UNIVERSIDADE FEDERAL DE GOIÁS (UFG) INSTITUTO DE MATEMÁTICA E ESTATÍSTICA (IME), PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA

VITÓRIA CHAVES FERNANDES

Sistemas descontínuos lento-rápidos e aplicações

Goiânia 2023

TERMO DE CIÊNCIA E DE AUTORIZAÇÃO (TECA) PARA DISPONIBILIZAR VERSÕES ELETRÔNICAS DE TESES

E DISSERTAÇÕES NA BIBLIOTECA DIGITAL DA UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei 9.610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.

O conteúdo das Teses e Dissertações disponibilizado na BDTD/UFG é de responsabilidade exclusiva do autor. Ao encaminhar o produto final, o autor(a) e o(a) orientador(a) firmam o compromisso de que o trabalho não contém nenhuma violação de quaisquer direitos autorais ou outro direito de terceiros.

1. Identificação do material bibliográfico

[X] Dissertação [] Tese [] Outro*:____

*No caso de mestrado/doutorado profissional, indique o formato do Trabalho de Conclusão de Curso, permitido no documento de área, correspondente ao programa de pós-graduação, orientado pela legislação vigente da CAPES.

Exemplos: Estudo de caso ou Revisão sistemática ou outros formatos.

2. Nome completo do autor

Vitória Chaves Fernandes

3. Título do trabalho

Sistemas descontínuos lento-rápidos e aplicações

4. Informações de acesso ao documento (este campo deve ser preenchido pelo orientador)

Concorda com a liberação total do documento [X] SIM [] NÃO¹

[1] Neste caso o documento será embargado por até um ano a partir da data de defesa. Após esse período, a possível disponibilização ocorrerá apenas mediante:

a) consulta ao(à) autor(a) e ao(à) orientador(a);

b) novo Termo de Ciência e de Autorização (TECA) assinado e inserido no arquivo da tese ou dissertação.

O documento não será disponibilizado durante o período de embargo.

Casos de embargo:

- Solicitação de registro de patente;

Submissão de artigo em revista científica;

- Publicação como capítulo de livro;

- Publicação da dissertação/tese em livro.

Obs. Este termo deverá ser assinado no SEI pelo orientador e pelo autor.

Documento assinado eletronicamente por **Rodrigo Donizete Euzébio**, **Professor do Magistério Superior**, em 26/01/2023, às 21:18, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Vitória Chaves Fernandes**, **Discente**, em 26/01/2023, às 21:46, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543</u>, <u>de 13 de novembro de 2020</u>.

A autenticidade deste documento pode ser conferida no site <u>https://sei.ufg.br</u> /<u>sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **3483283** e o código CRC **1EB94359**.

Referência: Processo nº 23070.000331/2023-16

SEI nº 3483283

23/02/2023, 14:29

VITÓRIA CHAVES FERNANDES

Sistemas descontínuos lento-rápidos e aplicações

Dissertação apresentada ao Programa de Pós–Graduação do Instituto de Matemática e Estatística (IME), da Universidade Federal de Goiás (UFG), como requisito parcial para obtenção do título de Mestre em Matemática.

Área de concentração: Sistemas Dinâmicos.

Orientador: Prof. Dr. Rodrigo Donizete Euzébio

Goiânia 2023 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática do Sistema de Bibliotecas da UFG.

Fernandes, Vitória Chaves Sistemas descontínuos lento-rápidos e aplicações [manuscrito] / Vitória Chaves Fernandes 2023. 81 f.: il.
Orientador: Prof. Dr. Rodrigo Donizete Euzébio. Dissertação (Mestrado) - Universidade Federal de Goiás, Instituto de Matemática e Estatística (IME), Programa de Pós-Graduação em Matemática, Goiânia, 2023. Bibliografia.
1. Sistemas descontínuos. 2. Teorema de Fenichel. 3. Sistemas lento-rápidos. 4. Regularização de Sotomayor-Teixeira. I. Euzébio, Rodrigo Donizete, orient. II. Título.
CDU 517.938

UNIVERSIDADE FEDERAL DE GOIÁS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

ATA DE DEFESA DE DISSERTAÇÃO

Ata nº 01 da sessão de Defesa de Dissertação de **Vitória Chaves Fernandes**, que confere o título de Mestra em Matemática, **na área de Sistemas Dinâmicos**.

Ao vigésimo sexto dia do mês de janeiro do ano de dois mil e vinte e três, a partir das dez horas, via Web Videoconferência, realizou-se a sessão pública de Defesa de Dissertação intitulada "Sistemas descontínuos lento-rápidos e aplicações." Os trabalhos foram instalados pelo presidente da banca e orientador, Professor Doutor Rodrigo Donizete Euzébio - IME/UFG com a participação dos demais membros da Banca Examinadora: Professor Doutor Durval José Tonon - IME/UFG, membro titular interno e o Professor Doutor Claudio Aguinaldo Buzzi - IBILCE/UNESP, membro titular externo. Durante a arguição os membros da banca não fizeram sugestão de alteração do título do trabalho. A Banca Examinadora reuniu-se em sessão secreta a fim de concluir o julgamento da Dissertação, tendo sido a candidata aprovada pelos seus membros. Proclamados os resultados pelo Professor Doutor Rodrigo Donizete Euzébio - IME/UFG, Presidente da Banca Examinadora, foram encerrados os trabalhos e, para constar, lavrou-se a presente ata que é assinada pelos Membros da Banca Examinadora, ao vigésimo sexto dia do mês de janeiro do ano de dois mil e vinte e três.

TÍTULO SUGERIDO PELA BANCA

Sistemas descontínuos lento-rápidos e aplicações

Documento assinado eletronicamente por **Claudio Aguinaldo Buzzi**, **Usuário Externo**, em 26/01/2023, às 11:17, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Durval José Tonon**, **Professor do Magistério Superior**, em 26/01/2023, às 11:52, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Rodrigo Donizete Euzébio**, **Professor do Magistério Superior**, em 26/01/2023, às 21:16, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

A autenticidade deste documento pode ser conferida no site <u>https://sei.ufg.br</u> /<u>sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **3437537** e o código CRC **525F405E**.

23/02/2023, 14:29

Referência: Processo nº 23070.000331/2023-16

SEI nº 3437537

23/02/2023, 14:29

Aos meus pais.

Agradecimentos

Agradeço à Deus, por sempre me guiar e abençoar.

Agradeço aos meus pais, Gildaide e José Gilson, por sempre me apoiarem, pelos seus ensinamentos e amor incondicional. Por sonharem junto comigo e por acreditarem no poder transformador da educação.

Agradeço à minha irmã, Ana Carla por todos os conselhos e momentos de alegria. A minha sobrinha Catarina e ao meu cunhado Johnathan.

Agradeço aos meus amigos de graduação e pós-graduação: André Pereira, Alessandra Carlos, Daniel Chu, Edson Ferreira, Fernanda dos Anjos, Izabela Jakeline, Marielson Dias e Vitor Emanoel, pelo companheirismo, pelas horas de estudos, pelas viagens e pelos momentos de descontração. Em especial, a Ana Carolina e a Gabriella Cristina, por serem meu refúgio nos momentos difíceis da vida acadêmica.

Agradeço às minhas amigas Alecricia Barros, Andressa Rodrigues e Letícia Tavares, pelos longos anos de amizade.

Agradeço a todos os professores do Instituto de Matemática de Estatística da Universidade Federal de Goiás, por todo conhecimento compartilhado. Em especial, aos professores: Ana Paula Chaves, Bruno Freitas, Ewerton Rocha, Everton Batista, Ivonildes Ribeiro, Jhone Caldeira, Otávio Gomide, Romildo Pina e Wanderson Tenório.

Agradeço à ex-funcionária da UFG, Val Rocha, pelas divertidas conversas durante o tempo de Graduação . E a todos os funcionários do PPGIME-UFG e do IME-UFG.

E por fim, agradeço ao professor Rodrigo Donizete Euzébio, por ter aceitado me orientar, pela confiança em mim depositada, pela paciência, por todos os ensinamentos e conversas. O considero um exemplo de orientador e profissional. Agradeço por tudo.

À CAPES e ao CNPq, pelo suporte financeiro.

"É impossível ser um matemático sem ser um poeta de alma."

Sofia Kovalevskaya,

•

Resumo

FERNANDES, V. C. **Sistemas descontínuos lento-rápidos e aplicações**. Goiânia, 2023. **81**p. Dissertação de Mestrado. Programa de Pós Graduação em Matemática, Instituto de Matemática e Estatística (IME),, Universidade Federal de Goiás (UFG).

Nesta dissertação estudamos sistemas dinâmicos com enfoque em duas áreas: sistemas descontínuos e problemas de perturbação singular. Analisamos a intersecção destas duas áreas através de alguns resultados teóricos. No primeiro momento apresentaremos uma teoria similar à Teoria de Fenichel para sistemas descontínuos singularmente perturbados, posteriormente mostraremos que um sistema obtido via regularização pode ser associado a um problema de perturbação singular. Além disso, estudamos uma modelagem matemática na área de climatologia, com o objetivo analisar as bifurcações de singularidades e a existência de uma órbita periódica para certos parâmetros específicos. Neste modelo, não podemos aplicar a teoria de Fenichel, por este motivo utilizamos uma aplicação ad-hoc da Teoria de Fenichel para demonstrar os resultados desejados. Por último, apresentaremos alguns resultados inéditos para o modelo climatológico.

Palavras-chave

Sistemas Descontínuos, Teorema de Fenichel, Sistemas Lento-Rápidos, Regularização de Sotomayor-Teixeira

Abstract

FERNANDES, V. C. **Discontinuous slow-fast systems and applications**. Goiânia, 2023. 81p. MSc. Dissertation. Programa de Pós Graduação em Matemática, Instituto de Matemática e Estatística (IME),, Universidade Federal de Goiás (UFG).

In this work we study dynamical systems focused on two areas: discontinuous systems and singular perturbation problems. We analyze the intersection of these two areas through some theoretical results. In the first moment, we will present a theory similar to Fenichel's Theory for singularly perturbed discontinuous systems, later we will show that a system obtained via regularization can be associated with a singular perturbation problem. In addition, we will study a mathematical modeling in the area of climatology, with the objective of analyzing the bifurcations of singularities and the existence of a periodic orbit for certain specific parameters. In this model, we cannot apply Fenichel's theory, for this reason we use an ad-hoc application of Fenichel's Theory to demonstrate the desired results. Finally, we will present some unpublished results for the climatological model.

Keywords

Discontinuous Systems, Fenichel Theorem, Slow-Fast Systems, Regularization of Sotomayor-Teixeira

Sumário

Introdução						
1	Siste	mas de	e Filippov	15		
	1.1	1 Convenção de Filippov e Definições				
	1.2	A Regu	Ilarização de Teixeira-Sotomayor	18		
2	Teori	a Georr	nétrica de Perturbação Singular	21		
	2.1	Problem	21			
	2.2	Teorem	na de Fenichel	23		
3	Siste	mas de	Filippov Singularmente Perturbados	27		
	3.1 Principais Resultados			27		
4	Prob	elemas de Perturbação Singular Via Regularização 41				
5	Modelagem Climática			46		
	5.1	Equaçã	ăo de Budyko	46		
		5.1.1	Linha de Gelo e Linha de Neve	49		
	5.2	Equaçõ	ões do Modelo	50		
		5.2.2	Pontos de Equilíbrio	51		
		5.2.4	Comportamento na Região de Descontinuidade	54		
		5.2.5	Mapa de Primeiro Retorno	56		
	5.3	Órbita I	Periódica	57		
6	Análise Qualitativa do Modelo Climático 6					
	6.1	Candidatos a Pontos de Equilíbrio				
	6.2	Teorema de Sturm 62				
	6.3	Sequências de Sturm 63				
	6.4	Análise	Qualitativa das Equações Iniciais	67		
		6.4.1	Região A: $\alpha_1 = 0.30$ e $\alpha_2 = 0.64$	69		
		6.4.2	Região B: $\alpha_1 = 0.30$ e $\alpha_2 = 0.561$	72		
		6.4.3	Região C: $\alpha_1 = 0.33$ e $\alpha_2 = 0.561$	73		
		6.4.4	Região D: $\alpha_1 = 0.33$ e $\alpha_2 = 0.60$	74		
		6.4.5	Região E: $\alpha_1 = 0.345$ e $\alpha_2 = 0.64$	75		
		6.4.6	Região F: $\alpha_1 = 0.35$ e $\alpha_2 = 0.67$	77		
		6.4.7	Região G: $\alpha_1 = 0.30$ e $\alpha_2 = 0.68$	77		
	6.5	Trabalho futuro		79		

Referências Bibliográficas

Introdução

Nesta dissertação estudamos duas classes de sistemas dinâmicos, que são os sistemas suaves por partes e os problemas de perturbação singular. O estudo de sistemas dinâmicos suaves por partes nos últimos anos tem se desenvolvido em um ritmo muito rápido, e é certamente, uma das fronteiras comuns entre Matemática, Física e Engenharia. Uma das formulações dessa teoria deve-se ao trabalho [5]. Já o estudo de problemas de perturbação singular são definidos por sistemas de equações diferenciais que possuem escalas de tempo diferentes, uma lenta e outra rápida, e que são equivalentes quando $\varepsilon \neq 0$. As propriedades das soluções de um problema de perturbação singular podem ser estudadas usando métodos geométricos da teoria de sistemas dinâmicos. Esta aproximação foi fundamentada por Fenichel em [4].

Recentemente, uma nova teoria tem buscado desenvolver a teoria sistemas dinâmicos não-suave e de perturbação singular, simultaneamente, no que é chamado de sistemas descontínuos lento-rápidos. Este trabalho tem como objetivo abordar a intersecção dessas duas áreas através de alguns resultados teóricos. Além de apresentar uma aplicação matemática em um modelo climatológico [17]. Assim, resumiremos nos próximos parágrafos as bases teóricas que foram utilizadas.

Em [2] através do método de regularização de campos vetores suaves por partes introduzido por Sotomayor e Teixeira apresentado em [13], é demonstrado que para uma classe adequada de campos vetoriais um sistema obtido via regularização pode ser associado a um problema de perturbação singular e tornando, assim, possível o estudo qualitativo desse problema.

Em [3] a teoria de sistemas descontínuos e problemas de perturbação singular é estudado simultaneamente. Em outras palavras, o campo deslizante de um sistema de Filippov singularmente perturbado é escrito como um problema de perturbação singular.

O modelo conceitual climático [17] considera resultados já estabelecidos, com o objetivo de estudar um modelo concreto que representa ciclos glaciais, este modelo apresenta dois regimes distintos, um glacial e outro interglacial, bem como uma regra para alterar entre um regime e outro. As equações estão representadas em um sistema tridimensional de equação diferencial. Neste trabalho é feito o estudo de bifurcações de singularidades e órbitas periódicas para certos parâmetros específicos. Uma tentativa de aplicar a teoria de perturbação singular é realizada, mas como esta teoria ainda não está desenvolvida para sistemas descontínuos lento-rápidos, é necessário fazer uma aplicação ad-hoc da teoria de Fenichel.

Para este propósito, a dissertação está organizada da seguinte forma.

No primeiro capítulo, fornecemos as definições e resultados sobre a teoria de Filippov. Aqui separamos o capítulo em duas partes: a primeira consistirá em resultados sobre a estrutura de um sistema Filippov; a segunda parte está relacionada ao processo de regularização.

Para o segundo capítulo, apresentaremos a teoria geométrica de perturbação singular, definiremos sistemas lento-rápido, e o mais importante, enunciamos o Teorema de Fenichel.

No terceiro capítulo, o foco se dará nos sistemas de Filippov singularmente perturbados, no qual demonstraremos dois teoremas: o primeiro afirma que o campo deslizante associado ao sistema de Filippov singularmente perturbado pode ser escrito como um problema de perturbação singular e o segundo é uma adaptação do Teorema de Fenichel.

No quatro capítulo, demostraremos que um sistema obtido via regularização é um problema de perturbação singular, além de apresentar alguns exemplos.

No capítulo cinco, abordaremos o trabalho [17], estudaremos o modelo climático e provaremos a existência de uma órbita periódica cruzando a região de descontinuidade.

No sexto e último capítulo, apresentaremos resultados inéditos, deixamos de fixar certos parâmetros específicos no modelo climático, e buscamos alguns resultados persistentes para o estudo de órbitas periódicas. Além disso, apresentaremos os trabalhos futuros.

CAPÍTULO 1

Sistemas de Filippov

O objetivo deste capítulo é apresentar alguns conceitos básicos para o estudo de sistemas dinâmicos descontínuos (ou sistemas de Filippov). Tais sistemas apresentam uma dinâmica interessante e aplicações pertinentes, além de uma rica abordagem matemática.

As principais referências deste capítulo são [1], [5], [8] e [6].

1.1 Convenção de Filippov e Definições

Sejam X e Y campos de vetores suaves de classe C^r definidos em um aberto $U \subset \mathbb{R}^n$ e $f : \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^r tendo 0 como um valor regular, isto é $\nabla f(0) \neq 0$. Dado $\Sigma = f^{-1}(0)$, dizemos que $\Sigma = \{x \in U : f(x) = 0\}$ é a variedade de descontinuidade que separa as regiões

$$\Sigma^+ = \{ x \in U : f(x) \ge 0 \}$$
 e $\Sigma^- = \{ x \in U : f(x) \le 0 \}.$

Um sistema de Filippov é definido por $Z : \mathbb{R}^n \to \mathbb{R}^n$, tal que:

$$Z(x) = \begin{cases} X(x) & \text{se } x \in \Sigma^+, \\ Y(x) & \text{se } x \in \Sigma^-. \end{cases}$$
(1-1)

Usaremos a notação Z = (X, Y) para representar o sistema de Filippov (1-1). Denotaremos por Ω^r o espaço dos campos vetoriais Z(X, Y).

A dinâmica dada por um campo vetorial de Filippov $Z(X,Y) \in \Omega^r$, é definida localmente através de um ponto $p \in U$, ou seja precisamos definir o fluxo $\varphi_Z(t,p)$ de (1-1).

Seja $p \in \Sigma^{\pm}$, a trajetória local de p em relação ao campo X (resp. Y) é definida de maneira usual, ou seja, basta utilizar as soluções de X (resp. Y) através da teoria clássica de EDO's.

Para analisarmos a trajetória de $p \in \Sigma$ precisamos definir a derivada de Lie, pois através do sinal da derivada podemos determinar como as soluções de *X* e *Y* interagem $\operatorname{com} \Sigma \operatorname{em} p$.

Definição 1.1.1 *A derivada de Lie de f com respeito ao campo X em um ponto p é dada por:*

$$Xf(p) := \langle X(p), \nabla f(p) \rangle,$$

onde ∇f é gradiente de f e \langle , \rangle o produto interno usual de \mathbb{R}^n .

As derivadas de Lie de ordem superior são definidas por: $X^n f = X(X^{n-1}f)$, onde $n \in \mathbb{N}$.

Assim, dividimos a região de descontinuidade Σ no fecho de três regiões distintas dependendo para onde o campo vetorial aponta:

- Região de Costura: $\Sigma^c = \{p \in \Sigma : Xf(p) \cdot Yf(p) > 0\}$. Veja Figura 1.1.
- Região de Deslize: $\Sigma^s = \{p \in \Sigma : Xf(p) < 0 \in Yf(p) > 0\}$. Veja Figura 1.2.
- Região de Escape: $\Sigma^e = \{p \in \Sigma : Xf(p) > 0 \in Yf(p) < 0\}$. Veja Figura 1.2.

As Figuras 1.1 e 1.2 estão em \mathbb{R}^2 , e servem somente para auxilar no entendimento da dinâmica na região de descontinuidade Σ .

Figura 1.1: Região de Costura.

Figura 1.2: Região de Escape e Região de Deslize.

Note que se $p \in \Sigma^c$, os campos vetoriais apontam para mesma direção. Por outro lado, se $p \in \Sigma^s \cup \Sigma^e$ então os campos apontam em direções opostas e desse modo para determinar a órbita local que passa por esse ponto utilizamos a convenção de Filippov [5]. Defina o campo vetorial deslizante Z^s

$$Z^{s}(p) = \frac{1}{Yf(p) - Xf(p)} (Yf(p)X(p) - Xf(p)Y(p)).$$
(1-2)

O campo Z^s é chamado de campo vetorial deslizante independentemente de estar definido na região de deslize ou de escape. Geometricamente, o campo deslizante é definido como na Figura 1.3.

Definição 1.1.2 *Dizemos que* $p \in \Sigma$ *é um ponto de tangência de X (resp. Y) se X f*(p) = 0 (*resp. Y f*(p) = 0).

Figura 1.3: Campo deslizante Z^s. A figura foi inspirada na referência [6].

Observe que, se X(p) = 0 e Xf(p) = 0 os pontos críticos estão inclusos nos pontos de tangência, por outro lado, se $X(p) \neq 0$ e Xf(p) = 0 a trajetória de X que passa por *p* é tangente à Σ . Assim, definimos os seguintes tipos de tangência.

Definição 1.1.3 Seja Z um campo de Filippov e considere p um ponto de tangência de Z. Dizemos que um campo de Filippov possui contato de ordem $n \in \mathbb{N}$ com Σ em p se, para um campo vetorial suave X, $X^k f(p) = X(X^{k-1}f(p)) = 0$ para $k \le n \ e \ X^n f(p) \ne 0$.

Além disso, dizemos que é p um ponto de tangência visível ou invisível se:

- 1. $p \in \Sigma$ é um ponto de tangência visível se *X* possui contato com Σ de ordem par ou ímpar em $p \in X^n f(p) > 0$.
- 2. $p \in \Sigma$ é um ponto de tangência invisível se *X* possui contato de ordem par com Σ em $p \in X^n f(p) < 0$.

Um ponto p é de tangência dupla quando ele é um ponto de tangência para ambos os campos. Dizemos que uma tangência dupla p é elíptica se p é invisível para X e Y; parabólica se p é invisível para X e visível para Y, ou vice-versa; e hiperbólica se p é visível para X e Y. Veja a Figura 1.4.

Figura 1.4: Tipos de tangência dupla: elíptica, parabólica e hiperbólica, respectivamente. A figura foi inspirada na referência [8].

Em particular, temos as seguintes definições.

Definição 1.1.4 Um campo vetorial suave X possui uma dobra ou tangência quadrática com Σ em um ponto $p \in \Sigma$ se Xf(p) = 0 e $X^2f(p) \neq 0$.

Definição 1.1.5 Um campo vetorial suave X possui uma cúspide ou tangência cúbica com Σ em um ponto $p \in \Sigma$ se $Xf(p) = X^2f(p) = 0$ e $X^3f(p) \neq 0$ e $\{df(p), dXf(p), dX^2f(p)\}$ é linearmente independente.

Observe que pode não existir unicidade sobre pontos de Σ . Deste modo, podem surgir pontos singulares em sistemas de Filippov, cujas órbitas podem ser somente um ponto, ou uma curva não regular ou ainda órbitas de Z que atingem um ponto singular em tempo finito.

A seguir definiremos trajetória.

Definição 1.1.6 Uma trajetória global $\varphi_Z(t,p)$ do campo de Filippov Z é o traço de uma curva contínua obtida pela concatenação de trajetórias de X e/ou Y e/ou Z^s, com orientação adequada.

Definição 1.1.7 Uma trajetória maximal $\varphi_Z(t, p)$ é uma trajetória global que não pode ser estendida por nenhuma outra concatenação de trajetórias de um dos campos X, Y ou Z^s . Neste caso, chamamos $I = (\tau^-(p), \tau^+(p))$ intervalo de solução maximal para φ_Z , que contém o valor 0.

A trajetória positiva maximal $\varphi_Z^+(t, p)$ é parte da trajetória maximal $\varphi_Z(t, p)$ para t > 0. Note que, é possível termos $\tau^+(p) = +\infty$ para uma trajetória maximal $\varphi_Z(t, p)$ de maneira que $\varphi_Z(t, p) \neq q$ para $t < t_0$ e $\varphi_Z(t, p) = q$ para todo $t \ge t_0 > 0$, veja a Figura 1.5. Além disso, devido à não unicidade para uma trajetória maximal $\varphi_Z(t, p)$ de *Z*, com condição inicial $\varphi_Z(0, p) = p$, pode ocorrer que $\varphi_Z(t + s, p)$ seja diferente de $\varphi_Z(s, \varphi_Z(t, p))$ se, entre os tempos $t \in t + s$ uma concatenação diferente for realizada para a obtenção de uma trajetória global começando em $\varphi_Z(t, p)$.

Figura 1.5: Trajetória maximal $\varphi_Z(t, p)$ tal que $\varphi_Z(t, p) \neq q$ para $t < t_0$ e $\varphi_Z(t, p) = q$ para todo $t \ge t_0 > 0$. A figura foi inspirada na referência [8].

Se uma trajetória de Filippov é singular em $p \in U$, dizemos que p é um ponto de equilíbrio de Z, no sentido em que X(p) = 0 (resp. Y(p) = 0) para X (resp Y), que está definido em Σ^+ (resp. Σ^-). Se $p \in \overline{\Sigma^{\pm}}$, dizemos que p é um ponto de equilíbrio real; se $p \in U \setminus \overline{\Sigma^{\pm}}$, dizemos que p é um ponto de equilíbrio virtual. O ponto $p \in \Sigma^s \cup \Sigma^u$ que satisfaz $Z^s(p) = 0$, isto é, o ponto crítico do campo vetorial deslizante é chamados de pseudo-equilíbrio de Z.

1.2 A Regularização de Teixeira-Sotomayor

O processo de regularização consiste em utilizar uma função de transição para formar uma família de campos vetoriais contínuos que se aproxima do sistema de Filippov, quando um certo parâmetro tende a zero Este processo foi introduzido por Sotomayor e Teixeira [13] para sistemas de Filippov de dimensão 2, e por Llibre e Teixeira [10] em dimensão 3.

Definição 1.2.1 *Uma função contínua* $\varphi : \mathbb{R} \to \mathbb{R}$ *de classe* C^r *é uma função de transição se*

$$\varphi(s) = \begin{cases} -1, & para \ s \le -1, \\ 1, & para \ s \ge 1, \end{cases}$$

 $e \phi'(s) > 0$ se $s \in (-1, 1)$. Geometricamente representado na Figura 1.6.

Figura 1.6: *Gráfico da função de transição* φ.

Definição 1.2.2 Dada uma função de transição $\varphi : \mathbb{R} \to \mathbb{R}$, a φ -regularização de um sistema de Filippov é uma família a um parâmetro de campos vetoriais Z_{ϵ} , dada por

$$Z_{\varepsilon}(q) = \left(\frac{1}{2} + \frac{\varphi_{\varepsilon}(f(q))}{2}\right) X(q) + \left(\frac{1}{2} - \frac{\varphi_{\varepsilon}(f(q))}{2}\right) Y(q),$$
(1-3)

 $com \, \varphi_{\varepsilon}(s) = \varphi(\frac{s}{\varepsilon}) \, para \, \varepsilon > 0.$

Façamos um exemplo.

Exemplo 1.2.3 Considere o sistema de Filippov

$$\begin{cases} X(x,y) = (1,7), \\ Y(x,y) = (1,1). \end{cases}$$
(1-4)

Considere f(x,y) = y, *temos que o gradiente de f é dado por* $\nabla f = (0,1)$, *logo*

$$Xf(x,y) = \langle (1,7), (0,1) \rangle = 7$$
 e $Yf(x,y) = \langle (1,1), (0,1) \rangle = 1$

com isto $\langle X(x,y), \nabla f(x,y) \rangle \langle Y(x,y), \nabla f(x,y) \rangle > 0$, o que implica que Σ é uma região de costura, veja a Figura 1.7.

Agora, realizaremos a regularização do campo, para isto defina $\varphi_{\epsilon}(\frac{s}{\epsilon})$ uma função de transição. A φ_{ϵ} -regularização do campo é dada por:

$$\begin{aligned} Z_{\varepsilon}(x,y) &= \left(\frac{1}{2} + \frac{\varphi_{\varepsilon}(f(x,y))}{2}\right) X(x,y) + \left(\frac{1}{2} - \frac{\varphi_{\varepsilon}(f(x,y))}{2}\right) Y(x,y) \\ &= \frac{1}{2} \left[\left(1 + \varphi_{\varepsilon}(y)\right) X(x,y) + \left(1 - \varphi_{\varepsilon}(y)\right) Y(x,y) \right] \\ &= \frac{1}{2} \left[\left(1 + \varphi\left(\frac{y}{\varepsilon}\right)\right) (1,7) + \left(1 - \varphi\left(\frac{y}{\varepsilon}\right)\right) (1,1) \right] \\ &= \frac{1}{2} \left[\left(1 + \varphi\left(\frac{y}{\varepsilon}\right), 7 + 7\varphi\left(\frac{y}{\varepsilon}\right)\right) + \left(1 - \varphi\left(\frac{y}{\varepsilon}\right), 1 - \varphi\left(\frac{y}{\varepsilon}\right)\right) \right] \\ &= \frac{1}{2} \left[\left(2,8 + 6\varphi\left(\frac{y}{\varepsilon}\right)\right) \right] = \frac{1}{2} \left(2,8 + 6\varphi\left(\frac{y}{\varepsilon}\right)\right) \\ &= \left(1,4 + 3\varphi\left(\frac{y}{\varepsilon}\right)\right). \end{aligned}$$

Figura 1.7: Retrato de fase do sistema de Filippov (1-4).

Teoria Geométrica de Perturbação Singular

Neste capítulo introduziremos a Teoria Geométrica de Perturbação Singular, com o objetivo de apresentar os problemas de perturbação singular e o Teorema de Fenichel. As principais referências do Capítulo 2 são [4] e [9].

2.1 Problemas de Perturbação Singular

Problemas de perturbação singular são definidos por sistemas de equações diferenciais que possuem duas escalas de tempo diferente, e que são equivalentes quando $\epsilon \neq 0$.

Definição 2.1.1 Sejam $f : \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^m$ e $g : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ aplicações suaves. Um campo vetorial lento-rápido é um sistema de equações diferenciais definido por

$$\begin{cases} \frac{dx}{dt} = \dot{x} = f(x, y, \varepsilon), \\ \varepsilon \frac{dy}{dt} = \varepsilon \dot{y} = g(x, y, \varepsilon), \end{cases}$$
(2-1)

onde $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$ e $0 < \varepsilon \ll 1$. Reescalonando o tempo por $\tau = \frac{t}{\varepsilon}$ obtemos o sistema equivalente

$$\begin{cases} \frac{dx}{d\tau} = x' = \varepsilon f(x, y, \varepsilon), \\ \frac{dy}{d\tau} = y' = g(x, y, \varepsilon). \end{cases}$$
(2-2)

Problemas da forma (2-1) possuem a escala de tempo lento na variável t e a de tempo rápido na variável τ . Formalmente, o sistema (2-1) é chamado de sistema lento e (2-2) de sistema rápido.

A primeira tentativa natural de se analisar um sistema lento-rápido é considerar o caso em que $\varepsilon = 0$. Desta forma, obtemos dois sistemas de equações com dinâmicas diferentes: o **problema reduzido**

$$\dot{x} = f(x, y, 0), \quad 0 = g(x, y, 0)$$
 (2-3)

e o problema layer

$$x' = 0, \quad y' = g(x, y, 0).$$
 (2-4)

A seguir definimos o conceito de variedade crítica.

Definição 2.1.2 O conjunto

$$C_0 = \{(x, y) \in \mathbb{R}^m \times \mathbb{R}^n : g(x, y, 0) = 0\}$$

é chamado de variedade crítica do problema de perturbação singular.

Note que (2-3) define um sistema dinâmico sobre a variedade crítica. Além disso, existe uma relação entre os pontos de equilíbrio do sistema rápido e a variedade crítica C_0 , no qual pode ser demonstrada pela Proposição 2.1.3.

Proposição 2.1.3 Os pontos de equilíbrio do sistema rápido estão em correspondência biunívoca com os pontos em C_0 .

Demonstração

Fixando algum y_0 , se x_0 é um ponto de equilíbrio do sistema rápido:

$$y' = g(x, y_0, 0),$$

então $g(x_0, y_0, 0) = 0$, assim, podemos concluir que $(x_0, y_0) \in C_0$. Por outro lado, se $(x_0, y_0) \in C_0$ é claro que (x_0, y_0) são pontos de equilíbrio do sistema rápido. Portanto, C_0 é uma variedade de pontos singulares para (2-4).

Combinando os resultados dos problemas (2-3) e (2-4) obtemos informações sobre a dinâmica do problema (2-1), para valores pequenos de ε .

Uma das equações clássicas da Teoria Geométrica de Perturbação Singular é a equação de van der Pol, introduzida em [15].

Exemplo 2.1.4 Considere o sistema de van der Pol

$$\dot{x} = y, \quad \varepsilon \dot{y} = y - \frac{y^3}{3} - x.$$
 (2-5)

Note que a variedade crítica C_0 é o gráfico de uma função,

$$C_0 = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x = y - \frac{y^3}{3} \right\}.$$

Tomando $\tau = t/\epsilon$, *obtemos o sistema rápido equivalente*

$$x' = \varepsilon y, \quad y' = y - \frac{y^3}{3} - x.$$
 (2-6)

Quando $\varepsilon = 0$ em (2-5) e (2-6) temos o problema reduzido e o problema layer, respectivamente. Podemos analisar a dinâmica do sistema lento-rápido na Figura 2.1, onde a curva em azul representa a variedade crítica, as setas horizontais em cinza descrevem o fluxo rápido e as setas de cor preta o fluxo lento.

Figura 2.1: Dinâmica do sistema (2-5).

2.2 Teorema de Fenichel

Antes de enunciar o Teorema de Fenichel, apresentaremos algumas definições necessárias.

Definição 2.2.1 *Dizemos que o sistema* (2-2) *é normalmente hiperbólico se a parte real dos autovalores da matriz* $D_yg(x_0, y_0, 0)$ *é diferente de zero para todo* $(x_0, y_0) \in C_0$.

Definição 2.2.2 Dizemos que um subconjunto $S \subseteq C_0$ normalmente hiperbólico é atrator se todos os autovalores de $D_yg(p,0)$ possuem parte real negativa para todo ponto $p \in C_0$. Analogamente, S é dito repulsor se todos os autovalores possuem parte real positiva. Se S é normalmente hiperbólico, mas não satisfaz nenhuma das condições acima, então dizemos que é do tipo sela.

Considere o sistema rápido (2-2) com acréscimo da equação trivial $\varepsilon' = 0$

$$\begin{cases} x' = \varepsilon f(x, y, \varepsilon) \\ y' = g(x, y, \varepsilon) \\ \varepsilon' = 0. \end{cases}$$
(2-7)

Seja $L(x, y, \varepsilon) := (\varepsilon f(x, y, \varepsilon), g(x, y, \varepsilon), 0)$ o campo de vetores definido pelo sistema (2-7). Assumimos que a parte linear de *L* nos pontos $(x, y, 0) \in C_0$ possui k^s autovalores com partes reais negativa e k^u autovalores com partes reais positiva. Os auto espaços estável e instável relacionados têm dimensões $k^s \in k^u$, respectivamente. **Definição 2.2.3** Sejam $A, B \subseteq \mathbb{R}^{m+n}$ conjuntos compactos. A distância de Hausdorff entre A e B é definida por $D(A, B) = \max_{(z_1 \in A, z_2 \in B)} \{d(z_1, B), d(z_2, A)\}.$

Teorema 2.2.4 (Fenichel) Considere uma família de classe C^r como em (2-2). Seja N uma variedade invariante compacta normalmente hiperbólica j-dimensional do problema reduzido (2-3) com uma variedade local estável W^s de dimensão $j + j^s$ e uma variedade local W^u de dimensão $j + j^u$. Então existe $\varepsilon_1 > 0$ tal que:

- (i) Existe uma família de classe C^{r-1} de variedades $\{N_{\varepsilon} : \varepsilon \in (-\varepsilon_1, \varepsilon_1)\}$ tal que $N_0 = N \ e \ N_{\varepsilon} \ e$ uma variedade invariante hiperbólica de (2-2);
- (ii) Existem famílias de classe C^{r-1} de variedades $\{N_{\varepsilon}^{s} : \varepsilon \in (-\varepsilon_{1}, \varepsilon_{1})\}$ e $\{N_{\varepsilon}^{u} : \varepsilon \in (-\varepsilon_{1}, \varepsilon_{1})\}$ de dimensões $(j + j^{s} + k^{s})$ e $(j + j^{u} + k^{u})$ tais que para $\varepsilon > 0, N_{\varepsilon}^{s}$ e N_{ε}^{u} são variedades locais estável e instável de N_{ε} , respectivamente.

O Teorema de Fenichel nos garante que N_0 e N_{ε} possuem as mesmas propriedades de estabilidade, ou seja a dinâmica dos sistemas para $\varepsilon = 0$ se mantém para $\varepsilon \neq 0$. Em outras palavras, qualquer estrutura do problema reduzido a qual persiste sobre perturbação regular persiste também sobre perturbação singular por restrição do fluxo do sistema rápido à variedade central. Além disso, as soluções em $W^s(N_{\varepsilon}^s)$ tendem para N_{ε} quando $\tau \to \infty$ e soluções em $W^u(N_{\varepsilon}^u)$ tendem a N_{ε} quando $\tau \to -\infty$.

A Figura 2.2 é uma representação geométrica do Teorema 2.2.4, onde a curva azul descreve a variedade N_0 , e a curva tracejada simboliza a variedade N_{ε} , para $\varepsilon \neq 0$.

Figura 2.2: Representação geométrica do Teorema 2.2.4.

Para um melhor entendimento da teoria analisaremos o seguinte exemplo.

Exemplo 2.2.5 Considere o sistema rápido

$$x' = -\varepsilon x, \qquad y' = x^2 - y.$$
 (2-8)

Nosso objetivo é encontrar a variedade C_{ε} . A variedade crítica é dada por

$$C_0 = \{(x, y) \in \mathbb{R}^2 : y = x^2\}.$$

Note que C_0 é normalmente hiperbólico e é atrator, pois

$$\frac{\partial(x^2 - y)}{\partial y} = -1 < 0. \tag{2-9}$$

O conjunto C_{ϵ} pode ser calculado explicitamente, por

$$x' = -\varepsilon x$$
, temos $x(\tau) = x(0)e^{-\varepsilon\tau}$

Observe que

$$y' = x^2 - y$$

$$\Rightarrow y' + y = x^2$$

$$\Rightarrow y' + y = x(0)^2 e^{-2\epsilon\tau}.$$
(2-10)

Resolvendo por fator integrante, temos que $\mu(\tau) = e^{\tau}$. *Multiplicando ambos os lados da equação* (2-10) *por* $\mu(\tau)$ *, obtemos*

$$e^{\tau}y' + e^{\tau}y = e^{\tau}x(0)^2 e^{-2\varepsilon\tau}$$

$$\frac{d}{d\tau}[e^{\tau}y] = x(0)^2 e^{(1-2\varepsilon)\tau}.$$
 (2-11)

Integrando ambos os lados da equação (2-11), obtemos

$$\begin{split} e^{\tau} y(\tau) - y(0) &= \frac{x(0)^2}{1 - 2\epsilon} (e^{(1 - 2\epsilon)\tau} - 1) \\ e^{\tau} y(\tau) &= y(0) + \frac{x(0)^2}{1 - 2\epsilon} (e^{(1 - 2\epsilon)\tau} - 1). \end{split}$$

Dividindo por e^{τ} os dois lados da equação acima, temos

$$y(\tau) = e^{-\tau}y(0) + \frac{x(0)^2}{1-2\epsilon}(e^{-2\epsilon\tau} - e^{-\tau}).$$

Assim,

$$(x(\tau), y(\tau)) = \left(x(0)e^{-\varepsilon\tau}, \left[y(0) - \frac{x(0)^2}{1 - 2\varepsilon}\right]e^{-\tau} + \frac{x(0)^2}{1 - 2\varepsilon}e^{-2\varepsilon\tau}\right).$$
(2-12)

Se $y(0) = \frac{x(0)^2}{1-2\epsilon}$, então a solução (2-12) envolve somente a escala de tempo lento $t = \epsilon \tau$:

$$(x(\tau), y(\tau)) = \left(x(0)e^{-\varepsilon\tau}, \frac{x(0)^2}{1-2\varepsilon}e^{-2\varepsilon\tau}\right).$$

Em particular,

$$y(\tau) = \frac{x(\tau)^2}{1-2\epsilon}$$
 para todo $\tau \ge 0$.

Portanto, a variedade C_{ε} é dada por

$$C_{\varepsilon} = \left\{ (x, y) \in \mathbb{R}^2 : y = \frac{x^2}{1 - 2\varepsilon} \right\}.$$

A Figura 2.3 exibe a dinâmica do sistema (2-8), onde a linha azul representa a variedade crítica C_0 , a linha tracejada é a variedade C_{ε} , q = (0,0) é ponto de equilíbrio do sistema (2-8), a curva rosa é um segmento da trajetória de $\gamma(\tau) = (x(\tau), y(\tau))$ para $\varepsilon > 0$.

Note que, a trajetória $\gamma(\tau)$ está contida na variedade C_{ε} . Deste modo, qualquer subvariedade pertencente a C_0 poderia ter sido escolhida para aplicar o Teorema de Fenichel.

Figura 2.3: Esquema do exemplo (2.2.5).

De forma geral, o cálculo analítico da variedade C_{ε} não é tão trivial como no exemplo anterior. Para mais exemplos, recomendamos consultar a referência [9].

Sistemas de Filippov Singularmente Perturbados

Neste capítulo estudaremos sistemas de Filippov singularmente perturbados. O principal objetivo é entender como a dinâmica de um sistema de Filippov é afetada por problemas de perturbação singular. Utilizamos como principal referência o artigo [3].

3.1 Principais Resultados

Considere o sistema de Filippov singularmente perturbado

$$\dot{x} = \begin{cases} F(x, y, \varepsilon) & \text{se } h(x, y, \varepsilon) \leq 0, \\ G(x, y, \varepsilon) & \text{se } h(x, y, \varepsilon) \geq 0, \end{cases} \quad \varepsilon \dot{y} = H(x, y, \varepsilon), \quad (3-1)$$

onde ε é um parâmetro pequeno, $x \in \mathbb{R}^n$ é a variedade lenta, $y \in \mathbb{R}$ é a variável rápida, $F = (F_1, F_2, \dots, F_n), G = (G_1, G_2, \dots, G_n), h$ e H são funções de classe C^r , para rsuficientemente grande.

A variedade lenta do sistema (3-1) é dada por

$$C_{\varepsilon} = \left\{ (x, y) \in \mathbb{R}^{n+1} : H(x, y, \varepsilon) = 0 \right\},\$$

e a região de descontinuidade

$$M_{\varepsilon} = \left\{ (x, y) \in \mathbb{R}^{n+1} : h(x, y, \varepsilon) = 0 \right\}.$$

O conjunto $C_0 = \{(x, y) \in \mathbb{R}^{n+1} : H(x, y, 0) = 0\}$ é variedade crítica do sistema (3-1). Além disso, quando $\varepsilon = 0$ temos $M_0 = \{(x, y) \in \mathbb{R}^{n+1} : h(x, y, 0) = 0\}$.

Assuma que a equação $H(x, y, \varepsilon) = 0$ pode ser resolvida por $y = f_{\varepsilon}(x)$, para todo $\varepsilon \ge 0$.

Sejam $\nabla H(p) \in \nabla h(p)$ os vetores gradiente de $H \in h$, respectivamente. Considere que a interseção da variedade crítica com a região de descontinuidade acontece de

forma geral, quando $\nabla H(p)$ e $\nabla h(p)$ são linearmente independente para qualquer ponto $p \in M_0 \cap C_0$.

Para descrever as situações de um problema de Filippov singularmente perturbado considere a Figura 3.1, onde a variedade crítica e a região de descontinuidade estão em \mathbb{R}^3 . A linha em negrito é dada por {h(x, y, 0) = 0} \cap {H(x, y, 0) = 0}.

Suponha que $p_1 \in \{h(x, y, 0) < 0\}$ seja um ponto singular normalmente hiperbólico do problema (3-1), ou seja, um ponto singular de (3-3),

$$\dot{x} = F(x, y, \varepsilon), \quad \varepsilon \dot{y} = H(x, y, \varepsilon).$$
 (3-2)

O problema reduzido associado (3-2) é dado por

$$\dot{x} = F(x, y, 0), \qquad H(x, y, 0) = 0$$
 (3-3)

Então, o Teorema de Fenichel afirma que p_1 persiste como um ponto singular hiperbólico p_{ε} de (3-1), neste caso, um ponto singular de (3-2), para todo $\varepsilon > 0$ suficientemente pequeno.

Analogamente, para $p_2 \in \{h(x, y, 0) > 0\}$, obtemos

$$\dot{x} = G(x, y, \varepsilon), \quad \varepsilon \dot{y} = H(x, y, \varepsilon).$$
 (3-4)

Assim, pelo Teorema de Fenichel o ponto p_2 persiste como um ponto singular hiperbólico p_{ε} de (3-4) para todo $\varepsilon > 0$.

Podemos fazer essas conclusões para qualquer variedade invariante normalmente hiperbólica N localizada em $h(x, y, \varepsilon) > 0$ ou $h(x, y, \varepsilon) < 0$, sejam elas um ponto singular ou órbitas periódicas, como $\Gamma_1 \in \Gamma_2$ representadas na Figura 3.1.

Por outro lado, para $p_3 \in \{h(x, y, 0) = 0\} \cap \{H(x, y, 0) = 0\}$, não podemos aplicar o teorema de Fenichel, pois não é possível concluir se um ponto singular do campo de vetores deslizante associado ao problema reduzido de (3-1) persiste como um ponto singular p_{ε} do sistema de Filippov singularmente perturbado para $\varepsilon > 0$ pequeno. Deste modo, os próximos resultados buscam solucionar este problema.

Observação 3.1.1 Nos exemplos são considerados os seguintes casos:

a) $\frac{\partial h}{\partial y} = 0 \ e \ b) \frac{\partial h}{\partial y} \neq 0.$

Quando o segundo caso é satisfeito, se assume que a função H não depende da variável $x = (x_1, ..., x_n)$, ou seja $\frac{\partial H}{\partial x} = 0$. Assim sendo, podemos supor sem perda de generalidade que $H(x, y, \varepsilon) = y$.

Definição 3.1.2 *O sistema* (3-1) *é localmente simples em* $p = (x, y, \varepsilon) \in \mathbb{R}^{n+1} \times \mathbb{R}$, se uma das seguintes condições são satisfeitas.

Figura 3.1: Definição geométrica de um sistema de Filippov singularmente perturbado. A figura foi retirada de [3].

- a) $\frac{\partial h}{\partial \mathbf{x}}(p) \neq 0.$
- b) Existe uma vizinhança U de $p \in \mathbb{R}^{n+1}$ de modo que $\frac{\partial H}{\partial x}(q) = 0$, para todo $q \in U \cap M_{\varepsilon}$.

Dizemos que o sistema (3-1) é simples se ele for localmente simples para qualquer p.

Note que pela condição *a*) da Definição 3.1.2, podemos escolher coordenadas locais em torno do ponto *p*, tal que $h(x, y, \varepsilon) = \tilde{h}(x, \varepsilon)$, isto é, a função *h* não depende da variável *y* em uma vizinhança do ponto *p*.

Considerando $\varepsilon = 0$ em (3-1), obtemos o problema reduzido:

$$\dot{x} = \begin{cases} \tilde{F}(x, f_0(x), 0) & \text{se } \tilde{h}(x) \leq 0, \\ \tilde{G}(x, f_0(x), 0) & \text{se } \tilde{h}(x) \geq 0, \end{cases} \quad 0 = H(x, y, 0), \tag{3-5}$$

onde $\tilde{h}(x) = h(x, f_0(x), 0)$. Reescalonando o tempo por $\tau := t/\epsilon$ em (3-1), obtemos o sistema rápido equivalente

$$x' = \begin{cases} \varepsilon F(x, y, \varepsilon) & \text{se } h(x, y, \varepsilon) \leq 0, \\ \varepsilon G(x, y, \varepsilon) & \text{se } h(x, y, \varepsilon) \geq 0, \end{cases} \quad y' = H(x, y, \varepsilon). \tag{3-6}$$

Para $\varepsilon = 0$ em (3-6), temos o problema layer

$$x' = 0, \quad y' = H(x, y, 0).$$
 (3-7)

Note que o sistema lento definido em (3-5) é um sistema suave por partes, enquanto (3-7) é suave. Para $\varepsilon > 0$, podemos expressar o sistema (3-1) na forma geral de um sistema de Filippov como visto em (1-1)

$$(\dot{x}, \dot{y}) = \begin{cases} \left(F(x, y, \varepsilon), \frac{H(x, y, \varepsilon)}{\varepsilon} \right) & \text{se } h(x, y, \varepsilon) \leqslant 0, \\ \left(G(x, y, \varepsilon), \frac{H(x, y, \varepsilon)}{\varepsilon} \right) & \text{se } h(x, y, \varepsilon) \geqslant 0. \end{cases}$$
(3-8)

As derivadas de Lie do campo (3-8), são

$$\langle (F(x,y,\varepsilon),H(x,y,\varepsilon)/\varepsilon),\nabla h(x,y,\varepsilon)\rangle = \frac{\partial h}{\partial x} \cdot F(x,y,\varepsilon) + \frac{\partial h}{\partial y} \frac{H(x,y,\varepsilon)}{\varepsilon}$$

e

$$\langle (G(x,y,\varepsilon),H(x,y,\varepsilon)/\varepsilon),\nabla h(x,y,\varepsilon)\rangle = \frac{\partial h}{\partial x} \cdot G(x,y,\varepsilon) + \frac{\partial h}{\partial y} \frac{H(x,y,\varepsilon)}{\varepsilon}$$

As regiões de M_{ε} associadas ao sistema (3-8) para $\varepsilon \ge 0$ são denotadas por M_{ε}^1 , $M_{\varepsilon}^2 \in M_{\varepsilon}^3$, como região de costura, escape e deslize, respectivamente. Quando $\varepsilon = 0$, temos $M_0^1, M_0^2 \in M_0^3$. Além disso, ∂M_0^i , com i = 1, 2, 3 representa a fronteira de M_0^i .

Mostraremos que se a condição de deslize é satisfeita para o problema reduzido (3-5) então ela também é satisfeita para o sistema de Filippov singularmente perturbado (3-1), com este propósito considere as seguintes definições e resultados.

Definição 3.1.3 Seja $p \in C_0 \cap M_0$ um ponto da região de deslize M_0^3 do problema reduzido (3-5). Dizemos que o sistema (3-1) satisfaz a propriedade P se, para algum $\varepsilon > 0$ suficientemente pequeno existe uma vizinhança V de p em \mathbb{R}^{n+1} tal que $V_{\varepsilon} = V \cap M_{\varepsilon}$ é um conjunto aberto não vazio em $M_{\varepsilon} e V_{\varepsilon} \subseteq M_{\varepsilon}^3$.

Definição 3.1.4 Seja $p \in C_0 \cap M_0$ um ponto em ∂M_0^3 . Dizemos que o sistema (3-1) satisfaz a propriedade \widetilde{P} se, para algum $\varepsilon > 0$ suficientemente pequeno, existe uma vizinhança V de p em \mathbb{R}^{n+1} tal que $V_{\varepsilon} = V \cap M_{\varepsilon}$ é um conjunto aberto não vazio em $M_{\varepsilon} e V_{\varepsilon} \cap M_{\varepsilon}^3 \neq 0$.

A Proposição 3.1.5 nos garante que o deslize persiste para sistemas de Filippov singularmente perturbados.

Proposição 3.1.5 Considere uma C^r família como (3-1) e suponha que seja localmente simples em $p \in C_0 \cap M_0$. Temos que:

- i) Se $p \in M_0^3$ então (3-1) satisfaz a propriedade **P**;
- *ii)* Se $p \in \partial M_0^3$ então (3-1) satisfaz a propriedade \widetilde{P} .

Demonstração

i) A condição de deslize para o problema reduzido (3-5) em um ponto $p \in C_0 \cap M_0$ é dada por:

$$\frac{\partial \tilde{h}}{\partial x} \cdot F > 0, \quad \frac{\partial \tilde{h}}{\partial x} \cdot G < 0.$$
(3-9)

Como a função \tilde{h} é dada por $\tilde{h} = h(x, y, 0) = h(x, f_0(x), 0)$, temos pela regra da cadeia que

$$\frac{\partial h}{\partial x} \cdot F + \frac{\partial h}{\partial y} [\nabla f_0 \cdot F] > 0, \quad \frac{\partial h}{\partial x} \cdot G + \frac{\partial h}{\partial y} [\nabla f_0 \cdot G] < 0.$$
(3-10)

Por outro lado, para cada $\varepsilon > 0$, a condição de deslize para o sistema (3-1) em um ponto $q \in M^3_{\varepsilon}$ é dada por

$$\frac{\partial h}{\partial x} \cdot F + \frac{\partial h}{\partial y} \frac{H}{\varepsilon} > 0, \quad \frac{\partial h}{\partial x} \cdot G + \frac{\partial h}{\partial y} \frac{H}{\varepsilon} < 0.$$
(3-11)

Por hipótese o sistema (3-1) é localmente simples em $p = (x, y, \varepsilon) \in \mathbb{R}^{n+1} \times \mathbb{R}$, ou seja, satisfaz as condições da Definição 3.1.2. Quando a primeira condição é satisfeita, segue pelo Teorema da função implícita que podemos escolher coordenadas locais em torno do ponto p de modo que a função h não dependa da variável y, daí $\frac{\partial h}{\partial y}(p) = 0$. Para o segundo caso, implica que $\nabla f_0(p) = \nabla y = 0$. Em ambos os casos a condição de deslize (3-10) em um ponto $p \in C_0 \cap M_0$ é resumida em

$$\frac{\partial h}{\partial x} \cdot F > 0, \quad \frac{\partial h}{\partial x} \cdot G < 0.$$

Por outro lado, como H(p) = 0 segue que

$$\frac{\partial h}{\partial x} \cdot F + \frac{\partial h}{\partial y} \frac{H}{\epsilon} = \frac{\partial h}{\partial x}(p) \cdot F(p) > 0 \quad e \qquad \frac{\partial h}{\partial x} \cdot G + \frac{\partial h}{\partial y} \frac{H}{\epsilon} = \frac{\partial h}{\partial x}(p) \cdot G(p) < 0$$

Levando em consideração a continuidade das funções temos que para cada $\varepsilon > 0$ a equação (3-11) é satisfeita para todos os pontos $q \in U$, onde U é uma vizinhança de p. Em particular, $q \in M_{\varepsilon}^3$ para todo $q \in U \cap M_{\varepsilon}$, satisfazendo a propriedade **P**.

ii) Pelo item *i*) sabemos que existe uma vizinhança U de \mathbb{R}^{n+1} tal que $U_{\varepsilon} = U \cap M_{\varepsilon} \neq 0$ e $U_{\varepsilon} \subseteq M_{\varepsilon}^3$. Seja V uma vizinhança de p tal que $V_{\varepsilon} = V \cap M_{\varepsilon} \neq 0$. Defina $W := V \cap U$, então W é uma vizinhança de p e $W \subseteq U$. Para $\varepsilon > 0$, suponha sem perda de generalidade que o conjunto $W_{\varepsilon} := W \cap M_{\varepsilon}$ seja não vazio. Note que $W_{\varepsilon} \subseteq U_{\varepsilon}$. Então, $W_{\varepsilon} \subseteq M_{\varepsilon}^3$, pois $U_{\varepsilon} \subseteq M_{\varepsilon}^3$. Além disso, $V_{\varepsilon} = V \cap M_{\varepsilon} \supseteq V \cap U \cap M_{\varepsilon} = W \cap M_{\varepsilon} = W_{\varepsilon}$. Portanto, $V_{\varepsilon} \cap M_{\varepsilon}^3 \neq 0$, isto é, o sistema (3-1) satisfaz a propriedade $\widetilde{\mathbf{P}}$.

Agora, podemos enunciar e provar os principais teoremas.

Teorema 3.1.6 Considere uma C^r família como (3-1) e suponha que $\frac{\partial h}{\partial x}(p) \neq 0$ para todo $p \in M_{\varepsilon}$. Então:

i) O campo deslizante do sistema de um sistema de Filippov singularmente pertubado (3-1) é um sistema lento-rápido da forma

$$\dot{x} = \alpha(x, y, \varepsilon) \quad \varepsilon \dot{y} = H(x, y, \varepsilon)$$
 (3-12)

onde lpha é uma aplicação de classe C^{r-1} .

ii) A dinâmica do problema reduzido (3-12) é dada por

$$\dot{x} = \alpha(x, y, \varepsilon), \quad 0 = H(x, y, \varepsilon)$$
 (3-13)

e coincide com a dinâmica do campo de vetores deslizante do problema reduzido (3-5).

Por meio do reescalonamento no tempo $\tau = t/\epsilon$ em (3-12) obtemos o sistema rápido equivalente

$$x' = \varepsilon \alpha(x, y, \varepsilon), \quad y' = H(x, y, \varepsilon).$$
 (3-14)

Seja $L(x, y, \varepsilon) := (\varepsilon \alpha(x, y, \varepsilon), H(x, y, \varepsilon))$ o campo de vetores definido pelo sistema (3-12). Assumimos que a parte linear de *L* nos pontos (x, y, 0), onde H(x, y, 0) = 0, tem k^s autovalores com parte real negativa e k^u autovalores com parte real positiva. Note que neste caso temos $k^s = 1$ e $k^u = 0$ ou $k^s = 0$ e $k^u = 1$. Isso se deve ao fato da variável *y* ter dimensão 1. Além disso, o problema layer associado ao sistema (3-12) (a saber, o sistema (3-5) com ($\varepsilon = 0$)) coincide com o problema layer (3-6) associado ao sistema de Filippov lento-rápido (3-1).

Agora, demonstraremos o Teorema 3.1.6.

Demonstração

i) Temos que a forma geral da expressão do campo vetorial deslizante associado ao sistema de Filippov lento-rápido (3-8) é dada por:

$$(\dot{x}, \dot{y}) = f_s(x, y, \varepsilon) = \left[\frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F + \frac{\partial h}{\partial y}\frac{H}{\varepsilon}\left(G - F\right)}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)}, \frac{H}{\varepsilon}\right].$$
(3-15)

Como $\frac{\partial h}{\partial x}(p) \neq 0$ para todo ponto *p* pertencente a região de descontinuidade M_{ε} , temos que $\frac{\partial h}{\partial y} \equiv 0$ em M_{ε} , daí

$$(\dot{x}, \dot{y}) = f_s(x, y, \varepsilon) = \left[\frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)}, \frac{H}{\varepsilon}\right].$$
(3-16)

Deste modo, como f_s está definido em M_{ε} , temos que as trajetórias do campo f_s são soluções do sistema suave

$$\dot{x} = \alpha(x, y, \varepsilon), \quad \varepsilon \dot{y} = H,$$
 (3-17)

onde α é uma aplicação C^{r-1} dada por

$$\alpha(x, y, \varepsilon) = \frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)}$$

ii) A expressão do campo de vetores deslizante associado ao problema reduzido (3-5) é dada por

$$\widetilde{\alpha}(x) = \frac{\left(\frac{\partial \widetilde{h}}{\partial x}(x) \cdot \widetilde{F}(x)\right)\widetilde{G}(x) - \left(\frac{\partial \widetilde{h}}{\partial x}(x) \cdot \widetilde{G}(x)\right)\widetilde{F}(x)}{\frac{\partial \widetilde{h}}{\partial x} \cdot \left(\widetilde{F}(x) - \widetilde{G}(x)\right)}.$$
(3-18)

Como $\tilde{h} = h(x, f_0(x), 0)$, aplicando a regra da cadeia, temos que

$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial x}(x, f_0(x), 0) + \frac{\partial h}{\partial y}(x, f_0(x), \nabla f_0(x)),$$

considerando $\frac{\partial h}{\partial y} \equiv 0$, obtemos

$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial x}(x, f_0(x), 0)$$

Como $\widetilde{F}(x) = F(x, f_0(x), 0)$ e $\widetilde{G}(x) = G(x, f_0(x), 0)$, o campo de vetores deslizante $\widetilde{\alpha}(x)$ pode ser dado por

$$\widetilde{\alpha}(x) = \frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)},$$

onde o lado direito da equação é avaliado em $(x, f_0(x,), 0)$. Assim, $\tilde{\alpha}(x) = \alpha(x, f_0, 0)$, ou seja a dinâmica do problema reduzido de (3-17) coincide com a dinâmica do campo de vetores deslizante associado ao problema reduzido (3-5). Além disso, o sistema (3-5) é definido na variedade crítica $C_0 = \{(x, y) \in \mathbb{R}^{n+1} : H(x, y, 0) = 0\}$.

Teorema 3.1.7 Considere uma família de classe C^r como em (3-1) e suponha que seja simples em M_{ε} . Seja N uma variedade invariante compacta normalmente hiperbólica de dimensão j do campo de vetores deslizante associado ao problema reduzido (3-5) com uma variedade local estável W^s de dimensão $j + j^s$ e uma variedade local instável W^u de dimensão $j + j^u$. Então existe $\varepsilon_1 > 0$ tal que:

1. Existe uma família de classe C^{r-1} de variedades { $N_{\varepsilon} : \varepsilon \in (0, \varepsilon_1)$ } tal que $N_0 = N$ e N_{ε} é uma variedade invariante hiperbólica de (3-1); 2. Existem famílias de classe C^{r-1} de variedades $\{N^s_{\varepsilon} : \varepsilon \in (0, \varepsilon_1)\}$ e $\{N^u_{\varepsilon} : \varepsilon \in (0, \varepsilon_1)\}$ de dimensões $(j + j^s + k^s)$ e $(j + j^u + k^u)$ tais que para $\varepsilon > 0$, N^s_{ε} e N^u_{ε} são variedades locais estável e instável de N_{ε} , respectivamente.

Demonstração

Por hipótese o sistema (3-1) é simples, ou seja

- a) $\frac{\partial h}{\partial x}(p) \neq 0$, para todo $p \in M_{\varepsilon}$, ou
- b) Existe uma vizinhança U de p tal que $\frac{\partial H}{\partial x}(q) = 0$, para todo $q \in U \cap M_{\varepsilon}$.

Supondo que a condição *a*) seja satisfeita, vale que $\frac{\partial h}{\partial y} = 0$. De acordo com o segundo item do Teorema 3.1.6 temos que *N* é uma variedade invariante compacta normalmente hiperbólica, sendo um ponto ou uma órbita periódica do problema reduzido do sistema lento-rápido. Assim, aplicando a teoria de Fenichel podemos discutir as características de *N* quando o sistema (3-1) é ε -perturbado. Portanto os itens *i*) e *ii*) do Teorema 3.1.7 seguem imediatamente do Teorema de Fenichel.

Agora, suponha que a condição b) seja satisfeita. Sabemos que a expressão geral para o campo de vetores deslizante associado ao problema reduzido (3-5) é dada por

$$\widetilde{\alpha}(x) = \frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)}$$

Note que N é um ponto singular ou uma órbita periódica, então podemos separar a demonstração em dois casos.

i) Seja *N* um ponto singular normalmente hiperbólico $\overline{p} = (p, f_0(p), 0) \in C_0 \cap M_0$ de $\widetilde{\alpha}(x)$, ou seja $\widetilde{\alpha}(p) = 0$, com uma variedade local estável W^s de dimensão j^s e uma variedade local instável W^u de dimensão j^u . A expressão do campo de vetores deslizante é dada por

$$f_{s}(x,y,\varepsilon) = \left(\alpha(x,y,\varepsilon) + \frac{H(x,y,\varepsilon)}{\varepsilon}\beta(x,y,\varepsilon), \frac{H(x,y,\varepsilon)}{\varepsilon}\right), \quad (3-19)$$

onde α é dado na prova do Teorema 3.1.6 e $\beta = (\beta_x, \dots, \beta_{x_n}, \beta_y) = \frac{1}{k} \frac{\partial h}{\partial y} (G - F)$, onde $k = \frac{\partial h}{\partial x} \cdot (F - G)$.

Para o ponto \overline{p} com $\varepsilon > 0$, podemos restringir o nosso estudo para o caso em que $y = f_{\varepsilon}(x)$. Então, quando $H(x, f_{\varepsilon}(x), \varepsilon) = 0$, o campo de vetores deslizante é dado por

$$f_s(x,\varepsilon) = (\alpha(x,f_{\varepsilon},\varepsilon),0).$$

Com $\varepsilon = 0$, temos que $\tilde{f}_s(x,0) = (\alpha(x, f_0, \varepsilon), 0) = (\tilde{\alpha}(x), 0)$, deste modo *p* é ponto de equilíbrio de \tilde{f}_s . Assim, se adicionarmos uma pequena perturbação a \tilde{f}_s , o ponto de *p* persiste como ponto de equilíbrio. Significa que, para todo $\varepsilon > 0$ suficientemente pequeno,

existe um ponto de equilíbrio $\overline{p}_{\varepsilon} = (p_{\varepsilon}, f_{\varepsilon}(p), \varepsilon)$ para o campo de vetores f_s tal que $\overline{p}_0 = \overline{p}$. A parte linear $Df_s(x, y, \varepsilon)$ de f_s em um ponto (x, y, ε) é dada por

$$\begin{pmatrix} D_{x_1}\alpha(x_1) + \frac{1}{\varepsilon}\frac{\partial H}{\partial x_1}\beta + \frac{H}{\varepsilon}D_{x_1}\beta & 0 & D_y\alpha(x_1) + \frac{1}{\varepsilon}\frac{\partial H}{\partial y}\beta + \frac{H}{\varepsilon}D_y\beta \\ 0 & D_{x_n}\alpha(x_n) + \frac{1}{\varepsilon}\frac{\partial H}{\partial x_n}\beta + \frac{H}{\varepsilon}D_{x_n}\beta & D_y\alpha(x_n) + \frac{1}{\varepsilon}\frac{\partial H}{\partial y}\beta + \frac{H}{\varepsilon}D_y\beta \\ \frac{1}{\varepsilon}\frac{\partial H}{\partial x_1} & \frac{1}{\varepsilon}\frac{\partial H}{\partial x_n} & \frac{1}{\varepsilon}\frac{\partial H}{\partial y} \end{pmatrix}$$

$$Df_{s} = \begin{pmatrix} D_{x}\alpha & D_{y}\alpha \\ \frac{1}{\varepsilon}\frac{\partial H}{\partial x} & \frac{1}{\varepsilon}\frac{\partial H}{\partial y} \end{pmatrix} + \frac{1}{\varepsilon} \begin{pmatrix} \frac{\partial H}{\partial x}\beta & \frac{\partial H}{\partial y}\beta \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \frac{H}{\varepsilon}D_{x}\beta & \frac{H}{\varepsilon}D_{y}\beta \\ 0 & 0 \end{pmatrix}$$

Como $\frac{\partial H}{\partial x} = 0$, os autovalores de $Df_s(\overline{p}_{\epsilon})$ são dados pelas raízes do polinômio característico

$$p(\lambda) = det \left[D_x \alpha(\overline{p}_{\varepsilon}) - \lambda \right] \left[\frac{1}{\varepsilon} \frac{\partial H}{\partial y}(\overline{p}_{\varepsilon}) - \lambda \right].$$

Assim, para cada $\varepsilon > 0$, o ponto singular \overline{p} persiste com um ponto singular $\overline{p}_{\varepsilon}$. Além disso, $\overline{p}_{\varepsilon}$ possui variedades N_{ε}^{s} e N_{ε}^{u} de dimensões $(j^{s} + k^{s})$ e $(j^{u} + k^{u})$, tal que para $\varepsilon > 0$ as variedades N_{ε}^{s} e N_{ε}^{u} são variedades locais estável e instável de p_{ε} , respectivamente.

ii) Seja *N* uma órbita periódica normalmente hiperbólica $\Gamma : x(t)$ de α . As dinâmicas próximas a órbita periódica Γ são descritas pela aplicação de Poincaré $\pi : \Sigma \to \Sigma$. Essa aplicação é definida seguindo o fluxo de uma pequena seção transversal à órbita periódica voltando sobre ela mesma. Seja $q \in \Sigma$ o ponto fixo de π o qual corresponde à órbita periódica Γ . A aplicação π captura o comportamento próximo à órbita Γ . Assim, existem variedades locais estável e instável W^s e W^u de Γ com dimensões j^s e j^u , respectivamente.

Para $\varepsilon > 0$, considere $\Gamma_{\varepsilon} = (x(t), y(t), 0)$, onde $y(t) = f_{\varepsilon}(x(t))$. Note que Γ_s é uma órbita periódica de f_s para todo $\varepsilon > 0$. De fato, temos que $(\dot{x}(t), \dot{y}(t)) = (\alpha(x(t)), \nabla f_{\varepsilon}(x(t)) \cdot \dot{x}(t))$. Como $H(x, f_{\varepsilon}, \varepsilon) = 0$, temos pela regra da cadeia que $\nabla f_{\varepsilon}(x) = -\frac{1}{\frac{\partial H}{\partial y}} \frac{\partial H}{\partial x}$. Como $\frac{\partial H}{\partial x}|_{M_{\varepsilon}} \equiv 0$ segue que $\nabla f_{\varepsilon}(x) \equiv 0$ em M_{ε} . Por outro lado, $f_s(x(t), y(t), \varepsilon) = (\alpha(x(t)), 0)$. Portanto, $(\dot{x}(t), \dot{y}(t)) = f_s(x(t), y(t), \varepsilon)$, isto é Γ_{ε} é uma órbita periódica de f_s para todo $\varepsilon > 0$.

As propriedades de estabilidade são descritas pela aplicação de retorno local $\tilde{\pi} : \Sigma \times I \to \Sigma \times I$ definida por $\tilde{\pi}(x, y, \varepsilon) = (\pi(x), \frac{H}{\varepsilon} + f_{\varepsilon}(x))$, onde *I* é um intervalo ao redor do ponto $f_{\varepsilon}(q)$ em \mathbb{R} . O ponto fixo $(q, f_{\varepsilon}(q), \varepsilon)$ de $\tilde{\pi}$ corresponde a órbita periódica Γ_{ε} , para cada $\varepsilon > 0$, assim concluímos a demonstração.

A seguir apresentaremos alguns exemplos, nos quais podemos aplicar os Teoremas 3.1.6 e 3.1.7.

Exemplo 3.1.8 Considere
$$\dot{x} = \begin{cases} (1, -3x_2) & se \ x_1 \le 0, \\ (-1, -3x_2) & se \ x_1 \ge 0, \end{cases} \quad \varepsilon \dot{y} = y. \tag{3-20}$$

A variedade crítica e a região de descontinuidade são

$$C_0 = \{(x, y) \in \mathbb{R}^{n+1} : y = 0\}$$

e

$$M_{\varepsilon} = \left\{ (x, y) \in \mathbb{R}^{n+1} : x_1 = 0 \right\},$$

respectivamente.

Para $\varepsilon = 0$ em (3-20), temos o problema reduzido

$$\dot{x} = \begin{cases} (1, -3x_2) & \text{se } x_1 \leq 0, \\ (-1, -3x_2) & \text{se } x_1 \ge 0, \end{cases} \quad 0 = y.$$
(3-21)

O campo de vetores deslizante associado ao sistema descontínuo (3-21) é dado por

$$\begin{aligned} \alpha(x_1, x_2) &= \frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)} \\ &= \frac{(1)(-1, -3x_2) - (-1)(1, -3x_2)}{2} \\ &= \frac{(0, -6x_2)}{2} = (0, -3x_2). \end{aligned}$$

A origem é um ponto singular de α .

Para $\epsilon \neq 0$, podemos escrever o sistema (3-20) como (3-8) de modo que o seu campo deslizante seja dado por

$$f_s(x,y,\varepsilon) = \left(\alpha(x_1,x_2),\frac{y}{\varepsilon}\right) = \left(0,-3x_2,\frac{y}{\varepsilon}\right).$$

Pelo primeiro item do Teorema 3.1.6, temos que o campo deslizante $f_s(x, y, \varepsilon)$ do sistema de Filippov singularmente perturbado (3-20) é um sistema lento-rápido

$$\dot{x_2} = -3x_2, \quad \varepsilon \dot{y} = y. \tag{3-22}$$

Fazendo $\varepsilon = 0$ em (3-22), obtemos o problema reduzido

$$\dot{x_2} = -3x_2, \quad 0 = y_2$$

A dinâmica de $\alpha(x_1, x_2)$ coincide com a dinâmica do problema reduzido, satisfazendo o segundo item do Teorema 3.1.6. Fazendo $\tau = t/\epsilon$, obtemos o sistema rápido equivalente

$$\varepsilon x_2' = -3x_2, \quad y' = y.$$
 (3-23)

Quando $\varepsilon = 0$ em (3-23) temos o problema layer

$$0 = -3x_2, \quad y' = y.$$

A parte linear de $D_{f_s}(x, y, \varepsilon)$ na origem é dada por

$$D_{f_s}(0,0,0) = egin{pmatrix} 0 & 0 & 0 \ 0 & -3 & 0 \ 0 & 0 & rac{1}{\epsilon} \end{pmatrix}.$$

Os autovalores de D_{f_s} são as raízes do polinômio

$$p(\lambda) = (\lambda^2 + 3\lambda) \left(\frac{1}{\varepsilon} - \lambda\right),$$

que são dadas por $\frac{1}{\epsilon}$, 0 e -3.

A Figura 3.2 ilustra o problema reduzido e problema layer do sistema (3-22), para $\varepsilon = 0$.

Figura 3.2: Esquema do sistema (3-22). A linha azul representa a interseção da variedade crítica $\{y = 0\}$ com a região de descontinuidade $\{x_1 = 0\}$. A figura foi inspirada na referência [3].

Pelo Teorema 3.1.7 temos a garantia da existência de uma família de P_{ε} de pontos singulares hiperbólicos tal que $P_0 = (0,0,0)$. Além disso, cada ponto P_{ε} com $\varepsilon > 0$, possui uma variedade local estável P_{ε}^s de dimensão 1 e uma variedade local instável P_{ε}^u de dimensão 1. E para P_{ε} com $\varepsilon < 0$, existe uma variedade local estável P_{ε}^s de dimensão 2.

Exemplo 3.1.9 Considere

$$\dot{x} = \begin{cases} (1, -2x_2, -x_3) & \text{se } x_1 \leq 0, \\ (-1, -2x_2, -x_3) & \text{se } x_1 \geq 0, \end{cases} \quad \varepsilon \dot{y} = y. \tag{3-24}$$

A variedade crítica é dada por

$$C_0 = \{(x, y) \in \mathbb{R}^{n+1} : y = 0\}$$

e a região de descontinuidade

$$M_{\varepsilon} = \left\{ (x, y) \in \mathbb{R}^{n+1} : x_1 = 0 \right\}$$

Para $\varepsilon = 0$ em (3-24), temos o problema reduzido

$$\dot{x} == \begin{cases} (1, -2x_2, -x_3) & \text{se } x_1 \leq 0, \\ (-1, -2x_2, -x_3) & \text{se } x_1 \geq 0, \end{cases} \quad 0 = y.$$
(3-25)

O campo de vetores deslizante associado ao sistema descontínuo (3-25) é dado por

$$\begin{aligned} \alpha(x_1, x_2, x_3) &= \frac{\left(\frac{\partial h}{\partial x} \cdot F\right)G - \left(\frac{\partial h}{\partial x} \cdot G\right)F}{\frac{\partial h}{\partial x} \cdot \left(F - G\right)} \\ &= \frac{(1)(-1, -2x_2, -x_3) - (-1)(1, -2x_2, -x_3)}{\langle (1, 0, 0), (2, 0, 0) \rangle} \\ &= \frac{(0, -4x_2, -2x_3)}{2} = (0, -2x_2, -x_3). \end{aligned}$$

Note que a origem é um ponto singular de $\alpha(\dot{x}) = (0, -2x_2, -x_3)$.

Para $\varepsilon \neq 0$, podemos escrever o sistema (3-24) como (3-8) de modo que o seu campo deslizante seja dado por

$$f_s(x, y, \varepsilon) = \left(\alpha(x_1, x_2, x_3), \frac{y}{\varepsilon}\right)$$
$$= \left(0, -2x_2, -x_3, \frac{y}{\varepsilon}\right)$$

Pelo primeiro item do Teorema 3.1.6, temos que o campo de vetores deslizante f_s associado ao sistema (3-24) é um sistema lento-rápido

$$\dot{x_2} = -2x_2, \quad \dot{x_3} = -x_3, \quad \varepsilon \dot{y} = y.$$
 (3-26)

Fazendo $\varepsilon = 0$ em (3-26), obtemos o problema reduzido

$$\dot{x_2} = -2x_2, \quad \dot{x_3} = -x_3, \quad 0 = y.$$

Note que a dinâmica de $\alpha(\dot{x})$ coincide com a dinâmica do problema reduzido, satisfazendo o segundo item do Teorema 3.1.6. Fazendo $\tau = t/\epsilon$ obtemos o sistema rápido

$$\varepsilon x_2' = -2x_2, \quad \varepsilon x_3' = -x_3, \quad y' = y.$$
 (3-27)

Quando $\varepsilon = 0$ em (3-27) temos o problema layer

$$0 = -2x_2, \quad 0 = -x_3, \quad y' = y.$$

Aplicando o Teorema 3.1.7 na origem temos a garantia da existência de uma família de P_{ε} de pontos singulares hiperbólicos de (3-24) tal que $P_0 = (0,0,0)$. Além disso, para cada ponto P_{ε} com $\varepsilon > 0$, existem uma variedade local estável P_{ε}^s de dimensão 2 e uma variedade local instável P_{ε}^u de dimensão 1. E para cada P_{ε} com $\varepsilon < 0$, exite uma variedade local estável P_{ε}^s de dimensão 3.

Exemplo 3.1.10 Considere

$$\dot{x} = \begin{cases} (1, -2x_2, -x_3) & se \ x_1 + y \leqslant 0, \\ (-1, -2x_2, -x_3) & se \ x_1 + y \geqslant 0, \end{cases} \quad \varepsilon \dot{y} = y.$$
(3-28)

A variedade crítica é dada por

$$C_0 = \{(x, y) \in \mathbb{R}^{n+1} : y = 0\}$$

e a região de descontinuidade

$$M_{\varepsilon} = \{(x, y) \in \mathbb{R}^{n+1} : x_1 + y = 0\}.$$

Para $\varepsilon = 0$ em (3-28) o problema reduzido é dado por

$$\dot{x} = \begin{cases} (1, -2x_2, -x_3) & \text{se } x_1 + y \leq 0, \\ (-1, -2x_2, -x_3) & \text{se } x_1 + y \geq 0, \end{cases} \quad 0 = y.$$
(3-29)

O campo deslizante associado ao sistema descontínuo (3-29) é dado por $\alpha(x_1, x_2, x_3) = (0, -2x_2, -x_3)$. Então, a origem é um ponto singular de $\alpha(\dot{x})$.

Para $\varepsilon > 0$, podemos escrever (3-28) como (3-8), ou seja

$$\dot{x} = \begin{cases} \left(\left(1, -2x_2, -x_3\right), \frac{y}{\varepsilon} \right) & \text{se } x_1 + y \leq 0, \\ \left(\left(-1, -2x_2, -x_3\right), \frac{y}{\varepsilon} \right) & \text{se } x_1 + y \geq 0, \end{cases}$$
(3-30)

a expressão do campo deslizante associado ao sistema (3-30) é dado por

$$\begin{split} f_s(x,y,\varepsilon) &= \left[\frac{(\frac{\partial h}{\partial x} \cdot F)G - (\frac{\partial h}{\partial x} \cdot G)F + \frac{\partial h}{\partial y} \frac{H}{\varepsilon}(G-F)}{\frac{\partial h}{\partial x} \cdot (F-G)}, \frac{H}{\varepsilon} \right] \\ &= \left[\frac{(0, -4x_2, -2x_3) + 1\frac{y}{\varepsilon}(-2, 0, 0)}{2}, \frac{y}{\varepsilon} \right] \\ &= \left[\left(0, -2x_2, -x_3 \right) + \left(\frac{-y}{\varepsilon}, 0, 0 \right), \frac{y}{\varepsilon} \right] \\ &= \left(\frac{-y}{\varepsilon}, -2x_2, -x_3, \frac{y}{\varepsilon} \right). \end{split}$$

Visto que o campo deslizante f_s está definido sobre a descontinuidade $x_1 + y = 0$, podemos escrevê-lo como $y = -x_1$, daí

$$f_s(x,-x_1,\varepsilon) = \left(\frac{x_1}{\varepsilon},-2x_2,-x_3,\frac{-x_1}{\varepsilon}\right).$$

Assim, para todo $\varepsilon > 0$ temos que (0,0,0) é um ponto singular de f_s . Para cada $\varepsilon > 0$, a parte linear de f_s calculado na origem é dada por

$$D_{f_s}(0,0,0) = egin{pmatrix} rac{1}{arepsilon} & 0 & 0 & 0 \ 0 & -2 & 0 & 0 \ 0 & 0 & -1 & 0 \ rac{-1}{arepsilon} & 0 & 0 & 0 \end{pmatrix}.$$

Os autovalores de $D_{f_s}(0,0,0)$ são $1/\epsilon$, 0,-2 e -1. Assim, para cada $\epsilon > 0$, o ponto singular possui variedades locais estável e instável N_{ϵ}^s e N_{ϵ}^u de dimensões 2 e 1, respectivamente.

Problemas de Perturbação Singular Via Regularização

Neste capítulo utilizamos como referência o artigo [2], no qual os autores fizeram um estudo dos campos descontínuos a partir da Teoria Geométrica da Perturbação Singular.

Seja $U \subset \mathbb{R}^2$ um conjunto compacto e $\Sigma \subseteq U$ dada por $\Sigma \subset F^{-1}(0)$, onde $F : U \to \mathbb{R}$ é uma função suave, tendo $0 \in \mathbb{R}$ como valor regular.

Sejam \mathfrak{X}^r o espaço dos campos vetoriais C^r , em U, munido com a C^r -topologia com $r \ge 1$ ou $r = \infty$, suficientemente grande e $\Omega^r = \Omega^r(U, F)$ o espaço dos campos vetoriais $Z : U \setminus \Sigma \to \mathbb{R}^2$, tais que

$$Z(x,y) = \begin{cases} X(x,y) & \text{se } F(x,y) > 0, \\ Y(x,y) & \text{se } F(x,y) < 0, \end{cases}$$
(4-1)

onde $X = (f_1, g_1)$ e $Y = (f_2, g_2)$ pertencem a \mathfrak{X}^r .

Sobre Σ as soluções de $\dot{q} = Z(q)$ obedecem à formulação de Filippov, como descrita no Capítulo 1.

Considere a definição de regularização (1.2.2) e o Problema de Perturbação Singular (2.1.1) em dimensão 2. Deste modo, seguem os seguintes teoremas.

Teorema 4.0.1 Considere $Z \in \Omega^r$, Z_{ε} com φ regularização, $e \ p \in \Sigma$. Suponha que φ é um polinômio de grau k em um intervalo pequeno $I \subseteq (-1,1)$ com $0 \in I$. Então as trajetórias de Z_{ε} em $V_{\varepsilon} = \{q \in U : F(q) | \varepsilon \in I\}$ estão em correspondência com as soluções de uma equação diferencial ordinária $z' = h(z, \varepsilon)$, satisfazendo que h é uma função suave em ambas variáveis e h(z,0) = 0 para qualquer $z \in \Sigma$. Além disso, se $((X-Y)F^k)(p) \neq 0$ então podemos obter um C^{r-1} sistema de coordenadas local $\{(\partial/\partial x)(p), (\partial/\partial y)(p)\}$ tal que essa equação diferencial ordinária é um Problema de Perturbação Singular.

Demonstração

Considere $Z \in \Omega^r \operatorname{com} X = (f_1, g_1)$ e $Y = (f_2, g_2)$. Suponha que $a_0 + a_1 t + \cdots + a_k t^k$ é a expressão polinomial de φ em $I \subseteq \mathbb{R} \operatorname{com} 0 \in I$. As trajetórias de Z_{ε} em V_{ε} são soluções do sistema de equações diferenciais

$$\dot{x} = (f_1 + f_2)/2 + \varphi(F/\varepsilon)(f_1 - f_2)/2,$$

$$\dot{y} = (g_1 + g_2)/2 + \varphi(F/\varepsilon)(g_1 - g_2)/2,$$

ou seja,

$$\dot{x} = (f_1 + f_2)/2 + \left(a_0 + a_1 \frac{F(x,y)}{\varepsilon} + a_2 \frac{[F(x,y)]^2}{\varepsilon^2} + \dots + a_k \frac{[F(x,y)]^k}{\varepsilon^k}\right)(f_1 - f_2)/2,$$

$$\dot{y} = (g_1 + g_2)/2 + \left(a_0 + a_1 \frac{F(x,y)}{\varepsilon} + a_2 \frac{[F(x,y)]^2}{\varepsilon^2} + \dots + a_k \frac{[F(x,y)]^k}{\varepsilon^k}\right)(g_1 - g_2)/2.$$

O reescalonamento do tempo: $\tau = t/\varepsilon^k$ nos dá

$$\begin{aligned} x' &= h_1(x, y) = \epsilon^k (f_1 + f_2)/2 + \left(a_0 \epsilon^k + a_1 F(x, y) \epsilon^{k-1} + \dots + a_k [F(x, y)]^k \right) (f_1 - f_2)/2, \\ y' &= h_2(x, y) = \epsilon^k (g_1 + g_2)/2 + \left(a_0 \epsilon^k + a_1 F(x, y) \epsilon^{k-1} + \dots + a_k [F(x, y)]^k \right) (g_1 - g_2)/2. \end{aligned}$$

Quando $\varepsilon = 0$, temos

$$x' = h_1(x, y) = a_k [F(x, y)]^k (f_1 - f_2)/2,$$

$$y' = h_2(x, y) = a_k [F(x, y)]^k (g_1 - g_2)/2.$$

Assim, fazendo $h = (h_1, h_2)$ temos que h(x, y, 0) = 0 para todo $(x, y) \in \Sigma$. A parte linear de h é dada por

$$\begin{bmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{bmatrix}$$

.

Os autovalores da parte linear de h para $\varepsilon = 0$ são soluções da equação

$$\lambda^2 - (a_k/2) (X - Y) F^k(p) \lambda = 0.$$

Segue que zero é um autovalor de multiplicidade no mínimo um. Por outro lado, como $(X - Y)F^k(p) \neq 0$, temos que existe um outro autovalor não nulo. Então temos um cenário normalmente hiperbólico e podemos aplicar a teoria de Fenichel.

O Teorema 4.0.1 garante que podemos transformar um campo vetorial descontínuo em um Problema de Perturbação Singular. Em geral, essa transição não pode ser feita explicitamente. O Teorema 4.0.3 fornece um a fórmula explícita do Problema de Perturbação Singular para uma classe adequada de campos vetoriais.

Considere

$$C = C(K) = \left\{ \xi : K \subseteq \mathbb{R}^2 \to \mathbb{R} : \xi \in C^r, L(\xi) = 0 \right\},\$$

onde $L(\xi)$ denota a parte linear de ξ em (0,0).

Seja $\Omega_d \subseteq \Omega^r$ o conjunto dos campos vetoriais descontínuos Z = (X, Y) em Ω^r tal que existe $\xi \in C$ que é uma solução suave da equação

$$\nabla \xi(X - Y) = \Pi_i (X - Y), \tag{4-2}$$

$$\langle (\xi_x, \xi_y), (f_1 - f_2, g_1 - g_2) \rangle = \Pi_1 (f_1 - f_2, g_1 - g_2)$$

$$\xi_x (f_1 - f_2) + \xi_y (g_1 - g_2) = (f_1 - f_2).$$

Analogamente, para i = 2, obtemos $\xi_x(f_1 - f_2) + \xi_y(g_1 - g_2) = (g_1 - g_2)$.

Lema 4.0.2 (*Lema Fundamental*) Considere $Z \in \Omega_d$ $e \ \xi \in C$ satisfazendo $\nabla \xi(X - Y) = \Pi_2(X - Y)$. Se $\overline{x} = x \ e \ \overline{y} = y - \xi(x, y)$ então o sistema de equações diferenciais

$$\dot{x} = (f_1 + f_2)/2 + \varphi(F/\epsilon)(f_1 - f_2)/2,$$

$$\dot{y} = (g_1 + g_2)/2 + \varphi(F/\epsilon)(g_1 - g_2)/2,$$
(4-3)

é escrito como

$$\begin{aligned} \varepsilon \dot{\overline{x}} &= \varepsilon \left[(\overline{f_1} + \overline{f_2})/2 + \overline{\varphi(F/\varepsilon)}(\overline{f_1} - \overline{f_2})/2 \right], \\ \dot{\overline{y}} &= \left[(\overline{g_1} + \overline{g_2})/2 - (\overline{\partial \xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial \xi/\partial y})(\overline{g_1} + \overline{g_2})/2 \right], \end{aligned}$$

onde a linha sobre as funções significa que elas são dadas em novas coordenadas.

Demonstração

Se $\overline{x} = x$ e $\overline{y} = y - \xi(x, y)$, através da derivação obtemos

$$\dot{\overline{x}} = \left[(\overline{f_1} + \overline{f_2})/2 + \overline{\varphi(F/\varepsilon)}(\overline{f_1} - \overline{f_2})/2 \right]$$

P	
-	
	1
÷	•

$$\begin{split} \dot{y} &= \dot{y} - \xi(x, y) \\ &= (\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 - \left[\overline{\partial\xi/\partial x}.\overline{\partial x/\partial t} + \overline{\partial\xi/\partial y}.\overline{\partial y/\partial t}\right] \\ &= (\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 - \overline{\partial\xi/\partial x}\left((\overline{f_1} + \overline{f_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{f_1} - \overline{f_2})/2\right) - \overline{\partial\xi/\partial y}\left((\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2\right) \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})(\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 - (\overline{\partial\xi/\partial x})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 - (\overline{\partial\xi/\partial x})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{f_2})/2 - (\overline{\partial\xi/\partial y})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})\overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})(\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})(\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial\xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial\xi/\partial y})(\overline{g_1} + \overline{g_2})/2 + \overline{\varphi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \\ &= (\overline{g_1} + \overline{g_2})/2 - (\overline{g_1} + \overline{g_2})/2 + \overline{g_1}/2 + (\overline{g_1} + \overline{g_2})/2 + \overline{g_1}/2 + (\overline{g_1} + \overline{g_2})/2 + \overline{g_1}/2 + (\overline{g_1} + \overline{g_2})/2 + (\overline{$$

Como, por hipótese, $\nabla \xi(X - Y) = \Pi_2(X - Y)$, temos

$$\dot{\overline{y}} = (\overline{g_1} + \overline{g_2})/2 - (\overline{\partial \xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial \xi/\partial y})(\overline{g_1} + \overline{g_2})/2,$$

e o lema está demonstrado.

43

Analogamente, se $\nabla \xi = (X - Y) = \Pi_1(X - Y)$ e $\overline{x} = x - \xi(x, y)$ e $\overline{y} = y$ então o sistema de equação diferenciais (4-3) é escrito como

$$\begin{aligned} \dot{\overline{x}} &= \left[(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial \xi/\partial x})(\overline{f_1} + \overline{f_2})/2 - (\overline{\partial \xi/\partial y})(\overline{g_1} + \overline{g_2})/2 \right], \\ \epsilon \dot{\overline{y}} &= \epsilon \left[(\overline{g_1} + \overline{g_2})/2 + \overline{\phi(F/\epsilon)}(\overline{g_1} - \overline{g_2})/2 \right]. \end{aligned}$$

Teorema 4.0.3 Considere $Z \in \Omega_d$ e Z_{ε} sua φ -regularização. Suponha que φ seja um polinômio de grau k em um intervalo pequeno $I \subseteq \mathbb{R}$ com $0 \in I$. Então as trajetórias de Z_{ε} em $V_{\varepsilon} = \{q \in U : F(q) | \varepsilon \in I\}$ são soluções de um Problema de Perturbação Singular.

Demonstração

Considere $Z \in \Omega_d$ e suponha que φ seja um polinômio de grau k em um intervalo pequeno $I \subset \mathbb{R}$ com $0 \in I$.

Então existe, $\xi : \mathbb{R}^2 \to \mathbb{R}$ satisfazendo $\xi \in C^r$, $L(\xi) = 0$ e a equação diferencial $\nabla \xi(X - Y) = \prod_i (X - Y)$, para i = 1 ou i = 2. Suponha sem perda de generalidade que i = 2.

As trajetórias do campo vetorial regularizado Z_{ε} em V_{ε} são soluções do Sistema de Equações Diferenciais (4-3).

Considerando as coordenadas $(\overline{x}, \overline{y})$ dado por $\overline{x} = x$, $\overline{y} = y - \xi(x, y)$ e então aplicamos o Lema 4.0.2.

Apresentaremos alguns exemplos. Suponha que $\varphi(x) = x$ para -1/2 < x < 1/2.

Exemplo 4.0.4 Considere a classe de campos vetoriais descontínuos $Z \in \Omega^r$, com $F(x,y) = x \ e \ g_1 = g_2 = g$. A equação $\nabla \xi(X - Y) = \Pi_2(X - Y)$, torna-se $\nabla \xi((f_1,g) - (f_2,g)) = \Pi_2[(f_1,g) - (f_2,g)] = \xi_x(f_1 - f_2) = 0$. Podemos ver que $\xi \equiv 0$ é uma solução para essa equação. Isto implica que em coordenadas canônicas temos o Problema de Perturbação Singular.

Exemplo 4.0.5 Considere a classe de vetores descontínuos $Z \in \Omega^r$, com F(x,y) = y, $f_1 = f_2 = f$ e $g_1 = -g_2 = g$. O campos regularizado é dado por

$$\dot{x} = (f+f)/2 + \varphi(y/\epsilon)(f-f)/2,$$

$$\dot{y} = (g+(-g))/2 + \varphi(y/\epsilon)(g-(-g))/2.$$
(4-4)

Considerando i = 1 *para equação* (4-2), *obtemos:*

$$\nabla \xi(X - Y) = \Pi_1(X - Y)$$

$$\nabla \xi((f,g) - (f,-g)) = \Pi_1((f,g) - (f,-g))$$

$$\xi_x(f - f) + \xi_y(g - (-g)) = \Pi_1(f - f,g - (-g))$$

$$\xi_y(2g) = \Pi_1(0,2g)$$

$$2\xi_yg = 0,$$

e como no exemplo anterior $\xi \equiv 0$ é uma solução. Assim, pelo Lema Fundamental 4.0.2, temos que o sistema de equações diferenciais (4-4) é escrito como

$$\begin{aligned} \dot{\bar{x}} &= \left[(\overline{f} + \overline{f})/2 - (\overline{\partial \xi/\partial x})(\overline{f} + \overline{f})/2 - (\overline{\partial \xi/\partial y})(\overline{g} + (\overline{-g}))/2 \right], \\ \epsilon \dot{\bar{y}} &= \epsilon \left[(\overline{g} + (\overline{-g}))/2 + \overline{\varphi(y/\epsilon)}(\overline{g} - (\overline{-g}))/2 \right], \end{aligned}$$

note que $\xi_x = \xi_y = 0$. Daí obtemos

$$\begin{aligned} \bar{x} &= \left\lfloor 2f/2 \right\rfloor, \\ \epsilon \bar{y} &= \left\epsilon \left[\overline{(y/\epsilon)}(2g/2) \right] \end{aligned}$$

Portanto, em coordenadas canônicas temos o Problema de Perturbação Singular

$$\dot{x} = f(x, y), \quad \varepsilon \dot{y} = yg(x, y).$$

Exemplo 4.0.6 Sejam X(x,y) = (1,x), Y(x,y) = (-1,-3x) e F(x,y) = y. A região de descontinuidade é dada por $\Sigma = \{(x,0) : x \in \mathbb{R}\}$. Calculando as derivadas de Lie em relação ao campo X e Y, temos

$$\begin{aligned} XF(x,y) &:= \langle X(x,y), \nabla F \rangle & YF(x,y) &:= \langle Y(x,y), \nabla F \rangle \\ &= \langle (1,x), (0,1) \rangle = x, &= \langle (-1, -3x), (0,1) \rangle = -3x \end{aligned}$$

e então o único ponto não regular é (0,0). Apliquemos o Teorema 4.0.3.

O campo vetorial regularizado é

$$\dot{x} = (1+(-1))/2 + \varphi(y/\varepsilon)(1-(-1))/2,$$

$$\dot{y} = (x+(-3x))/2 + \varphi(y/\varepsilon)(x-(-3x))/2.$$

$$Z_{\varepsilon} = \begin{cases} \dot{x} = \frac{y}{\varepsilon} \\ \dot{y} = \frac{-x + 2xy}{\varepsilon} \end{cases}$$

A equação diferencial parcial (4-2) com i = 2, torna-se

$$\nabla \xi ((1,x) - (-1, -3x)) = \Pi_2 ((1,x) - (-1, -3x))$$

$$\xi_x 2 + \xi_y 4x = \Pi_2 (2, 4x)$$

$$2\xi_x + 4x\xi_y = 4x.$$
(4-5)

Uma solução para $\xi \in C$ é dada por $\xi(x,y) = x^2$, daí $\xi_x = 2x$ e $\xi_y = 0$, o que satisfaz a equação (4-5). Assim, fazendo a mudança de coordenadas $\overline{x} = x, \overline{y} = y - x^2$ as trajetórias de Z_{ε} serão soluções do sistema singular

$$\varepsilon \overline{x} = \overline{y} + \overline{x}^2, \quad \overline{y} = -\overline{x}.$$

Modelagem Climática

Neste capítulo analisaremos um modelo conceitual de ciclos glaciais [17], que são modelados por um sistema de equações diferenciais que apresentam diferentes escalas de tempo e uma região de descontinuidade. A Teoria Geométrica de Perturbação Singular não pode ser aplicada para este modelo matemático, pois conforme indicado pelos autores em [17] esta teoria ainda não está desenvolvida para sistemas descontínuos lento-rápidos, portanto os mesmos fazem uma aplicação ad-hoc da teoria de Fenichel para provar a existência de uma órbita periódica atratora que cruza a região de descontinuidade.

É importante ressaltar que os resultados teóricos estudados nos capítulos anteriores não podem ser aplicados neste modelo matemático.

5.1 Equação de Budyko

Inicialmente apresentaremos alguns conceitos climáticos para uma melhor compreensão do texto, considerando as equações de Budyko expressada em [7] e os trabalhos recentes de [18], [16] e [11].

Considere a equação de Budyko dependendo do tempo t:

$$R\frac{\partial T(y,t)}{\partial t} = Qs(y)(1 - \alpha(y)) - (A + BT) - C(T - \overline{T}),$$
(5-1)

onde a variável y é o seno da latitude, e como o modelo é simétrico considera-se $y \in [0, 1]$, sendo y = 0 no equador e y = 1 no polo norte. Além disso, temos que

- $T = T(y,t)(^{\circ}C)$ representa a temperatura média anual da superfície no círculo de latitude y,
- *R* a capacidade de calor da superfície da Terra.

O lado direito da equação representa a mudança da energia armazenada na superfície da terra em *y*, onde

- Q representa a média anual da radiação solar recebida.
- s(y) é responsável pela distribuição da insolação (radiação) ao longo da latitude, e satisfaz

$$\int_0^1 s(y) dy = 1$$

,

onde

$$s(y) = s_0 p_0(y) + s_2 p_2(y), \quad s_0 = 1, s_2 = -0.482,$$
 (5-2)

$$p_0(y) = 1$$
 e $p_2(y) = \frac{1}{2}(3y^2 - 1)$ denotam os dois primeiros polinômios de Lagrange. Daí,

$$\int_0^1 s(y)dy = \int_0^1 1 - 0.482 \frac{1}{2} (3y^2 - 1)dy = 1.$$

 α(y) representa o albedo do planeta, ou seja a medida da quantidade de radiação solar refletida de volta para o espaço, variando de 0 a 1.

Assim, $Qs(y)(1 - \alpha(y))$ representa a energia do sol absorvida na superfície da terra na latitude y.

O termo derivado empiricamente (A + BT) modela a radiação de onda longa (OLR) emitida pela Terra, enquanto o transporte de energia térmica através das latitudes é modelado pelo termo $C(T - \overline{T})$, no qual

$$\overline{T} = \int_0^1 T(y,t) dy,$$

representa a média global anual da temperatura da superfície; e A, B e C são constantes positivas.

Considerando os cálculos realizados em [11], obtemos os perfis da temperatura de equilíbrio da equação (5-1)

$$T^*(y) = \frac{1}{B+C} \left(Qs(y)(1-\alpha(y)) - A + \frac{C}{B}(Q(1-\overline{\alpha}) - A) \right),$$

onde

$$\overline{\alpha} = \int_0^1 \alpha(y) s(y) dy$$

e a expressão

$$s(y) = s_0 p_0(y) + s_2 p_2(y),$$
(5-3)

que está uniformemente dentro dos 2% dos valores reais de s(y).

No modelo estudado por Budyko se assume que o planeta possui uma certa camada de gelo acima de uma latitude $y = \eta$, e nenhuma camada de gelo ao sul de $y = \eta$. A função η é chamada de linha de gelo. A partir disto se determina a função albedo

$$\alpha_{\eta} = \begin{cases} \alpha_1 & \text{se } y < \eta, \\ \alpha_2 & \text{se } y > \eta, \end{cases} \qquad \alpha_1 < \alpha_2, \tag{5-4}$$

onde α_1 representam o albedo na superfície coberta de gelo e α_2 o albedo na região sem cobertura de gelo.

Deste modo, temos que existem infinitas funções de temperatura de equilíbrio $T^*(y) =$

 $T^*_{\eta}(\eta)$, uma para cada valor de η (veja 5-5),

$$T_{\eta}^{*}(\eta) = \frac{1}{B+C} \left(Qs(\eta) \left(1-\alpha_{0}\right) - A + \frac{C}{B} \left(Q\left(1-\overline{\alpha}(\eta) - A\right) \right) \right),$$
(5-5)

onde $\alpha_0 = \frac{1}{2}(\alpha_1 + \alpha_2)$. Budyko estava interessado na existência de valores η para os quais $T_{\eta}^* = T_c$, onde T_c é uma temperatura crítica, de maneira que acima desta temperatura o gelo derrete e abaixo a camada de gelo é formada. Especificamente, ele investigou a relação entre os valores de η e a média anual da radiação solar recebida (*Q*).

Motivado principalmente pelo estudo do feedback entre o gelo-albedo, que se resume da seguinte forma:

- Se as temperaturas diminuem, uma camada de gelo existente cresce, aumentando o albedo e diminuindo ainda mais as temperaturas, levando a formação de uma camada de gelo cada vez maior.
- Se as temperaturas aumentam, a camada de gelo será menor, reduzindo o albedo (a radiação solar refletida de volta para o espaço seria menor), assim aumentando as temperaturas e reduzindo ainda mais o tamanho da camada de gelo.

Logo, Budyko mostrou através da equação (5-1) a existência de uma pequena camada de gelo estável, o que não permite que a linha de neve (η) responda as mudanças de temperatura.

Mais tarde, Widiasih [18] corrigiu este problema introduzindo uma equação (EDO) para o movimento da camada gelo (η),

$$R\frac{\partial T}{\partial t} = Qs(y)(1-\alpha(y,\eta)) - (A+BT) - C(T-\overline{T}), \qquad (5-6)$$

$$\frac{d\eta}{dt} = \rho(T(\eta, t) - T_c), \qquad (5-7)$$

onde $\rho > 0$ é um parâmetro que governa o tempo de relaxamento da camada de gelo. A distribuição T(y,t) evolui de acordo com a equação de Budyko (5-6), enquanto a dinâmica de η é determinada pela temperatura na linha de gelo, em relação à T_c . A camada de gelo recua em direção ao polo se $T(\eta,t) > T_c$, e aumenta em direção ao equador se $T(\eta,t) < Tc$.

Posteriormente, Widiasih e McGehee em [11] apresentaram uma aproximação ao modelo Budyko-Widiasih (5-6)-(5-7), reduzindo o modelo a um sistema de duas equações diferenciais,

$$\dot{w} = -\tau(w - F(\eta)),$$

$$\dot{\eta} = \rho(w - G(\eta)),$$
(5-8)

onde

$$F(\eta) = \frac{1}{B} \left(Q(1 - \alpha_0) - A + CL(\alpha_2 - \alpha_1)(\eta - \frac{1}{2} + s_2 P_2(\eta)) \right),$$
(5-9)

$$G(\eta) = -Ls_2(1 - \alpha_0)p_2(\eta) + Tc, \qquad (5-10)$$

$$L = \frac{Q}{(B+C)}, \quad e \quad P_2(\eta) = \int_0^{\eta} p_2(y) dy = \int_0^{\eta} \frac{1}{2} (3y^2 - 1) dy.$$

Os retratos de fase do sistema (5-8) estão representados na Figura (5.1), no qual se observa a existência de soluções independente de ρ e $\tau = B/R$. Neste primeiro momento não faremos uma análise detalhada da equação (5-8), pois ela fará parte do modelo que estudaremos.

(a) Retrato de fase do sistema (5-8), quando $T_c = -10^{\circ}C$ em $G(\eta)$. (b) Retrato de fase do sistema (5-8), quando $T_c = -5.5^{\circ}C$ em $G(\eta)$.

Figura 5.1: Retratos de Fase do sistema (5-8). A figura foi retirada de [17].

Por fim, em 2016, Widiasih e McGehee incluíram uma nova variável, linha de neve, ao sistema diferencial (5-8), que será apresentada na próxima seção.

5.1.1 Linha de Gelo e Linha de Neve

Como o sistema (5-8) não permite ciclos glaciais, uma nova variável (ξ) é introduzida. O que motivou a introdução desta variável foi o papel desempenhado pelas zonas de acumulação e ablação. Em termos técnicos, a zona de ablação é a região em que a superfície deixa de ter acumulo de neve e a zona de acumulação é a região com um grande acumulo de neve.

Denote por η a linha de neve e ξ a linha de gelo, ou seja, a região quando o gelo começa a se formar na superfície (veja 5.2). Note que, a zona de ablação tem extensão $\eta - \xi$, enquanto a zona de acumulação tem o tamanho $1 - \eta$. As taxas de ablação e acumulação serão extremamente importantes para o modelo.

Figura 5.2: η *linha de neve e* ξ *linha de gelo.*

Parâmetro	Valor	Unidade	Parâmetro	Valor	Unidade
Q	343	Wm^{-2}	T_c^-	-5.5	$(^{\circ}C)$
А	202	Wm^{-2}	b_0	1.5	-
В	1.9	$Wm^{-2}(^{\circ}C)^{-1}$	b	1.75	-
С	3.04	$Wm^{-2}(^{\circ}C)^{-1}$	b_1	5	_
α_1	0.32	-	a	1.05	-
α_2	0.62	-	τ	1	s^{-1}
T_c^+	-10	$(^{\circ}C)$	ρ	0.1	$s^{-1}(^{\circ}C)^{-1}$

 Tabela 5.1: Parâmetros fixados.

Considerando os cálculos realizados em [18] e [11] obtemos os parâmetros da Tabela 5.1.

5.2 Equações do Modelo

O modelo que estudaremos é um sistema não suave definido em um espaço tridimensional

$$\mathcal{B} = \{(w, \eta, \xi) : w \in \mathbb{R}, \eta \in [0, 1], \xi \in [0, 1]\}$$

onde *w* está relacionado a temperatura média global e η e ξ denotam as linhas de neve e gelo, respectivamente.

Escolhendo os parâmetros $b_0 < b < b_1$ para representar a taxa de ablação e o parâmetro *a* para denotar a taxa de acumulação. Defina o seguinte modelo de equações

$$\begin{cases} X(w,\eta,\xi) & \text{se } (w,\eta,\xi) \in S^-, \\ Y(w,\eta,\xi) & \text{se } (w,\eta,\xi) \in S^+, \end{cases}$$
(5-11)

onde a região de descontinuidade Σ é dada por

$$\Sigma = \{ (w, \eta, \xi) : b(\eta - \xi) - a(1 - \eta) = 0 \}$$

= $\{ (w, \eta, \xi) : \xi = (1 + \frac{a}{b})\eta - \frac{a}{b} \equiv \gamma(\eta) \},$ (5-12)

note que, $\eta-\xi$ e $1-\eta$ são extensões da zona de ablação e acumulação, respectivamente.

Os conjuntos

$$S^- = ((w, \eta, \xi) :\in \mathcal{B} : \xi > \gamma(\eta)) \quad e \quad S^+ = ((w, \eta, \xi) :\in \mathcal{B} : \xi < \gamma(\eta)).$$

representam os períodos glacial e interglacial, respectivamente.

Observação 5.2.1 *i)* No período glacial ocorre um aumento nas camadas de gelo que cobrem a superfície da terra.

ii) O período interglacial é caracterizado por temperaturas médias mais quentes ocasionando o descongelamento das geleiras. Os campos de vetores X e Y são escritos da seguinte maneira

$$X = \begin{cases} \dot{w} = -\tau(w - F(\eta)), \\ \dot{\eta} = \rho(w - G_{-}(\eta)), \\ \dot{\xi} = \epsilon(b_{0}(\eta - \xi) - a(1 - \eta)). \end{cases}$$

$$Y = \begin{cases} \dot{w} = -\tau(w - F(\eta)), \\ \dot{\eta} = \rho(w - G_{+}(\eta)), \\ \dot{\xi} = \epsilon(b_{1}(\eta - \xi) - a(1 - \eta)). \end{cases}$$
(5-14)

A função $F(\eta)$ é definida em (5-9), enquanto $G_{-}(\eta)$ e $G_{+}(\eta)$ são expressas em (5-10) quando $Tc^{-} = -5.5^{\circ}C$ e $Tc^{+} = -10^{\circ}C$, respectivamente, ou seja

$$G_{-}(\eta) = -Ls_{2}(1-\alpha_{0})p_{2}(\eta) + Tc^{-}$$
 e $G_{+}(\eta) = -Ls_{2}(1-\alpha_{0})p_{2}(\eta) + Tc^{+}$.

Considerando os valores da Tabela 5.1 podemos expressar (5-13) e (5-14) numericamente

$$\begin{split} X &= \begin{cases} \dot{w} &= -8.03203\eta^3 + 41.36\eta - w - 27.3008\\ \dot{\eta} &= -2.66061\eta^2 + 0.1w + 1.43687\\ \dot{\xi} &= \epsilon(1.5(\eta - \xi) - 1.05(1 - \eta)). \end{cases}\\ Y &= \begin{cases} \dot{w} &= -8.03203\eta^3 + 41.36\eta - w - 27.3008\\ \dot{\eta} &= -2.66061\eta^2 + 0.1w + 1.88687\\ \dot{\xi} &= \epsilon(5(\eta - \xi) - 1.05(1 - \eta)). \end{cases} \end{split}$$

Seja $x = (w, \eta, \xi) \in \mathcal{B}$, temos que as soluções em S^- possuem o fluxo $\varphi_-(x, t)$ dado por $\dot{x} = X$, e as soluções de S^+ possuem o fluxo $\varphi_+(x, t)$ dado por $\dot{x} = Y$.

Veremos que uma trajetória de (w, η, ξ) passa através de Σ e comuta do período glacial para o interglacial, ou vice-versa.

5.2.2 Pontos de Equilíbrio

Um ponto de equilíbrio $Q^- = (w^-, \eta^-, \xi^-)$ para (5-13) satisfaz $\dot{w} = \dot{\eta} = \dot{\xi} = 0$, como \dot{w} e $\dot{\eta}$ dependem da variável *w* temos que $w = F(\eta) = G_-(\eta)$ gera um polinômio cúbico na variável η , a saber:

$$P_1(\eta) = -8.03203\eta^3 - 26.6061\eta^2 + 41.36\eta - 12.9321.$$

De modo análogo, um ponto de equilíbrio $Q^+ = (w^+, \eta^+, \xi^+)$ para (5-14) satisfaz $w = F(\eta) = G_+(\eta)$, e gera

$$P_2(\eta) = -8.03203\eta^3 - 26.6061\eta^2 + 41.36\eta - 8.43211.$$

As raízes de $P_1(\eta)$ são $\eta = -4.5282, \eta = 0.489875$ e $\eta = 0.725827$. Já as raízes de $P_2(\eta)$ são $\eta = -4.50677, \eta = 0.245524$ e $\eta = 0.948749$. Na Figura 5.3 estão representadas as raízes dos polinômios $P_1(\eta)$ e $P_2(\eta)$.

Figura 5.3: *Raízes de* $P_1(\eta)$ (*em azul*) *e* $P_2(\eta)$ (*em laranja*).

A partir dos valores de η , temos que cada um dos sistema (5-13) e (5-14) apresentam dois pontos de equilíbrio

$$\begin{aligned} & \mathcal{Q}_{-,s}^* = \left(w_{-,s}^*, \eta_{-,s}^*, \left(1 + \frac{a}{b_0}\right)\eta_{-,s}^* - \frac{a}{b_0}\right), \qquad \mathcal{Q}_{-,u}^* = \left(w_{-,u}^*, \eta_{-,u}^*, \left(1 + \frac{a}{b_0}\right)\eta_{-,u}^* - \frac{a}{b_0}\right), \\ & \mathcal{Q}_{+,s}^* = \left(w_{+,s}^*, \eta_{+,s}^*, \left(1 + \frac{a}{b_1}\right)\eta_{+,s}^* - \frac{a}{b_1}\right) \quad \text{e} \quad \mathcal{Q}_{+,u}^* = \left(w_{+,u}^*, \eta_{+,u}^*, \left(1 + \frac{a}{b_1}\right)\eta_{+,u}^* - \frac{a}{b_1}\right), \end{aligned}$$

respectivamente. Numericamente, os pontos de equilíbrio do sistema (5-13) são

$$Q_1 = (531.179, -4.5282, -8.39794), \quad Q_{-,u}^* = (-7.98, 0.49, 0.13) \quad \text{e} \quad Q_{-,s}^* = (-0.35, 0.72, 0.53).$$

E do sistema (5-14) são

$$Q_2 = (521.527, -4.50677, -5.66319), \quad Q_{+,u}^* = (-17.26, 0.25, 0.087) \quad \text{e} \quad Q_{+,s}^* = (5.08, 0.95, 0.94).$$

Note que, Q_1 e Q_2 não pertencem a região \mathcal{B} , reafirmando o fato de cada sistema possuir somente dois pontos de equilíbrio.

Para classificar os pontos de equilíbrio, considere a seguinte definição.

Definição 5.2.3 *Seja* $x = (w, \eta, \xi) \in \mathfrak{B}$ *. Então:*

• $x \text{ } e \text{ } um \text{ } ponto \text{ } de \text{ } equilíbrio \text{ } virtual \text{ } de \text{ } (5-11) \text{ } se \text{ } para \text{ } cada \text{ } \xi \text{ } t em-se \text{ } \xi < \gamma(\eta) \text{ } para \text{ } x \in S^-.$ $Ou \text{ } \xi > \gamma(\eta) \text{ } para \text{ } x \in S^+.$

Assim, pela Definição 5.2.3 temos que os pontos de equilíbrio $Q^*_{-,s}$ e $Q^*_{-,u}$ são virtuais,

$$\xi_{-,s,u}^{*} = \left(\left(1 + \frac{a}{b_{0}}\right) \eta_{-,s,u}^{*} - \frac{a}{b_{0}} \right) < \left(1 + \frac{a}{b}\right) \eta_{-,s,u}^{*} - \frac{a}{b} = \gamma(\eta_{-,s,u}^{*}),$$

ou seja,

pois

 $0.13 < \gamma(0.49) = 0.1838 \quad e \quad 0.53 < \gamma(0.72) = 0.561323.$

Analogamente, $Q^*_{+,s}$ e $Q^*_{+,u}$ são virtuais, já que

$$\xi_{+,s,u}^{*} = \left(\left(1 + \frac{a}{b_{1}}\right) \eta_{+,s,u}^{*} - \frac{a}{b_{1}} \right) > \left(1 + \frac{a}{b}\right) \eta_{+,s,u}^{*} - \frac{a}{b} = \gamma(\eta_{+,s,u}^{*}),$$

ou seja,

 $0.087 > \gamma(0.25) = -0.207162 \quad e \quad 0.94 > \gamma(0.95) = 0.917998.$

Implica que $Q^*_{-,s,u} \in S^+$ e $Q^*_{+,s,u} \in S^-$.

Considere as seguintes matrizes jacobianas:

$$J_{1} = \begin{bmatrix} -\tau & \tau F'(\eta) & 0\\ \rho & -\rho G'_{-}(\eta) & 0\\ 0 & (a+b_{0})\varepsilon & -b_{0}\varepsilon \end{bmatrix} = \begin{bmatrix} -1 & 41.36 - 24.0961\eta^{2} & 0\\ 0.1 & -5.32122\eta & 0\\ 0 & 2.55\varepsilon & -1.5\varepsilon \end{bmatrix}$$
$$J_{2} = \begin{bmatrix} -\tau & \tau F'(\eta) & 0\\ \rho & -\rho G'_{+}(\eta) & 0\\ 0 & (a+b_{1})\varepsilon & -b_{1}\varepsilon \end{bmatrix} = \begin{bmatrix} -1 & 41.36 - 24.0961\eta^{2} & 0\\ 0.1 & -5.32122\eta & 0\\ 0.1 & -5.32122\eta & 0\\ 0 & 6.05\varepsilon & -5\varepsilon \end{bmatrix}$$

onde J_1 , e J_2 são as matrizes jacobianas de (5-13) e (5-14). Os autovalores associados a J_1 e J_2 são respectivamente:

$$\begin{aligned} A_1 &= (\lambda_1^-, \lambda_2^-, \lambda_3^-) \\ &= \left(-1.5\varepsilon, -2.66061\eta - 0.5\sqrt{\eta(18.677\eta - 10.6424) + 17.544} - 0.5, \right. \\ &\left. 0.5(-5.32122\eta + \sqrt{\eta(18.677\eta - 10.6424) + 17.544} - 1)\right) \end{aligned}$$

e

$$\begin{array}{lll} A_2 &=& (\lambda_1^+,\lambda_2^+,\lambda_3^+) \\ &=& \left(-5\varepsilon,-2.66061\eta-0.5\sqrt{\eta(18.677\eta-10.6424)+17.544}-0.5,\right. \\ && 0.5(-5.32122\eta+\sqrt{\eta(18.677\eta-10.6424)+17.544}-1)\right). \end{array}$$

Note que, $J_1(Q^*_{-,s})$ possui três autovalores negativos

$$A_1 = (-4.64806, -0.214225, -1.5\varepsilon)$$

e $J_1(Q^*_{-,u})$ dois autovalores negativos e um positivo

$$A_1 = (-3.85352, 0.24679, -1.5\varepsilon).$$

O que implica em $Q^*_{-,s}$ assintoticamente estável e $Q^*_{-,u}$ instável, isto é, do tipo sela. Fazendo a mesma análise em J_2 , temos que $J_2(Q^*_{+,s})$ possui

$$A_2 = (-5.4869, -0.561603, -5\epsilon).$$

e $J_2(Q^*_{+,u})$ tem

$$A2 = (-3.1568, 0.85031, -5\varepsilon),$$

resultando em Q_s^+ do tipo assintoticamente estável e $Q_{+,u}^*$ do tipo sela.

A seguir analisaremos o comportamento das trajetórias na região de descontinuidade.

5.2.4 Comportamento na Região de Descontinuidade

A região de descontinuidade (5-12), isto é

$$\gamma(\eta) = \left(1 + \frac{a}{b}\right)\eta - \frac{a}{b} - \xi$$

é um plano com vetor normal

$$abla \gamma(\mathbf{\eta}) = \left(0, 1 + \frac{a}{b}, -1\right).$$

Para $x \in \Sigma$ podemos fazer as seguintes análises.

A derivada de Lie de $\gamma(\eta)$ com respeito ao campo *X* é dado por

$$\begin{aligned} X\gamma(x) &:= \langle X(x), \nabla\gamma(\eta) \rangle \\ &= \langle X(x), (0, \frac{a}{b} + 1, -1) \rangle \\ &= \frac{\rho(a+b)(w-G_{-}(\eta))}{b} + \varepsilon(a(-\eta) + a + b_{0}(\xi - \eta)) \\ &= \varepsilon(0.15 - 0.15\eta) - 4.25698\eta^{2} + 0.16w + 2.29899. \end{aligned}$$

Fazendo $X\gamma = 0$, em função de *w* temos

$$w = \frac{b\varepsilon(a(\eta - 1) + b_0(\eta - \xi))}{\rho(a + b)} + G_{-}(\eta)$$

= 26.6061\eta^2 + (0.9375\eta - 0.9375)\varepsilon - 14.3687 \equiv g_{-}(\eta). (5-15)

Analogamente, a derivada de Lie de γ com respeito a Y é dada por

$$Y\gamma(p) := \langle Y(w,\eta,\xi), \nabla\gamma \rangle$$

= $\frac{\rho(a+b)(w-G_{+}(\eta))}{b} + \varepsilon(a(-\eta)+a+b_{1}(\xi-\eta))$
= $-4.25698\eta^{2} + 0.16w + (1.95\eta - 1.95)\varepsilon + 3.01899$

Fazendo $Y\gamma = 0$, em função de w

$$w = \frac{b\varepsilon(a(\eta - 1) + b_1(\eta - \xi))}{\rho(a + b)} + G_+(\eta)$$

= $\varepsilon(12.1875 - 12.1875\eta) + 26.6061\eta^2 - 18.8687 \equiv g_+(\eta).$ (5-16)

As derivadas de Lie de segunda ordem são

$$X^{2}\gamma(x) = 21.3672\eta^{3} - 5.61585\eta + w(-0.851395\eta - 0.015\varepsilon - 0.16) + (0.399092\eta^{2} - 0.215531)\varepsilon - 4.36813$$

e

$$Y^{2}\gamma(x) = \varepsilon \left(3.6794 - 5.18819\eta^{2}\right) + 21.3672\eta^{3} - 9.44713\eta + w(-0.851395\eta + 0.195\varepsilon - 0.16) - 4.36813.$$

Calculando, $X^2 \gamma(x) = 0$ e $Y^2 \gamma(x) = 0$ obtemos respectivamente

$$w = \frac{1424.48\eta^3 - 374.39\eta + (26.6061\eta^2 - 14.3687)\varepsilon - 291.209}{56.7597\eta + 1.\varepsilon + 10.6667}$$

e

$$w = \frac{-109.575\eta^3 + 48.4468\eta + (26.6061\eta^2 - 18.8687)\varepsilon + 22.4007}{-4.36613\eta + 1.\varepsilon - 0.820513}$$

Defina

$$\Lambda^{-} = \{(w,\eta,\xi) \in \Sigma : w = g_{-}(\eta)\} \quad e \quad \Lambda^{+} = \{(w,\eta,\xi) \in \Sigma : w = g_{+}(\eta)\}.$$

Como $X\gamma = 0$ e $Y\gamma = 0$, podemos afirmar que X e Y são tangentes a Σ somente nas curvas Λ^- e Λ^+ , respectivamente.

Note que, existem pontos q_1 e q_2 em Λ^- , com q_1 próximo de $Q^*_{-,u}$ e q_2 perto de $Q^*_{-,s}$, os pontos em Λ^- , exceto q_1 e q_2 , são singularidades do tipo dobra. Pontos em Λ^- que estão entre q_1 e q_2 são de tangências invisíveis, e pontos acima de q_2 e abaixo de q_1 são de tangências visíveis.

De forma semelhante, existem pontos p_1 e p_2 em Λ^+ , com p_1 perto de $Q^*_{+,u}$ e p_2 perto de $Q^*_{+,s}$ de modo que pontos em Λ^+ diferentes de p_1 e p_2 são singularidades do tipo dobra. Pontos em Λ^+ entre p_1 e p_2 são de tangências visíveis, e os pontos acima de p_2 e abaixo de p_1 são de tangências invisíveis.

Defina as seguintes regiões em Σ :

- $\Sigma^{s} = \{(w, \eta, \xi) \in \Sigma : g_{+}(\eta) < w < g_{-}(\eta)\}.$
- $\Sigma^{-} = \{(w, \eta, \xi) \in \Sigma : w > g_{-}(\eta)\}.$
- $\Sigma^+ = \{ (w, \eta, \xi) \in \Sigma : w < g_+(\eta) \}.$

O conjunto Σ^s é a região de deslize e pela convenção de Filippov não existe unicidade de soluções para x(t) no tempo futuro se $x(0) \in \Sigma^s$.

Desta maneira, Σ^- e Σ^+ garantem a unicidade de soluções para (5-11). Ou seja, existem trajetórias que passam por Σ^+ ou Σ^- . Além do mais, uma trajetória φ_+ em S^+ interceptando Σ^+ em x cruzará transversalmente Σ , tornando-se uma trajetória φ_- em x. Analogamente, uma trajetória φ_- em S^- se torna uma trajetória φ_+ . Veja a Figura 5.4.

Figura 5.4: Dinâmica: Σ é região de descontinuidade, o ponto azul representa $Q^*_{-,s} \in S^+$ e o ponto vermelho o $Q^*_{+,s} \in S^-$.

5.2.5 Mapa de Primeiro Retorno

Nesta seção definiremos o mapa de primeiro retorno do sistema (5-11).

Ao analisarmos a Figura 5.4, notamos que as curvas Λ^-, Λ^+ , com a região de descontinuidade Σ não se cruzam em \mathcal{B} , desde que

$$\varepsilon < \left[\frac{b\varepsilon(a(\eta-1)+b_{0}(\eta-\xi))}{\rho(a+b)} + G_{-}(\eta) \right] - \left[\frac{b\varepsilon(a(\eta-1)+b_{1}(\eta-\xi))}{\rho(a+b)} + G_{+}(\eta) \right]$$

$$\varepsilon < \frac{T_{c}^{-} - T_{c}^{+}\rho(a+b)}{a(b_{1}-b_{0})} = 0.342857.$$
(5-17)

Assuma que ε varia no intervalo $0 < \varepsilon < 0.342857$.

Na Figura 5.4 existe uma variedade bidimensional \mathcal{M} estável do ponto $Q_{-,u}^*$. Devido ao desacoplamento de (w,η) , a projeção de \mathcal{M} no plano (w,η) é simplesmente a variedade estável (unidimensional) de $(w_{-,u}^*, \eta_{-,u}^*)$, sob o fluxo ψ_- do sistema

$$\begin{split} \dot{w} &= -\tau(w-F(\eta)), \\ \dot{\eta} &= \rho\big(w-G_{-}(\eta)\big), \end{split}$$

plotado na Figura 5.1(b). Em particular, a superfície \mathcal{M} é independente de $\varepsilon > 0$.

 \mathcal{M} particiona Σ em dois subconjuntos, a parte superior (*w* grande) e inferior (*w* pequeno). Denote a parte superior por *I*. Para qualquer ponto $x = (w, \eta, \xi) \in I$, temos $\varphi_{-}(x,t) \to Q^{*}_{-,s}$. De fato, já que $(w(t), \eta(t)) \to (w^{*}_{-,s}, \eta^{*}_{-,s})$ com $t \to \infty$ e consequentemente $\xi(t) \to \xi^{*}_{-,s}$. Assim, $I \subset W^{s}_{-}(Q^{*}_{-,s})$ no conjunto estável do ponto $Q^{*}_{-,s}$. Analogamente, $I \subset W^{s}_{+}(Q^{*}_{+,s})$ no conjunto estável do ponto $Q^{*}_{+,s}$, tudo isso vale para qualquer $\varepsilon > 0$.

Seja $\Gamma^- = \Sigma^- \cap I$, o conjunto de pontos pertencentes a Σ que estão acima de \mathcal{M} e acima de Λ^- . E $\Gamma^+ = \Sigma^+ \cap I$, o conjunto de pontos pertencentes a Σ que estão acima \mathcal{M} e abaixo de Λ^+ .

Para $\varepsilon > 0$, $\Gamma^+ \subset W^s(Q^*_{-,s})$ e $X\gamma < 0$, para todo $x \in \Gamma_+$. Portanto, para $\varepsilon > 0$, a trajetória φ_- começando em $x \in \Gamma^+$ entra em S^- antes de intersectar Γ^- , se aproximando do ponto de equilíbrio virtual $Q^*_{-,s}$. Para qualquer $\varepsilon > 0$ e para cada $x \in \Gamma^+$ existe um t = t(x) > 0 tal que $\varphi_-(x,t) \in \Gamma^-$. Logo, para algum $\varepsilon > 0$, temos o mapa

$$r_{\varepsilon}^{-}: \Gamma^{+} \to \Gamma^{-}, \quad r_{\varepsilon}^{-}(x) = \varphi_{-}(x, t(x, \varepsilon)).$$

De modo análogo, obtemos

$$r_{\varepsilon}^{+}: \Gamma^{-} \to \Gamma^{+}, \quad r_{\varepsilon}^{+}(y) = \varphi_{+}(y, t(y, \varepsilon))$$

Portanto,

$$r_{\varepsilon} = r_{\varepsilon}^{+} \circ r_{\varepsilon}^{-} : \Gamma^{+} \to \Gamma^{-}$$

é o mapa de primeiro retorno definido para qualquer $\varepsilon > 0$.

5.3 Órbita Periódica

Nesta seção provaremos que o sistema de Filippov (5-11) admite uma única órbita periódica. A ideia deste resultado surge do caso em que $\varepsilon = 0$, fazendo com que cada sistema (5-13) e (5-14) possua uma linha de pontos de equilíbrio da forma $(w_{-,s}^*, \eta_{-,s}^*, \xi_{-,s}^*)$ e $(w_{+,s}^*, \eta_{+,s}^*, \xi_{+,s}^*)$, respectivamente. Veja a Figura 5.5(a).

Note que, no caso em que $\varepsilon = 0$ temos a variedade crítica dos sistemas lento-rápidos. Sejam

$$Z_{+} = (w_{+,s}^{*}, \eta_{+,s}^{*}, \gamma(\eta_{+,s}^{*})) \quad e \quad Z_{-} = (w_{-,s}^{*}, \eta_{-,s}^{*}, \gamma(\eta_{-,s}^{*}));$$

pontos pertencentes a Σ .

Quando $\varepsilon = 0$, a trajetória em Z_+ converge para um ponto de equilíbrio regular (através do fluxo φ_-), enquanto uma trajetória em Z_- converge para um ponto de equilíbrio regular (através de φ_+).

Para $\varepsilon > 0$ o sistema (5-11) possui dois pontos de equilíbrios virtuais como na Figura 5.5(b), e para ε suficientemente pequeno, espera-se que exista uma órbita periódica como na Figura 5.5(a). Note que, os resultados aqui apresentados podem ser vistos como problemas de perturbação singular, embora no modelo a existência de uma região de descontinuidade impeça o uso da teoria de Fenichel.

Assim, para provar a existência da órbita periódica precisamos verificar que para qualquer subconjunto compacto D_+ de Γ_+ contendo Z_+ em seu interior, e para todo $\varepsilon > 0$ suficientemente pequeno, o mapa de primeiro retorno r_{ε} , satisfaz os seguintes itens

•
$$r_{\varepsilon}(D_+) \subset D_+$$

*r*_ε é uma contração.

Figura 5.5: Retratos de fase do sistema 3-22.

Considere os seguintes resultados

Proposição 5.3.1 As seguintes afirmações são válidas.

- *i)* Dado $c_1 \in (0,1)$ e um conjunto compacto $D_+ \subset \Gamma^+$, existe $\varepsilon_1 > 0$ tal que para todo $\varepsilon \leq \varepsilon_1$ e para todo $x_1, x_2 \in D_+$, $\|r_{\varepsilon}^-(x_2) - r_{\varepsilon}^-(x_1)\| \leq c_1 \|x_2 - x_1\|$.
- *ii)* Dado $c_2 \in (0,1)$ e um conjunto compacto $D_- \subset \Gamma^-$, existe $\varepsilon_2 > 0$ tal que para todo $\varepsilon \leq \varepsilon_2$ e para todo $y_1, y_2 \in D_-$, $||r_{\varepsilon}^+(y_2) - r_{\varepsilon}^+(y_1)|| \leq c_2 ||y_2 - y_1||$.

Demonstração

Iremos provar o item ii) da proposição, o item i) segue de forma análoga e está provado em [18].

Sejam $c_2 \in (0,1)$ e $D_- \subset \Gamma^-$, D_- compacto. Denote por ψ_+ o fluxo correspondente ao sistema

$$\begin{split} \dot{w} &= -\tau(w-F(\eta)), \\ \dot{\eta} &= \rho\big(w-G_+(\eta)\big). \end{split}$$

Para algum $x = (w_0, \eta_0, \xi_0) \in D_-$, $\psi_+(w_0, \eta_0, t) \to (w^*_{+,s}, \eta^*_{+,s})$ com $t \to \infty$. Como $E = \{(w, \eta) : (w, \eta, \xi) \in D_-)\}$ é um compacto, então existe T_1 tal que para todo $t \ge T_1$ e para todo $u, v \in E$, temos

$$\| \Psi_{+}(u,t) - \Psi_{+}(v,t) \| \leq c_{2} \| u - v \|.$$
(5-18)

Dado $y \in D_-$, escolha $\varepsilon(y) > 0$ tal que $t(y, \varepsilon(y)) > T_1$.

Pela continuidade da função φ_+ com respeito a condição inicial e tempo, exite $\delta(y) > 0$ então para todo $x \in B_{\delta(y)}(y)$, $t(x, \varepsilon(y)) > T_1$, onde $r^+_{\varepsilon(y)}(x) \in \Gamma^+$. Note que para todo $\varepsilon \leq \varepsilon(y), t(x, \varepsilon) > T_1$.

Seja y variável, escolha uma cobertura aberta

$$D_{-} \subset \bigcup_{y \in D_{-}} B_{\delta(y)}(y)$$

de um conjunto compacto D_- . Seja $\{B_{\delta(y_i)}(y_i) : i = 1, \dots N\}$ uma subcobertura finita, e um conjunto $\varepsilon_1 = min \{\varepsilon(y) : i = 1, \dots N\}$. Então para algum $\varepsilon \leq \varepsilon_1$ e para todo $y \in D_-, t(y, \varepsilon) > T_1$.

Agora, sejam $\varepsilon \leq \varepsilon_1$, $y_1 = (w_1, \eta_1, \gamma(\eta_1)), y_2 = (w_2, \eta_2, \gamma(\eta_2)) \in D_-$, e seja $u = (w_1, \eta_1), v = (w_2, \eta_2).$

Seja $r_{\varepsilon}^+(y_1) = (w'_1, \eta'_1, \gamma(\eta'_1)), r_{\varepsilon}^+(y_2) = (w'_2, \eta'_2, \gamma(\eta'_2)), u' = (w'_1, \eta'_1) e v' = (w'_2, \eta'_2).$ Por (5-18) e pela escolha de ε , tal que $||v' - u'||^2 \le c_1^2 ||v - u||^2$. Temos

$$\| r_{\varepsilon}^{+}(y_{2}) - r_{\varepsilon}^{+}(y_{1}) \|^{2} = \| v' - u' \|^{2} + [\gamma(\eta'_{2}) - \gamma(\eta'_{1})]^{2}$$

$$= \| v' - u' \|^{2} + (1 + \frac{a}{b})^{2} (\eta'_{2} - \eta'_{1})^{2}$$

$$\leq c_{2}^{2} \| v - u \|^{2} + c_{2}^{2} (1 + \frac{a}{b})^{2} (\eta'_{2} - \eta'_{1})^{2}$$

$$= c_{2}^{2} \| v - u \|^{2} + c_{2}^{2} (\gamma(\eta_{2}) - \gamma(\eta_{1}))^{2}$$

$$= c_{2}^{2} \| y_{2} - y_{1} \|^{2} .$$

Deste modo finalizamos a demonstração do item *ii*).

Proposição 5.3.2 As seguintes afirmações são válidas.

- *i)* Sejam D_+ qualquer subconjunto compacto de Γ^+ com $Z_+ \in Int(D_+)$ e D_- qualquer subconjunto compacto de Γ^- . Existe $\varepsilon_3 > 0$ tal que para todos os $\varepsilon \leq \varepsilon_3$, $r_{\varepsilon}^+(D_-) \subset D_+$.
- *ii)* Sejam D_- qualquer subconjunto compacto de Γ^- com $Z_- \in Int(D_-)$ e D_+ qualquer subconjunto compacto de Γ^+ . Existe $\varepsilon_4 > 0$ tal que para todos os $\varepsilon \leq \varepsilon_4$, $r_{\varepsilon}^-(D_+) \subset D_-$.

Demonstração

Provando o item *i*). Seja $x = (w_0, \eta_0, \gamma(\eta_0)) \in D_-$. Escolha $\delta > 0$ tal que $U_{\delta} = B_{2\delta}(Z_+) \cap \Sigma \subset D_+$. Denotamos por ψ_+ o fluxo correspondente ao sistema

$$\begin{split} \dot{w} &= -\tau(w-F(\eta)), \\ \dot{\eta} &= \rho\big(w-G_+(\eta)\big). \end{split}$$

Note que o fluxo $\psi_+((w_0,\eta_0),t) = (w(t),\eta(t)) \rightarrow (w^*_{+,s},\eta^*_{+,s})$ com $t \rightarrow \infty$. Além disso, $\gamma(\eta)$ é contínuo, então existe T = T(x) > 0 para todo $t \ge T$,

$$\| w(t), \eta(t), \gamma(\eta(t)) - Z_+ \| < \delta.$$

Escolha $\varepsilon(x) > 0$ tal que $t(x, \varepsilon(x)) > T$. Então, para todo $\varepsilon \leq \varepsilon(x), r_{\varepsilon}^+(x) \in B_{\delta}(Z_+) \cap \Sigma$.

Seja $c_2 \in (0,1)$, $c_2 < \delta/diam(D_-)$. Escolha $\varepsilon_2 > 0$ como na Proposição 5.3.1. Seja $\varepsilon_3 = min \{\varepsilon(x), \varepsilon_2\}$. Para $\varepsilon \leq \varepsilon_3 \in y \in D_-$,

$$\| r_{\varepsilon}^{+}(y) - r_{\varepsilon}^{+}(x) \| \leq c_{2} \| y - x \| \leq c_{2} diam(D_{-}) < \delta,$$

implica

$$|| r_{\varepsilon}^{+}(y) - Z_{+} || \leq || r_{\varepsilon}^{+}(y) - r_{\varepsilon}^{+}(x) || + || r_{\varepsilon}^{+}(x) - Z_{+} || < 2\delta.$$

Portanto, $r_{\varepsilon}^+(D_-) \subset U_{\delta} \subset D_+$. A prova do item *ii*) segue de maneira análoga.

A seguir provaremos o teorema principal.

Teorema 5.3.3 *Considerando os parâmetros da Tabela 5.1, existe* $\hat{\varepsilon} > 0$ *tal que para todo* $\varepsilon \leq \hat{\varepsilon}$, *o sistema descontínuo* (5-11) *admite uma única órbita periódica atratora.*

Demonstração

Sejam $D_+ \subset \Gamma^+$, com D_+ compacto e $Z_+ \in Int(D_+)$ e $D_- \subset \Gamma^-$, com D_- compacto e $Z_- \in Int(D_-)$. Dados $c_1, c_2 \in (0, 1)$, escolha $\varepsilon_1 > 0$ e $\varepsilon_2 > 0$ de modo que, $\varepsilon \leq \varepsilon_1$ e $\varepsilon \leq \varepsilon_2$ como na Proposição 5.3.1. Escolha $\varepsilon_3 > 0$ e $\varepsilon_4 > 0$ como na Proposição 5.3.2.

Para $\varepsilon \leq \hat{\varepsilon} = \min \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\}, r_{\varepsilon} = r_{\varepsilon}^+ \circ r_{\varepsilon}^- : D_+ \to D_-$ é uma contração com constantes $c_1, c_2 \in (0, 1)$. Portanto, r_{ε} tem um único ponto fixo x^* para o qual todas as órbitas r_{ε} em D_+ convergem. Segue que o fluxo através de φ_- vai de x^* para $r_{\varepsilon}^-(x^*) = y^*$ e o de φ_+ vai de y^* para $r_{\varepsilon}^+(y^*) = x^*$, provando assim a existência da órbita periódica. Além disso, toda trajetória do sistema (5-11) que passa por D_+ converge para este ciclo limite.

Observe que os valores das constantes de tempo τ e ρ não desempenharam nenhum papel na nossa análise.

Análise Qualitativa do Modelo Climático

Os resultados apresentados neste capítulo são inéditos, tendo como principal objetivo determinar os pontos de equilíbrio da forma (w^*, η^*, ξ^*) para as equações (5-13) e (5-14) usando os parâmetros da Tabela 5.1 sem fixar os valores dos albedos $\alpha_1 e \alpha_2$. Permitimos que os albedos variem no intervalo [0, 1] ignorando à *priori* qualquer significado físico. Além disso, analisaremos a configuração do plano crítico, quando $\varepsilon = 0$, utilizando as equações originais, de modo que possamos obter alguma informação sobre a existência de órbitas periódicas.

6.1 Candidatos a Pontos de Equilíbrio

De acordo com o Capítulo 5, sabemos que os pontos de equilíbrio das equações (5-13) e (5-14) são definidos por $\dot{w} = \dot{\eta} = \dot{\xi} = 0$, dos quais obtemos dois polinômios cúbicos na variável η , a saber

$$\widetilde{P}_{-}(\eta) = G_{-}(\eta) - F(\eta)$$
 e $\widetilde{P}_{+}(\eta) = G_{+}(\eta) - F(\eta)$

Então, utilizando os valores da Tabela 5.1 obtemos dois novos polinômios cúbicos dependendo agora da variável η e dos parâmetros α_1 e α_2

$$P_{-}(\eta) = a_{3}^{-}(\alpha_{1}, \alpha_{2})\eta^{3} + a_{2}^{-}(\alpha_{1}, \alpha_{2})\eta^{2} + a_{1}^{-}(\alpha_{1}, \alpha_{2})\eta + a_{0}^{-}(\alpha_{1}, \alpha_{2})$$
(6-1)

e

$$P_{+}(\eta) = a_{3}^{+}(\alpha_{1}, \alpha_{2})\eta^{3} + a_{2}^{+}(\alpha_{1}, \alpha_{2})\eta^{2} + a_{1}^{+}(\alpha_{1}, \alpha_{2})\eta + a_{0}^{+}(\alpha_{1}, \alpha_{2}),$$
(6-2)

onde

$$\begin{aligned} a_0^-(\alpha_1, \alpha_2) &= -43.0833\alpha_1 - 154.176\alpha_2 + 96.4439, \\ a_0^+(\alpha_1, \alpha_2) &= -43.0833\alpha_1 - 154.176\alpha_2 + 100.944, \\ a_1^+(\alpha_1, \alpha_2) &= -137.867(\alpha_1 - \alpha_2), \\ a_2^+(\alpha_1, \alpha_2) &= 50.2002(\frac{\alpha_1 + \alpha_2}{2} - 1), \\ a_3^+(\alpha_1, \alpha_2) &= -26.7734(\alpha_2 - \alpha_1), \end{aligned}$$

note que os gráficos de P_- e P_+ não se cruzam.

As raízes dos polinômios P_- e P_+ fornecem os possíveis candidatos à pontos de equilíbrio, pois \dot{w} , $\dot{\eta}$ e $\dot{\xi}$ dependem de η . Assim, iremos determinar certos valores que nos ajudarão a estudar os pontos de equilíbrio associados aos sistemas diferenciais (5-13) e (5-14). Para isso, utilizaremos o teorema de Sturm para obter o número de raízes de P_- e P_+ localizadas entre 0 e 1 em termos de α_1 e α_2 .

6.2 Teorema de Sturm

Nesta seção, definimos a sequência de Sturm e enunciamos o Teorema de Sturm. Para maiores detalhes sobre o tópico desta seção, recomendamos consultar as referências [12] e [14].

Definição 6.2.1 (Sequência de Sturm) Seja P(x) = 0 um polinômio com n raízes reais. Denote por $S_0(x) = P(x)$, $S_1(x) = D_x P(x)$, $S_2(x) = -rem(S_0, S_1)$, onde $rem(S_0, S_1)$ é o resto da divisão de S_0 por S_1 , $S_3(x) = -rem(S_1, S_2)$, e assim por diante, até chegar em $S_k(x) = c \neq 0$, sendo c uma constante. A sequência de polinômios

$$S = \{S_0(x), S_1(x), S_2(x), \dots, S_k(x)\}$$

é denominada sequência de Sturm de P(x).

Teorema 6.2.2 (Teorema de Sturm) Considere um polinômio P(x) definido em um intervalo (a,b) tal que $a < b \ e \ P(a), P(b) \neq 0$. Seja S a sequência de Sturm associada a P(x). Denote por V(c) o número de mudanças de sinal na sequência de Sturm $S_0(c), \ldots, S_k(c)$. Então P(x) tem V(a) - V(b) raízes distintas no intervalo (a,b).

Façamos um exemplo.

Exemplo 6.2.3 Considere o polinômio $P(x) = x^4 - 2x^3 - 6x^2 + 2x - 1 = 0$, definido em um intervalo [-2,2]. Calculando os termos da sequência de Sturm

$$S_0(x) = P(x) = x^4 - 2x^3 - 6x^2 + 2x - 1,$$

 $S_1(x) = P(x)' = 4x^3 - 6x^2 - 12x + 2.$

Dividindo S_0 por S_1 ,

$$-\frac{x^4 - 2x^3 - 6x^2 + 2x - 1}{x^4 - 2x^3 - \frac{9x^2}{4} + 2x - \frac{1}{4}} \left| \frac{4x^3 - 6x^2 - 12x + 2}{\frac{x}{4} - \frac{1}{8}} \right|$$

o resto da divisão é rem = $-\frac{15x^2}{4} - \frac{3}{4}$. Daí,

$$S_2(x) = -rem = \frac{15x^2}{4} + \frac{3}{4}.$$

Dividindo S₁ por S₂

$$-\frac{4x^{3}-6x^{2}-12x+2}{4x^{3}-6x^{2}+\frac{4x}{5}-\frac{6}{5}}\left|\frac{\frac{15x^{2}}{4}+\frac{3}{4}}{\frac{16x}{15}-\frac{8}{5}}\right|$$

$$rem = -\frac{64x}{5} + \frac{16}{5},$$

$$S_{3} = -rem = \frac{64x}{5} - \frac{16}{5}.$$
Dividindo S₂ por S₃

$$-\frac{\frac{15x^{2}}{4}+\frac{3}{4}}{\frac{15x^{2}}{4}-\frac{15}{64}}\left|\frac{\frac{64x}{5}-\frac{16}{5}}{\frac{75x}{256}+\frac{75}{1024}}\right|$$

$$rem = \frac{63}{64},$$

$$S_{4}(x) = -rem = -\frac{63}{64}.$$
Bang confeccer of mirrors do reference on eccentrum.

Para conhecer o número de raízes que se encontram no intervalo [-2,2] considere a sequência de Sturm $S = \{S_0(x), S_1(x), S_2(x), S_3(x), S_4(x)\}$ e o número de mudanças de sinal em x = -2 e x = 2. Daí,

$$S = \{S_0(-2), S_1(-2), S_2(-2), S_3(-2), S_4(-2)\}$$

= $\{3, -30, 63/4, -144/5, -63/4\}$
$$S = \{S_0(2), S_1(2), S_2(2), S_3(2), S_4(2)\}$$

= $\{-21, -14, 63/4, 112/5, -63/4\}.$

Note que, em x = -2 existem V(-2) = 3 mudanças de sinal nos valores da sequência, e em x = 2 existem V(2) = 2. Isto significa que no intervalo [-2,2] existe 3-2=1 raiz.

6.3 Sequências de Sturm

Considerando o Teorema 6.2.2, encontraremos as sequências de Sturm $S(P_-)$ e $S(P_+)$ de $P_-(\eta)$ e $P_+(\eta)$, respectivamente. A sequência de Sturm $S(P_-)$ é escrita como

$$S(P_{-}) = \{S_{0}^{-}(\eta), S_{1}^{-}(\eta), S_{2}^{-}(\eta), S_{3}^{-}(\eta)\},\$$

onde

е

$$\begin{split} S_0^-(\eta) &= P_-(\eta), \\ S_1^-(\eta) &= (P_-(\eta))', \\ &= -80.3203\eta^2 (\alpha_2 - \alpha_1) + 100.4\eta (\frac{\alpha_1 + \alpha_2}{2} - 1) - 137.867 (\alpha_1 - \alpha_2), \end{split}$$

$$\begin{split} S_2^-(\eta) &= -rem \bigl(S_0^-(\eta), S_1^-(\eta)\bigr) \\ &= \frac{97.1402}{1.\alpha_1 + 1.\alpha_2} \biggl(-0.697154\alpha_1 + 0.295678\alpha_1^2 + 0.697154\alpha_2 + 1.14364\alpha_1\alpha_2 \\ &\quad -1.43931\alpha_2^2 + 0.215325\eta - 0.215325\alpha_1\eta + 1.\alpha_1^2\eta - 0.215325\alpha_2\eta \\ &\quad -1.78467\alpha_1\alpha_2\eta + 1.\alpha_2^2\eta \biggr), \end{split}$$

$$\begin{split} S_3^-(\eta) &= -rem \bigl(S_1^-(\eta), S_2^-(\eta)\bigr) \\ &= \biggl(0.215325 - 0.215325\alpha_1 + 1.\alpha_1^2 - 0.215325\alpha_2 - 1.78467\alpha_1\alpha_2 + 1.\alpha_2^2 \biggr)^{-2} \\ &\qquad \biggl(145.688 \biggl(1.\alpha_1^5 - 4.33458\alpha_1^4\alpha_2 - 0.646167\alpha_1^4 + 7.52037\alpha_1^3\alpha_2^2 + 1.02736\alpha_1^3\alpha_2 \\ &\quad +0.781436\alpha_1^3 - 6.0358\alpha_1^2\alpha_2^3 - 0.527522\alpha_1^2\alpha_2^2 - 1.25288\alpha_1^2\alpha_2 - 0.286805\alpha_1^2 \\ &\quad +2.15015\alpha_1\alpha_2^4 - 0.493707\alpha_1\alpha_2^3 + 1.50744\alpha_1\alpha_2^2 - 0.169706\alpha_1\alpha_2 + 0.147327\alpha_1 \\ &\qquad -0.300141\alpha_2^5 + 0.640032\alpha_2^4 - 1.03599\alpha_2^3 + 0.456511\alpha_2^2 - 0.147327\alpha_2 \biggr) \biggr), \end{split}$$

Estamos interessados na sequência de Sturm para os valores $\eta = 0$ e $\eta = 1$ que denotaremos por $S^-(0)$ e $S^-(1)$, respectivamente.

A sequência $S^{-}(0)$ é dada por

$$\begin{split} S_0^-(0) &= -43.0833 \left(1.\alpha_1 + 3.57857\alpha_2 - 2.23855\right), \\ S_1^-(0) &= -137.867 \left(1.\alpha_1 - 1.\alpha_2\right), \\ S_2^-(0) &= \frac{28.7222 \left(1.\alpha_1^2 + 3.86785\alpha_1\alpha_2 - 2.35782\alpha_1 - 4.86785\alpha_2^2 + 2.35782\alpha_2\right)}{1.\alpha_1 - 1.\alpha_2}, \\ S_3^-(0) &= \left(1.\alpha_1^2 - 1.78467\alpha_1\alpha_2 - 0.215325\alpha_1 + 1.\alpha_2^2 - 0.215325\alpha_2 + 0.215325\right)^{-2} \\ &= \left(145.688 \left(1.\alpha_1^5 - 4.33458\alpha_1^4\alpha_2 - 0.646167\alpha_1^4 + 7.52037\alpha_1^3\alpha_2^2 + 1.02736\alpha_1^3\alpha_2 + 0.781436\alpha_1^3 - 6.0358\alpha_1^2\alpha_2^3 - 0.527522\alpha_1^2\alpha_2^2 - 1.25288\alpha_1^2\alpha_2 - 0.286805\alpha_1^2 + 2.15015\alpha_1\alpha_2^4 - 0.493707\alpha_1\alpha_2^3 + 1.50744\alpha_1\alpha_2^2 - 0.169706\alpha_1\alpha_2 + 0.147327\alpha_1\alpha_1 - 0.300141\alpha_2^5 + 0.640032\alpha_2^4 - 1.03599\alpha_2^3 + 0.456511\alpha_2^2 - 0.147327\alpha_2) \right). \end{split}$$

E a sequência $S^-(1)$ é definida por

$$\begin{split} S_0^-(1) &= -129.076 \big(1.\alpha_1 + 0.139322\alpha_2 - 0.358267 \big), \\ S_1^-(1) &= -7.34603 \big(1.\alpha_1 - 14.6673\alpha_2 + 13.6673 \big), \\ S_2^-(1) &= (1.\alpha_1 - 1.\alpha_2)^{-1} \big(125.862 \big(1.\alpha_1^2 - 0.494751\alpha_1\alpha_2 - 0.704249\alpha_1 - 0.339061\alpha_2^2 + 0.371874\alpha_2 + 0.166187 \big) \big), \end{split}$$

$$\begin{split} S_{3}^{-}(1) &= \left(1.\alpha_{1}^{2} - 1.78467\alpha_{1}\alpha_{2} - 0.215325\alpha_{1} + 1.\alpha_{2}^{2} - 0.215325\alpha_{2} + 0.215325\right)^{-2} \\ &\left(145.688\left(1.\alpha_{1}^{5} - 4.33458\alpha_{1}^{4}\alpha_{2} - 0.646167\alpha_{1}^{4} + 7.52037\alpha_{1}^{3}\alpha_{2}^{2} + 1.02736\alpha_{1}^{3}\alpha_{2} + 0.781436\alpha_{1}^{3} - 6.0358\alpha_{1}^{2}\alpha_{2}^{3} - 0.527522\alpha_{1}^{2}\alpha_{2}^{2} - 1.25288\alpha_{1}^{2}\alpha_{2} - 0.286805\alpha_{1}^{2} \\ &+ 2.15015\alpha_{1}\alpha_{2}^{4} - 0.493707\alpha_{1}\alpha_{2}^{3} + 1.50744\alpha_{1}\alpha_{2}^{2} - 0.169706\alpha_{1}\alpha_{2} + 0.147327\alpha_{1}\alpha_{1}^{3} \\ &- 0.300141\alpha_{2}^{5} + 0.640032\alpha_{2}^{4} - 1.03599\alpha_{2}^{3} + 0.456511\alpha_{2}^{2} - 0.147327\alpha_{2}\right) \Big). \end{split}$$

Observe que $S_3^-(0) = S_3^-(1) = S_3^-(\eta)$. De modo análogo, calculamos a sequência

$$S(P_{+}) = \{S_{0}^{+}(\eta), S_{1}^{+}(\eta), S_{2}^{+}(\eta), S_{3}^{+}(\eta)\},\$$

onde

$$\begin{split} S_{0}^{+}(\eta) &= P_{+}(\eta), \\ S_{1}^{+}(\eta) &= (P_{+}(\eta))' \\ &= -80.3203\eta^{2}(\alpha_{2} - \alpha_{1}) + 100.4\eta \left(\frac{\alpha_{1} + \alpha_{2}}{2} - 1\right) - 137.867(\alpha_{1} - \alpha_{2}), \\ S_{2}^{+}(\eta) &= -rem \left(S_{0}^{+}(\eta), S_{1}^{+}(\eta)\right) \\ &= \frac{97.1402}{1.\alpha_{1} - 1.\alpha_{2}} \left(1.\alpha_{1}^{2}\eta + 0.295678\alpha_{1}^{2} - 1.78467\alpha_{1}\alpha_{2}\eta + 1.14364\alpha_{1}\alpha_{2} \right. \\ &\qquad -0.215325\alpha_{1}\eta - 0.743479\alpha_{1} + 1.\alpha_{2}^{2}\eta - 1.43931\alpha_{2}^{2} - 0.215325\alpha_{2}\eta \\ &\qquad +0.743479\alpha_{2} + 0.215325\eta \right), \end{split}$$

$$\begin{split} S_{3}^{+}(\eta) &= -rem \big(S_{1}^{+}(\eta), S_{2}^{+}(\eta) \big) \\ &= \left(1.\alpha_{1}^{2} - 1.78467\alpha_{1}\alpha_{2} - 0.215325\alpha_{1} + 1.\alpha_{2}^{2} - 0.215325\alpha_{2} + 0.215325^{2} \right)^{-2} \\ &\left(145.688 \left(1.\alpha_{1}^{5} - 4.33458\alpha_{1}^{4}\alpha_{2} - 0.647026\alpha_{1}^{4} + 7.52037\alpha_{1}^{3}\alpha_{2}^{2} + 1.08406\alpha_{1}^{3}\alpha_{2} \right. \right. \\ &\left. + 0.780004\alpha_{1}^{3} - 6.0358\alpha_{1}^{2}\alpha_{2}^{3} - 0.702771\alpha_{1}^{2}\alpha_{2}^{2} - 1.22797\alpha_{1}^{2}\alpha_{2} - 0.297116\alpha_{1}^{2} \right. \\ &\left. + 2.15015\alpha_{1}\alpha_{2}^{4} - 0.316739\alpha_{1}\alpha_{2}^{3} + 1.48252\alpha_{1}\alpha_{2}^{2} - 0.169706\alpha_{1}\alpha\alpha_{2} + 0.154202\alpha_{1} \right. \\ &\left. - 0.300141\alpha_{2}^{5} + 0.582475\alpha_{2}^{4} - 1.03456\alpha_{2}^{3} + 0.466822\alpha_{2}^{2} - 0.154202\alpha_{2} \right) \right). \end{split}$$

Analogamente, calculamos as sequências $S^+(0)$ e $S^+(1)$, onde $S^+(0)$ é definido por

$$\begin{split} S_0^+(0) &= -43.0833 \left(1.\alpha_1 + 3.57857\alpha_2 - 2.34299\right), \\ S_1^+(0) &= -137.867 \left(1.\alpha_1 - 1.\alpha_2\right), \\ S_2^+(0) &= \frac{28.7222 \left(1.\alpha_1^2 + 3.86785\alpha_1\alpha_2 - 2.51449\alpha_1 - 4.86785\alpha_2^2 + 2.51449\alpha_2\right)}{1.\alpha_1 - 1.\alpha_2}, \\ S_3^+(0) &= S_3^+(\eta). \end{split}$$

A sequência $S^+(1)$ é determinada por

$$\begin{split} S_0^+(1) &= -129.076 \big(1.\alpha_1 + 0.139322\alpha_2 - 0.39313 \big), \\ S_1^+(1) &= -7.34603 \big(1.\alpha_1 - 14.6673\alpha_2 + 13.6673 \big), \\ S_2^+(1) &= (1.\alpha_1 - 1.\alpha_2)^{-1} \big(125.862 \big(1.\alpha_1^2 - 0.494751\alpha_1\alpha_2 - 0.740002\alpha_1 - 0.339061\alpha_2^2 + 0.407627\alpha_2 + 0.166187 \big) \big), \\ S_3^+(1) &= S_3^+(0). \end{split}$$

Observe que $S^{\pm}(0)$ e $S^{\pm}(1)$ dependem de α_1 e α_2 . Os próximos exemplos fornecem uma ideia de como aplicaremos o Teorema de Sturm para os polinômios $P_{-}(\eta)$ e $P_{+}(\eta)$ em termos de α_1 e α_2 .

Exemplo 6.3.1 Considere $\alpha_1 = 0.6 \ e \ \alpha_2 = 0.2 \ em \ (6-1) \ e \ (6-2)$, obtemos

$$P_{-}(\eta) = 10.7094\eta^{3} - 30.1201\eta^{2} - 55.1466\eta + 39.7587.$$

As sequências de Sturm em $\eta = 0$ e $\eta = 1$ são dadas por

$$S^{-}(0) = \{39.7587, -55.1466, -22.5253, 74.2812\},\$$

$$S^{-}(1) = \{-34.7987, -83.2587, 33.0641, 74.2812\}.$$

A sequência $S^{-}(0)$ possui 2 mudanças de sinal (V(0) = 2), enquanto $S^{-}(1)$ tem somente I(V(1) = 1). O polinômio $P_{-}(\eta)$ tem V(0) - V(1) = 2 - 1 = 1 raiz distinta em [0, 1]. Analogamente, o polinômio $P_{+}(\eta)$ é escrito como

$$P_{+}(\eta) = 10.7094\eta^{3} - 30.1201\eta^{2} - 55.1466\eta + 44.2587,$$

tendo as sequências de Sturm em 0 e 1 da seguinte forma

 $S^+(0) = \{44.2587, -55.1466, -27.0253, 76.8395\},\$

 $S^+(1) = \{-30.2987, -83.2587, 28.5641, 76.8395\}.$

Consequentemente, o polinômio $P_+(\eta)$ *tem* V(0) - V(1) = 2 - 1 = 1 *raiz em* [0, 1].

Exemplo 6.3.2 Considere $\alpha_1 = 0.2$ and $\alpha_2 = 0.3$ em (6-1) e (6-2), obtemos:

$$P_{-}(\eta) = -2.67734\eta^{3} - 37.6502\eta^{2} + 13.7867\eta + 41.5743,$$

com sequências de Sturm

 $S^{-}(0) = \{41.5743, 13.7867, -20.0327, -25.4783\},\$

$$S^{-}(1) = \{15.0335, -69.5457, -146.881, -25.4783\}.$$

Então, $P_{-}(\eta)$ tem zero raízes distintas em [0,1], pois V(0) - V(1) = 1 - 1 = 0. O polinômio

$$P_{+}(\eta) = -2.67734\eta^{3} - 37.6502\eta^{2} + 13.7867\eta + 46.0743,$$

com as sequências de Sturm

$$S^+(0) = \{46.0743, 13.7867, -24.5327, -28.0495\},\$$

 $S^+(1) = \{19.5335, -69.5457, -151.381, -28.0495\},\$

também não possui raízes em [0,1].

6.4 Análise Qualitativa das Equações Iniciais

Nesta seção iremos estudar as raízes de $P_{\pm}(\eta)$ dependendo de α_1 e α_2 .

Pelo teorema de Sturm, precisamos analisar os sinais de cada termo das sequências anteriores

$$S^{-}(0) = \left\{S_{0}^{-}(0), S_{1}^{-}(0), S_{2}^{-}(0), S_{3}^{-}(0)\right\}, S^{-}(1) = \left\{S_{0}^{-}(1), S_{1}^{-}(1), S_{2}^{-}(1), S_{3}^{-}(1)\right\},$$

e

$$S^{+}(0) = \left\{S^{+}_{0}(0), S^{+}_{1}(0), S^{+}_{2}(0), S^{+}_{3}(0)\right\}, S^{+}(1) = \left\{S^{+}_{0}(1), S^{+}_{1}(1), S^{+}_{2}(1), S^{+}_{3}(1)\right\}$$

que dependem de α_1 e α_2 . Assim, para estudar esses sinais, precisamos conhecer as curvas algébricas (em duas variáveis, α_1 e α_2) obtidas quando $S_i^{\pm}(p) = 0$ com i = 0, 1, 2, 3 e $p \in \{0, 1\}$. Com isso obtemos 16 curvas, que são definidas no quadrado unitário

$$\mathcal{R} = \{(\alpha_1, \alpha_2); 0 \le \alpha_1 \le 1, 0 \le \alpha_2 \le 1\}.$$

O quadrado \mathcal{R} pode ser particionado em algumas regiões conexas, disjuntas, \mathcal{R}_k , para

algum $k \in \mathbb{N}$, e é obtido pela divisão $\mathcal{R} \setminus \mathcal{A}$, onde

$$\mathcal{A} = \bigcup_{\substack{i=1,\dots,4\\p\in\{0,1\}}} S_i^{\mp}(p).$$

Selecionando um ponto $(\alpha_1^*, \alpha_2^*) \in \mathcal{R}_k$, que não pertence a nenhuma curva, os sinais das sequências $S^{\mp}(p)$ estão bem definidos para que possamos inferir sobre o número de raízes para $P^{\mp}(\eta)$ entre 0 e 1. Note que, se movermos o ponto inicial (α_1^*, α_2^*) para que ele cruze algumas das curvas algébricas mencionadas, pelo menos um sinal na sequência $S^{-}(k)$ ou na $S^{+}(k)$ mudará. Consequentemente, o número de η -raízes do polinômio correspondente aumentará ou diminuirá, assim a quantidade de possíveis pontos de equilíbrios potenciais pode mudar. Recorde que as raízes obtidas η são apenas valores candidatos para formar um ponto de equilíbrio (w^*, η^*, ξ^*) para os sistemas diferenciais (5-13) e (5-14), pois eles devem satisfazer $0 < \xi = \xi(\eta^*) < 1$, obtido da equação $\dot{\xi} = 0$. Além disso, ainda não podemos decidir se esses pontos de equilíbrios potenciais são virtuais ou reais.

As curvas algébricas mencionadas são exibidas nas Figuras 6.1, 6.2 e 6.3. Na Figura 6.3 podemos ver as dezesseis curvas algébricas combinadas. Cada região corresponde a uma situação distinta em termos do número de pontos de equilíbrio potenciais, dependendo de α_1 e α_2 . Note que, existe uma pequena região onde o número de raízes é 2 para ambos os polinômios $P_{-}(\eta)$ e $P_{+}(\eta)$, correspondendo ao caso estudado em [17]. Este caso apresenta a configuração máxima dos pontos de equilíbrio potenciais.

A seguir, estudaremos alguns exemplos concretos definindo valores específicos para α_1 e α_2 de forma mais adequada, ou seja, considerando o significado físico, tomando como referência o artigo [17], onde de acordo com a equação (5-4), $\alpha_1 < \alpha_2$. Consideramos o retângulo $\mathcal{R}' \subset \mathcal{R}$ dado por

$$\mathcal{R}' = \{(\alpha_1, \alpha_2); 0.29 \le \alpha_1 \le 0.35, 0.56 \le \alpha_2 \le 0.68\}.$$

Os valores de α_1 e α_2 em \mathcal{R}' correspondem a uma variação de aproximadamente 10% nos valores originais considerados em [17] que são (α_1^M, α_2^M) = (0.32,0.64). Esta restrição reduz o número de regiões na Figura 6.3 para sete regiões que renomeamos como A, \ldots, G , veja a Figura 6.4.

Para realizar o estudo dos exemplos concretos, iremos considerar valores específicos para $\alpha_{1,2}$ em cada uma das sete regiões, e então aplicaremos o Teorema de Sturm. Uma vez encontrado o número de raízes, expressaremos explicitamente os pontos de equilíbrios e determinaremos sua estabilidade. Por último, apresentaremos a configuração do "plano crítico" $\varepsilon = 0$ nas equações originais (5-13) e (5-14), projetado em algum plano $w = w_0$, como feito no capítulo anterior, para que possamos ter alguma intuição sobre a existência de órbitas periódicas.

(a) Curvas associadas a $S^-(0)$. A curva em formato de garfo (em laranja) é formada por duas componentes.

(b) Curvas algébricas associadas a S⁻(1). A curva em formato de garfo é a única com duas componentes, sendo as outras três a curva verde dobrada e as linhas em azul e laranja.

(c) Curvas algébricas associadas a S⁻(0) e S⁻(1) simultaneamente. Em cada região, o polinômio P₋(η) tem um número de raízes entre 0 e 1 que é representado pelo número dentro de cada região específica.

Figura 6.1: Regiões e curvas algébricas associadas a $S^-(0)$ e $S^-(1)$

6.4.1 Região A: $\alpha_1 = 0.30$ e $\alpha_2 = 0.64$

1. O polinômio $P_{-}(\eta)$ é escrito como

$$P_{-}(\eta) = -9.10297\eta^{3} - 26.6061\eta^{2} + 46.8746\eta - 15.154\eta^{2}$$

e as sequências de Sturm em $\eta = 0$ e $\eta = 1$ são dadas por

$$S^{-}(0) = \{-15.154, 46.8746, 30.3767, -2.86833\}$$

Figura 6.2: Regiões e curvas algébricas associadas a $S^+(0)$ e $S^+(1)$

e

$$S^{-}(1) = \{-3.98842, -33.6465, -18.1539, -2.86833\},\$$

respectivamente.

- 2. O polinômio $P_{-}(\eta)$ possui V(0) V(1) = 2 raízes distintas em [0, 1]. Mais precisamente, as raízes de $P_{-}(\eta)$ são $\eta = -4.23239, \eta = 0.466573$ e $\eta = 0.843021$.
- 3. Os pontos de equilíbrio da equação (5-13) em $0 < \eta < 1$ são do tipo sela $Q^*_{-,u} = (-8.57681, 0.466573, 0.0931741)$ e assintoticamente estável $Q^*_{-,s} = (4.53984, 0.843021, 0.733136)$. Além disso, são virtuais, pois $0.0931741 < \gamma(0.466573) = 0.146517$ e $0.733136 < \gamma(0.843021) = 0.748834$.
- 4. Analogamente, o polinômio $P_+(\eta)$ é escrito da seguinte maneira:

$$P_{+}(\eta) = -9.10297\eta^{3} - 26.6061\eta^{2} + 46.8746\eta - 10.654\eta^{2}$$

Figura 6.3: As dezesseis curvas algébricas e o número de raízes entre 0 e 1 dentro de cada região. O par (m,n) indica que nessa região $P_+(\eta)$ tem m raízes e $P_-(\eta)$ tem n raízes pertencentes ao intervalo [0,1].

Figura 6.4: As regiões A, ..., G dentro do retângulo \mathcal{R}' . O símbolo "+" indica o par (α_1^M, α_2^M) considerado em [17].

as sequências de Sturm em $\eta = 0$ e $\eta = 1$ são dadas por

$$S^+(0) = \{-10.654, 46.8746, 25.8767, -10.7376\}$$

e

$$S^+(1) = \{0.511583, -33.6465, -22.6539, -10.7376\}$$

- 5. O polinômio $P_+(\eta)$ tem V(0) V(1) = 2 1 = 1 raiz em [0,1]. A raízes de $P_+(\eta)$ são $\eta = -4.21148, \eta = 0.273837$ e $\eta = 1.01485$.
- 6. Consequentemente, existe um único ponto de equilíbrio virtual $Q_{+,u}^* = (-16.8736, 0.273837, 0.121343)$. O ponto do tipo sela é virtual, pois $0.121343 > \gamma(0.273837) = -0.161861$.

As informações acima podem ser resumidas na Figura 6.5.

Figura 6.5: Região A

6.4.2 Região B: $\alpha_1 = 0.30$ e $\alpha_2 = 0.561$

1. O polinômio $P_{-}(\eta)$ é dado por

$$P_{-}(\eta) = -6.98787\eta^{3} - 28.589\eta^{2} + 35.9832\eta - 2.97403,$$

e a sequências de Sturm em $\eta = 0$ e $\eta = 1$ são dadas por

$$S^{-}(0) = \{-2.97403, 35.9832, 19.3313, -10.7321\}$$

e

$$S^{-}(1) = \{-2.56774, -42.1585, -30.6495, -10.7321\},\$$

respectivamente.

- 2. $P_{-}(\eta)$ possui V(0) V(1) = 2 raízes distintas em [0,1]. As raízes de $P_{-}(\eta)$ são $\eta = -5.11435, \eta = 0.0890947$ e $\eta = 0.934024$.
- 3. O ponto de equilíbrio da equação (5-13) para $0 < \eta < 1$ é $Q^*_{-,s} = (9.91141, 0.934024, 0.887841)$ que é um ponto do tipo sela, é virtual, pois $0.887841 < \gamma(0.934024) = 0.894438$. Note que, para $\eta = 0.0890947$ temos $\xi = -0.548539$, então este ponto não satisfaz $\xi \in [0, 1]$.
- 4. Analogamente, o polinômio $P_+(\eta)$ é

$$P_{+}(\eta) = -6.98787\eta^{3} - 28.589\eta^{2} + 35.9832\eta + 1.52597$$

as sequências de Sturm são dadas por

$$S^+(0) = \{1.52597, 35.9832, 14.8313, -17.1702\}$$

e

$$S^+(1) = \{1.93226, -42.1585, -35.1495, -17.1702\}.$$

5. O polinômio $P_+(\eta)$ não possui raízes distintas em [0,1] pois V(0) - V(1) = 0. Observe que as raízes deste polinômio são $\eta = -5.09374, \eta = -0.0410804$ e $\eta = 1.04359$. Portanto, a equação (5-14) não possui equilíbrio.

As informações acima podem ser resumidas na Figura 6.6.

(a) Raízes de P₋ (em azul) e P₊ (em laranha).

Figura 6.6: Região B

6.4.3 Região C: $\alpha_1 = 0.33$ e $\alpha_2 = 0.561$

1. O polinômio $P_{-}(\eta)$ é dado por

$$P_{-}(\eta) = -6.18466\eta^3 - 27.836\eta^2 + 31.8472\eta - 4.26653$$

e as sequências de Sturm

$$S^{-}(0) = \{-4.26653, 31.8472, 20.193, -5.79683\}$$

e

$$S^-(1) = \{-6.44003, -42.3788, -28.8795, -5.79683\},\$$

respectivamente.

- 2. O polinômio $P_{-}(\eta)$ tem V(0) V(1) = 2 raízes distintas em [0,1]. As raízes de $P_{-}(\eta)$ são $\eta = -5.46598, \eta = 0.155968$ e $\eta = 0.8092$.
- 3. O único ponto de equilibrio da equação (5-13) para $0 < \eta < 1$ é do tipo assintoticamente estável $Q^*_{-,s} = (3.44848, 0.8092, 0.67564)$ que é virtual, pois satisfaz $0.67564 < \gamma(0.8092) = 0.69472$.

Para $\eta = 0.15596$ obtemos $\xi = -0.434854$ assim $\xi \notin [0, 1]$.

4. O polinômio $P_+(\eta)$ é escrito como

$$P_{+}(\eta) = -6.18466\eta^{3} - 27.836\eta^{2} + 31.8472\eta + 0.233468,$$

e as sequências de Sturm em $\eta = 0$ e $\eta = 1$ são dadas por

$$S^+(0) = \{0.233468, 31.8472, 15.693, -12.1462\}$$

e

$$S^+(1) = \{-1.94003, -42.3788, -33.3795, -12.1462\}$$

- 5. $P_{+}(\eta)$ tem V(0) V(1) = 1 0 = 1 raiz em [0,1]. As raízes de $P_{+}(\eta)$ são $\eta = -5.44521, \eta = -0.00728459$ e $\eta = 0.951683$.
- 6. Assim, existe um único ponto de equilíbrio assintoticamente estável $Q_{+,s}^* = (5.93242, 0.951683, 0.941536)$. É virtual, pois $0.941536 > \gamma(0.951683) = 0.922693$.

As informações acima podem ser resumidas na Figura 6.7.

6.4.4 Região D: $\alpha_1 = 0.33$ e $\alpha_2 = 0.60$

1. Temos o polinômio $P_{-}(\eta)$

$$P_{-}(\eta) = -7.22883\eta^{3} - 26.8571\eta^{2} + 37.224\eta - 10.2794,$$

e as sequências de Sturm

$$S^{-}(0) = -10.2794, 37.224, 25.6458, -1.44833$$

e

$$S^{-}(1) = \{-7.14138, -38.1767, -21.3439, -1.44833\}$$

- 2. O polinômio $P_{-}(\eta)$ tem V(0) V(1) = 2 raízes distintas em [0, 1]. As raízes de $P_{-}(\eta)$ são $\eta = -4.83992, \eta = 0.41266$ e $\eta = 0.711984$.
- 3. Os pontos de equilíbrio da equação (5-13) para $0 < \eta < 1$ são do tipo sela $Q^*_{-,u} = (-9.87892, 0.41266, 0.001522)$ e assintoticamente estável $Q^*_{-,s} =$

(-0.837931, 0.711984, 0.510373). $Q_{-,u}^*$ é um ponto de equilíbrio virtual, pois 0.001522 < 0.001522 $\gamma(0.41266) = 0.060256$, assim como o $Q^*_{-.s}$, pois $0.510373 < \gamma(0.711984) = 0.539174$.

4. Analogamente, o polinômio $P_+(\eta)$ é escrito como

$$P_{+}(\eta) = -7.22883\eta^{3} - 26.8571\eta^{2} + 37.224\eta - 5.77941$$

e as sequências de Sturm em $\eta = 0$ and $\eta = 1$ são dadas por

$$S^+(0) = \{-5.77941, 37.224, 21.1458, -8.66038\}$$

e

$$S^+(1) = \{-2.64138, -38.1767, -25.8439, -8.66038\}.$$

- 5. O polinômio $P_+(\eta)$ tem V(0) V(1) = 2 raízes distintas em [0,1]. As raízes de $P_+(\eta)$ são $\eta = -4.8184, \eta = 0.179681 \text{ e } \eta = 0.923445.$
- 6. Os pontos de equilíbrio da equação (5-14) para $0<\eta<1$ são do tipo sela $Q^*_{+,u} = (-18.0853, 0.179681, 0.00741401)$ e assintoticamente estável $Q^*_{+,s} =$ (3.95005,0.923445,0.907368). Ambos, são pontos de equilíbrio virtual, pois $0.00741401 > \gamma(0.179681) = -0.31251 \text{ e } 0.907368 > \gamma(0.923445) = 0.877512.$

As informações acima podem ser resumidas na Figura 6.8.

potencial órbita periódica

Figura 6.8: Case D

Região E: $\alpha_1 = 0.345$ e $\alpha_2 = 0.64$ 6.4.5

1. O polinômio $P_{-}(\eta)$

$$P_{-}(\eta) = -7.89817\eta^{3} - 25.4766\eta^{2} + 40.6706\eta - 17.0927$$

e as sequências de Sturm

$$S^{-}(0) = \{-17.0927, 40.6706, 31.6692, 6.43334\}$$

e

$$S^{-}(1) = \{-9.79685, -33.9771, -13.7064, 6.43334\}$$

- 2. O polinômio $P_{-}(\eta)$ tem V(0) V(1) = 0 raízes em [0,1]. As suas raízes são $\eta = -4.48221, \eta = 0.628285 0.296794i$ e $\eta = 0.628285 + 0.296794i$, então a equação (5-13) não possui pontos de equilíbrio em \mathcal{B} .
- 3. O polinômio $P_+(\eta)$

$$P_{+}(\eta) = -7.89817\eta^{3} - 25.4766\eta^{2} + 40.6706\eta - 12.5927$$

e as suas sequências de Sturm

$$S^+(0) = \{-12.5927, 40.6706, 27.1692, -1.66684\}$$

e

$$S^+(1) = \{-5.29685, -33.9771, -18.2064, -1.66684\}$$

- 4. O polinômio $P_+(\eta)$ tem V(0) V(1) = 2 raízes distintas em [0, 1]. As raízes de $P_+(\eta)$ são $\eta = -4.46028, \eta = 0.463628$ e $\eta = 0.771013$.
- 5. O ponto de equilíbrio da equação (5-14) para $0 < \eta < 1$ são do tipo sela $Q^*_{+,u} = (-13.016, 0.463628, 0.35099)$ e assintoticamente estável $Q^*_{+,s} = (-3.34735, 0.771013, 0.722926)$. Ambos, são pontos de equilíbrio virtuais, já que $0.35099 > \gamma(0.463628) = 0.141805$ e $0.722926 > \gamma(0.771013) = 0.633621$.

As informações acima podem ser resumidas na Figura 6.9.

Figura 6.9: Região E

6.4.6 Região F: $\alpha_1 = 0.35$ e $\alpha_2 = 0.67$

1. O polinômio $P_{-}(\eta)$

$$P_{-}(\eta) = -8.5675\eta^3 - 24.5981\eta^2 + 44.1173\eta - 21.9334$$

e a sequência de Sturm

$$S^{-}(0) = \{-21.9334, 44.1173, 36.0073, 11.5347\}$$

e

$$S^{-}(1) = \{-10.9817, -30.7814, -9.09833, 11.5347\}.$$

2. O polinômio $P_{-}(\eta)$ tem V(0) - V(1) = 0 raízes em [0, 1]. As raízes de $P_{-}(\eta)$ são imaginárias, $\eta = -4.23112, \eta = 0.680013 - 0.377677i$ e $\eta = 0.680013 + 0.377677i$.

3. O polinômio $P_+(\eta)$

$$P_{+}(\eta) = -8.5675\eta^{3} - 24.5981\eta^{2} + 44.1173\eta - 17.4334$$

e as sequências

$$S^{+}(0) = \{-17.4334, 44.1173, 31.5073, 2.78848\}$$

e

$$S^{+}(1) = \{-6.48173, -30.7814, -13.5983, 2.78848\}.$$

4. O polinômio $P_+(\eta)$ também possui (V(0) - V(1)) = 0 raízes distintas [0, 1]. As raízes de $P_+(\eta)$ são $\eta = -4.20928, \eta = 0.669092 - 0.189027i$ e $\eta = 0.669092 + 0.189027i$.

As informações acima podem ser resumidas na Figura 6.10.

Figura 6.10: *Raízes em* [0,1] *da região F.*

6.4.7 Região G: $\alpha_1 = 0.30$ e $\alpha_2 = 0.68$

1. O polinômio $P_{-}(\eta)$

$$P_{-}(\eta) = -10.1739\eta^{3} - 25.6021\eta^{2} + 52.3893\eta - 21.321$$

e as sequências de Sturm

$$S^{-}(0) = \{-21.321, 52.3893, 35.9693, 1.29729\}$$

78

e

$$S^{-}(1) = \{-4.70774, -29.3366, -13.2738, 1.29729\}$$

- 2. O polinômio $P_{-}(\eta)$ possui V(0) V(1) = 0 raízes distintas em [0, 1]. As raízes de $P_{-}(\eta)$ são $\eta = -3.95315, \eta = 0.718351 - 0.118722i$ e $\eta = 0.718351 + 0.118722i$.
- 3. O polinômio $P_+(\eta)$

$$P_{+}(\eta) = -10.1739\eta^{3} - 25.6021\eta^{2} + 52.3893\eta - 16.821$$

e as sequências de Sturm

$$S^+(0) = \{-16.821, 52.3893, 31.4693, -7.20171\}$$

e

$$S^+(1) = \{-0.207745, -29.3366, -17.7738, -7.20171\}$$

- 4. O polinômio $P_+(\eta)$ tem V(0) V(1) = 2 raízes distintas em [0, 1]. As raízes de $P_+(\eta)$ são $\eta = -3.93272, \eta = 0.423449$ e $\eta = 0.99282$.
- 5. Os pontos de equilíbrio da equação (5-14) para $0 < \eta < 1$ são do tipo sela $Q_{+,u}^* = (-13.9433, 0.423449, 0.302373)$ e assintoticamente estável $Q_{+,s}^* = (6.70174, 0.99282, 0.991312)$. A sela é um ponto de equilíbrio virtual, pois $0.302373 > \gamma(0.423449) = 0.0775184$ assim como $Q_{+,s}^*$, $0.991312 > \gamma(0.99282) = 0.988512$.

As informações acima podem ser resumidas na Figura 6.11.

Figura 6.11: Região G

6.5 Trabalho futuro

Considerando os resultados até aqui apresentados, temos como objetivos futuros provar que nas regiões $C \in D$ existem órbitas periódicas como em [17]. Além disso, ajustando certos parâmetros queremos provar que em tais regiões também existem pontos de equilíbrio regulares, fazendo um estudo da teoria da bifurcação para as equações diferenciais (5-13) e (5-14).

Referências Bibliográficas

- BROUCKE, M. E.; PUGH, C. C.; SIMIĆ, S. N. Structural stability of piecewise smooth systems. *Comput. Appl. Math.*, 20(1-2):51–89, 2001.
- [2] BUZZI, C. A.; DA SILVA, P. R.; TEIXEIRA, M. A. A singular approach to discontinuous vector fields on the plane. J. Differ. Equations, 231(2):633–655, 2006.
- [3] CARDIN, P. T.; DA SILVA, P. R.; TEIXEIRA, M. A. On singularly perturbed Filippov systems. Eur. J. Appl. Math., 24(6):835–856, 2013.
- [4] FENICHEL, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equations, 31:53–98, 1979.
- [5] FILIPPOV A, F. Differential equations with discontinuous righthand sides. *vol. 18 of Mathematics and its Applications (Soviet Series), Kluwer*, 1988.
- [6] GUARDIA, M.; SEARA, T. M.; TEIXEIRA, M. A. Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equations, 250(4):1967–2023, 2011.
- [7] I. HELD, M. S. Simple albedo feedback models of the icecaps. (26):613-629, 1974.
- [8] JUCÁ, J. S. Conjuntos limite e transitividade de campos vetoriais suaves por partes em variedades riemannianas bi-dimensionais. 2020.
- [9] KUEHN, C. Multiple time scale dynamics. Springer, 2015.
- [10] LLIBRE, J.; TEIXEIRA, M. A. Regularization of discontinuous vector fields in dimension three. Discrete Contin. Dyn. Syst., 3(2):235–241, 1997.
- [11] MCGEHEE, R.; WIDIASIH, E. A quadratic approximation to Budyko's ice-albedo feedback model with ice line dynamics. SIAM J. Appl. Dyn. Syst., 13(1):518–536, 2014.
- [12] NADER, F. N. Teorema de Sturm : uma demonstração detalhada do teorema de Sturm com propriedades e aplicações. 57 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT))- Universidade Federal Rural de Pernambuco, Recife, 2014.
- [13] SOTOMAYOR, J.; TEIXEIRA, M. A. Regularization of discontinuous vector fields. In: International conference on differential equations. Papers from the conference, EQUADIFF 95, Lisboa, Portugal, July 24–29, 1995, p. 207–223. Singapore: World Scientific, 1998.

- [14] STURM, J. C. Mémoire sur la résolution des équations numériques, volume 6, p. 345– 390. 01 2009.
- [15] VAN DER POL, B. A theory of the amplitude of free and forced triode vibrations. Radio Review, 1:, p. 701?–710, 1920.
- [16] WALSH, J.; RACKAUCKAS, C. On the Budyko-Sellers energy balance climate model with ice line coupling. *Discrete Contin. Dyn. Syst., Ser. B*, 20(7):2187–2216, 2015.
- [17] WALSH, J.; WIDIASIH, E.; HAHN, J.; MCGEHEE, R. Periodic orbits for a discontinuous vector field arising from a conceptual model of glacial cycles. *Nonlinearity*, 29(6):1843– 1864, 2016.
- [18] WIDIASIH, E. R. Dynamics of the Budyko energy balance model. SIAM J. Appl. Dyn. Syst., 12(4):2068–2092, 2013.