Az =y} the SVIP
is equivalent to the following CVIP:

find w, € DNV such that (h(w,),w —w,) >0, Vwe D, (3.19)
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where w = (z,y) and h : R"™ — R™ is defined by h(x,y) = (f(x),9(y)), see [16,
Lemma 5.1]. Therefore, from Example 3.3.3 and (3.19), the SVIP is equivalent to the
following constrained generalized equation:

find w, € DNV such that h(w,)+ Np(w,) 30,

where D :=U x Q, V :={w = (z,y) € R" : Az =y} and h : R"™ — R™ is defined by
h(z,y) = (f(2), 9(y))-

It is worth noting that SVIP is quite general and includes several problems as special cases.
For instance, Split Minimization Problem and Common Solutions to Variational Inequalities
Problem, see, for example, [1,16,17,71].
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Chapter 4

Inexact Newton method with feasible
inexact projections for solving
constrained equations

In this chapter, we propose an inexact Newton method with feasible inexact projections for
solving constrained smooth and nonsmooth equations, i.e, for solving the problem (1.3). Our
goal is to show that, under the assumption of smoothness or semismoothness of the function
that defines the equation and its regularity at the solution, a sequence generated by the
method converges to a solution with linear, superlinear, or quadratic rate. Two applications
for the main theorems are provided: one is for semismooth functions and the other is for
functions whose derivatives satisfy a radial Holder condition. To illustrate the practical
behavior of the proposed method, some numerical experiments are reported. In particular,
we compare the efficiency and robustness of the inexact Newton method with feasible inexact
projections (Inezact Newton-InexP method) with the inexact Newton method with feasible
exact projections (Inezact Newton-EzP method) for solving one class of problems.

4.1 Inexact Newton-InexP method and its convergence

analysis

In this section, we present the inexact Newton-InexP method for solving the problem (1.3),
where the function f is locally Lipschitz continuous. Basically, the inexact Newton-InexP
method combines the inexact version of Newton method for solving unconstrained equations
(see, for instance, [34,67]) with a procedure to obtain a feasible inexact projection.

In the following, we formally describe the inexact Newton-InexP algorithm for solving the
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problem (1.3), with 2o € C, 6 > 0,7 > 0, {6} C [0,0), and {nx} C [0,7n) as the input data.

Algorithm 4.1.1 Inexact Newton-InexP method

Step 0. Let 6 > 0, n >0, xy € C, {0} C[0,60), and {n} C [0,n) be given and set k = 0.

Step 1. If f(zx) = 0, then stop; otherwise, choose an element V}, € df(x)) and compute
yr € R™ such that

1 (ex) + Valye — i)l < il f ()] (4.1)

Step 2. If y, € C, set xx11 = yx; otherwise, use a procedure to obtain Po(yx, zx, 0) € C a
feasible inexact projection of y, onto C' relative to x, with relative error tolerance 6y;
and set

Tr+1 € Po (yk, ok, Ok) -

Step 3. Set k< k+ 1, and go to Step 1.

Below, we describe the main features of the inexact Newton-InexP method.

Remark 4.1.2 In inexact Newton-InexP method, we first check whether the current iterate
xy is a solution of problem (1.3); otherwise, we compute y;, satisfying the relative residual
error criteria (4.1). The forcing sequence {nx} is used to control the level of accuracy. In
particular, as we will show, the specific choice of this sequence is essential to establish the
local convergence of the inexact Newton-InexP method. It is worth pointing out that if n, = 0
for all k =0,1,... (i.e., exact version of the Newton-InexP method), then y; is obtained by
solving for y the system f(xy)+ Vi(y — zx) = 0. Note that to ensure the well-definedness of
yr the Clarke generalized Jacobian must be nonempty, see [18, Proposition 2.6.2, p. 70], and
all V, € Of(xx) must be nonsingular, for any k£ = 0,1,.... As the point y; can be infeasible
with respect to the set of constraints C, the inexact Newton-InexP method uses a procedure
to obtain a feasible inexact projection, and consequently the new iterate x,. 1 belongs to C.
The choice of the tolerance 6, is also important in obtaining the local convergence of the
inexact Newton-InexP method. Finally, we remark that if f is a continuously differentiable
function, n, = 0 for all k = 0, 1,. .., and the procedure to obtain Po(yg, Tk, k) is the CondG
procedure, then our method is equivalent to the method proposed in [50]. On the other
hand, if f is a nonsmooth function, C' = R" and n, = 0, =0 for all £k = 0,1, ..., our method
reduces to Newton method proposed in [76].

Next, we state and prove our first local convergence result for a sequence generated by
the inexact Newton-InexP method. In this case, we assume that f : Q@ — R” is a locally
Lipschitz continuous function, but not continuously differentiable.
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Theorem 4.1.3 Let 2 CR"™ be an open set, C' C §2 be a closed convex set, and [ : ) — R"
be a locally Lipschitz continuous function. Suppose that x, € C and f(x.) =0. Let ' > 0
and 0 <r <r,:=sup{t € R: Bi(z.) C Q} such that

() = fle)ll < Tllz —al, Ve Bi(). (4.2)

Assume that each V,, € 0f(x.) is nonsingular and let \,, > max{||V, || : V.. € 0f(z.)}.
Moreover, there ezist € > 0 and 0 < 6 < min{r, 1} such that for all x € Bs(z.), V, € 0f(x)
18 nonsingular and there hold

Az
< e
T 1 —€eA,,
1f(z) = f(z) = Valzw —2)|| < el —a '™, 0<p<L. (4.4)

Ve (4.3)

Let 0 < 6 < 1/2. Furthermore, assume that n > 0 and € > 0 satisfy the following conditions

0 < Ax;<1+\/2_\9/%) ¢ < i [(1 _ \/%) T (1 +\/2_9)] . (4.5)

Then, every sequence {xy} generated by Algorithm 4.1.1 starting in xo € C N Bs(z,)\{z.},
with 0 < mp <m and 0 < Oy < 0, for all k =0,1,..., belongs to Bs(x,) N C, satisfies

A, kD + €| — 24 ||P
21 — 2| < [ [ 1_!; 1] (1+v/20:) + zek} e —all,  (4.6)
for all k = 0,1,..., and converges linearly to x.. As a consequence, if limy o0 = 0

and limy_, 1o M = 0, then {x} converges superlinearly to x.. Furthermore, letting n, <
min{n|| f(x)||*,n} and 0, < min{0|f(zx)||**,0}, the convergence of {x1} to x. is of the
order of 1 + pu.

Proof. We show by induction on k that if zqg € C'N Bs(x.)\{z.}, then every sequence {zy}
generated by Algorithm 4.1.1 belongs to Bs(x,)NC and satisfies (4.6). Indeed, set & = 0, and
take 6y > 0, ng > 0, xg € C'N Bs(z,)\{z.} and V :=V,, € df(x0). Owing to ||z¢ — z.|| < 9,
we obtain that V,, is nonsingular and then yq given in (4.1) is well-defined for k& = 0. As
f(z.) =0, we have

yo — zx = Vo ([f (o) + Vao (Yo — z0)] + [f (@2) — f(z0) — Vay (z — 20)] ) -

Taking the norm on both sides of the last inequality and using the triangular inequality, we
conclude that

o = ol < (Vs | [ o) + Vaolato = wo)|| + [1£2) = Flo) = Vao (s = 20)]]]-

33



Thus, using (4.1) with £ = 0 and the assumptions (4.3) and (4.4) with * = xy, we obtain
that

[n0ll.f (o)l + €llwo — 2.[["*] .

| <T'||zp — x.||. Hence, the last inequality becomes

lyo — .|| < m

As f(z.) =0, from (4.2) we have || f(zo)

Ao, 0L + €f|zo — . [|"]
1 —e,,

o — 2| < o — .|| (4.7)

Taking any =7 € Po(yo, zo,6p) and applying Lemma 3.1.5 with y = yo, z = zo, 0 = 6y,
y = x, and T = x,, we have

o1 = @il < llgo = 2.l + /2800 llgo — woll < llyo — .1l (1 + v/260) + v/2o llzg — ..

Combining (4.7) with the last inequality, we obtain that

Ae, Mol + €l|xg — 4 ||#
oy — | < AelEE AR Z 2y (14 ) + VBB o

which is equivalent to (4.6) with £ = 0. Since § < 1, 79 <, and 6y < 6, by using (4.5), we
obtain

el et = eV (14 o) 4 vy < 2P0 (1 vag) 4 va <

Thus, because z¢ € Bs(z.), we obtain from (4.6) with k£ = 0 that ||z1 — x| < ||zo — x| < 9.
As Peo(yo, zo,6p) belongs to C' and 1 € Po (yo, xo,00), we conclude that x; belongs to
Bs(z,) N C, which completes the induction step for k& = 0. The general induction step
is completely analogous. Therefore, every sequence {z;} generated by Algorithm 4.1.1 is
contained in Bs(x,) N C and satisfies (4.6). We proceed to prove that the sequence {xj}
converges to z,. As 6 < 1,0< 6, <0,and 0 <m <nforall k=0,1,..., it follows from
(4.6) and (4.5) that

)\I* F+6
o = ol < | 205D (14 V) VI o -l < o =, (48)

for all £ = 0,1,.... This implies that the sequence {||zx — z.||} converges. Let us say that
t:=limg_, oo |2 — 24]| < 0. Thus, taking the limit in (4.8) as k goes to +00, we have

T T _
f< e[0T + ] <1+\/20> +20| 1,
1 — €,

If ¢ # 0, then (4.5) implies that ¢ < ¢, which is absurd. Hence, ¢ = 0 and {z}} converges

linearly to x,. Now, we assume that lim;_, ., 0 = 0 and limg_,, o nx = 0. Thus, for u = 0,

it follows from (4.6) that
e nl ek
im

hotoo ||z — || 1 — €,
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and, by taking into account that ¢ > 0 is any number satisfying (4.5), we conclude that
{zx} converges superlinearly to z,. For 0 < pu < 1 it follows straight from (4.6) that
{zx} converges superlinearly to x,. Finally, we assume that 7, < min{n||f(z¢)||*,n} and
0r < min{0)||f(zy)||**,0}. Considering that {x;} belongs to Bs(z.), f(z.) =0, and § < r, it
follows from (4.2) that || f(z)|| < I'||xk — 2. for all K =0, 1,.... Hence, n, < nI'*||xy — x.||*
and 0, < O0%||zy — z.||** for all k = 0,1,.... Then, (4.6) implies that

1 — e,

|z — 2] < [ (1+ 0 V28r — ) + rer] s, — |,
for all k = 0,1,.... Therefore, {x}} converges to =, with order 1+ p, and the proof of the
theorem is complete. [ |

In the following remark, we present a particular case of Theorem 4.1.3, i.e., when the
projection and Newton method are exact.

Remark 4.1.4 Note that the mapping (0,1/2) 3> 0 — (1 — v/20)/)\..T'(1 + /20) is
decreasing. Thus, from the first inequality in (4.5), we conclude that if # approaches the
upper bound 1/2, then n approaches the lower bound 0. Therefore, in Algorithm 4.1.1, the
most inexact is the projection, the least inexact has to be the Newton direction. Moreover,
it follows from (4.6) that if §, = 0 and 7, = 0 in Theorem 4.1.3, then for 0 < p < 1, the
convergence rate is 1 + p as follows

€A
[T41 — 2| < 1_—96

S e k=01,
T x

Hence, € in the second inequality in (4.5) is related to the bound for convergence rate.

Next, we state and prove our second local convergence result for a sequence generated by
the inexact Newton-InexP method. In this case, we assume that f : 2 — R" is a continuously
differentiable function.

Theorem 4.1.5 Let 2 CR"™ be an open set, C' C §2 be a closed convex set, and f : Q) — R"
be a continuously differentiable function. Suppose that x. € C and f(x,) = 0. Let T' > 0
and 0 <r <r,:=sup{t € R: By(z.) C Q} such that

[f(x) = flz)| <Tllz —al, ¥V ze B () (4.9)

Assume that f'(x,) is nonsingular and there exist 0 < u < 1, K > 0, and 0 < 6 < r such
that for all x € Bs(x.), f'(x) is nonsingular and there hold

o 1)
POl s =xpe) e —wpe 4
/ ,uK 1+p
@) = f(a) = S =D < o= (@)
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Furthermore, let 0 < 0 < 1/2, n >0, and § > 0 satisfying the following conditions

1—+/26

< , (4.12)
7)) (1 +V26)
s b [0 (1 vaR) e (1 V2T s

K [1+20— V20 || /(@)

Then, every sequence {xy} generated by Algorithm 4.1.1 starting in xg € C N Bs(z,)\{z.},
with 0 < mp <m and 0 < O < 0 for all k =0,1,..., is contained in Bs(x,) N C, satisfies

k41 — 2 <

L ) "M el (1 + 1) + pk [l — 1] —
L+ L = K[ f () o — z.]]#] <1+\/E)+ 294 lz — 2., (4.14)

for all k = 0,1,..., and converges linearly to x.. As a consequence, if limy_, o0 = 0

and limy_ 1o M = 0, then {x} converges superlinearly to x.. Furthermore, letting n, <
min{n|| f(x)||*,n} and 0, < min{0|f(zx)||**,0}, the convergence of {x1} to x. is of the
order of 1 + pu.

Proof. First, note that as f is continuously differentiable at x, we have 0f(z) = {f'(z)}. We
show by induction on k that if zo € C' N Bs(x,)\{z.}, then every sequence {x;} generated
by Algorithm 4.1.1 is contained in Bs(x,) N C and satisfies (4.14). To this end, take 6y > 0,
no > 0, zg € C N Bs(x,)\{z+}, and set k = 0. Owing to ||xg — z.|| < 0, we obtain that
f'(xg) is nonsingular. Consequently, (4.1) with £ = 0 and Vi = f'(z¢), implies that yo is
well-defined. Because f(z.) = 0, after some algebraic manipulations, we have

Yo — x = f(zo) T ([f (wo) + f'(w0) (yo — z0)] + [f (x.) — f(w0) — f'(w0)(zs — 20)] ).

Taking the norm on both sides of the last inequality and using the triangular inequality, we
conclude that

lvo — 2.1l < [17Ceo) ™| [I1£ o) + £/ (o) o — )| + | £(22) — Fzo) — Fwo)(zs — w0)] ]

Using (4.1) with £ = 0 and Vj = f'(x¢), and the assumptions (4.10) and (4.11) with x = =,
we obtain that

/ —1
o — |/ )| nﬂﬂﬂMH-MKH%—meﬂ‘ (4.15)

Tl <
S VIEN S [T T
Owing to f(x,) = 0, from (4.9) we conclude that ||f(xo)| < T'||zo — z«||. Hence, (4.15)

becomes ) .
£ () ol (1 + p) + pK||zo — .["]

(T4 w1 = K[ f ()~ llzo — 1]

lyo — @[ < [0 — .. (4.16)
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On the other hand, letting x; € Po(yo, %o, 6p), Lemma 3.1.5 with y = yo, x = xo, 6 = 6,
1 = x4, and T = x,, implies that

s = )l < llyo = @]l + v/280 llgo — woll < llyo — 2]l (1+ v/280) + +/2o llzo — .|

Thus, combining the inequality (4.16) with the last inequality, we conclude that

[y = ]| <

L/ () "Ml ol (1 + p1) + pK ||wo — @]
A i KT e e 10 =2l (14 v/200) + V2o oo — ]

which it is equivalent to (4.14) for k = 0. As 1y < n and 6y < 0, by using (4.12) and (4.13),
we have

17 il (1 + 1) + K o — ]
A+ )L = K[If (2 w0 — . ]] (1+v280) + V20 <

£ () (1 + p) + pK 6]
(14 w)[1 — K| f'(xs)7]6H] <1 + \/%> +v260 < 1.

Then, because z € Bs(z,), we obtain from (4.14) with & = 0, that ||z; — z.|| < [|z0 — 24| <
5. As Po(yo, o, 00) belongs to C' and x; € Pg (yo, To,00), we conclude that z; belongs to

Bs(z,) N C, which completes the induction step for £ = 0. The general induction step
is completely analogous. Therefore, every sequence {z;} generated by Algorithm 4.1.1 is
contained in Bgs(z.) N C and satisfies (4.14). Now, we proceed to prove that the sequence
{zy} converges to z,. As 0 < 0 <0 and 0 < n, < nforall k =0,1,..., it follows from
(4.14) that

TP BT  ) + pEf — ) o
e *”<[ 0+ Wl — KT @) e — 2] <”@>“@] s =]

for all k = 0,1,.... On the other hand, using (4.12) and (4.13) in the last inequality we
obtain that ||zx41 — .|| < ||ox — x| for all & = 0,1,.... This implies that the sequence

{|lzx — x.||} converges. Let us say that ¢ := limg_, o ||z — || < J. Thus, taking the limit
in the last inequality as k goes to 400, we obtain

_ I/ (z) " [T (1 + ) + K] .
- { (T all— KIP T (L Y2) + @} 3

If ¢ # 0, then (4.12) and (4.13) imply that ¢ < ¢, which is absurd. Hence, ¢ = 0 and
consequently {x} converge linearly to z,. Assuming that limy_, . 0x = 0 and lim_, ;o 7% =
0, it follows from (4.14) that

T [ ekl P
hboo ||ag — |
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Hence, the sequence {xp} converges superlinearly to x,. Now, we assume that 7, <
min{n|| f(x;)||*,n} and 6, < min{@||f(zx)||**,0}. Considering that {z;} belongs to Bs(z.),
f(z,) =0, and 0 < r, it follows from (4.9) that || f(xx)|| < [||zr — x| for all &k =0,1,....
Thus, np < nT¥||zx — z.||* and ), < 072 ||x), — x,||** for all k = 0,1, .... Then, (4.14) implies
that

[2x41 — 2.l <

1 () "M (1 + p) 4 pK] p u p "
bl K)o = o] (L V2 =) £ T @} o =,

for all Kk = 0,1,.... Therefore, {x;} converges to z, with order 1 + u, which complete the
proof of the theorem. [ |

In the following remark, we present a particular case of Theorem 4.1.5, where the projection
and Newton method are exact.

Remark 4.1.6 In Theorem 4.1.5, if we take 6, = 0 and 1, = 0, then for 0 < p < 1, the
convergence rate is 1 4+ u as follows

P f" ()Ml
L+ p)[L = K| f" ()~ e — 2] #]

|Zr1 — 2| < ( |zp — .||, k=0,1,....

4.2 Special cases

In this section, we present two special cases: one of Theorem 4.1.3 and one of Theorem 4.1.5.
We begin by presenting the special case of Theorem 4.1.3.

4.2.1 Under semismooth condition

In this section, we present a local convergence theorem for the inexact Newton-InexP method
for solving constrained semismooth equations. The semismoothness plays an important role,
since the Newton method is still applicable and converges locally with superlinear rate to a
regular solution. Let us first to present the concept of regularity.

Definition 4.2.1 Let Q2 C R"™ be an open set. A function f : Q — R"™ locally Lipschitz
continuous is said to be reqular at x. € Q if every V., € 0f(x.) is nonsingular. If f is
reqular at all points of 2, the function f is said to be reqular on 2.

In the following, our first task is to prove that locally Lipschitz continuous functions satisfy
the inequality (4.3) near a regular point for every 0 < € < 1/A,.. First, we remind that 0 f(x)
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is a nonempty and compact set for all x € €, see [18, Proposition 2.6.2, p. 70]. The statement
of the result is as follows.

Lemma 4.2.2 Let 0 C R" be an open set and f : Q@ — R"™ be a locally Lipschitz
continuous function. If f is reqular at x, € €, then for every 0 < e < 1/\,,, where
Ap, > max{||V, Y| : Vi, € 0f(x.)}, there exists § > 0 such that f is regular on Bs(x,) and
there holds )

Vo <
1V, ||_1_

S V z € Bs(zy), VV,e€of(x). (4.17)

Proof. As f is regular at z, € Q and 0f(x,) is a nonempty and compact set, A\, > 0 is
well-defined. On the other hand, it follows from [18, Proposition 2.6.2, p. 70] that df is
upper semicontinuous at x,. Thus, for every € > 0 there exists § > 0 such that

Of (@) C {V, e R™™: ||V, — V.| < € for some V,, € Of (z.)}, V x € Bs(xy).

Hence, for each V, € 0f(x) and 0 < € < 1/A,,, there exists V,., € df(z,) that is nonsingular
such that ||V, 1||[|[Ve — Vi,
5A.4, p. 282], we conclude that V, is nonsingular and
~1

L=V Ve = Ve,

I x

Therefore, considering that ||V, || < A,, the inequality (4.17) follows, and the proof of the
lemma is complete. L

< €\, < 1. Thus, applying the Banach lemma, see [31, Lemma

Ve

In the following, we present a class of functions satisfying the inequality (4.4), namely the
semismooth functions. There are several equivalent definitions for semismooth functions,
here we use that given in [31, p. 411]. For an extensive study on semismooth functions, see,
for example, [34].

Definition 4.2.3 Let Q C R"™ be an open set. A function f : Q — R™ that is locally Lipschitz
continuous on ) and directionally differentiable in every direction is said to be semismooth
at x, € ) when for every € > 0 there exists & > 0 such that

[ () = f(2) = Valww —2)| < elle —afl, Ve Bs(r), VV,edf(r),

and is said to be p-order semismooth at x, € Q, for 0 < u < 1 when there exist ¢ > 0 and
0 > 0 such that

1f (@) = f(2) = Volow —2)[| S el =z, V@€ Bs(a.), VVie€df(a)

Next, we state and prove the local convergence result of the inexact Newton-InexP method
for solving constrained semismooth equations, which is a consequence of Lemma 4.2.2 and
Theorem 4.1.3.
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Theorem 4.2.4 Let 2 CR"™ be an open set, C' C §2 be a closed convex set, and [ : ) — R"
be semismooth and reqular at x, € Q. LetI' > 0 and0 <r <r,:=sup{t € R: By(z.) C Q}
such that

If(x) = flz) <Tllz —al, ¥V ze B ()

Take 8 > 0 and n > 0 such that

9<§, n < 1-v2f .
AT (14 v20)

Assume that x, € C and f(x,) = 0. Then, there exists 0 < § < r such that every sequence
{zk} generated by Algorithm 4.1.1 starting in xy € C' N Bs(x,)\{z.}, with 0 < 6, < 0 and
0 < me <n foralk =0,1,..., belongs to Bs(x,) N C and converges linearly to x,. If
limy 100 O = 0 and limg_, oo . = 0, then {x} converges superlinearly to x.. In addition, if
[ is p-order semismooth at x., ny < min{n||f(zx)||*,n}, and O, < min{0||f(zx)||**,0}, then
the convergence of {xy} to x,. is of the order of 1+ p.

Proof. Because the function f is semismooth and regular at z, € (), we can take
A, > max{||V, Y| : Vi € 9f(x.)}. Take 0 < € < 1/X,,. Then, from Lemma 4.2.2
and Definition 4.2.3, there exists 0 < ¢ < min{r, 1} satisfying the inequalities (4.3) and (4.4)
for p = 0. In addition, if f is p-order semismooth, we conclude also from Lemma 4.2.2 and
Definition 4.2.3 that there exists 0 < 0 < min{r, 1} satisfying the inequalities (4.3) and (4.4)
for 0 < p < 1. Therefore, f satisfies all conditions of Theorem 4.1.3 and by reducing ¢ > 0
so that it satisfies the second inequality in (4.5) the desired result follows. [

In the following remark, we show that with some adjustments Theorem 4.2.4 reduces to
some well-known results.

Remark 4.2.5 It is worth mentioning that if C' = R"™ and 6, = 0 for all £ =0,1,..., then
with some adjustments Theorem 4.2.4 reduces to [67, Theorem 3]; see also [34, Theorem 7.5.5,
p. 694]. If C = R", n, = 6, = 0 for all k = 0,1, ..., then Theorem 4.2.4 reduces to [76,
Theorem 3.2], see also [34, Theorem 7.5.3, p. 693]. Finally, if C' = R"™, f is a continuously
differentiable function, f’(x,) is nonsingular, and 6, = 1, = 0 for all £ = 0,1, ..., then the
theorem above reduces to the first part of [12, Proposition 1.4.1, p. 90].

4.2.2 Under radial Holder condition on the derivative

In this section, we present a local convergence theorem for the inexact Newton-InexP method
under the radial Holder condition on the derivative. We begin by presenting the definition
of the radial Holder condition.
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Definition 4.2.6 Let Q2 C R"™ be an open set and f : Q — R™ be a continuously differentiable
function. The derivative [’ satisfies the radial Hélder condition at x, € Q if there exist K > 0
and 0 < p < 1 such that

1/ (z) = f'(@s + 7(x — )| < K1 = 7")[le — a.|*,
for all x € Q and 7 € [0,1] such that z. + 7(z — z.) € Q.

Our first task is to prove that continuously differentiable functions with radially Holder
derivative satisfies the inequality (4.10) around regular points.

Lemma 4.2.7 Let Q C R"™ be an open set and f : 2 — R™ be a continuously differentiable
function. Assume that f' is nonsingular and radially Holder at x, € 2, with constants K > 0

and 0 < p < 1. Take

. 1
0<r< K@ 7 (4.18)

Then, f'(x) is nonsingular for all x € Bi(z.), and there holds

- Lf" () Ml

fll@)™H| < - . Ve Bi(z,).
R e TRCARIIE=rAT

Proof. Using that f’ is nonsingular and radially Holder at x, € €2, with constants K > 0

and 0 < u < 1, and taking into account (4.18), we have

L/ () TH L (@) = f (@)l < KN f ()7l — 2] < K| f ()7l < 1,
for all x € Bi(x,). Therefore, the desired result follows by applying the Banach lemma,
see [31, Lemma 5A.4, p. 282]. [

The next lemma establishes that continuously differentiable functions with radially Holder
derivative satisfy (4.11); its proof follows the same idea as [12, Proposition 1.4.1, p. 90] and
will be included here for the sake of completeness.

Lemma 4.2.8 Let Q C R" be an open set, x, € Q, r, := sup{t € R: By(x,) C Q} and
f Q= R" be a continuously differentiable function. Assume that f' is radially Hélder at
Ty, with constants K >0 and 0 <y < 1. Then it holds that

K
|z — 2. "1, Vz e B, (x,).

1 () = f(2) = fi@) (2 = 2)]| < 5 g

Proof. Note that || f(z.) — f(z) — f/(x) (@, — 2)]| = | /() — () — F/(@)(x — 2.)]. Because
o +7(x —24) € B, (), for all 7 € [0,1], the fundamental theorem of calculus implies that

If(2) = fz.) = f(@) (@ — 2l < /O 1/ (@ + 7(z = 2.)) = (@) ||z = z.]|dT.
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Owing to f’ be radially Holder at x, € Q with constants K > 0 and 0 < u < 1, we have

@)= S = Pl =2l < [ K( =)=

Therefore, performing the integration the desired result follows. [

Now, we are ready to present a local convergence theorem on the inexact Newton-InexP
method for a continuously differentiable function f such that the derivative f’ is radially
Holder. The statement of the result is as follows.

Theorem 4.2.9 Let 2 CR"™ be an open set, C' C 2 be a closed convex set, and f : QQ — R"
be a continuously differentiable function such that f' is nonsingular and radially Holder
at x, € €, with constants K > 0 and 0 < p < 1. Let ' > 0 and 0 < r < r, =
sup{t € R: By(z.) C Q} such that

() = fle)ll < Tllz —adl, V2 e Bz

Let 8 > 0 and n > 0 such that

1—v/20
n < .
il /()| (1 + v20)
Assume that x, € C and f(x,) = 0. Then, there exists 0 < § < r such that every sequence

{z1} generated by Algorithm 4.1.1 starting in xo € C' N Bs(x,)\{z.}, with 0 < 0, < 0 and
0<m <mn foralk =0,1,..., belongs to Bs(x,) N C and converges linearly to x.. As a

1
0<—,

consequence, if limy_, 1o O = 0 and limy_, 1o M = 0, then {xy} converges superlinearly to x..
In addition, if mi, < min{n||f(zr)||*,n} and 0, < min{0| f(xx)||**,0}, then the convergence
of {xx} to x, is of the order of 1 + p.

Proof. Let 0 < 7 < 1/[(K||f"(z)"|)*/#] and 0 < § < min{#,r}. Then, from Lemmas 4.2.7
and 4.2.8, we conclude that f satisfies the conditions (4.10) and (4.11) in By(z.). Therefore,
f satisfies all conditions of Theorem 4.1.5 and by taking § > 0 satisfying (4.13) the desired
result follows. |

In the following remark, we show that with some adjustments, Theorem 4.2.9 has as
particular instances some well-known results.

Remark 4.2.10 It is worth mentioning that if C' =R and n, =0, =0 forall K =0,1,.. .,
then Theorem 4.2.9 reduces to the second part of [12, Proposition 1.4.1, p. 90]. If the
procedure to obtain the feasible inexact projection is the CondG procedure and 7, = 0 for
all k =0,1,..., then Theorem 4.2.9 reduces to [50, Theorem 7]. Finally, if the procedure to
obtain the feasible inexact projection is the CondG procedure, then with some adjustments
Theorem 4.2.9 reduces to [49, Corollary 2].
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4.3 Numerical experiments

In this section, we report some numerical experiments that show the computational feasibility
of the inexact Newton-ExP method and inexact Newton-InexP method on one class of
problems, which we call the CAVEs. It is worth mentioning that works dealing with the
Newton method to solve absolute value equation (AVE) include [11,65]. The CAVE is
described as

find x € C such that Az — |z| =0,

where C = {z e R" : Y " x; <d,x; > —-1,i=12,...,n}), A e R b e R" =
R"™! d € R, and |z| denotes the vectors whose i-th component is equal to |z;]. In our
implementation, the CAVEs have been generated randomly. We used the Matlab routine
sprand to construct matrix A. In particular, this routine generates a sparse matrix with
predefined dimension, density, and singular values. Initially, we defined the dimension n and
randomly generated the vector of singular values from a uniform distribution on (0, 1). To
ensure that [|[A™!| < 1/3, i.e., so that the assumptions of [11, Theorem 2] are fulfilled, we
rescale the vector of singular values by multiplying it by 3 divided by the minimum singular
value multiplied by a random number in the interval (0,1). To generate the vector b and
the constant d, we chose a random solution z, from a uniform distribution on (0.1,300) and
computed b = Az, — |z,| and d = )" (x,);, where (x,); denotes the i-th component of the
vector x,. In both methods, xy = (d/2n,d/2n, ... d/2n) was defined as the starting point,
the initialization data 6 was taken equal to 107! and 10~® for the methods with inexact and
exact projection, respectively, and 7 was taken equal to 0.9999[(1 — v/26)/0.5I'(1 4+ v/26)]
with I' = || A||4+1. We stopped the execution of Algorithm 4.1.1 at xj, declaring convergence
if
| Azy, — || — ]| < 107°.

In case this stopping criterion was not respected, the method stopped when a maximum
of 50 iterations had been performed. The procedure to obtain feasible projections used in
our implementation was the CondG Procedure; see, for example, [61]. In particular, this
procedure stopped when either the stopping criterion, i.e., the condition (yx — Tgi1,2 —
Tir1) < Okllyx — x1||* was satisfied for all z € C and k = 0,1,... or a maximum of 100
iterations was performed. For this class of problems, an element of the Clarke generalized
Jacobian (see [11,65]) is given by

V = A — diag(sgn(z)), r € R",

where diag(a;) denotes a diagonal matrix with diagonal elements oy, as, ..., a, and sgn(x)
denotes a vector with components equal to —1, 0 or 1 depending on whether the
corresponding component of the vector x is negative, zero or positive.
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The inexact Newton-ExP and inexact Newton-InexP methods requires the linear system
f(zx) + Vi(yx — 2x) = 0 to be solved approximately, in the sense of (4.1). Matlab has
several iterative methods for solving linear equations. For our class of problems, the routine
Isqr was the most efficient; thus, in all tests, we used [sqr as an iterative method to solve
linear equations approximately. In particular, this routine is an algorithm for sparse linear
equations and sparse least squares; for further details, see, for example, [74]. We compare
the efficiency and robustness of the methods using the performance profiles graphics, see
[27]. The efficiency is related to the percentage of problems for which the method was the
fastest, whereas robustness is related to the percentage of problems for which the method
found a solution. In a performance profile, efficiency and robustness can be accessed on
the extreme left (at 1 in domain) and right of the graphic, respectively. The numerical
results were obtained using Matlab version R2016a on a 2.5GHz Intel® Core™ i5 2450M
computer with 6GB of RAM and Windows 7 ultimate system and are freely available from
https://orizon.mat.ufg.br/admin/pages/11432-codes.

Figure 4.1 reports a comparison, using performance profiles, between the inexact
Newton-ExP and inexact Newton-InexP methods for solving CAVEs of dimensions 1000,
5000, 8000, and 10000. We generated 200 CAVEs with dimensions 1000 and 5000, and 100
CAVEs with dimensions 8000 and 10000. The density of the matrix A was taken equal
to 0.003, as well as in [11]. This means that only about 0.3% of the elements of A are
nonnull. To obtain the CPU time more accurately, we run each test problem 10 times and
we define the corresponding CPU time as the median of these measurements. Analyzing
Figure 4.1, we see that the inexact Newton-InexP method is more efficient than the inexact
Newton-ExP method on the set of test problems. In particular, the efficiencies of the inexact
Newton method with the exact and inexact projections are, respectively, 30.5% and 69.5%
for problems of dimension 1000, 31.0% and 69.0% for problems of dimension 5000, 41.0%
and 59.0% for problems of dimension 8000, and 30.0% and 70.0% for problems of dimension
10000. Thus, we can conclude that for this class of test problem the parameter # and
consequently 7 given in (4.5) limit the effectiveness of the method.
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Figure 4.1: Performance profile comparing the inexact Newton-ExP method versus inexact
Newton-InexP method for CAVEs using CPU time as performance measurement.

Table 4.1 lists, for each method, the percentage of problems solved “%”, the average
numbers of iterations “Iter”, and the average times in seconds “Time”. As can be seen, the
robustness is 100.0% for both methods. The average numbers of iterations is approximately 7
and 6 for the exact and inexact versions, respectively. Moreover, with respect to the average
time, it is possible to observe a certain trend, that is, as the dimension of the problem
increases, the performance of the inexact Newton-InexP method becomes better compared
with the inexact Newton-ExP method.
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Inexact Newton-ExP method

Inexact Newton-InexP method

Dimension % Iter Time % Iter Time
1000 100.0 6.61 0.58 100.0 5.50 0.56

5000 100.0 6.70 11.67 100.0 5.67 11.48
8000 100.0 6.90 30.76 100.0 5.81 30.42
10000 100.0 6.88 46.66 100.0 5.77 45.27

Table 4.1: Performance of the inexact Newton-ExP method versus the inexact Newton-InexP

method

The results discussed above allow us to conclude that the use of the inexact projection

can make the inexact Newton method more efficient for solving some constrained problems.

Thus, we can say that the inexact Newton-InexP method may be a robust and efficient tool

for solving other classes of nonsmooth functions subject to a set of constraints.

46



Chapter 5

Nonsmooth Newton method for
finding a singularity of a special class
of vector fields on Riemannian
manifolds

In this chapter, we extend some results of nonsmooth analysis from the Euclidean context
to the Riemannian setting. In particular, we discuss the concept and some properties
of a locally Lipschitz continuous vector field defined on a Riemannian manifold, such as
Clarke generalized covariant derivative, upper semicontinuity of this covariant derivative
and Rademacher theorem. We also present a version of the nonsmooth Newton method for
finding a singularity of a special class of locally Lipschitz continuous vector fields. Under mild
conditions, we establish the well-definedness and local convergence of a sequence generated by
this method in a neighborhood of a singularity. In particular, a local convergence theorem for
semismooth vector fields is presented. Under Kantorovich-type assumptions the convergence
of the sequence generated by the nonsmooth Newton method to a solution is established,
and its uniqueness in a suitable neighborhood of the starting point is verified. Furthermore,
a class of examples of locally Lipschitz continuous vector field satisfying the assumptions of
the convergence theorems is presented.

5.1 Nonsmooth analysis in Riemannian manifolds

The goal of this section is to extend some basic results of nonsmooth analysis from linear
context to Riemannian setting. In particular, we study the basic properties of the locally
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Lipschitz continuous vector fields in Riemannian setting, a generalization of Rademacher
theorem and introduce the concept of Clarke generalized covariant derivative to this new
context. A comprehensive study of nonsmooth analysis in a linear context can be found
in [18]. We begin with the definition of a locally Lipschitz continuous vector field. This
concept was introduced in [19] for gradient vector fields and its extension to general vector
fields can be found in [15, p. 241].

Definition 5.1.1 A wvector field X on M 1is said to be Lipschitz continuous on Q0 C M, if
there exists a constant L > 0 such that for p,q € M and all vy geodesic segment joining p to
q, there holds

1Py paX(p) = X (| < LL(v),  VpgeQ

Given p € M, if there exists 6 > 0 such that X is Lipschitz continuous on Bs(p), then X is
said to be Lipschitz continuous at p. Moreover, if for allp € M, X is Lipschitz continuous
at p, then X is said to be locally Lipschitz continuous on M.

Let d;,, be the Riemannian distance on tangent bundle T'"M. Let us define the concept
of Lipschitz continuity of a vector field defined on a Riemannian manifold as a mapping
between the metric spaces (M, d) and (T'M,d,,). The formal definition is as follows.

Definition 5.1.2 A wvector field X on M is said to be metrically Lipschitz continuous on
Q) C M, if there exists a constant L > 0 such that

drn(X(p), X(q)) < Ld(p,q), Vp,q €l

Given p € M, if there exists § > 0 such that X is metrically Lipschitz continuous on Bs(p),
then X is said to be metrically Lipschitz continuous at p. Moreover, if for all p € M, X 1is
metrically Lipschitz continuous at p, then X 1is said to be locally metric Lipschitz continuous
on M.

It is an immediate consequence from the last definition that all metrically Lipschitz
continuous vector fields are continuous. In the following result, we present a relationship
between the Definitions 5.1.1 and 5.1.2.

Theorem 5.1.3 If X is Lipschitz continuous with constant L > 0, then X is also metrically
Lipschitz continuous with constant /1 + L?. As a consequence, if X is locally Lipschitz
continuous on M, then X 1is also locally metric Lipschitz continuous on M.

Proof. Because M is a complete manifold, 7.X(p) = p and 7X(q) = ¢, it follows from
definition (2.3) that

dri (X (p), X(q)) < \/dQ(z% Q)+ 1Py peX(p) = X(@I?  VpgeM, (5.1)
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where v is the minimal geodesic segment joining p to ¢. Considering that X is a
Lipschitz continuous vector field with constant L > 0 from Definition 5.1.1, we have
1Py pgX(p) — X ()|l < Ld(p,q) for all p,q € M. Hence, inequality (5.1) becomes

drn(X(p), X(q)) < V1+ L2 d(p,q),

for all p,q € M. Consequently, by using Definition 5.1.2, we conclude that X is metrically
Lipschitz continuous with constant /1 + L?. Therefore, the proof of the first part is
concluded. The proof of the second part is similar. |

In the next definition, we present the notion of sets of measure zero to manifolds, which
has appeared in [63,78].

Definition 5.1.4 A subset E C M has measure zero in M if for every smooth chart (U, ¢)
for M, the subset o(ENU) CR"™ has n-dimensional measure zero.

Let X be a locally Lipschitz continuous vector field on M. Throughout this chapter, Dx
is the set defined by
Dx :={p € M : X is differentiable at p}.

Locally Lipschitz continuous vector fields are in general non-differentiable, however, they are
almost everywhere differentiable with respect to the Riemannian measure (see the concept of
Riemannian measure in [78, p. 61]), i.e., the set M\Dx has measure zero. This result follows
from Rademacher theorem, which is one of our contributions. A version of this theorem for
locally Lipschitz continuous vector fields is given below.

Theorem 5.1.5 If X is a locally Lipschitz continuous vector field on M, then X is almost
everywhere differentiable on M.

Proof. As M is a n-dimensional smooth manifold then the tangent bundle T'M is
2n-dimensional smooth manifold. First note that Theorem 5.1.3 implies that X is a
continuous vector field. Let (U, ¢) and (W, 1)) be smooth charts for M and T'M, respectively,
such that X (U) C W and consider the composite mapping 1 o X o o~ ! : o(U) — (W).
We proceed to prove that the mapping 1 o X o ¢! is locally Lipschitz continuous on
©(U). According to [84, Proposition 6.10, p. 63], we obtain that the coordinate mappings
o' @U) - U and ¢ : W — (W) are diffeomorphisms and, in particular, continuously
differentiable. Take z € ¢(U) and p > 0 such that B,[z] C ¢(U). Since B,[z] is a compact
set and the derivative of ¢! is a continuous mapping in B,[z], from Mean Value Inequality

(see [5, Theorem 2.14]) there exists L; > 0 such that

A~ (z), 0 (y) < Lid(z,y), Y a,y€ B,z
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where d is the Euclidean distance in R”. On the other hand, Theorem 5.1.3 implies that X is
a locally metric Lipschitz continuous vector field on ¢(U), then shrinking p > 0 if necessary,
we conclude that there exists Ly > 0 such that

drar (X 007 (2), X 07 () < Lod (¢ ' (2), 07 (y)), VY a,y€ B,z

Because X (p1(B,[z])) is a compact set and the derivative of ¢ is a continuous mapping in
X (o7 (B,[z])) again using Mean Value Inequality there exists Ly > 0 such that

d( o X o (2),90 X 0p™!(y)) < Lydru(X 07! (2), X 007! (y)),  Vaz,y€ B[],

where d is the Euclidean distance in R, Combining the three last inequalities, we obtain
that

dpoXop ™ (z),oXop(y) < Ldlx,y), VYaye€Bll,

where L = LiLyL3 > 0. Hence, the mapping 1) o X o ¢! is locally Lipschitz continuous on
o(U) € R". Therefore, from Rademacher theorem, see [32, Theorem 2, p. 81], we obtain
that 1 o X o ! is almost everywhere differentiable on ¢(U). Since the charts (U, ) and
(W, 1)) are arbitrary, we conclude that X is almost everywhere differentiable on M. [ |

Based on the definition presented in [48], we introduce the concept of Clarke generalized
covariant derivative of a locally Lipschitz continuous vector field and explore some of its
properties. For a comprehensive study about Clarke generalized Jacobian in linear space,
see, for example, [18].

Definition 5.1.6 The Clarke generalized covariant derwative of a locally Lipschitz
continuous vector field X is a set-valued mapping 0X : M = T M defined as

0X(p) :=co {H € L(T,M): 3{pr} C Dx, lim py=p, H= lim PpkaX(pk)},
k—4o00 k—+o00

where “co” represents the convexr hull and L(T,M) denotes the vector space consisting of all
linear operator from T,M to T, M.

From Definition 5.1.6 and [35, Corollary 3.1], it is clear that if X is differentiable near p,
and its covariant derivative is continuous at p, then 0X(p) = {VX(p)}. In the following
proposition, we show important results of the Clarke generalized covariant derivative. In
particular, that 0.X (p) is a nonempty subset for all p € M, and that the set-valued mapping
0X is locally bounded and closed, which is a generalization of [18, Proposition 2.6.2, items
(a), (b) and (c), p. 70]. These results will be very useful throughout this chapter. Similar
results have already been extended to functions defined on a Riemannian manifold, see [54,
Theorem 2.9].
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Proposition 5.1.7 Let X be locally Lipschitz continuous vector field on M. The following
statements are valid for any p € M:

(1) 0X(p) is a nonempty, conver and compact subset of L(T,M);

(i) the set-valued mapping 0X : M = TM is locally bounded, i.e., for all § > O there
exists a L > 0 such that for all ¢ € Bs(p) and V € 0X(q), there holds ||V || < L;

(iii) the mapping 0X is upper semicontinuous at p, i.e., for every scalar € > 0 there exists
a0 <0 <ry, and such that for all ¢ € Bs(p),

Fyp0X(q) C 0X(p) + B.(0),

where B.(0) := {V € L(T,M) : ||[V|| < €}. Consequently, the set-valued mapping
0X is closed at p, i.e., if img,ioopr = p, Vi € 0X(px) for all k = 0,1,..., and
limk_>+oo Ppkak = V, then V € 8X(p)

Proof. To prove item (i), we define the following auxiliary set
OpX(p) == {H € L(T,M): 3{px} C Dx, lim pp=p, H= lim PpkaX(pk)} :
k——+o0 k——+o0

As T,M is a finite dimensional space and 0X (p) is the convex hull in £(T,M) of the set
JpX(p), then 0X(p) must be convex. Our next goal is to prove that 0X(p) is compact.
Owing to the convex hull of a compact set be compact, it is sufficient to prove that dp X (p)
is bounded and closed. Our first task is to prove that dg X (p) is bounded. For this end, take
p € Dx and v € T,M. Because VX (p)v = VX (p,v) using definition (2.4), the fact that
X is a locally Lipschitz continuous vector field on M, and the definition of the exponential
mapping, we obtain that

VX (p)ell = lim

—0t

1
£ [PeasonX e, (000 = X0 | < 2l

where L > 0 is the Lipschitz constant of X around p. Hence, from Definition 2.2.8 we
conclude that ||[VX(p)|| < L, which implies that 0 X (p) is a bounded set. To prove that
OpX(p) is closed, let {H,} be a sequence in dpX (p) such that lim,, ., H, = H. Because
{H,;} C 0pX(p) there exists a sequence {pg ¢} such that

Jm pee=p and  lim B, ,VX(pre) = Hy,

for each fixed . Therefore, limy_ o prx = p and limy, oo P, ,, VX (Pri) = H, and then
H € 0pX(p). Consequently, 0pX (p) is a compact set. To prove that X (p) is a nonempty
set, first note that Theorem 5.1.5 implies that X is almost everywhere differentiable on M,
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i.e., the set M\ Dy has measure zero. According to [63, Proposition 6.8, p. 128], Dy is dense
in M. Then, for any fixed point p € M there exists a sequence {p;} C Dx that converges
to p. Since VX is bounded in norm by the Lipschitz constant and the parallel transport
is an isometry, the sequence {P,, ,VX(pi)} must have at least one accumulation point, and
thus 0X (p) is indeed a nonempty set. To prove item (i7), take 6 > 0, p € M and L > 0 the
Lipschitz constant of X around p. The same argument used to prove item (i) shows that
IVX(q)| < L for all ¢ € Bs(p) N Dx. Let ¢ € Bs(p) and V € 0X(q). Then, there exist
Hy,...,H, € 0pX(q) and o, ..., € [0,1] such that V' =3"" ayH, and ), oy = 1.
As Hy, ..., H,, € 05X (q) there exists a sequence {qx,} C Bs(p) N Dx with limy_ 00 qre = ¢
such that

V= ; ap lim Py, VX (qre):

Owing to {qx¢} C Bs(p) N Dx we have ||[VX(qxe)|| < L. Therefore, using that the parallel
transport is an isometry, the properties of the norm and that »,”, oy = 1, we conclude of
the last equality that

VI =

Z&g hm qu VX Qi)
f_

SZ g hm ‘ququX qu H<L
=1

which is the desired inequality. To prove item (iii), suppose by contradiction that for a given
e >0 and all 0 < § < r, there exists ¢ € Bs(p) such that

Pp0X(q) ¢ 0X(p) + B(0).

Hence, there exists a sequence {q,} C Dx such that limy_, g, = p and P, ,VX(q;) ¢
0X (p) + B:(0). On the other hand, item (éi) implies that 0.X is a locally bounded set-valued
mapping. As the parallel transport is an isometry we have {F,,,VX(qr)} is a bounded
sequence. Thus, we can extract {F, ,VX(qx,)} a convergent subsequence of {F,,, VX (qx)},
let us say that {F, ,VX(qx,)} converges to some H. From Definition 5.1.6 we obtain that
H € 0X(p), which is a contradiction. Therefore, 90X is a upper semicontinuous mapping at
p. The last part of item (ii7) it is an immediate consequence of the first part, and the proof
of the proposition is complete. [ |

5.2 Nonsmooth Newton method

In this section, we present the nonsmooth Newton method for finding a singularity of locally
Lipschitz continuous vector fields X defined on a Riemannian manifold M, i.e., for solving
the problem (1.6). We study the local and semi-local properties of a sequence generated by
the method. The nonsmooth Newton algorithm for solving the problem (1.6), with py € M
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as the input data, is formally described as follows.

Algorithm 5.2.1 Nonsmooth Newton method

Step 0. Let py € M be given, and set k = 0.
Step 1. If X(px) =0, stop.

Step 2. Choose a Vi, € 0X(py) and compute
pr+1 = exp,, (=V, ' X (pr))- (5.2)

Step 3. Set k < k+ 1, and go to Step 1.

This method is a natural extension to the Riemannian setting of the Newton method
introduced in [76]. Note that to guarantee the well-definedness of the method, there are
two issues which deserve attention in each iteration k. The Clarke generalized covariant
derivative 0X (px) must be a nonempty subset, which has already been proven in item (¢)
of Proposition 5.1.7, and all V; € 90X (px) must be nonsingular. In the following section,
we study the well-definedness and convergence of a sequence generated by the nonsmooth
Newton method.

5.3 Local convergence analysis

In this section, we present the local convergence analysis of Algorithm 5.2.1. To this end,
we assume that p, € M is a solution of problem (1.6). First, we show that under some
assumptions, the sequence generated by this algorithm starting from a suitable neighborhood
of p. is well-defined and converges to p, with rate of the order of 1 + u. We begin by
introducing the concept of regularity.

Definition 5.3.1 We say that a vector field X on M is reqular at p € M if all V,, € 0X (p)
are nonsingular. If X is reqular at every point of 0 C M, we say that X is reqular on ().

In the following, we study the behavior of a sequence generated by the nonsmooth Newton
method for a special class of vector field in a neighborhood of a regular point. For this
purpose, we assume that X s a locally Lipschitz continuous vector field on M. Consider the
following condition:
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Al. Let p€ M, 0 < < rp, X be regular on Bs(p), Ay > max{||V; || : V; € 0X(p)} and
e > 0 satisfying e\; < 1. Moreover, for all p,q € Bs(p) and V,, € 0X (p) there hold
)\ﬁ
- 1- 6)\157
|X(q) = Po [X(p) + Vyexp, ' q]|| < ed(p.@)'™,  0<p<l.  (54)

IV, (5.3)

Let 0 < § < r; be given by above assumption and Nx: Bs(p) == M be the Newton
iteration mapping for the vector field X defined by

Nx(p) = {exp,(=V, ' X(p)) : V, € 0X(p)}.

The above assumption guarantee, in particular, that X is regular in a neighborhood of p
and, consequently, the Newton iteration mapping is well-defined. Therefore, one can apply
a single Newton iteration on any p € Bs(p) to obtain Nx(p), which may be not included in
Bs(p). Thus, this is enough to guarantee the well-definedness of only one iteration. In the
following result, we establish that the Newtonian iterations may be repeated indefinitely in
a suitable neighborhood of p.

Lemma 5.3.2 Suppose that p, € M is a solution of problem (1.6), X satisfies A1 and the
constants € > 0, 0 < 6 <1y, and 0 < u <1 satisfy e\, (1 + 0"K,,) < 1. Then, there exists
6 > 0 such that X is reqular on B;(p.) and

A K
d (exp,(=V, ' X (D)), ps) < ;_”*Tp*d(p,p*)”", Vp€Bsp.), VV,€0X(p). (5.5)
Dx

Consequently, Nx is well-defined on By(p.) and Nx(p) C B;(p.) for all p € B;(p.).

Proof. Assume without loss of generality that X satisfies A1 with p = p, and ¢ = p,.
Consider the constants e > 0,0 < § <r,, and 0 < p < 1. Since X(p,) = 0 and the parallel
transport is an isometry, we conclude that

|V, X (p) + exp, " ps

<[V, HIX @) = Pop. [X(2) + Vi exp, " ]

€A
< P g . 1+
S T”en (p,ps) ™,

(5.6)

for all p € Bs(p,) and V, € dX(p). Hence, (5.6) implies that there exists 0 < 0 < & such
that ||V, 7' X (p) +exp, ! p.|| < rp, for all p € Bs(p.) and V, € X (p). Thus, considering that
| exp, ! p.|| = d(p, p«) < 1p,, We can use Definition 2.2.6 with p = p., ¢ = p, u = =V, " X(p)
and v = exp, ' p, to obtain that

d (exp,(=V, ' X (p)), p.) < K,

—V, ' X(p) — exp, ' p.

Y
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for all p € By(ps) and V, € 0X(p). Therefore, the combination of the last inequality with
(5.6) yields (5.5). Owing to 0 < & < & and X be regular on Bj(p,), we conclude that Ny is
well-defined on Bj(p,). Moreover, since e\, (1 + 0K, ) < 1 and 0 < 6 < &, we have from
(5.5) that d (expp(—‘/;o_lX(p)),p*) < d(p,p) for all p € By(p.) and V, € X (p). Thus, we
obtain that Nx(p) C Bj(p.) for all p € B;s(p.), and the proof of the lemma is complete. W

Now, we are ready to establish the main result of this section, its proof is a straight
application of Lemma 5.3.2.

Theorem 5.3.3 Suppose that p. € M is a solution of problem (1.6), X satisfies A1 and
the constants € > 0, 0 < 0 <1, and 0 < p < 1 satisfy e\, (1 + " K,,) < 1. Then, there
exists 0 < 0 < & such that for each py € Bs(p.)\{ps} the sequence {py} in Algorithm 5.2.1
is well-defined, belongs to B;(p,) and converges to p, with order 1+ i as follows

€Ny, K
d(pk-‘rhp*) < Md(pkap*)l+u7 k= Oala"" (57)
1 — €A,
Proof. 'The definition of the Newton iteration mapping Nx implies that the sequence
generated by Algorithm 5.2.1 is equivalently stated as

Pk+1 ENx(pk), k=0,1,.... (58)

Hence, by using (5.8), we can apply Lemma 5.3.2 to conclude that there exists 0 < §<9
such that if py € Bs(p.)\{p«}, then the sequence {p;} in Algorithm 5.2.1 is well-defined,
belongs to Bj;(p.) and satisfies the inequality (5.7). Because {p;} belongs to B;(p.) and
€A, (1 4+ 0*K,,) < 1, we obtain from (5.7) that

ey, MK
d(pk:-i-lap*) < Md(pk’vp*) < d(pk:ap*)a ]{':O,l,
1 =€,
Therefore, we conclude that {py} converges to p, with order 1+ p as (5.7). |

Remark 5.3.4 Note that if 4 = 0 in Theorem 5.3.3, then the inequality (5.7) holds for
any € > 0 satisfying e\, (1 + K,,) < 1, independently of the scalar 6 > 0. Therefore, (5.7)
implies that the sequence {p;} converges superlinearly to p..

5.3.1 Local convergence for semismooth vector fields

In this section, we present a local convergence theorem for the nonsmooth Newton method for
finding a singularity of semismooth vector fields. Semismoothness in Euclidean setting was
originally introduced by Mifflin [68] for scalar-valued functions and subsequently extended by
Qi and Sun [76] for vector-valued functions. The extension of the concept of semismoothness
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to the Riemannian settings is presented in this section. As occur in the Euclidean context,
semismooth vector fields are in general nonsmooth. However, as we shall show, the Newton
method is still applicable and converges locally with superlinear rate to a regular solution.
Before, we state formally the concept of semismoothness in the Riemannian setting, let us
first show that locally Lipschitz continuous vector fields are regular near regular points. The
statement of the result is as follows.

Lemma 5.3.5 Let X be a locally Lipschitz continuous vector field on M. Assume that X
is reqular at p, € M and let Ay, > max{||V,-'|| : V,. € 0X(p.)}. Then, for every ¢ > 0
satisfying eX,, < 1 there exists 0 < § < rp, such that X is reqular on Bs(p.) and

. .
V<=5 ¥pEBsp), VYV, €0X(p). (5.9)

Y
EXp.,

Proof. Let € > 0 such that e)\,, < 1. Because X is a locally Lipschitz continuous vector
field, it follows from item (7ii) of Proposition 5.1.7 that there exists a 0 < § < r,, such that
P, 0X(p) COX(ps) +{V € L(T,. M) : ||V| < e} for all p € Bs(p.), i.e.,

X (p) C{V € LIT,M) - [|Pp.V = V.

< € for some V,,. € 0X(p.)}, V p € Bs(ps).

This inclusion implies that for each p € Bs(p.) and V,, € 0X (p), there exists V,, € 0X (ps)

N Pop. Vo — Vi || < €Xp. < 1. Thus, taking into account that the

parallel transport is an isometry, it follows from Lemma 2.2.9 that V, is nonsingular and
V.t

p*‘

L e
1V P Vi = Vi,

nonsingular such that ||V,

IV,

Therefore, considering that ||V, '|| < A, and ||P,, V, =V,

< ¢, (5.9) follows. [

In the following, let us present a class of vector fields satisfying the condition A1, namely
the semismooth vector fields and p-order semismooth vector fields. There exist, in the
Euclidean context, several equivalent definitions of the concept of semismoothness, see, for
example, [76]; see also [34, Definition 7.4.2, p. 677]. In the present thesis, we extend to the
Riemannian settings the concept of semismoothness adopted in [31, p. 411].

Definition 5.3.6 A vector field X on M, which is locally Lipschitz continuous at p, and
directionally differentiable at p € M, for all directions in T,M, is said to be semismooth at
P« € M when for every e > 0 there exists 0 < 6 < rp, such that

| X (p) = Py [X(p) + Vyexp, ' pu] || < ed(p, p.),

for all p € Bs(p.) and V, € 0X(p). The vector field X is said to be p-order semismooth at
P« € M, for 0 < p <1, when there exist € >0 and 0 < ¢ < ry,, such that

HX(p*) — Py, [X(p) + VpeXp;IP*}

| < ed(p,p.)"", (5.10)
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for all p € Bs(p,) and V,, € 0X(p).

Next, we state and prove the local convergence theorem for the nonsmooth Newton method
for finding a singularity of semismooth vector fields and p-order semismooth vector fields.

Theorem 5.3.7 Let X be a locally Lipschitz continuous vector field on M and p, € M be
a solution of problem (1.6). Assume that X is semismooth and regular at p.. Then, there
exists a 6 > 0 such that for each py € Bs(p«)\{ps+}, {pr} generated by Algorithm 5.2.1, is
well-defined, belongs to Bs(p.) and converges superlinearly to p.. In addition, if X is p-order
semismooth at py, then the convergence of {px} to p. is of the order of 1 + p.

Proof. Owing to X be semismooth and regular at p. € M, we can take A, >
max{|[V,!|| - V,, € 0X(p.)}. Consider ¢ > 0 satisfying e, (1 + K},,) < 1. Thus, from
Lemma 5.3.5 and Definition 5.3.6, we can take 6 > 0 such that (5.3) and (5.4) hold for ;1 = 0.
Hence, condition A1 holds with p = p, and ¢ = p, for all p € Bs(p.) and p = 0. Therefore,
applying Theorem 5.3.3, we obtain that there exists 0 < 6 < & such that every sequence
{pr} generated by Algorithm 5.2.1 with py € B;(p.)\{p«} belongs to B;(p.) and satisfies the
inequality (5.7). Hence, we have

d(pk:-i-l ) p*) < 6)\p* Kp*

. k=0,1,....

Since the last inequality holds for any e such that 0 < € < 1/(),.(1 4+ K,,)), we conclude
that {px} converges superlinearly to p.. The proof of the second part is similar. Indeed, for
a given € > 0 with e)\,, < 1, take § > 0 satisfying e),, (1 + d#K,,) < 1 and such that (5.9)
and (5.10) hold. Then, we can apply Theorem 5.3.3 and the proof follows. [ |

We remark that with some adjustments Theorem 5.3.7 reduces to some well-known results.

Remark 5.3.8 It is well-known that the Newton method and its variants are quite efficient
for finding zero on nonlinear functions in Euclidean settings. This is because they have
an excellent convergence rate in a neighborhood of a zero. It was shown in [76] that
for a class of nonsmooth functions, namely semismooth functions, the convergence of the
nonsmooth Newton method still is guaranteed. The above theorem, allows us to conclude
that the generalization of the nonsmooth Newton method from the linear context to
Riemannian settings for finding singularities of semismooth vector fields still preserves its
main convergence properties. It is worth mentioning that if X is continuously differentiable,
then Theorem 5.3.7 reduces to the [35, Theorem 3.1]. If M = R", then Theorem 5.3.7
reduces to first part of [76, Theorem 3.2]; see also [34, Theorem 7.5.3, p. 693]. Finally, if X
is continuously differentiable and M = R", then the theorem above reduces to the first part
of [12, Proposition 1.4.1, p. 90].
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5.4 Semi-local convergence analysis

In this section, we state and prove the Kantorovich-type theorem for the nonsmooth Newton
method. This theorem ensures that the sequence generated by the method converges towards
a singularity of the vector field by using semi-local conditions. It is worth mentioning that
the theorem does not require a priori existence of a singularity, proving instead the existence
of the singularity and its uniqueness on some region. The statement of the theorem is as
follows.

Theorem 5.4.1 Let X be a locally Lipschitz continuous vector field on M and py € M.
Suppose that X satisfies A1 with p = py, . = 0 and § > 6. Moreover, Bs(py) C M is a
totally normal neighborhood of the point py, and the constants Ay, > 0, € >0 and 0 < § < 1,
are such that

Mo )X (po) | < 5. (5.11)

Ao < = T
“ro = 1— 2e),

Then, the sequence {py} in Algorithm 5.2.1 is well-defined, belongs to Bz(po) and converge
towards the unique solution p, of problem (1.6) in Bs[po]. Furthermore, the following error
estimate holds

A
d(pg, p.) < — 2P0

—d _ k=1,2,.... 5.12
>~ 1—26)\170 (pk,pk: 1)7 ) ( )

Proof.  Firstly, let us prove by induction that the sequence {px} in Algorithm 5.2.1 is
well-defined, belongs to Bs(pg) and satisfies

€A F_ 1 —2e)
d < | — ) 5 —2 k=0,1,.... 1
(pk—i-lapk) = (1 _ 6Ap0> < 1— 6)\})0 ) ) 07 ) (5 3)

Let Vo € 0X(po) and note that the condition A1l implies that Vj is nonsingular and
Vo Il < Apo/(1—€),,). Hence, by using (5.2), we obtain that the iterate p; is well-defined.
Furthermore, (5.2), the definition of the exponential mapping, properties of the norm and
the inequalities in (5.11) imply that

d(p1,po) = d (exp,, (—Vy ' X (po)), po) <

Vil < 122 Xl <5 (T ) <a
- 6)‘100

Therefore, the iterate p; is well-defined, belongs to Bs(pg) and (5.13) holds for £ = 0. Assume
by induction that the iterates py, ..., p,—1 are well-defined, belongs to Bj(po) and (5.13) holds
fork=1,...,0—1. As p;1 € B;(po) it follows from condition A1 that V;_; is nonsingular
and, consequently, the iterate p, is well-defined. Thus, using the triangular inequality and
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the induction assumption, we have

‘ - — 2, - =t
d(pe, po) Z (pjspj-1) 5( EAPO(’)Z( EApO) < 0. (5.14)

This implies that p, € Bjs(po). Since p, € Bs(po) it follows from condition A1 that V is
nonsingular and, consequently, the iterate py.; is well-defined. Moreover, also follows from
A1 that ||V, 7Y < A, /(1 — €),,). Thus, by using (5.2), the definition of the exponential
mapping and properties of the norm, we have

Apeenp0) = d (exp,, (~V X (p0).pe) < |V X 0]l € 722 X ). (5.15)

On the other hand, considering that Bj(pg) is a totally normal neighborhood and that the
iterates py_1,p¢ € Bs(po), we conclude after some algebraic manipulations that

IX @ < |[X00) = Por o [X0e) + Viwexop, wel || + | X o) + Visexo, !, |

Taking into account that (5.2) implies X (pe—1) + Vi1 exp,, ' pe = 0 the last inequality
becomes

IX ol < || X (0r) = Por e [X () + Vi expt ] |

Using A1 with ¢ = py, p = pe—1 and V,, = V4, it follows from the latter inequality that

| X (po) || < €ed(pe, pe—1)-

Therefore, combining the inequality || X (pe)|| < ed(pe, pe—1) with (5.15) and by using the
induction assumption, we conclude that

€Apo €Apo C 11— 2€e)p,
— ) < 1
d(pes1,pe) < [ —eN, d(pe, pe-1) < <1 “on, 0 —en, ) (5.16)

and the induction proof is complete. Hence, using (5.16) and the same argument used to

prove (5.14), we obtain that pyr1 € Bs(po). Therefore, the Newton iterates are well-defined,
belongs to Bs(po) and satisfy (5.13). We proceed to prove that the sequence {py} converges.
Indeed, using the triangular inequality, and (5.13) for any k and s € {0, 1,...}, we have

dasy < (1 —=2e)\, s €Apo T €Apo y
d(pk+s+17pk> < Zd(pj+17pj) §6 1 — el Z 1 — e\ <9 1 — el )
Po Po Po

Jj=k

Because 2e),, < 1, we conclude that {p} is a Cauchy sequence. This implies that the
sequence {py} converges, let us say to some p, € Bj[po]. Hence, owing to X be a locally
Lipschitz continuous vector field, item (iz) of Proposition 5.1.7 implies that {V}} is bounded.
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Therefore, using that X is continuous, the equality (5.2), some properties of the norm and
that the sequence {px} converges to p., we have

0 <[ X(pa)l = kggloo |1 X (pw) || = kgffoo | =V exp, ! e || < kgffm Vel d(prs1, pr) = 0,

consequently, X (p.) = 0. Now, we are going to prove the uniqueness of the solution in
Bs|po|. For this purpose, assume that ¢ € Bj[po| is such that X (¢q) = 0. Take Vi € 0X (p.),
by assumption X is regular on Bs(pg) and p. € Bjs[po] C Bs(po), then Vi is nonsingular.
As X(p.) = 0 and X(q) = 0, using condition Al with p = p, and V, = Vi, and some
manipulations, we obtain that

d(p.,q) = |

Vo Weexp, g <

|

Because e\,, < 1/2, we conclude that d(p.,q) = 0, i.e., ¢ = p.. Therefore, p, is the

EApo

'WwMX@—%wM%%HmmﬁmuST:x%@m.@N)

unique solution of problem (1.6) in Bj[po]. It remains to show the error estimate, i.e., the
inequality (5.12). First note that using the same arguments to establish the first inequality
in (5.16), we can also prove that d(p;+1,pi) < [eAp, /(1 — €Ay )] d(piypizy) for all i =1,2,. .,

and thereby obtain

Apy

J
—— ) d _ ) =1,2,....
1 — E)\po) (pkvpk 1)7 J y 4y

A(Prtjs Phrjo1) < (

Hence, for any s € {0, 1,...}, we can use the triangular inequality and the last inequality to
conclude that

k+s s+1 j
EA €A
d(Pr+s+1,Pr) < Zd(pj+1,pj) < d(p, Pr—1) Z (ﬁ) < ﬁ d(pr; pr-1)-
Jj=k j=1 Po Po

Taking the limit as s goes to +o00, we obtain the inequality (5.12), and the proof of the
theorem is complete. [ |

Remark 5.4.2 It is worth pointing out that for 0 < p < 1, we can not obtain (5.14) in
order to assure the well-definedness of iterate py;1. Besides, for 0 < p < 1, we can not obtain
the uniqueness of the solution from (5.17). Therefore, a new argument will be needed to
extend Theorem 5.4.1 for 0 < p < 1.

5.5 Some examples

In this section, we present a class of examples of locally Lipschitz continuous vector fields on
the sphere satisfying the condition A1. For this purpose, we begin by presenting some basic
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definitions about the geometry of the sphere. For further details, see [37,38] and references
therein.

Let {-,-) be the usual inner product on R™1, with corresponding norm denoted by || - ||.
The n-dimensional Fuclidean sphere and its tangent hyperplane at a point p are denoted,
respectively, by

S" = {p = (P15 Por1) ER™: [p| = 1}7 T,S" = {U ER™: (pv) = O}'

Denotes by I the (n+1) x (n+1) identity matrix. The projection onto the tangent hyperplane
T,S™ is the linear mapping defined by I —pp” : R"*! — T,S™ where p” denotes the transpose
of the vector p. Let € be an open set in R*™! such that S* C 2, and Y : Q@ — R**! be
any semismooth mapping; several examples can be found in [31,34,57]. Then, we define the
vector field X : S* — R"*! as follows

X(p) = (I —pp")Y (p).

Note that X (p) € T,S" for all p € S". The Clarke generalized covariant derivative of X at p
is given by
90X (p) == (I —pp") OY (p) = P Y (p)1, (5.18)

where 0Y (p) is the Clarke generalized covariant derivative of Y at p. Therefore, all V), €
0X (p) is a linear mapping V,, : T,S" — T,S" given by V,, := (I — pp”) V, — p"Y (p)I, where
V, € 0Y (p). Since Y is a locally Lipschitz continuous mapping, from Rademacher theorem,
see [32, Theorem 2, p. 81], we conclude that Y is almost everywhere differentiable. As I —pp”
is a differentiable mapping, we obtain that X is almost everywhere differentiable. Using the
fundamental theorem of calculus in Riemannian setting (see [41]), the fact that Y (p) is
locally bounded and continuity of Y, we conclude that X is also locally Lipschitz continuous
vector field. Assume that X is regular at p € Q and let A; > max{||V,; '] : V; € 0X(p)}.
Then, from Lemma 5.3.5 for every € > 0 satisfying e\; < 1, there exists 0 < § < 7 (where
7 is the injectivity radius of S™) such that X is regular on Bs(p) and for all p € Bs(p) and
V, € 0X(p) the following holds
)‘15
1—e\s

-1
IV, <

This implies that inequality (5.3) holds. On the other hand, because X is a composition of
semismooth mappings, we conclude that X is semismooth, see [57, Proposition 1.74, p. 54].
Hence, from Definition 5.3.6 inequality (5.4) holds. Therefore, the projected vector field X
satisfies the condition A1l. In the following, we present a concrete example.

Example 5.5.1 Let Y : R? — R? be a semismooth mapping defined by Y (p) := Ap— |p| — b
with matrix A = diag(4,3) and vector b = (b1,by) € R? where diag(p;,ps) denotes a
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2 x 2 diagonal matrix with (i,4)-th entry equal to p;, © = 1,2. Take p = (0,1) € §?
and note that Y(p) = 0 for b = (0,2). Some calculus show that the Clarke generalized
covariant derivative of Y at p is given by 9Y (p) = {diag(d,2) : d € [3,5]}. Define X(p) :=
(I — pp")Y (p) the vector field on S%. Therefore, using (5.18), we conclude that X (p) =
{V; :=diag(d — 2+ by, =2+ be) : d € [3,5]}. Note that all V; € 0X(p) are nonsingular as
a linear mapping Vj : T,S* — T,S?, where the tangent hyperplane at p is given by T,S? :=
{v:=(v1,0) € R?: v; € R}. Hence, from Definition 5.3.1, we obtain that X is regular at
p = (0,1). Let A\; > max{||V;'|| : V; € 0X(p)}. As X is a locally Lipschitz continuous
vector field, using Lemma 5.3.5 for every € > 0 satisfying e\; < 1, there exists 0 < 0 < 7
such that X is regular on Bs(p) and for all p € Bs(p) and V), € 0X(p) the following holds
IV, 7'l < Ap/(1 — €)\y). Because X is a semismooth vector field, we conclude that the
condition A1 holds.

It is worth pointing out that in the literature there exist other examples, see, for example,
[55].
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Chapter 6

Final remarks

In this thesis, we have proposed and studied three versions of the Newton method to solve
problems in two contexts. The convergence analysis for a sequence generated by these
methods was done under local and/or semi-local assumptions.

In Chapter 3, we have proposed a method for solving constrained generalized equations,
which we call the Newton-InexP method. As already mentioned, we have combined the
classical Newton method for solving unconstrained generalized equations with feasible
inexact projections. It is worth pointing out that Lemma 3.1.5 played a key role in the
proof of the main theorems of Chapters 3 and 4. In particular, under assumptions of metric
regularity and strong metric regularity, Theorem 3.1.8 establishes a local convergence analysis
of a sequence generated by the method. In future work, we aim to make this analysis under an
weaker assumption, namely strong metric subregularity, see, for example, [31]. Furthermore,
it is well-known that in practical implementations the inexact versions of the Newton method
have computational advantages compared with an exact one. Therefore, following the same
idea of Chapter 3 it would be interesting to study the inexact Newton method with feasible
inexact projections for solving constrained generalized equations. Inexact Newton method
for solving unconstrained generalized equations is formulated as follows. For the current
iterate x; € R"™, the next iterate xy,1 is computed as a point satisfying

(f(zp) + f'(zi) (@ — k) + F(x)) N Ry(xy) # 0, k=0,1,...,

where R, : R™ == R™ is a sequence of set-valued mappings with closed graphs, which
represents the inexactness. For further details, see, for example, [28,30].

In Chapter 4, we have presented a method for solving constrained smooth and nonsmooth
equations, which we call the inexact Newton-InexP method. As mentioned in the
introduction, this method combines the classical exact/inexact Newton method for solving
nonsmooth equations with feasible inexact projections. In Theorems 4.1.3 and 4.1.5, we have
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shown that under mild assumptions, the exact/inexact Newton-InexP method for solving
constrained smooth and nonsmooth equations preserves the local convergence properties if
feasible inexact projections with suitable error (relative tolerance) are used. In particular,
under the standard nonsingularity condition, the superlinear/quadratic rate is preserved.
In this sense, we expect that our results become the first step towards a study of the
behavior of the Newton method and its variants (including, the Gauss—Newton method,
Levenberg-Marquardt method and trust region method), with feasible inexact projections,
under more reasonable regularity conditions. To show the practical behavior of the proposed
method, we have tested it on some medium and large-scale CAVEs. The numerical
experiments have shown that the dimension of the problem and the choice of the parameter
6, which influences in the computing of 7 given in Theorem 4.1.3 limit the efficiency of the
proposed method. With respect to robustness, the numerical results have shown that the
inexact Newton-InexP method works quite well for solving this class of problems since all
test problems were resolved. In future work, we aim to investigate computationally the
behavior of the inexact Newton-InexP method for other class of problems, for example, the
inequality feasibility problem. Computational implementations of Algorithm 3.1.6 described
in Chapter 3 also is a line of future research.

Because the extension of results and methods from the Euclidean context to Riemannian
setting have been a promising possibility over the years, see, for example, [35,48, 77,82, 88|,
in Chapter 5, we have studied the main properties of nonsmooth analysis for this context.
Firstly, we have extended to the Riemannian setting the concept and some properties of
the locally Lipschitz continuous vector fields. It is worth mentioning that the Rademacher
theorem, i.e., Theorem 5.1.5 is an essential tool to ensure the existence of the Clarke
generalized covariant derivative. In addition, a version of the nonsmooth Newton method
for finding a singularity of these vector fields was proposed. Under the regularity and
semismoothness assumptions the well-definedness and local convergence of a sequence
generated by the proposed method were established. Furthermore, a semi-local convergence
analysis was presented, see Theorem 5.4.1. We expect that the results of this chapter can
aid in the extensions of new results and methods of nonsmooth analysis to the Riemannian
context, for example, the mean value theorem as well as the inexact and globalized versions
of the nonsmooth Newton method.
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