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There is a theory which states that if ever anyone discovers exactly what the Universe

is for and why it is here, it will instantly disappear and be replaced by something even

more bizarre and inexplicable. There is another theory which states that this has

already happened.

DOUGLAS ADAMS

Dedico este trabalho aos meus pais, pilares da minha

formação como ser humano.
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Abstract

Quantum thermodynamics is an emerging area that arouses the interest of many

scientists and engineers. Although it is a new and incomplete theory, it comes with

surprising results.

We propose to study a quantum engine that utilizes thermal reservoirs as baths

but an unusual system as working fluid, a squeezed harmonic oscillator. The fluid

was chosen as an educated guess to study if an engine working solely with a quantum

resource could surpass Carnot’s limit. The problem was solved analytically and then

simulated using the qutip library to python, we showed that this engine is capable of

working in Carnot’s regime. Furthermore, we calculated the Shortcut to adiabaticity

to the evolving hamiltonian so we could improve the system’s power without losing

efficiency.

This kind of machine serves the purpose of showing that one cannot surpass Carnot’s

limit if one is using thermal reservoirs.

Key-words

Thermal engines, Thermodynamics, Quantum mechanics.



Resumo

A termodinâmica quântica é uma área emergente que desperta o interesse de muitos

cientistas e engenheiros. Embora seja uma teoria nova e incompleta, ela apresenta resul-

tados surpreendentes. Propomos estudar um motor quântico que utiliza reservatórios

térmicos como banhos, mas um sistema incomum como fluido de trabalho, um os-

cilador harmônico comprimido. O fluido foi escolhido como um palpite para estudar se

um motor trabalhando apenas com um recurso quântico poderia ultrapassar o limite

de Carnot. O problema foi resolvido analiticamente e depois simulado usando a bib-

lioteca qutip para python, mostramos que esta engine é capaz de funcionar no regime

de Carnot. Além disso, calculamos o Atalho para adiabaticidade para o hamiltoniano

evolutivo para que possamos melhorar a potência do sistema sem perder eficiência. Este

tipo de máquina serve para mostrar que não se pode ultrapassar o limite de Carnot se

estivermos usando reservatórios térmicos.

Palavras-Chave

Motores térmicos, Termodinâmica, Mecânica Quântica.
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1 Introduction

This chapter will provide a brief introduction to the research by first discussing a

background plus context, followed by the problem we face, the goals of the research,

general objectives and questions, the importance of it, and finally, the limitations.

Carnot was the first one to describe the ideal quantum thermodynamics cycle, the

one that would have the highest efficiency among all possible cycles [1]. Said machine

would work on a quasi-static process, i.e., at zero power, all processess would happen

so slowly that the whole cycle would be reversible, and most interesting, its efficiency

doesn’t depend on the working fluid [2]. Since the development of the first quantum

thermal machines/engines [3, 4], it’s been a dream to find a thermal machine that

surpasses the classical limit imposed by Carnot by utilizing quantum resources both

in the baths and working fluid. This search for beyond Carnot efficiency is motivated

by the fact that there was not a quantum theory in Carnot’s epoch when classical

thermodynamics was developed. This can be done either by using a genuine quantum

bath [5–8] or by using a working fluid that carries quantum properties1 [9, 10]. So, it

was very shocking when the results of [11] announced that the Carnot’s limit could be

broken using squeezing reservoirs, in which case, the efficiency would approach 1(100%)

for a large enough squeezing parameter.

Another result showing the advantage of quantum thermal machines over their clas-

sical counterparts when using squeezed reservoirs as a quantum resource [12–14] was

obtained in [15] where the authors showed that close to unitary efficiency can also

be achieved for non-zero power even without techniques like a shortcut to adiabatic-

ity(STA) [16–21] or quantum lubricants [9, 22]. The first, STA, is a technique that

allows a gain in potency without a loss in efficiency as it mimics the slow evolution for
1as coherence or entanglement.
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the system 2 while the second one, lubricants, increase the efficiency by using coher-

ences. Moreover, in [5], the authors found a counter-intuitive phenomenon happening

with an Otto engine coupled to a negative temperature reservoir, where higher effi-

ciency was achieved the faster the compression and expansion strokes were performed.

The authors in [23] showed that negative effective temperatures increase power over

positive temperatures. In [24], the authors demonstrate that fermionic reservoir coolers

can cool systems better than bosonic reservoirs, even if the fermionic reservoir has a

strictly positive temperature.

Having said that, it’s clear that quantum resources reservoirs outperform regular

thermal reservoirs. That raises the question "what would be the effects of quantum

resources as working fluid ?". In our particular case, the question we are trying to

answer is a little simpler "what would be the effects of squeezing on harmonic oscillator

working fluid ?". To answer this question, we are going to study an Otto cycle coupled

with traditional thermal baths where we directly apply the squeezing. This differs from

previous works as we are using thermal states reservoir and applying the quantum

resource to the working fluid instead. that’s why the thermodynamic quantities are

going to be functions of the squeezing parameter. We will show that is possible to

obtain an engine with an efficiency that is arbitrarily close to Carnot. We also show,

in an alternative way from [25] that Carnot’s efficiency cannot be exceeded.

This work is organized in the following way. In 2, a set of necessary tools will

be presented, 2.1 will present the Master’s equation formalism for open quantum sys-

tems, which is widely used in thermodynamics, 2.2 will present a brief insight into

the concepts of quantum thermodynamics used in these work and 2.3 will present the

formalism of shortcuts to adiabaticity. In chapter 3 we presented the model of the
2The quantum adiabatic evolution.
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cycle we are using as an engine. C presents the cycle along with the technicalities on

how to solve it, section 3.2 shows the results of the simulation in C, 3.3 presents the

maximum efficiency an engine operating between thermal reservoirs can achieve, then

we proceed to calculate the STA for the squeezed harmonic oscillator on 3.4. In the

end, we present the conclusions in 4.

3



2 Theoretical Basis

2.1 Open Quantum Systems

2.1.1 Closed System Evolutions

First of all, we begin by presenting a short introduction to closed systems as a

starting point on our way through the open system’s dynamics. The evolution of a

closed system is given by Schrodinger’s equation:

d

dt
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ , (2.1)

where |ψ⟩ is a vector in a Hilbert space H that completely describes the system and is

evolved by the Hamiltonian H, which is an operator that acts on this same space.

The solution to that equation is obtained by direct integration

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.2)

U is called evolution operator since it evolves a |ψ⟩ from a time t0 to a future time t.

Moreover, the evolution operator must obey a Schrodinger type equation1

dU(t, t0)
dt

= −iH(t)U(t, t0). (2.3)

If the Hamiltonian commutes with itself for any two different times, then the explicit

shape of U is 2

U(t, t0) = exp

{
−i
∫ t

t0

H(s)ds

}
. (2.4)

1It’s obvious from substituting 2.2 in 2.1
2In the case where the Hamiltonian doesn’t commute with itself at different times,

i.e.,[H(t1), H(t2)] ̸= 0, then, we must have a time-ordered integral, see [26].

4



Another way to describe quantum mechanics is by defining a density operator (or

density matrix)

ρ(t) ≡
∑
i

pi |ψi(t)⟩ ⟨ψi(t)| , (2.5)

that will describe the system and take the role of |ψ⟩. This is a more general way of

describing these systems because it takes into account the possibility of mixed states

[27]. This operator ρ must be positive because its entries represents probabilities and

its trace is direct to calculate:

Tr{ρ} = Tr

{∑
i

pi |ψi(t)⟩ ⟨ψi(t)|

}
, (2.6a)

=
∑
i

pi Tr{|ψi(t)⟩ ⟨ψi(t)|}, (2.6b)

=
∑
i

pi, (2.6c)

= 1. (2.6d)

The evolution of ρ is given by:

ρ(t) =
∑
i

pi |ψi(t)⟩ ⟨ψi(t)| , (2.7a)

=
∑
i

piU(t, t0) |ψi(t0)⟩ ⟨ψi(t0)| U †(t, t0), (2.7b)

= U(t, t0)

(∑
i

pi |ψi(t0)⟩ ⟨ψi(t0)|

)
U †(t, t0), (2.7c)

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (2.7d)

By deriving 2.7d, it’s possible to write a well known equation, the Liouville - Von

Neumann equation:
d

dt
ρ(t) = −i[H(t), ρ(t)]. (2.8)

With the help of super-operators 3, equation 2.8 is written as:
3Linear maps that act on linear operators and return linear operators/ Automorphism. [28].
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d

dt
ρ(t) = L(t)ρ(t), (2.9)

where L is the Liouville super-operator that acts on ρ and returns −i[H(t), ρ(t)]4.

2.1.2 Required theorems

We need to state two important theorems without proof (but the proof is available

in [29]):

Choi’s Theorem :

A linear map V : B(H) → B(H) is completely positive iff it can be expressed as shown

below:

Vρ =
∑
i

V †
i ρVi, (2.10)

where Vi ∈ B(H) (positive).

Choi-Kraus Theorem :

A linear map V : B(H) → B(H) is completely positive and trace-preserving iff it has

the following form:

Vρ =
∑
i

V †
i ρVi, (2.11)

where Vi ∈ B(H) (positive) have the property of:

∑
i

ViV
†
i = I. (2.12)

All these operators Vi that forms completely positive and trace-preserving maps

are called Kraus Operators. It’s important to note that Kraus operators can be time-

dependent with the conditions that those properties are true at all times.
4L(t)ρ(t) is to be interpreted as L(ρ), i.e. L is not just multiplied in the left.

6



2.1.3 Mathematical deduction of the Lindblad equation

Here, we follow the path in [29–31] to describe an open system in quantum me-

chanics. First of all, we ask What is the most general way to make a markovian map

that maps density operator to density operator ?

The first step consists in realizing that such transformation must be completely

positive 5 as the eigenstates of the density operator are always positive because it

represent probabilities. Another important property is that it must preserve the trace

of ρ so the total probability conserves 6. This is to show the importance of the theorems

in section 2.1.2.

From equation 2.9, we write the general form of L that have the required properties.

d

dt
ρ(t) = Lρ(t). (2.13)

This map may be thought of with an analogy to the unitary evolution operator as

ρ(t) = V(t− t0)ρ(t0) = eLtρ(t0) .

We have begun by writing a base for Fock-Liouville’s space (equivalent to the Hilbert

space but for super-operators ) that has a dimension of d2 if the Hilbert space has the

dimension of d. This base Fi is required to be orthonormal with i in range 1 to d2, so:

⟨Fi|Fj⟩ = Tr[F †
i Fj] = δi,j. (2.14)

We then choose the last base vector to be Fd2 = I√
d
, it’s easy to notice from 2.14,

that the trace of all other Fi is equal to zero :

⟨Fd2|Fj⟩ = Tr

[
I√
d
Fj

]
=

1√
d
Tr[Fj] = 0. (2.15)

5V ⊗ IB : B(HA)⊗B(HB) → B(HA)⊗B(HB), if the input ρ is positive, so is the output.
6∑

i pi = 1

7



The operators Vi of the map V(t) may be described in this base as:

Vl =
d2∑
i=1

⟨Fi|Vl⟩Fi, (2.16)

and the map is:

V(t)ρ =
d2∑
i,j

ci,j(t)FiρF
†
j , (2.17)

where ci,j is:

ci,j =
d2∑
l=1

⟨Fi|Vl(t)⟩ ⟨Vl(t)|Fj⟩ . (2.18)

The original problem of discovering a form of L can be found in writing the deriva-

tive of ρ:

L(t)ρ(t) = lim
ε→0

1

ε
[ρ(t+ ε)− ρ(t)] = lim

ε→0

1

ε
[V(ε)ρ(t)− ρ(t)] , (2.19)

from now on, I will leave the explicit dependency in time of rho out of notation (it still

depends on time, it’s just implicit in notation). In the base we choose (The explicit

sum is made in Appendix A):

Lρ = lim
ε→0

1

ε

[
d2∑
i=1

d2∑
j=1

ci,j(ε)FiρF
†
j − ρ

]
, (2.20)

= lim
ε→0

1

ε

[
cd2,d2(ε)− d

d
ρ+

1√
d

d2−1∑
i=1

{
ci,d2(ε)Fiρ+ cd2,i(ε)ρF

†
i

}
+

d2−1∑
i=1

d2−1∑
j=1

ci,j(ε)FiρF
†
j

]
.

(2.21)

8



The limit is applied and the quantities that depend on it are redefined as follows:

ad2,d2 = lim
ε→0

cd2,d2(ε)− d

ε
,

ai,d2 = lim
ε→0

ci,d2(ε)

ε
,

ad2,j = lim
ε→0

cd2,j(ε)

ε
,

ai,j = lim
ε→0

ci,j(ε)

ε
,

(2.22)

equation 2.20 is then:

Lρ =
ad2,d2

d
ρ+

1√
d

d2−1∑
i=1

{
ai,d2Fiρ+ ad2,jρF

†
i

}
+

d2−1∑
i,j=1

ai,jFiρF
†
j (2.23)

Summing over i and defining a new operator F :

F ≡ 1√
d

d2∑
i=1

ai,d2Fi, (2.24)

in such a way that:

Lρ =
ad2,d2

d
ρ+ Fρ+ ρF † +

d2−1∑
i,j=1

ai,jFiρF
†
j . (2.25)

To recover the form of the Liouville - Von Neumann equation, we rewrite F in a

hermitian part and an anti-hermitian part:

F =
F + F †

2
+ i

F − F †

2i
≡ G− iH, (2.26a)

F † =
F + F †

2
+ i

F † − F

2i
≡ G+ iH. (2.26b)

Replacing the dependencies on F with the new definitions, we get:

Fρ+ ρF † = (G− iH)ρ+ ρ(G+ iH), (2.27a)

= Gρ+ ρG− iHρ+ iρH, (2.27b)

= {G, ρ} − i[H, ρ]. (2.27c)
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Making a change of variables, it is possible to embed the first term of the equation

2.25 in the anti-commutator:

G′ = G+
ad2,d2I
2d

, (2.28)

Lρ = −i[H, ρ] + {G, ρ}+
d2−1∑
i,j=1

ai,jFiρF
†
j . (2.29)

With the condition that the trace of ρ must remain constant:

Tr {Lρ} = Tr

{
d

dt
ρ

}
=

d

dt
T r {ρ} = 0, (2.30)

0 = Tr

{
−iHρ+ iρH +Gρ+ ρG+

d2−1∑
i,j=1

ai,jFiρF
†
j

}
, (2.31a)

= Tr

{
−iHρ+ iHρ+Gρ+Gρ+

d2−1∑
i,j=1

ai,jF
†
j Fiρ

}
, (2.31b)

= Tr

{(
2G+

d2−1∑
i,j=1

ai,jF
†
j Fi

)
ρ

}
, (2.31c)

so:

2G+
d2−1∑
i,j=1

ai,jF
†
j Fi = 0, (2.32)

or:

G = −1

2

d2−1∑
i,j=1

ai,jF
†
j Fi. (2.33)

The most general form of the Liouville super-operator L that describes the evolution

of density operators is called the Lindblad equation :

Lρ = −i[H, ρ] +
d2∑

i,j=1

ai,jFiρF
†
j − 1

2
ai,j

{
F †
j Fi, ρ

}
. (2.34)

Finally, the matrix formed by the elements ai,j is diagonalizable since it is Hermitian

(as cj,i = c∗i,j, the same goes for aj,i). On the basis that diagonalizes it:
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Lρ = −i[H, ρ] +
d2∑
k=1

Γi

(
LiρL

†
i −

1

2

{
L†
iLi, ρ

})
, (2.35)

the problem here is that the H and Li aren’t unique.

2.1.4 Microscopic derivation

For a more tangible deduction and to define the formats that H and Li should have,

it is customary to use a microscopic deduction: We start with the following Interaction

Hamiltonian:

H = HS ⊗ IR + IS ⊗HR + αHSR, (2.36)

where HS is the system’s Hamiltonian, HR is the reservoir’s and HSR is the coupling

one.

The whole evolution equation can be written in the interaction picture7 as (Note

that we are making the temporal dependencies explicit again):

d

dt
ρT (t) = −i[HI(t), ρT (t)]. (2.37)

By direct integration, we arrive at:

ρT (t) = ρT (0)− iα

∫ t

0

[HI(t
′), ρT (t

′)]dt′, (2.38)

that can be iterated to:

d

dt
ρT (t) = −iα[HI(t), ρT (0)]− α2

∫ t

0

dt′[HI(t), [HI(t
′), ρT (t

′)]]. (2.39)

7The interaction picture is defined as:

ρT = ei(HS+HR)tρT,Sche
−i(HS+HR)t,

HI = ei(HS+HR)tHSRe
−i(HS+HR).t
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Rewriting ρT (t′) as:

ρT (t
′) = ρT (t)− iα

∫ t′

t

[HI(t
′′), ρ(t′′)]dt′′, (2.40)

and substituting in equation 2.39:

d

dt
ρT (t) = −iα[HI(t), ρT (0)]− α2

∫ t

0

[HI(t), [HI(t
′), ρT (t)]]dt

′+

+ iα3

∫ t

0

dt′
∫ t′

t

dt′′[HI(t), [HI(t
′), [HI(t

′′, ρ(t′′))]]],

(2.41)

d

dt
ρT (t) = −iα[HI(t), ρT ]− α2

∫ t

0

[HI(t), [HI(t
′), ρT (t)]]dt

′ +O(α3). (2.42)

In the weak interaction limit, we consider only terms to the second-order, as α3 is

much smaller than α2 . As we are trying to write an equation that describes just the

system’s evolution, we take the partial trace over the reservoirs variables, ρ = TrR {ρT},

the same would work if we needed the evolution of the reservoir alone (σ = TrS {ρT}).

d

dt
T rR {ρT (t)} =

d

dt
ρ(t) = −iαTrR[HI(t), ρT ]− α2

∫ t

0

dt′TrR[HI(t), [HI(t
′), ρT (t)]].

(2.43)

It is assumed that the reservoir is much larger than the system so in the weak

interaction condition, we consider σ constant:

TrS {ρT (t)} = σ(t) ≈ σ. (2.44)

Also, we assumed that σ is a steady state of HR :

[σ,HR] = 0. (2.45)

HSR is written as:

HSR =
∑
l

Sl ⊗Rl (2.46)
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So, the interaction picture Hamiltonian HI is just:

HI(t) =
∑
l

Ŝl(t)⊗ R̂l(t), (2.47)

where:

Ŝl(t) = eiHStSle
−iHSt, (2.48)

R̂l(t) = eiHRtRle
−iHRt, (2.49)

The averages of Rl in σ are chosen to be zero (⟨Rl⟩σ = Tr {σRl} = 0), which is

always possible by making a change called "Lamb Shift" on the total Hamiltonian [32].

With this, it is easy to see that the average in σ of R̂l in the interaction picture is also

null:

Tr
{
σR̂l

}
= Tr

{
σeiHRtRle

−iHRt
}
,

= Tr
{
e−iHRtσeiHRtRl

}
,

= Tr
{
σe−iHRteiHRtRl

}
,

= Tr {σRl} = 0, (2.50)

because of this, the average of HI in σ is zero:

TrR {σHI(t)} =
∑
l

Ŝl(t)Tr
{
σR̂l(t)

}
= 0. (2.51)

It’s also possible to show that the second order averages in R vanish with a char-

acteristic time τC [32], in such a way that the integrand in 2.43 is not null only in the

proximity of τ = τC , where τ = t− t′.

So, we may write 2.43 as:

d

dt
ρ(t) = −α2

∫ ∞

0

dτTrR[HI(t), [HI(t− τ), ρT (t)]]. (2.52)
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The next assumption made is that the correlations disappear very quickly (of the

order of magnitude of τC), i.e. in times smaller than the characteristic times of the

system, in such a way that we can consider :

ρT (t) = ρ(t)⊗ σ(t) + ρcorr ≈ ρ(t)⊗ σ(t) ≈ ρ(t)⊗ σ, (2.53)

d

dt
ρ(t) = −α2

∫ ∞

0

dτTrR[HI(t), [HI(t− τ), ρ(t)⊗ σ]], (2.54)

[HI(t), [HI(t− τ), ρ(t)⊗ σ]] = HI(t)HI(t− τ)ρ(t)⊗ σ

−HI(t)ρ(t)⊗ σHI(t− τ)

−HI(t− τ)ρ(t)⊗ σHI(t)

+ ρ(t)⊗ σHI(t− τ)HI(t).

(2.55)

Using the equation 2.47 :

[HI(t), [HI(t− τ), ρ(t)⊗ σ]] =
∑
l,k

Ŝl(t)Ŝk(t− τ)ρ(t)⊗ R̂l(t)R̂k(t− τ)σ

− Ŝl(t)ρ(t)Ŝk(t− τ)⊗ R̂l(t)σR̂k(t− τ)

− Ŝk(t− τ)ρ(t)Ŝl(t)⊗ R̂k(t− τ)σR̂l(t)

+ ρ(t)Ŝk(t− τ)Ŝl(t)⊗ σR̂k(t− τ)R̂l(t).

(2.56)

Using the spectral theorem :

Sl(ω) =
∑

ε′−ε=ω

PεSlPε′ , (2.57)
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where Pε are the energy projectors8. So:

[HS, Sl(ω)] =
∑

ε′−ε=ω

HSPεSlPε′ − PεSlPε′HS, (2.58a)

=
∑

ε′−ε=ω

εPεSlPε′ − PεSlPε′ε
′, (2.58b)

= −ωSl(ω), (2.58c)

and

[HS, S
†
l (ω)] =

∑
ε′−ε=ω

HSPε′S
†
l Pε − Pε′S

†
l PεHS, (2.59a)

=
∑

ε′−ε=ω

ε′Pε′S
†
l Pε − PεS

†
l Pεε, (2.59b)

= ωSl(ω). (2.59c)

From this, we calculate:

Ŝl(t) = eiHStSl(ω)e
−iHSt, (2.60a)

= Sl(ω) + it[HS, Sl(ω)] +
(it)2

2!
[HS, [HS, Sl(ω)]] + ..., (2.60b)

= Sl(ω)− itωSl(ω)−
t2ω2

2!
Sl(ω) + ..., (2.60c)

= e−iωtSl(ω), (2.60d)

and

Ŝl

†
(t) = = eiHStS†

l (ω)e
−iHSt, (2.61a)

= S†
l (ω) + it[HS, S

†
l (ω)] +

(it)2

2!
[HS, [HS, S

†
l (ω)]] + ..., (2.61b)

= S†
l (ω) + itωS†

l (ω)−
t2ω2

2!
S†
l (ω) + ..., (2.61c)

= eiωtS†
l (ω). (2.61d)

8HSPε = εPε.
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It’s also possible to prove that the systems Hamiltonian HS and S†
l (ω)Sk(ω) com-

mute, which will be useful further ahead when we obtain the evolution in a Lindblad

form.

[HS, S
†
l (ω)Sk(ω)] = HSS

†
l (ω)Sk(ω)− S†

l (ω)Sk(ω)HS, (2.62a)

= HSS
†
l (ω)Sk(ω)− S†

l (ω) {HSSk(ω)− [HS, Sk(ω)]} , (2.62b)

= HSS
†
l (ω)Sk(ω)− S†

l (ω) {HSSk(ω)− ωSk(ω)} , (2.62c)

= HSS
†
l (ω)Sk(ω)− S†

l (ω)HSSk(ω)− ωS†
l Sk(ω), (2.62d)

= HSS
†
l (ω)Sk(ω)−

{
HSS

†
l (ω)− [HS, S

†
l ]
}
Sk(ω)− ωS†

l Sk(ω),

(2.62e)

= HSS
†
l (ω)Sk(ω)−HSS

†
l (ω)Sk(ω) + ωS†

l Sk(ω)− ωS†
l Sk(ω),

(2.62f)

= 0. (2.62g)

Also, it’s easy to show that S†
l (ω) = Sl(−ω):

S†
l (ω) =

∑
ε−ε′=ω

P †
ε′S

††
l P

†
ε , (2.63a)

=
∑

ε−ε′=ω

Pε′SlPε, (2.63b)

=
∑

ε−ε′=−ω

PεSlPε′ = Sl(−ω). (2.63c)

Substituting Sk(ω) in Ŝk(t− τ) and S†
l (ω

′) in Ŝl(t):
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[HI(t), [HI(t− τ), ρ(t)⊗ σ]] =
∑

l,k,ω,ω′

eiω
′tS†

l (ω
′)e−iω(t−τ)Sk(ω)ρ(t)⊗ R̂l(t)R̂k(t− τ)σ

− e−iω(t−τ)Sk(ω)ρ(t)e
iω′tS†

l (ω
′)⊗ R̂k(t− τ)σR̂l(t)

+ h.c.,

=
∑

l,k,ω,ω′

ei(ω
′−ω)teiωτS†

l (ω
′)Sk(ω)ρ(t)⊗ R̂l(t)R̂k(t− τ)σ

− ei(ω
′−ω)teiωτSk(ω)ρ(t)S

†
l (ω

′)⊗ R̂k(t− τ)σR̂l(t)

+ h.c..

(2.64)

Using this commutator in 2.54 :

d

dt
ρ(t) = −α2

∫ ∞

0

dτTrR{
∑

l,k,ω,ω′

ei(ω
′−ω)teiωτS†

l (ω
′)Sk(ω)ρ(t)⊗ R̂l(t)R̂k(t− τ)σ

− ei(ω
′−ω)teiωτSk(ω)ρ(t)S

†
l (ω

′)⊗ R̂k(t− τ)σR̂l(t)

+ h.c.}.

(2.65)

The partial trace in R ignores the system:

d

dt
ρ(t) = −α2

∫ ∞

0

dτ
∑

l,k,ω,ω′

ei(ω
′−ω)tS†

l (ω
′)Sk(ω)ρ(t)e

iωτTr{R̂l(t)R̂k(t− τ)σ}

− ei(ω
′−ω)tSk(ω)ρ(t)S

†
l (ω

′)eiωτTr{R̂k(t− τ)σR̂l(t)}

+ h.c..

(2.66)

As the trace is invariant under cyclic commutation, the 2 traces shown above are

the same. Also, the terms of the system don’t depend on τ , so we can write:

d

dt
ρ(t) =

∑
l,k,ω,ω′

Γlk(ω)
{
Ŝk(ω)ρ(t)Ŝl

†
(ω′)− Ŝl

†
(ω′)Ŝk(ω)ρ(t)

}
+ h.c., (2.67)
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where Γlk(ω) was defined as:

Γlk(ω) ≡
∫ ∞

0

dτα2eiωτTr{R̂l(t)R̂k(t− τ)σ} =

∫ ∞

0

dτα2eiωτTr{R̂l(τ)Rkσ}. (2.68)

Note that Rk in the last equation is the Schrodinger one, i.e., Rl = R̂l(0). We then

separate Γlk(ω) into real and imaginary parts as follows:

Γlk(ω) =
1

2
γlk(ω) + iπlk(ω), (2.69)

γ and π are given by:

γlk(ω) = Γlk(ω) + Γ∗
kl(ω),

πlk(ω) =
Γlk(ω)− Γ∗

kl(ω)

2i
.

(2.70)

With that:

d

dt
ρ(t) =

∑
l,k,ω

{
1

2
γlk(ω) + iπlk(ω)

}
[Ŝk(ω)ρ(t), Ŝl

†
(ω)]+

+

{
1

2
γlk(ω)− iπlk(ω)

}
[Ŝk(ω), ρ(t)Ŝl

†
(ω)], (2.71)

d

dt
ρ(t) =

∑
l,k,ω

γlk(ω)

2
{Ŝk(ω)ρ(t)Ŝl

†
(ω)− Ŝl

†
(ω)Ŝk(ω)ρ(t)+

+ Ŝk(ω)ρ(t)Ŝl
†
(ω)− ρ(t)Ŝl

†
(ω)Ŝk(ω)}+

+ iπlk(ω){Ŝk(ω)ρ(t)Ŝl

†
(ω)− Ŝl

†
(ω)Ŝk(ω)ρ(t)−

− Ŝk(ω)ρ(t)Ŝl

†
(ω) + ρ(t)Ŝl

†
(ω)Ŝk(ω)}, (2.72)

=
∑
l,k,ω

γlk(ω)

{
Ŝk(ω)ρ(t)Ŝl

†
(ω)− 1

2

{
Ŝl

†
(ω)Ŝk(ω), ρ(t)

}}
−

− iπlk(ω)
[
Ŝl

†
(ω)Ŝk(ω), ρ(t)

]
. (2.73)

That may be written as:

d

dt
ρ(t) = −i [HLS, ρ(t)] +D[ρ(t)], (2.74)
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where the first term is written as HLS because it represents a shift in the total energy

and could be written as part of an effective Hamiltonian as Heff = HS + HLS in

Schrodinger’s picture. The only thing left to do is to write HLS and D[ρ(t)] explicitly:

HLS =
∑
l,k,ω

πlk(ω)Ŝl

†
(ω)Ŝk(ω), (2.75)

D[ρ(t)] =
∑
l,k,ω

γlk(ω)

{
Ŝk(ω)ρ(t)Ŝl

†
(ω)− 1

2

{
Ŝl

†
(ω)Ŝk(ω), ρ(t)

}}
. (2.76)

Moreover, the matrix γlk is hermitian9 and can be diagonalized to the Lindblad

form in equation 2.35.

D[ρ(t)] =
∑
i,ω

Γi(ω)

{
Ŝi(ω)ρ(t)Ŝi

†
(ω)− 1

2

{
Ŝi

†
(ω)Ŝi(ω), ρ(t)

}}
. (2.77)

As a last remark, the term D[•] is called dissipator since it can be shown that the

purity of a system (Tr(ρ2)) decreases in contrast to a unitary evolution, where it’s

constant [30].

Furthermore, there is a state called steady state that represents the limit where

everything that could happen already happened and so the system is constant in time,

or mathematically:

ρss = lim
t→∞

ρ(t), (2.78)

it is always possible to find a steady state for the evolution of ρ by L [29, 33, 34] but

it’s not always unique [35]. The problem with the non-uniqueness of the steady state

would be a problem in the models of machines in thermodynamics because the system

would never thermalize10, on the bright side, this is the exception [29].
9Note that γlk is real by definition and γlk = γkl.

10would never achieve thermal stability.
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2.2 Quantum Thermodynamics

Quantum thermodynamics is the study of how energy flows as work and heat in

quantum systems and it’s a relatively new area of physics. The first definitions of heat

and work in the quantum regime were described by Allicki [36] but he was not the first

one to realize quantum systems could be engines or machines [3], since then, it has

been an area studied with great interest.

The first step towards a quantum theory of thermodynamics is to realize how to

divide the change in energy in heat and work11. In usual quantum mechanics, the

energy is

E = ⟨H⟩ = Tr{Hρ}, (2.79)

so, the differential of energy is given by:

dE = Tr{dHρ+Hdρ}. (2.80)

We defined the first term as work and the other as heat. The idea behind this is

that we can completely control the Hamiltonian and thus the energy change that comes

out of it is work. The other part is then the heat, which makes sense in some way since

the experimentalist doesn’t control the change in the state, it happens as a response

from the system. So

dW = Tr{dHρ}, (2.81)

and

dQ = Tr{Hdρ}, (2.82)
11We want to point out that this division is not always valid, for a more general formulation,

read [37–40]. But in the regime we are using it, it’s good, as made in [41].
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or, in a more useful way

W (t) =

∫ t

0

Tr

{
dH

dτ
ρ

}
dτ, (2.83)

Q(t) =

∫ t

0

Tr

{
H

dρ

dτ

}
dτ. (2.84)

In this model, the first law of thermodynamics is straightforward:

dU = dW + dQ, (2.85)

or

∆U =

∫ t

0

Tr

{
dH

dτ
ρ

}
dτ +

∫ t

0

Tr

{
H

dρ

dτ

}
dτ. (2.86)

If we analyze a system without a reservoir, i.e., a close system evolving in a unitary

way, we can write:
d ⟨E⟩
dt

= Tr

{
dρ

dt
H + ρ

dH

dt

}
, (2.87)

but

dρ

dt
=

d

dt

{
Uρ(t0)U †} , (2.88)

=
dU
dt
ρ(t0)U † + Uρ(t0)

dU
dt

†
, (2.89)

= −iHUρU † + iUρU †H, (2.90)

so

d ⟨E⟩
dt

= Tr

{
−iHUρU †H + iUρU †H2 + ρ

dH

dt

}
, (2.91)

= Tr

{
ρ
dH

dt

}
=

dW

dt
, (2.92)

so, as was expected, the closed system doesn’t trade heat and all changes in the total

energy of the system are due to work12.
12Note too that unitary transformation doesn’t alter Von Neumann’s entropy [27].
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On the other hand, if we study a system interacting with a reservoir but with a

constant hamiltonian, the power is

d ⟨E⟩
dt

= Tr

dρ

dt
H + ρ

�
�
��7
0

dH

dt

, (2.93)

= Tr

{
dρ

dt
H

}
=

dQ

dt
, (2.94)

the energy transfer in this case is just heat.
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2.3 Shortcut to adiabaticity

In quantum mechanics, the concept of adiabaticity is related to the one in ther-

modynamics in the sense that both describe the slow evolution of systems. For a

slow-driven Hamiltonian, the transitions between instantaneous eigenstates are close

to zero.

The method of shortcuts to adiabaticity consists in adding another hamiltonian to

the original so the system can evolve as an instantaneous eigenstate of the original

hamiltonian at any speed we like. The method used in this work was developed in

[16–21].

So, if the eigenvalue equation to the original hamiltonian (H0(t)) is:

H0(t) |n(t)⟩ = En(t) |n(t)⟩ , (2.95)

where H0 is:

H0(t) =
∑
n

En(t) |n(t)⟩⟨n(t)| . (2.96)

In the limit of adiabatic evolution, the systems state is described as;

|ψn(t)⟩ = eiξn(t) |n(t)⟩ , (2.97)

the phase ξn(t) may be found by substituting equations 2.96 e 2.97 in 2.95.

H0(t) |ψn(t)⟩ = i∂t |ψn(t)⟩ , (2.98)∑
m

Em(t) |m(t)⟩⟨m(t)| eiξn(t) |n(t)⟩ = i∂t(e
iξn(t) |n(t)⟩), (2.99)

∑
m

Em(t)e
iξn(t) ⟨m(t)|n(t)⟩ |n(t)⟩ = i{iξ̇n(t) |n(t)⟩+ ∂t |n(t)⟩}eiξn(t), (2.100)

∑
m

δnm(t)Em(t)e
iξn(t) |n(t)⟩ = i{iξ̇n(t) |n(t)⟩+ |∂tn(t)⟩}eiξn(t), (2.101)

En(t)e
iξn(t) |n(t)⟩ = i{iξ̇n(t) |n(t)⟩+ |∂tn(t)⟩}eiξn(t). (2.102)
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Multiplying in the left by ⟨n(t)| e−iξn(t) one find:

ξ̇n(t) = −En(t) + i ⟨n(t)|∂tn(t)⟩ , (2.103)

finally, to obtain ξn, just integrate:

ξn(t) = −
∫ t

0

En(t
′)dt′ + i

∫ t

0

⟨n(t′)|∂t′n(t′)⟩ dt′. (2.104)

From Schrodinger’s equation to the evolution operator (U(t), we can find the Hamil-

tonian given the evolution:

H(t)U(t) = ih̄∂tU(t), (2.105a)

H(t) = ih̄U̇(t)U †(t). (2.105b)

The evolution operator can be easily inferred as:

U(t) =
∑
n

exp(iξn) |n(t)⟩ ⟨n(0)| . (2.106)

To calculate the Hamiltonian 2.105b, we need U̇ and U †:

U̇(t) = ∂t

{∑
n

eiξn(t) |n(t)⟩⟨n(0)|

}
(2.107a)

=
∑
n

{
iξ̇n(t)e

iξn(t) |n(t)⟩⟨n(0)|+ eiξn(t) |∂tn(t)⟩⟨n(0)|
}
, (2.107b)

=
∑
n

{
iξ̇n(t) |n(t)⟩⟨n(0)|+ |∂tn(t)⟩⟨n(0)|

}
eiξn(t), (2.107c)

U †(t) =

{∑
n

eiξn(t) |n(t)⟩⟨n(0)|

}†

, (2.108a)

=
∑
n

e−iξn(t) |n(0)⟩⟨n(t)| . (2.108b)
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Putting 2.107c and 2.108b in 2.105b:

H(t) = ih̄
∑
n,m

{
iξ̇n |n(t)⟩⟨n(0)|+ |∂tn(t)⟩⟨n(0)|

}
eiξn(t)e−iξm(t) |m(0)⟩⟨m(t)| , (2.109a)

= ih̄
∑
n,m

ei(ξn(t)−ξm(t))
{
iξ̇n(t) |n(t)⟩⟨m(t)| δn,m(t) + |∂tn(t)⟩⟨m(t)| δn,m(t)

}
,

(2.109b)

= ih̄
∑
n

{
iξ̇n(t) |n(t)⟩⟨n(t)|+ |∂tn(t)⟩⟨n(t)|

}
, (2.109c)

finally, replace 2.103 in 2.109c:

H(t) = ih̄
∑
n

{
i

[
−1

h̄
En(t) + i ⟨n(t)|∂tn(t)⟩

]
|n(t)⟩⟨n(t)|+ |∂tn(t)⟩⟨n(t)|

}
, (2.110a)

=
∑
n

En(t) |n(t)⟩⟨n(t)|+ ih̄
∑
n

{|∂tn(t)⟩ ⟨n(t)| − ⟨n(t)|∂tn(t)⟩ |n(t)⟩⟨n(t)|} ,

(2.110b)

= H0(t) +HCD(t), (2.110c)

where :

HCD(t) = ih̄
∑
n

{|∂tn(t)⟩ ⟨n(t)| − ⟨n(t)|∂tn(t)⟩ |n(t)⟩⟨n(t)|} , (2.111)

CD here comes from Counterdiabatic Driving since it works by removing the non-

adiabatic part of the evolution.

There is yet another, more natural way to write HCD by calculating it’s the matrix
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elements ⟨m(t)|HCD |o(t)⟩ :

⟨m(t)|HCD |o(t)⟩ = ih̄ ⟨m(t)|
∑
n

{|∂tn(t)⟩ ⟨n(t)| − ⟨n(t)|∂tn(t)⟩ |n(t)⟩⟨n(t)|} |o(t)⟩ ,

(2.112)

= ih̄
∑
n

⟨m(t)|∂tn(t)⟩ ⟨n(t)|o(t)⟩ − ⟨n(t)|∂tn(t)⟩ ⟨m(t)|n(t)⟩ ⟨n(t)|o(t)⟩ ,

(2.113)

= ih̄
∑
n

⟨m(t)|∂tn(t)⟩ δno(t)− ⟨n(t)|∂tn(t)⟩ δmn(t)δno(t), (2.114)

= ih̄ {⟨m(t)|∂to(t)⟩ − ⟨o(t)|∂to(t)⟩ δmo(t)} . (2.115)

It’s easy to see that HCD has no diagonal terms, i.e., ⟨n(t)|HCD |n(t)⟩ = 0 ∀ n.

From the eigenvalue equation to the Hamiltonian, one can obtain:

H0(t) |n(t)⟩ = En(t) |n(t)⟩ , (2.116)

Ḣ0(t) |n(t)⟩+H0(t) |∂tn(t)⟩ = Ėn(t) |n(t)⟩+ En(t) |∂tn(t)⟩ . (2.117)

Multiplying in the left by ⟨m(t)| for a m ̸= n:

⟨m(t)| Ḣ0(t) |n(t)⟩+ ⟨m(t)|H0(t) |∂tn(t)⟩ = Ėn(t)�������:0
⟨m(t)|n(t)⟩+ En(t) ⟨m(t)|∂tn(t)⟩ ,

(2.118)

⟨m(t)| Ḣ0(t) |n(t)⟩ = {En(t)− Em(t)} ⟨m(t)|∂tn(t)⟩ , (2.119)

⟨m(t)|∂tn(t)⟩ =
⟨m(t)| Ḣ0(t) |n(t)⟩
En(t)− Em(t)

. (2.120)
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We can finally write the counter driving hamiltonian as:

HCD(t) =
∑
n,m

|m(t)⟩⟨m(t)|HCD(t) |n(t)⟩⟨n(t)| , (2.121)

=
∑
m,n
m̸=n

|m(t)⟩ {ih̄ ⟨m(t)|∂tn(t)⟩} ⟨n(t)| , (2.122)

= ih̄
∑
m,n
m̸=n

|m(t)⟩ ⟨m(t)| Ḣ0 |n(t)⟩
En(t)− Em(t)

⟨n(t)| . (2.123)
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2.4 Squeezing

It’s well known that non-commuting operators must obey the uncertainty principle

∆A∆B ≥ 1

2
|⟨[A,B]⟩| , (2.124)

that limits the minimum uncertainty on measurements.We can apply this to the posi-

tion and momentum operators to obtain the usual:

∆x∆p ≥ h̄

2
. (2.125)

There are states for which this uncertainty can achieve the equality, for example,

the coherent states for the harmonic oscillator. The coherent states are defined as

â |α⟩ = α |α⟩ , (2.126)

i.e., the eigenstates of the ladder operators.

The uncertainty to the position is:

(∆x)2 =
〈
x2
〉
− ⟨x⟩2 , (2.127)

=
h̄

2mω
⟨α|
(
â+ â†

)2 |α⟩ − h̄

2mω
⟨α|
(
â+ â†

)
|α⟩2 , (2.128)

=
h̄

2mω

(
⟨α|
(
â2 + â†2 + 2â†â+ 1

)
|α⟩ − (α + ᾱ)2

)
, (2.129)

=
h̄

2mω

(
(α + ᾱ)2 + 1− (α + ᾱ)2

)
, (2.130)

=
h̄

2mω
. (2.131)

Same can be calculated for momentum:

(∆p)2 =
〈
p2
〉
− ⟨p⟩2 , (2.132)

= − h̄mω
2

⟨α|
(
â− â†

)2 |α⟩+ h̄mω

2
⟨α|
(
â− â†

)
|α⟩2 , (2.133)

= − h̄mω
2

(
⟨α|
(
â2 + â†2 − 2â†â− 1

)
|α⟩ − (α + ᾱ)2

)
, (2.134)

= − h̄mω
2

(
(α− ᾱ)2 − 1− (α− ᾱ)2

)
, (2.135)

=
h̄mω

2
. (2.136)
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So, their product is:

∆x∆p =
h̄

2
. (2.137)

There is yet another way of looking at this, we can use the electric operator of a

single mode electromagnetic wave:

Ê(t) =
E0

2

(
âe−iωt + â†eiωt

)
, (2.138)

or:

Ê(t) = E0

(
X̂1 cosωt+ X̂2 sinωt

)
, (2.139)

here, the operators X̂1 and X̂2 are called quadratures of the field and are given by:

X̂1 =
â+ â†

2
(2.140)

X̂2 =
â− â†

2i
(2.141)

they must obey a similar uncertainty principle given by:

∆X1∆X2 ≥
1

4
, (2.142)

for coherent states of light, the equality is true and the quadrature fluctuations are

equal to one another 〈
(∆X1)

2
〉
=
〈
(∆X2)

2
〉
=

1

4
. (2.143)

These minimum uncertainty is called vacuum uncertainty (as the vacuum states are

a form of obtain this equality). There is a way to still obtain a smaller uncertainty in

the way that we squeeze the uncertainty on the quadratures, one gets smaller but the

other must become greater, since the uncertainty principle must remain true.

These squeezed states are defined by the squeezing operator:

|ψS⟩ = Ŝ(ζ) |ψ⟩ , (2.144)
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ζ is equal to reiθ, where r is called squeezing parameter and θ represents the angle

between the squeezing axis and the quadrature axis, furthermore, the operator itself is

defined as:

Ŝ(r, θ) = exp

{
1

2
(ζ∗â2 − ζâ†2)

}
. (2.145)

it’s useful to calculate the application of the squeezing operator in the ladder operators:

Ŝ†âŜ = â cosh r − â†eiθ sinh r, (2.146)

Ŝ†â†Ŝ = â† cosh r − âe−iθ sinh r. (2.147)

We then, calculate the variance in the quadratures for the squeezed vacuum state:

(∆X1)
2 =

〈
X2

1

〉
− ⟨X1⟩2 , (2.148)

= ⟨ζ|X2
1 |ζ⟩ − ⟨ζ|X1 |ζ⟩2 , (2.149)

=
1

4
⟨0| Ŝ†(â+ â†)2Ŝ |0⟩ − 1

4
⟨0| Ŝ†(â+ â†)Ŝ |0⟩2 , (2.150)

=
1

4
⟨0| Ŝ†(â2 + â†2 + 2â†â+ 1)Ŝ |0⟩− (2.151)

− 1

4
⟨0| (â(cosh r − e−iθ sinh r) + â†(cosh r − eiθ sinh r)) |0⟩2 ,

=
1

4
⟨0| (Ŝ†âŜ)2 + 2(Ŝ†â†Ŝ)2 + (Ŝ†â†ŜŜ†âŜ) + 1 |0⟩ , (2.152)

= (cosh2 r + sinh2 r − 2 cosh r sinh r cos θ) (2.153)
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(∆X2)
2 =

〈
X2

2

〉
− ⟨X2⟩2 , (2.154)

= ⟨ζ|X2
2 |ζ⟩ − ⟨ζ|X2 |ζ⟩2 , (2.155)

= −1

4
⟨0| Ŝ†(â− â†)2Ŝ |0⟩+ 1

4
⟨0| Ŝ†(â− â†)Ŝ |0⟩2 , (2.156)

= −1

4
⟨0| Ŝ†(â2 + â†2 − 2â†â− 1)Ŝ |0⟩+ (2.157)

+
1

4
⟨0| (â(cosh r + e−iθ sinh r)− â†(cosh r + eiθ sinh r)) |0⟩2 ,

= −1

4
⟨0| (Ŝ†âŜ)2 + (Ŝ†â†Ŝ)2 − 2(Ŝ†â†ŜŜ†âŜ)− 1 |0⟩ , (2.158)

= (cosh2 r + sinh2 r + 2 cosh r sinh r cos θ) (2.159)

When we consider the case when θ = 0:

(∆X1)
2 =

1

4
e−2r, (2.160)

(∆X2)
2 =

1

4
e2r, (2.161)

it’s then obvious that as the first quadrature X1 is compressed(squeezed) by a factor of

e−2r13, the second one is stretched by a factor of e−2r, hence the name of the operation.

13r is always positive.
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3 The Problem and Solution

3.1 The engine

It’s possible to create a quantum heat engine with almost any system, we just need

to make sure it’s gaining energy from the baths and using it to make useful things, to

perform work.

The system we chose to study is a harmonic oscillator with constant frequency

in which we applied the Squeezing Operator and coupled it to two thermal baths at

different temperatures.

3.1.1 Squeezed Otto Cycle

First of all, we will define the cycle we are using.

• 1 - Adiabatic compression:

We have begun by using the thermal state (Gibbs’s state) for the harmonic oscillator

(which hamiltonian will be represented as Ĥho) with temperature defined by βh and

frequency ω, then applied squeezing on it while not in contact with any reservoir:

Ĥho = h̄ω

(
â†â+

1

2

)
=⇒ Ĥsho = h̄ω

(
â†â+

1

2

)
+ χ

(
â†2 + â2

)
,

ρ̂1 =
e−βhĤho

Zh

Û
=⇒ ρ̂2 = Û ρ̂1Û

†.

(3.1)

This step is called compression because the effective frequency of the oscillator is de-

creased and so are the energy gaps in the hamiltonian. This can be seen by diagonal-

izing the Hamiltonian of the Squeezed harmonic oscillator(Hsho).

• 2 - Contact with the cold reservoir(βc):

Subsequently to the unitary evolution, contact was established between the system and
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the cold reservoir and we allowed the system to thermalize again (now with the cold

temperature reservoir).

Ĥsho = h̄ω

(
â†â+

1

2

)
+ χ

(
â†2 + â2

)
=⇒ Ĥsho = h̄ω

(
â†â+

1

2

)
+ χ

(
â†2 + â2

)
,

ρ̂2 = Û ρ̂1Û
† Û
=⇒ ρ̂3 =

e−βcĤsho

Zc

.

(3.2)

• 3 - Adiabatic expansion:

The third step is done by turning off the squeezing, and returning to the harmonic

oscillator Hamiltonian (Hho) :

Ĥsho = h̄ω

(
â†â+

1

2

)
+ χ

(
â†2 + â2

)
=⇒ Ĥho = h̄ω

(
â†â+

1

2

)
,

ρ̂3 =
e−βcĤsho

Zc

V̂=Û†
=⇒ ρ̂4 = V̂ ρ̂3V̂

†.

(3.3)

• 4 - Contact with the hot reservoir(βh):

The system is finally thermalized with the hot reservoir returning to the initial

state:
Ĥho = h̄ω

(
â†â+

1

2

)
=⇒ Ĥho = h̄ω

(
â†â+

1

2

)
,

ρ̂4 = V̂ ρ̂3V̂
† Û
=⇒ ρ̂1 =

e−βhĤho

Zh

.

(3.4)

As we were studying only the effects of the pumping in the engine, we do not change

the oscillator’s frequency ω throughout the calculations.

3.1.2 Diagonalizing of Ĥsho

To calculate the energy in steps 2 and 3, we diagonalize the Hamiltonian Ĥsho

applying a Bogoliubov transformation, which consists in defining a new operator b̂ as:

b̂ = µâ+ νâ†, (3.5)
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here, it can be shown that b̂ has the same properties as â so it’s also a ladder operator

in a different Hilbert space. We select the constants µ and ν so the Hamiltonian has

no quadratic terms and so we can write:

Ĥsho = h̄ω

(
â†â+

1

2

)
+ χ

(
â†2 + â2

)
= h̄Ω

(
b̂†b̂+

1

2

)
, (3.6)

where:

Ω = ω

√
1−

(
2χ

ω

)2

, (3.7)

which is plotted below:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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6

Omega (r)
Squeezed

Figure 1: Given some ω(taken here as ω = 2π), this plot shows that Ω is always smaller

than ω, which is the reason steps 1 and 3 are compression and expansion respectively,

also, Ω never actually hits zero.

It’s possible to write this in terms of the squeezing by realizing that the hamiltonian

can actually by written as:

Ĥsho =
Ω

ω
Ŝ†(r)ĤhoŜ(r). (3.8)
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Using this, the relation between r and χ, and r and Ω are:

χ =
ω

2
sech 2r, (3.9)

Ω = ω tanh 2r. (3.10)

These relations are used to plot the graphs as function of r instead of χ (see above.).

3.1.3 The energy of each ρ

The energies calculated are:

⟨H⟩1 = Tr
{
ρ1Ĥho

}
=
h̄ω

2
coth

(
βhω

2

)
, (3.11)

⟨H⟩2 = Tr
{
ρ2Ĥsho

}
=
h̄Q∗

1Ω

2
coth

(
βhω

2

)
, (3.12)

⟨H⟩3 = Tr
{
ρ3Ĥsho

}
=
h̄Ω

2
coth

(
βcΩ

2

)
, (3.13)

⟨H⟩4 = Tr
{
ρ4Ĥho

}
=
h̄Q∗

2ω

2
coth

(
βcΩ

2

)
, (3.14)

where Q∗
i is the adiabaticity parameter1 that characterizes the speed of the transforma-

tion (or the quantum adiabaticity to it) and Ω is the effective frequency of the squeezed

Hamiltonian [42–44].

3.1.4 Thermodynamic quantities

It’s easy to perceive that all the energy traded in steps 1 and 3 is work since it’s

done by unitary transformations as in 2.92.

⟨W ⟩compression = ⟨H⟩2 − ⟨H⟩1 ,

=
h̄

2
(Q∗

1Ω− ω) coth

(
βhω

2

)
,

(3.15)

1Obtained in B
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⟨W ⟩expansion = ⟨H⟩4 − ⟨H⟩3 ,

=
h̄

2
(Q∗

2ω − Ω) coth

(
βcΩ

2

)
,

(3.16)

In the same way, it’s natural to identify the energy change in steps 2 and 4 as heat

given that they’re due to thermal reservoirs and there’s not a transformation on the

system’s Hamiltonian as in 2.94.

⟨Q⟩cold = ⟨H⟩3 − ⟨H⟩2 ,

=
h̄Ω

2

{
coth

(
βcΩ

2

)
−Q∗

1 coth

(
βhω

2

)}
,

(3.17)

⟨Q⟩hot = ⟨H⟩1 − ⟨H⟩4 ,

=
h̄ω

2

{
coth

(
βhω

2

)
−Q∗

2 coth

(
βcΩ

2

)}
.

(3.18)

The efficiency calculated is :

η = 1− Ω

ω
F , (3.19)

and

F =

{
coth

(
βcΩ
2

)
−Q∗

1 coth
(
βhω
2

)
Q∗

2 coth
(
βcΩ
2

)
− coth

(
βhω
2

)} . (3.20)

In the slow regime 2 Q∗
i = 1, i = 1, 2; and we may write:

η = 1− Ω

ω
, (3.21)

or, as a function of the parameter of squeezing r

η = 1− sech 2r. (3.22)

One might think that if r → ∞ then η → 1, but there is a superior limit to r given

by the engine condition, i.e., Wtotal < 0 and Qh > 0. The superior limit of r is

rmax =
1

2
cosh−1 Th

Tc
, (3.23)

2Adiabatic change.
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if r > rmax, then W > 0 and Q < 0, the system would transfer heat to the hot reservoir.

That is to be compared with the traditional Otto engine with a harmonic oscillator

(where the frequency is a function of time) [43], even though the efficiency looks the

same, the terms mean different things. We achieve this efficiency by altering the

effective frequency of the system by applying squeezing while they change the actual

frequency. It’s important to realize that there is no Otto engine if the frequency doesn’t

change.

Yet on the quasi-static limit, we may plot 3.22 for further study, figure 2 is a plot

of η versus r for Q∗
1 = Q∗

2 = 1, ω = 2π, Th = 10 and Tc = 1. This result is in agreement

with [45,46] in which anharmonicity can improve the performance of quantum thermal

machines.
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Efficiency (r)

Squeezed
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Figure 2: This is the graph of the adiabatic case, where Q∗
1 = Q∗

2 = 1, and the

parameters of the system are ω = 2π,Th = 10, and Tc = 1. We lined the Carnot’s

engine efficiency for comparison.
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3.1.5 High and Low-Temperature Limits

Now, we maximize the power in the adiabatic regime Q∗
1,2 = 1 and make the high-

temperature approximation Ti → ∞ or βi → 0+, for small values, cothx ≈ 1
x

and we

can write:

W =
1

βh

{
Ω

ω
− 1

}
+

1

βc

{ω
Ω

− 1
}
, (3.24)

the condition for maximum power then is ω
Ω
=
√

βh

βc
and the efficiency is equal to the

Curzon-Ahlborn [47]

η = 1−

√
βh
βc
. (3.25)

For the low temperature limit, βc → ∞ 3

η = 1−
√
βhΩ

2
, (3.26)

this is an interesting result if we compare it with Eq.(12) [43] because it shows that

in this limit 4, even after reducing the lowest frequency, is possible to increase the

efficiency even without changing the frequency, just by applying a squeezing to it.

On the other hand, if we make a sudden change approach Q∗
1,2 = (ω2+Ω2)

2ωΩ
, in the

high-temperature limit, we recover the results on [43]

η =
1−

√
Tc

Th

2 +
√

Tc

Th

, (3.27)

and in the low-temperature regime

η =
1−

√
βhΩ
2

2 +
√

βhΩ
2

. (3.28)

For a sudden change, the maximum efficiency possible is 1
2

in the limit where βh →

0+, Th → ∞.
3we also considered βhω >> 1, i.e., βh << βc

4Q∗
1 = Q∗

2 = 1, βc → ∞ and βh → 0+.
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3.2 Simulations

The graph for a general Q∗
1,2 is helpful to compare with computational results, so

it’s plotted below:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Figure 3: This graph shows the efficiency for ω = 2π, Th = 10 and Tc = 1.

Next, we study the effect of non-adiabaticity in unitary strokes performed at non-

zero power in a general way using numerical methods in Python and the QuTip toolbox

[48–50]. We run the unitary strokes with a linear variation in time, i.e., χ(t) = χ0

(
t
τ

)
and χ(t) = χ0

(
1− t

τ

)
where τ is a constant that defines how fast this change happens.

The program is displayed in appendix C and was run for different r. Time represents

the total time taken in both compression and expansion strokes (taken to be the same).

The values were chosen to be r = 0, 4, r = 0, 8‘, and r = 1, 2 and they’re plotted

below.
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Figure 4: In these plots, the red trace represents the maximum efficiency given a

squeezing parameter r (infinitely slow strokes). (a) r=0,4 (b) r=0,8 and (c) r=1,2.

We needed an explanation for the oscillatory comportment of efficiency with the

time taken by the unitary evolution strokes. The answer came in the form of entropy

production as written in [51]. It’s necessary to mention that Von Neumann entropy is

invariant over unitary transformations so

This oscillatory comportment can be explained by plotting the entropy changes

for different strokes, here, we plotted it for the unitary strokes Sexpansion + Scompression

that was calculated as shown in [51] since the Von Neumann entropy is invariant for

unitary transformations. The entropy were calculated as a relative entropy between the
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real state (state after the evolution) and a hypothetical equilibrium state that would

happen if the evolution took an infinite amount of time to occur.
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Figure 5: In these plots, the red trace represents the maximum efficiency given a

squeezing parameter r (infinitely slow strokes). (a) r=0,4 (b) r=0,8 and (c) r=1,2.

As one should hope, the entropy increases as the efficiency decrease, which relates

the relative entropy with work lost for inner friction, as the author [51] calls the

irreversible work that should be lost in the engine.
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3.3 Theorem

In this section, we will take advantage of this diagonalization method applied to

this work to prove that Carnot’s efficiency can’t be exceeded for thermal reservoir

cycles. Note that is already done in [25] making use of fluctuation relations involving

the nonequilibrium work and heat exchanged with the reservoir, we are following an

alternative path. The theorem will be stated as:

It is not possible to extract an efficiency η greater than Carnot efficiency ηcarnot

from an Otto cycle without resorting to quantum (non-thermal) reservoirs.

To prove this theorem we will make use of a well-known result in which any hermi-

tian operator can be diagonalized, e.g., the Bogoliubov transformation that diagonalizes

our Hamiltonian. In other words, is always possible to write:

H(a, a†) = Ωb†b, (3.29)

Now, if we assume only thermal reservoirs and the Otto cycle, the efficiency η is given by

Eq.(3.19) and it is always greater when we keep the QHO frequency fixed. We therefore

must show that η ≤ ηcarnot. Taking into account the engine condition ⟨Q⟩hot > 0, we

can write
h̄ω

2

{
coth

(
βhω

2

)
−Q∗

2 coth

(
βcΩ

2

)}
> 0, (3.30)

from which we obtain
coth

(
βhω
2

)
coth

(
βcΩ
2

) > Q∗
2 ≥ 1, (3.31)

and therefore coth
(
βhω
2

)
≥ coth

(
βcΩ
2

)
, or, equivalently:

βh
βc

≤ Ω

ω
. (3.32)

Now, multiply both sides by the term in parentheses on the right-hand side by F of
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Eq.(3.20)
βh
βc

F ≤ Ω

ω
F (3.33)

and rearranging to

1− βh
βc

F ≥ 1− Ω

ω
F , (3.34)

we can see that the right-hand side in the above inequality is just η, as given by

Eq.(3.19):

1− βh
βc

{
coth

(
βcΩ
2

)
−Q∗

1 coth
(
βhω
2

)
Q∗

2 coth
(
βcΩ
2

)
− coth

(
βhω
2

)} ≥ η. (3.35)

Consider now the following inequality:

(Q∗
1 − 1) coth

(
βhω

2

)
+ (Q∗

2 − 1) coth

(
βcΩ

2

)
≥ 0, (3.36)

which is obvious since Q∗
i ≥ 1, i = 1, 2, and the coth function is always positive for

positive inputs. Then, from the above equation, we obtain

Q∗
1 coth

(
βhω
2

)
− coth

(
βcΩ
2

)
coth

(
βhω
2

)
−Q∗

2 coth
(
βcΩ
2

) ≥ 1. (3.37)

Multiplying both sides by βh/βc and rearranging:

1− βh
βc

{
Q∗

1 coth
(
βhω
2

)
− coth

(
βcΩ
2

)
coth

(
βhω
2

)
−Q∗

2 coth
(
βcΩ
2

)} ≤ 1− βh
βc
. (3.38)

Note that the right-hand side in the above equation is just ηcarnot. Finally, we use

Eq.(3.35) to complete the prove:

η ≤ 1− βh
βc

{
Q∗

1 coth
(
βhω
2

)
− coth

(
βcΩ
2

)
coth

(
βhω
2

)
−Q∗

2 coth
(
βcΩ
2

)} ≤ ηcarnot. (3.39)

or

η ≤ ηCarnot (3.40)
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3.4 STA Hamiltonian

There is a way to increase the power of the engine without losing efficiency, it’s

called a shortcut to adiabaticity. The method revolves around adding a hamiltonian

to the model so it evolves in a fast way but following the quantum adiabatic evolution

of the original system. [52]

3.4.1 Counterdiabatic Driving

The STA method seeks to alter the original problem in a way to make the system

evolve to be always an eigenstate of the instantaneous Hamiltonian. In the diagonal

base, the Hamiltonian can be written as:

Ĥ0 =
∑
n

En(t) |n(t)⟩⟨n(t)| . (3.41)

We are searching for the Hamiltonian that makes our system be described by the

ket:

|ψn(t)⟩ = eiξn(t) |n(t)⟩ . (3.42)

The Hamiltonian to be summed in the original to achieve this is:

ĤCD = i
∑
n

{|∂tn(t)⟩⟨n(t)| − ⟨n(t)|∂tn(t)⟩ |n(t)⟩⟨n(t)|} . (3.43)

3.4.2 |∂tn(t)⟩

The problem here is to apply the STA method to the squeezed harmonic oscillator

which is given by the following Hamiltonian:

Ĥ = Ω(t)

(
b̂†t b̂t +

1

2

)
, (3.44)

where:

Ω(t) = Ωt =
√
Ω2 − 4χ(t)2. (3.45)
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The operators b̂† and b̂ are called instantaneous operators because they change with

time but are written in the base that diagonalizes the time-dependent Hamiltonian.

The instantaneous eigenstates of it are given by:

⟨x|n⟩t =
1√
2nn!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

)
Hn

(√
mΩtx

)
. (3.46)

here, x is not the physical position but has the same properties in the same way that

b̂ isn’t the destruction operator but has the same properties of it.

The time derivative of it is:

⟨x|∂tn⟩t =
1√
2nn!

1

4

mΩ̇t

π

(
mΩt

π

)− 3
4

exp

(
−mΩtx

2

2

)
Hn

(√
mΩtx

)
+ (3.47)

+
1√
2nn!

(
mΩt

π

) 1
4

(
−mΩ̇tx

2

2

)
exp

(
−mΩtx

2

2

)
Hn

(√
mΩtx

)
+

+
1√
2nn!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

)
∂tHn

(√
mΩtx

)
.

Using the following property of Hermite polynomial:

∂xHn(x) = 2nHn−1(x), (3.48)

and rearranging some terms:

⟨x|∂tn⟩t =
Ω̇t

4Ωt

{
1√
2nn!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

)
Hn

(√
mΩtx

)}
− (3.49)

− Ω̇t

Ωt

mΩtx
2

2

{
1√
2nn!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

)
Hn

(√
mΩtx

)}
+

+
1√
2nn!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

){
2nHn−1

(√
mΩtx

)√m

Ωt

xΩ̇t

2

}
.

The terms in braces are equal to ⟨x|n(t)⟩:

⟨x|∂tn(t)⟩ =
Ω̇t

Ωt

(
1

4
− mΩtx

2

2

)
⟨x|n⟩t+ (3.50)

+
Ω̇t

Ωt

√
mΩt

2
x
√
n

{
1√

2n−1(n− 1)!

(
mΩt

π

) 1
4

exp

(
−mΩtx

2

2

)
Hn−1

(√
mΩtx

)}
.
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Again, the term in braces is just ⟨x|n− 1⟩t:

⟨x|∂tn⟩t =
ω̇t

ωt

(
1

4
− mωtx

2

2

)
⟨x|n⟩t +

ω̇t

ωt

√
mωt

2
x
√
n ⟨x|n− 1⟩t . (3.51)

Removing the x bra:

|∂tn⟩t =
Ω̇t

Ωt

(
1

4
− mΩtx̂

2

2

)
|n⟩t +

Ω̇t

Ωt

√
mΩt

2
x̂
√
n |n− 1⟩t . (3.52)

Using that
√
n |n− 1⟩t = b̂ |n⟩t :

|∂tn⟩t =
Ω̇t

Ωt

(
1

4
− mΩtx̂

2

2

)
|n⟩t +

Ω̇t

Ωt

√
mΩt

2
x̂b̂ |n⟩t , (3.53)

=
Ω̇t

Ωt

{
1

4
− mΩtx̂

2

2
+

√
mΩt

2
x̂b̂

}
|n⟩t . (3.54)

It’s possible to write x̂ e x̂2 as functions of b̂ and b̂†:

x̂ =

√
1

2mΩt

(
b̂+ b̂†

)
, (3.55)

x̂2 =
1

2mΩt

(
b̂+ b̂†

)(
b̂+ b̂†

)
, (3.56)

=
1

2mΩt

(
b̂2 + b̂†2 + b̂†b̂+ b̂b̂†

)
, (3.57)

and, as b̂b̂† = b̂†b̂+ 1:

x̂2 =
1

2mΩt

(
b̂2 + b̂†2 + 2b̂†b̂+ 1

)
. (3.58)

So :

|∂tn⟩t =
Ω̇t

Ωt

{
�
�
�1

4
− 1

4

(
b̂2 + b̂†2 + 2b̂†b̂+ �1

)
+

1

2

(
b̂+ b̂†

)
b̂

}
|n⟩t , (3.59)

=
Ω̇t

4ωt

{
−b̂2 − b̂†2����−2b̂†b̂+ 2b̂2 +�

��2b̂†b̂
}
|n⟩t , (3.60)

=
Ω̇t

4Ωt

�
�>
b̂2

2b̂2�
��−b̂2 − b̂†2

 |n⟩t , (3.61)

=
Ω̇t

4Ωt

{
b̂2 − b̂†2

}
|n⟩t . (3.62)
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3.4.3 ⟨n|∂tn⟩t

The operators in |∂tn⟩t are quadratic, so this calculation is trivial :

⟨n|∂tn⟩t = ⟨n|t

{
Ω̇t

4Ωt

(
b̂2 − b̂†2

)
|n⟩t

}
, (3.63)

=
Ω̇t

4Ωt

{
������:0
⟨n|b̂2|n⟩t −������:0

⟨n|b̂†2|n⟩t
}
, (3.64)

= 0. (3.65)

3.4.4 HCD

Applying what e found to HCD :

HCD = i
∑
n

{
|∂tn⟩⟨n|t −�����:0⟨n|∂tn⟩t |n⟩⟨n|t

}
, (3.66)

= i
∑
n

Ω̇t

4Ωt

{
b̂2 − b̂†2

}
|n⟩⟨n|t , (3.67)

= i
Ω̇t

4Ωt

{
b̂2 − b̂†2

}
�

���
��*

I∑
n

|n⟩⟨n|t. (3.68)

So :

HCD = i
Ω̇t

4Ωt

{
b̂2 − b̂†2

}
, (3.69)

or, back in the original base:

HCD = i
Ω̇t

4Ωt

(µ2 − ν2)(a2 − a†2), (3.70)

HCD = i
Ω̇t

4Ωt

(a2 − a†2). (3.71)

By using this Hamiltonian, it’s possible to have an adiabatic engine even if we make

the evolution fast. So, it increases the power of the engine.
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4 Conclusion

In this work, we presented the formulation of open quantum systems usually used in

quantum thermodynamics [28–35]. A little introduction to quantum thermodynamics

[3, 36–41] and how to improve its power by applying shortcut to adiabaticity [16–19,

21,43].

We then proceeded to study a modified quantum harmonic oscillator by making it a

working fluid on an engine operating between two thermal reservoirs. We achieved an

analytical result on efficiency that shows that the squeezed engine can achieve Carnot’s

efficiency for some squeezing parameter r if the engine runs on a quasi-static cycle.

Also, we provide a form of calculation for the STA for the squeezing harmonic

oscillator that surprisingly is just to apply another second-order hamiltonian that will

force the system to evolve in an "adiabatically" way, adiabatically here means in a

quantum way.

Last but not least, we ran the cycle through simulations on QuTip and showed

the results. Our results showed an interesting oscillatory pattern that is unexpected,

since the longer it takes, closer to adiabaticity we should be. The oscillatory pattern

implies that the efficiency may drop even if we make the operation a little longer. The

explanation for this is given by the authors in [51] which shows that inner friction

can waste some energy and this is proven by the entropy production plot, when the

efficiency decreases the entropy increases. This is yet another point that shows that

Von Neumann’s entropy is not always the thermodynamics entropy.
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Appendix A Separation of the terms in section 2.1.3

The sum made here is:
d2∑
i

d2∑
j

ci,j(ε)FiρF
†
j (A.1)

To facilitate the understanding in the way we wrote the terms of the sum in 2.20 one

may imagine the sum over i and j are actually over all the elements of a square matrix

of dimensions d2 x d2 :



c1,1F1ρF
†
1 c1,2F1ρF

†
2 ... c1,d2F1ρF

†
d2

c2,1F2ρF
†
1 c2,2F2ρF

†
2 ... c2,d2F2ρF

†
d2

... ... ... ...

cd2,1Fd2ρF
†
1 cd2,2Fd2ρF

†
2 ... cd2,d2Fd2ρF

†
d2


(A.2)

Remembering Fd2 =
I√
d
, so:

c1,1F1ρF
†
1 c1,2F1ρF

†
2 ... 1√

d
c1,d2F1ρ

c2,1F2ρF
†
1 c2,2F2ρF

†
2 ... 1√

d
c2,d2F2ρ

... ... ... ...

1√
d
cd2,1ρF

†
1

1√
d
cd2,2ρF

†
2 ... 1

d
cd2,d2ρ


(A.3)

From where the terms are separated by "order "1 of F in the problem, in zero order

we have the last term:
1

d
cd2,d2ρ (A.4)

In the first order, we have all the terms of the last row and column (except for the

term d2 x d2 which was already counted in zero order):

d2−1∑
i=1

1√
d

{
ci,d2Fiρ+ cd2,iρF

†
i

}
(A.5)

1Order here refers to which power of F appears in the term in question.
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Here, a sum in j should have appeared, but as the terms do not intersect (and they

are dummy indices), j = i is made in the second summation.

In second order we have all the other terms (the sums now go up to d2 − 1 to

disregard the last row and column):

d2−1∑
i=1

d2−1∑
j=1

ci,jFiρF
†
j

Finally, one has:

d2∑
i

d2∑
j

ci,j(ε)FiρF
†
j =

1

d
cd2,d2ρ+

d2−1∑
i=1

1√
d

{
ci,d2Fiρ+ cd2,iρF

†
i

}
+

d2−1∑
i=1

d2−1∑
j=1

ci,jFiρF
†
j

(A.6)

50



Appendix B Husimi Parameter (nonadibatic factor)

Husimi [42] proposed a way to calculate the energy of the time dependent harmonic

oscillator that is described by the following Schrodinger equation:

ih̄∂tψ = − h̄2

2m
∂2x′ψ +

m

2
ω2(t)x′

2
ψ. (B.1)

Furthermore, it’s well known that the propagator must obey this same equation:

ih̄∂tK = − h̄2

2m
∂2x′K +

m

2
ω2(t)x′

2
K. (B.2)

It was solved by proposing a Gaussian solution with time dependent terms that

could be adjusted to the specific solution:

K = exp

{
i

2h̄

(
a(t)x′

2
+ 2b(t)x′ + c(t)

)}
. (B.3)

Applying B.3 to B.1 and separating the polynomial terms:{
ȧ

2
+

a2

2m
+
mω2

2

}
x′

2
+

{
ḃ+

ab

m

}
x′ +

{
ċ+

b2

2m
− ih̄a

2m

}
= 0. (B.4)

As this polynomial is zero for whatever x′, then its coefficients have to cancel

independently and generate three differential equations:

ȧ

m
= − a

m2
− ω2, (B.5)

ḃ = −ab
m
, (B.6)

ċ =
ih̄a

m
− b2

m
. (B.7)

The first equation is a Riccati equation that can be transformed into something

more familiar with the transformation a = m Ẋ
X

:
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{
ẌX − Ẋ2

X2

}
= −Ẋ

2

X2
− ω2, (B.8)

Ẍ = −ω2X. (B.9)

The equation in b can be solved by direct integration:

ḃ = −Ẋb
X
, (B.10)

ḃ

b
= −Ẋ

X
, (B.11)∫

ḃ

b
dt = −

∫
Ẋ

X
dt, (B.12)∫

1

b
db = −

∫
1

X
dX, (B.13)

ln(b) = − ln(X) + ln(κ), (B.14)

b =
κ

X
. (B.15)

where κ represents the degree of freedom given by the constant of integration.

Same can be done in c:

ċ = ih̄
Ẋ

X
− 1

m

κ2

X2
, (B.16)

c = ih̄ ln(X)− 1

m

∫
κ2

X2
dt. (B.17)

It’s also well known that the Wronskian of the two solutions of a second order ODE

(here X and Y ) is constant (Abel’s Theorem). Without loss of generality, we can say

that this constant is −1 (redefining the functions X and Y , if necessary, since, if X is

a solution, aX is also a solution)

W (X, Y ) = XẎ − ẊY = θ = −1. (B.18)

An interesting fact that will come in handy later is:

d

dt

Y

X
=
Ẏ X − Y Ẋ

X2
= − 1

X2
, (B.19)
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Substituting in B.17:

c = ih̄ ln(X) +
κ

m

Y

X
+ C. (B.20)

Putting a(t), b(t) and c(t) back in B.3 :

K = exp

(
i

2h̄

{
mẊx′2

X
+

2κx′

X
+ ih̄ ln(X) +

κ2

m

Y

X
+ C

})
, (B.21)

= e
− ln(X)

2 e
iC
2h̄ exp

(
im

2h̄X

{
Ẋx′

2
+ 2x′

κ

m
+
κ2

m2
Y

})
. (B.22)

In the limit t→ t0 we must obtain:

K(x′, t;x, t0) =

√
m

2πih̄(t− t0)
exp

(
im(x′ − x)2

2h̄(t− t0)

)
. (B.23)

that is the propagator to a free particle. From here we discover the values of the

constants κ and C.

K =

√
m

2iπh̄X
exp

(
im

2h̄X

{
Ẋx′

2 − 2x′x+ x2Y
})

, (B.24)

and, in this limit X(t ≈ t0) ≈ t− t0, X(t0) = 0, Ẋ(t0) = 1 and Y (t0) = 1, that are the

boundary condition.

With this, we wish to calculate the probability of starting with a state |n⟩ and end

up with |m⟩ after evolving the state with this propagator, i.e. :

Pn→m = |⟨m| U(t, t0) |n⟩ |2, (B.25)

which can be written as follows by inserting completeness relations for x and x0:

Pn→m = |
∫∫

⟨m|x⟩ ⟨x| U(t, t0) |x0⟩ ⟨x0|n⟩ dxdx0|2. (B.26)

Identifying the terms, we get:

Pn→m = |
∫∫

ψ∗
m(x)K(x, t;x0, t0)ψn(x0)dxdx0|2 (B.27)
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Or, using that the squared modulus of a complex number is just that number

multiplied by its conjugate:

Pn→m =

∫∫∫∫
ψ∗
m(x)K(x, t;x0, t0)ψn(x0)ψm(x

′)K∗(x′, t;x′0, t0)ψ
∗
n(x

′
0)dxdx0dx

′dx′0

(B.28)

To simplify the problem, we use the method of generating functions1 and we write

the generator as follows form:

P (u, v) =
∑
n,m

unvmPn→m. (B.29)

From B.28 we can write:

P (u, v) =

∫∫∫∫
dxdx′dx0dx

′
0K(x, t;x0, t0)K

∗(x′, t;x′0, t0).

.

{∑
n

unψn(x0)ψ
∗
n(x

′
0)

}{∑
m

umψ∗
m(x)ψm(x

′)

}
. (B.30)

To move forward, one employs the well-known identity of Hermite polynomials [54]:

1√
π(1− z2)

exp

(
−(1− z2)(x̄2 + x̄0

2)− 4zxx0
2(1− z2)

)
=

∞∑
n=0

znψn(x)ψ
∗
n(x0), (B.31)

where x̄ = x/
√
h̄/mω0.

For simplicity, the adopted units will be the natural units of the system where

h̄ = m = ω0 = 1. Replacing B.31 in B.30:

P (u, v) =
1

π
√

(1− u2)(1− v2)

∫∫∫∫
K(x, t;x0, t0)K

∗(x′, t;x′0, t0)

exp

(
−(1 + u2)(x20 + x′0

2)− 4ux0x
′
0

2(1− u2)
− (1 + v2)(x2 + x′2)− 4vxx′

2(1− v2)

)
dxdx0dx

′dx′0.

(B.32)

1Link in Wikipedia on the topic [53]
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Finally, this integral is a multidimensional Gaussian (4-D) that has a tabulated

solution: ∫
...

∫
exp

(
−1

2

∑
rs

Arsxrxs

)
dx1...dxn =

√
(2π)n

det(A)
. (B.33)

With that in hand, we identify the terms of the matrix A and calculate its deter-

minant:

P (u, v) =

√
2

Q(1− u2)(1− v2) + (1 + u2)(1 + v2)− 4uv
. (B.34)

where :

Q =
1

2

{
X2 + Ẋ2 + Y 2 + Ẏ 2

}
. (B.35)

This Q is already the nonadiabaticity parameter.

B.1 case 1 : v = 1

If v = 1:

P (u, 1) =

√
2

Q(1− u2)(1− 1) + (1 + u2)(1 + 1)− 4u
, (B.36)

=

√
2

2− 4u+ u2
, (B.37)

=

√
2

2(1− u)2
, (B.38)

=
1

1− u
. (B.39)

The equation B.39 is equivalent to:

∑
m

Pn→m = 1. (B.40)
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Comparing with the definition of P (u, v):

P (u, 1) =
∑
n

un
∑
m

Pn→m, (B.41)

=
∑
n

un, (B.42)

=
1

1− u
. (B.43)

B.2 Case 2 : Time independent ω

For the unperturbed case, the solutions for X and Y are known:

X = −Ẏ = sin t , Ẋ = Y = cos(t). (B.44)

It’s easy to see that:

Q =
1

2

{
sin2 t+ cos2(t) + sin2 t+ cos2(t)

}
, (B.45)

= 1. (B.46)

Substituting in B.29:

P (u, v)Q=1 =

√
2

(1− u2)(1− v2) + (1 + u2)(1 + v2)− 4uv
, (B.47)

=

√
2

1 + u2v2 − v2 − u2 + 1 + u2v2 + u2 + v2 − 4uv
, (B.48)

=

√
2

2 + 2u2v2 − 4uv
, (B.49)

=

√
1

(1− uv)2
, (B.50)

=
1

1− uv
. (B.51)
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This case is equivalent to the transitionless case, i.e. Pn→m = δnm:

P (u, 1) =
∑
n,m

unvmPn→m, (B.52)

=
∑
n,m

unvmδnm, (B.53)

=
∑
n

{uv}n , (B.54)

=
1

1− uv
. (B.55)

B.3 Case 3 : P (−u,−v)

Substituting u→ −u and v → −v in B.34, one realises that:

P (−u,−v) =

√
2

Q(1− (−u)2)(1− (−v)2) + (1 + (−u)2)(1 + (−v)2)− 4(−u)(−v)
,

(B.56)

=

√
2

Q(1− u2)(1− v2) + (1 + u2)(1 + v2)− 4uv
, (B.57)

= P (u, v). (B.58)

Doing the same in B.29 :

P (−u,−v) =
∑
n,m

{−u}n {−v}m Pn→m, (B.59)

=
∑
n,m

{−1}n+m unvmPn→m. (B.60)

As P (−u,−v) = P (u, n), so:

∑
n,m

(−1)n+munvmPn→m =
∑
n,m

unvmPn→m, (B.61)

∑
n,m

{
(−1)n+m − 1

}
unvmPn→m = 0. (B.62)
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As u and v can be any, for the equality to be satisfied, all terms of the sum must

be zero. This implies that the transition probability to states of different parities must

be zero.:

Pn→m = 0 , if m and n have different parities. (B.63)

B.4 Consequences

We calculate the derivative of P (u, v) with respect to v and then set v = 1 in the

equation B.34:

∂P (u, v)

∂v
|v=1 = − 2−1/2 {−2vQ(1− u2) + 2v(1 + u2)− 4u}

(Q(1− u2)(1− v2) + (1 + u2)(1 + v2)− 4uv)3/2
|v=1, (B.64)

= −2−1/2{−2Q(1−u2)+2(1+u2)−4u}

(2(1 + u2)− 4u)3/2
, (B.65)

= −−Q(1− u)(1 + u) + (1− u)2

2(1− u)3
, (B.66)

=
1

2(1− u)2
{Q(1 + u)− (1− u)} . (B.67)

in the other relation:

∂P (u, v)

∂v
|v=1 =

∑
n,m

unmvm−1Pn→m|v=1, (B.68)

=
∑
n

un
∑
m

mPn→m, (B.69)

=
∑
n

un ⟨m⟩n . (B.70)

where ⟨m⟩n is the average quantum number for a state m given that the system started

at n.

On the other hand, we have that :

d

du

∞∑
n=0

un =
d

du

1

1− u
, (B.71)

∞∑
n=1

nun−1 =
1

(1− u)2
. (B.72)
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Substituting B.72 in B.67 and usingB.70:

1

2

∞∑
n=1

nun−1 {Q(1 + u)− (1− u)} =
∞∑
n=0

un ⟨m⟩n , (B.73)

1

2

{
∞∑
n=1

nun−1Q+
∞∑
n=1

nunQ+
∞∑
n=1

nun −
∞∑
n=1

nun−1

}
=

∞∑
n=0

un ⟨m⟩n . (B.74)

Changing the dummy indices from n − 1 to n and realizing that we can sum the

term with n = 0 for the remaining terms (since it is equivalent to summing zero):

1

2

{
∞∑
n=0

(n+ 1)unQ+
∞∑
n=0

nunQ+
∞∑
n=0

nun −
∞∑
n=0

(n+ 1)un

}
=

∞∑
n=0

un ⟨m⟩n , (B.75)

∞∑
n=0

un
{
2nQ+Q− 1

2

}
=

∞∑
n=0

un ⟨m⟩n , (B.76)

Or, isolating ⟨m⟩n:

⟨m⟩n =

{
n+

1

2

}
Q− 1

2
(B.77)

Rewriting the energy to the oscillators:

⟨Ef⟩ =
ωf

ω0

QE0 (B.78)
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Appendix C Program in python using Qutip

1 #Library imports

2 import qutip as qt

3 import numpy as np

4 import matplotlib.pyplot as plt

5 #Constants

6 dim = 30 # Fock space dimension

7 n_loops_tau = 200 # loops for evolution

time

8 n_loops_ec = 200 # loops for solver

9 r_max = 0.4 # r utilized

10 omega_h = 2*np.pi # \omega , no squeezing

frequency

11 chi_max = (1/2)*omega_h*np.tanh (2* r_max) # maximum squeezing (

function of r)

12 omega_c = np.sqrt(omega_h **2 - 4* chi_max **2) # \Omega , diagonal

frequency

13 gamma = 1 # Decay rate

14 T_c = 1 # Cold reservoir

temperature

15 T_h = 10 # Hot reservoir

temperature

16 beta_c = 1/T_c # Inverse cold

temperature

17 beta_h = 1/T_h # Inverse hot

temperature

18 n_c = 1/(np.exp ((1/ T_c)*omega_c) - 1) # Ocupaton number on

cold reservoir

19 n_h = 1/(np.exp ((1/ T_h)*omega_h) - 1) # Ocupation number on

ho reservoir
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20 tau_list = np.linspace (0.3, 2.5, n_loops_tau) # time list

21 eta_max = 1-omega_c/omega_h # Max eff given r

22 eta_carnot = 1- T_c/T_h # Eff Carnot

23 # Hamiltonian and operators

24 a = qt.destroy(dim) # annihilation

operator

25 b = np.cosh(r_max)*a + np.sinh(r_max)*a.dag() # annihilation

operator in b

26 H_c = omega_c *(b.dag()*b + (1/2)*qt.qeye(dim)) # Squeezed

hamiltonian

27 H_h = omega_h *(a.dag()*a + (1/2)*qt.qeye(dim)) # Harmonic oscillator

hamiltonian

28 #colapse operators

29 gamma_mod = gamma*np.exp (2* r_max) # moddified gamma

30 C_ops_c = [np.sqrt(gamma_mod *(n_c + 1))*b, np.sqrt(gamma_mod*n_c)*b.

dag()]

31 C_ops_h = [np.sqrt(gamma *(n_h + 1))*a, np.sqrt(gamma*n_h)*a.dag()]

32 #Important functions

33 def Coeff_exp(t, args): # Expansion coefficient

34 t_exp = (1 - t/tau)

35 return t_exp

36 def Coeff_comp(t, args): # Compression coefficient

37 t_comp = (t/tau)

38 return t_comp

39 def logrho(a): #Log for the matrix terms

40 if a > 0:

41 return np.log(a)

42 else:

43 return 0

44 def entropy(rho_1 ,rho_2): #Relative entropy
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45 S_rel=0

46 for i in range(dim -1):

47 p_1 = ((qt.fock(dim ,i).dag())*rho_1*(qt.fock(dim ,i)).full())

[0][0]. real

48 p_2 = ((qt.fock(dim ,i).dag())*rho_2*(qt.fock(dim ,i)).full())

[0][0]. real

49 S = (p_1*logrho(p_1) - p_1*logrho(p_2)).real

50 S_rel = S_rel + S

51 return(S_rel)

52 #lists

53 W_exp_list = []

54 W_comp_list = []

55 Q_h_list = []

56 Q_c_list = []

57 S_exp_list =[]

58 S_comp_list =[]

59 S_uni_list =[]

60 eta_list = []

61 W_net_list = []

62 #Time dependent hamiltonians

63 H_exp_t = [omega_h *(a.dag()*a + (1/2)*qt.qeye(dim)),[chi_max *(a.dag()

**2 + a**2),Coeff_exp ]]

64 H_comp_t = [omega_h *(a.dag()*a+(1/2)*qt.qeye(dim)),[chi_max *(a.dag()

**2 + a**2),Coeff_comp ]]

65 #Starting rho

66 rho_1 = (-(1/T_c)*H_c).expm()/(( -(1/ T_c)*H_c).expm()).tr()

67 #The cycle

68 for i in range(n_loops_tau):

69 tau = tau_list[i]

70 t_ec_list = np.linspace(0,tau ,n_loops_ec)
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71 #expansion

72 result_exp = qt.mesolve(H_exp_t , rho_1 , t_ec_list , [], [])

73 rho_2 = result_exp.states [-1] #Real state after expansion

74 W_exp = ((H_h*rho_2 - H_c*rho_1).tr()).real

75 W_exp_list.append(W_exp)

76 sigma_exp = (-(beta_c*omega_c/omega_h)*H_h).expm()/((-( beta_c*

omega_c/omega_h)*H_h).expm()).tr()

77 #"reversible adiabatic statte" where beta_c ’ = beta_c*omega_c/

omega_h

78 S_exp= entropy(rho_2 ,sigma_exp)

79 S_exp_list.append(S_exp)

80 #Heating

81 rho_3 = qt.steadystate(H_h , C_ops_h)

82 Q_h = (((H_h*rho_3) - (H_h*rho_2)).tr()).real

83 Q_h_list.append(Q_h)

84 #S_h = entropy(rho_2 ,rho_3)

85 #S_h_list.append(S_h)

86 #Compression

87 result_comp = qt.mesolve(H_comp_t , rho_3 , t_ec_list , [], [])

88 rho_4 = result_comp.states [-1]

89 W_comp = ((H_c*rho_4 - H_h*rho_3).tr()).real

90 W_comp_list.append(W_comp)

91 sigma_comp = (-(beta_h*omega_h/omega_c)*H_c).expm()/((-( beta_h*

omega_h/omega_c)*H_c).expm()).tr()

92 S_comp= entropy(rho_4 ,sigma_comp).real

93 S_comp_list.append(S_comp)

94 #Cooling

95 Q_c = (((H_c*rho_1) - (H_c*rho_4)).tr()).real

96 Q_c_list.append(Q_h)

97 #S_c = entropy(rho_4 ,rho_1)
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98 #S_c_list.append(S_c)

99 #writting S_uni

100 for i in range(n_loops_tau):

101 S_uni = S_comp_list[i]+ S_exp_list[i]

102 S_uni_list.append(S_uni)

103 #Writting eta

104 for i in range(n_loops_tau):

105 W_net = W_exp_list[i] + W_comp_list[i]

106 W_net_list.append(W_net)

107 if W_net < 0:

108 if Q_h_list[i] > 0:

109 eta = - W_net/Q_h_list[i]

110 eta_list.append(eta.real)

111 else:

112 eta_list.append(np.nan)

113 else:

114 eta_list.append(np.nan)

115 #Plotting

116 fig , ax1 = plt.subplots ()

117 plt.grid(linestyle=’:’)

118 color = ’tab:red’

119 ax1.set_xlabel(’time’)

120 ax1.set_ylabel(’Entropy ’, color=color)

121 ax1.plot(tau_list , S_uni_list , color=color)

122 ax1.tick_params(axis=’y’, labelcolor=color)

123 ax2 = ax1.twinx() # instantiate a second axes that shares the same x-

axis

124 color = ’tab:blue’

125 ax2.set_ylabel(’Efficiency ’, color=color) # we already handled the x-

label with ax1
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126 ax2.plot(tau_list , eta_list , color=color)

127 ax2.tick_params(axis=’y’, labelcolor=color)

128

129 fig.tight_layout () # otherwise the right y-label is slightly clipped

130 plt.show()
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