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Abstract

Amorim, Leonardo Afonso. Exploiting Parallelism in Document Similarity
Tasks with Applications. Goiânia, Brazil, 2019. 107p. PhD. Thesis . Instituto
de Informática, Universidade Federal de Goiás.

The amount of data available continues to grow rapidly and much of it corresponds to text
expressing human language, that is unstructured in nature. One way of giving some struc-
ture to this data is by converting the documents to a vector of features corresponding to
word frequencies (term count, tf-idf, etc) or word embeddings. This transformation allows
us to process textual data with operations such as similarity measure, similarity search,
classification, among others. However, this is only possible thanks to more sophisticated
algorithms which demand higher computational power. In this work, we exploit paral-
lelism to enable the use of parallel algorithms to document similarity tasks and apply
some of the results to an important application in software engineering. The similarity
search for textual data is commonly performed through a k nearest neighbor search in
which pairs of document vectors are compared and the k most similar are returned. For
this task we present FaSST-kNN, a fine-grain parallel algorithm, that applies filtering tech-
niques based on the most common important terms of the query document using tf-idf.
The algorithm implemented on a GPU improved the top k nearest neighbors search by up
to 60x compared to a baseline, also running on a GPU. Document similarity using tf-idf is
based on a scoring scheme for words that reflects how important a word is to a document
in a collection. Recently a more sophisticated similarity measure, called word embed-
ding, has become popular. It creates a vector for each word that indicates co-occurrence
relationships between words in a given context, capturing complex semantic relationships
between words. In order to generate word embeddings efficiently, we propose a scalable
fine-grain parallel algorithm that creates the embeddings. The algorithm implemented on
a multi-GPU system scaled linearly and was able to generate embeddings 13x faster than
the original multicore Word2Vec algorithm while keeping the accuracy of the results at
the same level as those produced by standard word embedding programs. Finally, we ap-
plied our accelerated word embeddings solution to the problem of assessing the quality
of fixes in Automated Software Repair. The proposed implementation was able to deal
with large corpus, in a computationally efficient way, being a promising alternative to the
processing of million source code files needed for this task.
Keywords



Parallel Computing, Document Similarity Tasks, kNN, TOP-k, Word Embed-
dings, Word2Vec, Automatic Program Repair
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Amorim, Leonardo Afonso. Exploiting Parallelism in Document Similarity
Tasks with Applications. Goiânia, Brazil, 2019. 107p. Tese de Doutorado .
Instituto de Informática, Universidade Federal de Goiás.



A quantidade de dados disponíveis continua a crescer rapidamente e muitos desses
dados correspondem a textos que expressam a linguagem humana, que é de natureza
não estruturada. Uma maneira de dar alguma estrutura a esses dados é convertendo
os documentos em um vetor de recursos correspondentes a frequências de palavras
(contagem de termos, tf-idf etc.) ou construindo palavras com representação latente.
Essa transformação nos permite processar dados textuais com operações como medida
de similaridade, pesquisa de similaridade, classificação, entre outras. No entanto, isso só
é possível graças a algoritmos mais sofisticados que exigem maior poder computacional.
Neste trabalho, exploramos o paralelismo para permitir o uso de algoritmos eficientes para
realizar tarefas de busca de documentos por similaridade e aplicar alguns dos resultados
a uma importante aplicação em engenharia de software. A busca por similaridade de
dados textuais é comumente realizada por meio do algoritmo kNN, os k vizinhos mais
próximos, no qual pares de vetores de documentos são comparados e os k mais similares
são retornados. Para esta tarefa apresentamos o FaSST-kNN, um algoritmo paralelo de
granularidade fina, que aplica técnicas de filtragem baseadas nos termos mais importantes
do documento de consulta usando tf-idf. O algoritmo implementado em uma GPU
melhorou os k vizinhos mais próximos na busca por até 60x em comparação com
uma linha de base, também em execução em uma GPU. A similaridade de documento
usando tf-idf é baseada em um esquema de frequência para palavras que reflete a
importância de uma palavra para um documento em uma coleção. Recentemente, uma
medida de similaridade mais sofisticada, chamada representação latente de palavras
(word embedding), se tornou popular. Um vetor é criado para cada palavra. O vetor
armazena de forma latente relações de coocorrência entre palavras em um determinado
contexto, capturando relações semânticas complexas entre palavras. A fim de gerar
eficientemente representação latente de palavras, propomos um algoritmo paralelo e
escalável de granularidade fina. O algoritmo implementado em um sistema multi-GPU
escala linearmente e foi capaz de gerar representações de palavras 13x mais rápidos que
o algoritmo Word2Vec multicore original, mantendo a precisão dos resultados no mesmo
nível daqueles produzidos pelo programa padrão de geração de representação de palavras
latentes. Finalmente, aplicamos nossa solução acelerada de de representação de palavras
latentes ao problema de avaliar a qualidade das correções em Reparo Automatizado de
Software. A implementação proposta foi capaz de lidar com grande corpus, de forma
computacionalmente eficiente, sendo uma alternativa promissora ao processamento de
milhões de arquivos de código fonte necessários para esta tarefa.

Palavras–chave

Computação Paralela, Tarefas de Busca de Documentos por Similaridade, TOP-
k, Word Embeddings, Word2Vec, Reparo Automatizado de Software



Contents

List of Figures 16

List of Tables 18

List of Algorithms 19

1 Introduction 20

2 Parallel Computing 24
2.1 Multicore architectures 25
2.2 Manycore architectures 26
2.3 Types of parallelism 27

2.3.1 Data parallelism and task parallelism 27
2.3.2 Granularity 28

2.4 Taxonomy of computers 29
2.5 The Bulk Synchronous Parallel model 29
2.6 Summary 32

3 Text Representation and Document Similarity Search 33
3.1 Vector Space Model 33

3.1.1 The bag-of-words model (BoW) 33
3.1.2 Limitations of Bag-of-Words 34
3.1.3 Software that implements the vector space model 35

3.2 Document Similarity Search 35
3.3 Word/Document Embedding 37

3.3.1 Word2Vec Softmax output layer 39
3.4 Summary 45

4 Parallel approaches to Document Similarity Search and TOP-K Applications 46
4.1 k-NN 46
4.2 TOP-k Applications 47
4.3 Related works 48

4.3.1 GT-kNN - the base algorithm of FaSST-kNN 48
Creating the Inverted Index 48
Calculating the distances 50
Finding the k Nearest Neighbors 52

4.3.2 Other related algorithms 53
4.4 Proposed work 54
4.5 A Parallel kNN Proposal 55



4.5.1 Data Indexing 55
4.5.2 k Nearest Neighbors Search 56
4.5.3 Threshold-based Filtering 57

Sampling Method #1 57
Sampling Method #2 57

4.5.4 Fast Similarity Search for Text (FaSST-kNN) 58
4.5.5 Multi-Query kNN Search 63
4.5.6 Scalable Fast Similarity Search for Text (SFaSST-kNN) 64

4.6 Summary 65

5 Parallel approaches to accelerate word embedding generation with fine-grain
parallelism 67
5.1 Related works 67
5.2 Parallel solution 69
5.3 Application 71

5.3.1 Approach 73
5.3.2 Related Work 74

5.4 Summary 76

6 Experiments and Results 77
6.1 FaSST-kNN 77

6.1.1 Experimental Evaluation 77
Computational Time 78
Runtime Profiling 79

6.2 SFaSST-kNN 80
6.2.1 Experimental Evaluation 80

Computational Time 81
Runtime Profiling 84

6.3 Accelerating word embedding generation with fine-grain parallelism 86
6.3.1 Experimental Evaluation 86

Corpus and Parameterization 86
Defects4J Preprocessing 87
Experiments Discussion 87

6.3.2 Results 88
6.4 A new word embedding approach to evaluate potential fixes for APR 88

6.4.1 Experiments 89
Setup 89
Metrics 89
Scenarios 90

6.4.2 Results 90
6.5 Summary 94

7 Conclusions 95
7.1 Summary of contributions 96

7.1.1 Discussion and Limitations of our proposals 97
7.1.2 Published papers 97
7.1.3 Manuscripts in review process 98
7.1.4 Main award 98



7.1.5 Future works 98

References 100



List of Figures

2.1 A typical chip multithreaded, multi-core system 26
2.2 AGPU Model [38] 27
2.3 Networking communication in BSP model 30
2.4 Supersteps 31

3.1 Cosine similarity 37
3.2 CBOW model with a one-word context setting [65] 42
3.3 CBOW model with a multi-word context setting [65] 43
3.4 Skip-gram model [65] 44

4.1 Creating the inverted index 49
4.2 Example of the execution of Algorithm 4.2 for a query with three terms. 52
4.3 FaSST-kNN flowchart. 58
4.4 Documents. 59
4.5 Inverted Index and Query. 59
4.6 Inverted Index and Query sorted by TF-IDF in descending order. 59
4.7 Sampling method #1 with 6 samples. 60
4.8 Distance calculation. Dot product with term 2. 60
4.9 Distance calculation. Dot product with term 3. 61
4.10 Distance calculation. Dot product with term 1. 61
4.11 Distance calculation. Dividing the dot product by the product of L2-norms. 61
4.12 Example of compaction phase with k=3 and samples=6 62
4.13 Example 2 of compaction phase with k=3 and samples=6 63
4.14 Example of compaction phase with k=2, samples=4 and two distributed

indexes. 64

5.1 The proposal workflow. 71
5.2 Proposal’s flowchart 73

6.1 Results after Delete operator: (a) Prob (b) Dist 91
((a))91
((a))91
((b))91
((b))91

6.2 Results after Insert operator: (a) Prob (b) Dist 92
((a))92
((a))92
((b))92
((b))92



6.3 Prob results after Swap operator 92
6.4 Examples of two canditate variants obtained from GenProg and one

correct code for smallest problem. 94



List of Tables

6.1 Query times in seconds and speedups to find the K nearest neighbors with
1 GPU. 79

6.2 Query times in seconds and speedups to find the K nearest neighbors with
2 and 4 GPUs. 79

6.3 Impact of the sorted inverted index on the compaction ratio. 80
6.4 Sum of sampling times in seconds. 80
6.5 Sum of sorting times in seconds. 80
6.6 General information on the datasets. 81
6.7 Query times in seconds to find the K nearest neighbors in Medline. 82
6.8 Speedups with 4 GPUs and over NoFilter solutions in Medline. 82
6.9 Query times in seconds and speedups to find the K nearest neighbors in

PubMed. 83
6.10 G-KNN comparison with FaSST / SFaSST using 1 GPU and batch size 10. 83
6.11 Compaction ratios for FaSST and SFaSST using 1 and 4 GPUs. 85
6.12 Sum of sampling and compaction times in seconds for Medline with FaSST

and SFaSST using 1 and 4 GPUs. 85
6.13 Sum of sorting times in seconds for Medline for all implementations using

1 and 4 GPUs. 85
6.14 Sum of sorting times in seconds for Pubmed for all implementations using

1 and 4 GPUs. 85
6.15 Sum of sampling and compaction times in seconds for Pubmed with

FaSST and SFaSST using 1 and 4 GPUs. 86
6.16 Execution time for hidden layer size 200 and 400. 88
6.17 Accuracy percentage for 1Billion with hidden layer size 200 and 400. 88
6.18 Speedup for 4 GPUs x Mikolov 88
6.19 Scores of different variants for each program generated by delete operator

level 1 93



List of Algorithms

4.1 CreateInvetedIndex(E) 49
4.2 DistanceCalculation(invertedIndex,q) 51



CHAPTER 1
Introduction

The amount of data available continues to grow rapidly and much of it corre-
sponds to text expressing human language, that is unstructured. One way of giving some
structure to this data is by converting the documents to a vector of features correspond-
ing to word frequencies (term count, tf-idf1, etc) or word/document embeddings2. This
transformation allows us to process textual data with operations such as similarity mea-
sure, similarity search, classification, among others. This transformation implies vectors
of high dimensionality3 and sparsity, which tend to be equidistant in this vector space, a
phenomenon known as the curse of dimensionality. This makes it difficult to use tradi-
tional algorithms based on distance measures because they are computationally costly in
terms of processing and memory usage.

The curse of dimensionality usually refers to what happens when we add more
and more variables to a multivariate model. The more dimensions we add to a data set, the
more difficult it becomes to process it. It means that the number of dimensions is stagger-
ingly high - so high that calculations become extremely difficult. With high dimensional
data, the number of features can exceed the number of observations. For example, textual
datasets, which besides having many documents, are commonly related to a vocabulary
with hundreds of thousands of words. The statistical curse of dimensionality points to a
related fact: a demanded sample size n will increase exponentially with data that has d

dimensions. In simple terms, adding more dimensions could mean that the sample size
we need suddenly become uncontrollable. Thus, more complex and computationally ex-
pensive algorithms are required.

High-dimensional datasets arise in diverse areas ranging from computational ad-
vertising to natural language processing. Learning in such high-dimensions can be limited
in terms of computations and memory. To this purpose, techniques for dimensionality re-

1In information retrieval, tf-idf or TFIDF, short for term frequency-inverse document frequency, is a
numerical statistic that is intended to reflect how important a word is to a document in a corpus [50].

2Before generating a word embedding, a word is represented by a high-dimensional vector of vocabulary
size in one-hot encoding format.

3Dimensionality in statistics regards to how many attributes a dataset has.
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duction like (linear/nonlinear) principal component analysis or manifold learning are used
for transformation in a lower-dimensional space. However, these dimensionality reduc-
tion methods, seldom, cannot be applicable, e.g., in sparse datasets that have independent
features and the data lie in multiple lower-dimensional manifolds.

An example of an algorithm used to process high dimensionality and sparse
datasets is the k nearest neighbors (kNN). Finding the closest k elements in metric spaces
is an optimization problem. Many techniques have used to tackle this problem. One
approach to solving the kNN problem is an exhaustive search technique (also known
as brute-force) to find the nearest neighbors of a point. In this technique, all distances
between a query q and the points in metric space are computed. The next step is sorting the
computed distances and selecting the k elements corresponding to the k smallest distances.
The disadvantage of this approach is the high computational cost: O(nd) for calculating
the n distances and O(nlogn) for sorting them.

In this context, the computational power of today’s processors can help us to
deal with processing high dimensionality and sparsity textual datasets [1]. It is based on
the concept of parallel processing, where multiple cores (multicore / manycore - CPU
/ GPU) operate concurrently. These parallel computers can provide high performance,
but present a major challenge for their programming, as they require the development
of new (parallel) algorithms. However, this has been the solution for automating the
information extraction process from the huge unstructured Big Data available today.
High-Performance Computing (HPC), coupled with data mining techniques, is turning
data storage, manipulation, and analysis into tasks cheaper and faster [1], [11]. This
has allowed Information Retrieval on unstructured data quickly, such as search engines
(eg Google). In addition to searching, the use of HPC has made Data Mining, that is,
finding patterns and hidden connections between data more efficient. Finally, HPC has
contributed to the refinement of Machine Learning techniques, allowing the generalization
of existing knowledge with new data. In this context, there are two open questions which
are going to guide this research:

• How to exploit parallelism in document similarity tasks in an efficient and scalable
way?
• How to apply the parallel proposals in the context of Automated Program Repair 4

and Top-k applications?

In this research, we exploit parallelism to enable the use of parallel algorithms
to document similarity tasks and apply some of the results to an important application

4Automated Program Repair is a fast-growing research area in computer science. Some numerous tools
and techniques have been developed to automatically find and fix bugs in source code. This topic is directly
related to Quality Engineering and improving the quality of software by reducing the cost and effort of
fixing bugs [43].
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in software engineering. The similarity search for textual data is commonly performed
through a k nearest neighbor search in which pairs of document vectors are compared
and the k most similar are returned. For this task, we present SFaSST-kNN, a fine-grained
parallel algorithm, that applies filtering techniques based on the most common important
terms of the query document using tf-idf, and uses a distributed inverted index to perform
batch processing of multiple queries. The algorithm implemented on a GPU improved the
top k nearest neighbors search by up to 60x compared to a baseline, also running on a
GPU.

Document similarity using tf-idf is based on a scoring scheme for words that
reflects how important a word is to a document in a collection [50]. Recently a more
complex algorithm, called Word2Vec, to generate word embedding allows semantic
similarity measure between words and documents. It creates a vector for each word
that indicates co-occurrence relationships between words in a given context, capturing
complex semantic relationships between words. To generate word embeddings efficiently,
we propose a fine-grain parallel algorithm that finds a sample of more dissimilar vectors to
find accurately which words co-occur. This technique allows using a small fraction of all
the vocabulary to distribute the probabilities of a word being similar to one word and all
others. The algorithm implemented on a multi-GPU system scaled linearly and was able
to generate embeddings 13x faster than the original multicore Word2Vec algorithm while
keeping the accuracy of the results at the same level as those produced by standard word
embedding programs. Finally, we applied our accelerated word embeddings solution to
the problem of assessing the quality of fixes in Automated Software Repair. The proposed
implementation was able to deal with large corpus5, in a computationally efficient way,
being a promising alternative to the processing of million source code files needed for this
task.

The main contributions of this research are: (i) A threshold-based filtering
technique that improves the sorting time of kNN candidates; (ii) A scalable multi-
GPU implementation that exploits both data parallelism and task parallelism; (iii) A
distributed inverted index implementation in MultiGPU system; (iv) The possibility of
batch processing multiple queries; (v) Extensive experimental work with a standard real-
world textual datasets; (vi) A multi-GPU implementation that generates word embeddings
and achieves linear speed-up on a multi-GPU machine while maintaining the accuracy of
the results; (vii) Extensive experimental evaluation of the proposed implementation in
both texts from natural language and source codes from programming languages.

We organized this work as follows. Section 2 provides background to parallel
computing concepts. Section 3 provides background to text representation and document

5Millions or billions of words.
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similarity search. Section 4 presents a parallel approach to Document Similarity Search
and Top-k Applications. Section 5 presents a parallel approach to accelarate word em-
bedding generation with fine-grain parallelism. Section 6 presents our experiments and
results. Section 7 presents our conclusions.



CHAPTER 2
Parallel Computing

The computational power of today’s processors can help us to deal with pro-
cessing high dimensionality and sparsity textual datasets. It is based on the concept of
parallel processing, where multiple cores (multicore / manycore - CPU / GPU) operate
concurrently. These parallel computers can provide high performance, but present a ma-
jor challenge for their programming, as they require the development of new (parallel)
algorithms. However, this has been the solution for automating the information extraction
process from the huge unstructured Big Data available today. High-Performance Comput-
ing (HPC), coupled with data mining techniques, is turning data storage, manipulation,
and analysis into tasks cheaper and faster. This has allowed Information Retrieval on un-
structured data quickly, such as search engines (eg Google).

For more than 40 years, sequential computer architectures and algorithms have
dominated computing systems. However, multicore and manycore architectures have
become attractive devices for current computing challenges. As time went on, Parallel
Computing has established itself in the market and, as a consequence, in the development
of algorithms. Faced with this, the algorithm designers have been confronted with several
challenges that previously did not exist.

Parallel algorithms must be competitive compared to sequential algorithms.
Sequential algorithms have advantages like simplicity and are often highly optimized.
A constant factor (usually the number of processors) commonly limits the speedup
of a parallel algorithm. Currently, there are different forms of parallel architectures
and, therefore, the speedup on one machine may not be the same on other computers.
Therefore, it is necessary for a parallel programming model to abstract the details of the
actual parallel machines. This is important since the utilization of parallel computing
resources can be underused. A good parallel model allows achieving portability for
the parallel algorithm on different parallel platforms. When scaling to a larger number
of processors, data and work distribution is also an issue and more sophisticated load
distribution models need to be investigated. This section aims to expose some of the
parallel computing models and their practical realizations in the form of multicore and
manycore architectures.
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2.1 Multicore architectures

Two important factors have made unsustainable the continuous increase in per-
formance of sequential processor architectures: increasing energy consumption and high
temperature. These factors has driven the industry to create new solutions. The solution
has been to integrate multiple cores with low frequency and reduced power consumption
on a single chip. As a result, continuous improvement in processor performance has be-
come feasible. Two approaches stood out in this new solution: multicore and manycore
architectures. The multicore architecture gathers two or more cores (currently from 2 up
to 18) in a single processor to maintain more tasks executing simultaneously. In other
words, a chip with more than one CPU’s(Central Processing Unit). Some of the most
used multicore architectures are AMD Phenom and Ryzen, ARM, Intel Atom, Intel Core
i3, Core i5, Core i7 and Core i9 etc.

A multicore processor is a computer processor with two or more separate
processing units, called cores. Multicore processors allow more efficient simultaneous
processing of multiple tasks, making them more powerful than single-core processors. At
the same clock frequency, the multicore processor can process more data than the single
core processor. In addition, multicore processors can deliver high performance and handle
complex tasks at comparatively lower energy compared with a single core.

The system represented in Figure 2.1 has two processors, each with two cores
and each core has two hardware threads. There are one L11 cache and one L2 cache per
core. Each core can have its L2 cache or the cores share the L2 cache. All cores and
processors share the system bus to access the main memory or RAM.

1A cache is a smaller, faster memory, closer to a processor core, which stores copies of the data
from frequently used main memory locations. Most CPUs have different independent caches, including
instruction and data caches, where the data cache is usually organized as a hierarchy of more cache levels
(L1, L2, L3, L4)
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Figure 2.1: A typical chip multithreaded, multi-core system

2.2 Manycore architectures

The manycore architecture uses a large number of simpler, independent proces-
sor cores to accelerate parallel programs. Manycore processors are distinct from multicore
processors in that they are optimized for a higher degree of explicit parallelism, and for
higher throughput (or lower power consumption) at the expense of latency and lower sin-
gle thread performance. GPUs, which can be described as manycore vector processors2,
may be considered a form of manycore processor. Intel Xeon Phi also represents a many-
core architecture.

Uniting multiple cores on a single chip provided intense changes in the technol-
ogy community, especially in the parallel algorithm development paradigm. As a conse-
quence, the optimal performance of the parallel algorithm often requires in-depth knowl-
edge of the parallel architecture used. NVIDIA has surpassed in the field of machine
learning, especially in deep learning by providing CUDA Toolkit3 (constantly updated)
with improvements to the memory model, profiling tools, and new libraries for these ar-
eas.

Recently, hardware manufacturers propose many GPU architectures with similar
characteristics. However, we will focus on the NVIDIA design, which stands out with
its CUDA architecture. The GPU environment consists of a host (CPU) and a device

(GPU). The device consists of p cores and one global memory unit. Each core handles a
single thread and executes one instruction per unit time. The word length of the device is

2In computing, a vector processor or array processor is a central processing unit (CPU) that performs
an instruction set containing instructions that operate on one-dimensional arrays of data called vectors,
compared to scalar processors, whose instructions operate on single data items.

3https://developer.nvidia.com/cuda-toolkit
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w bits. A group of b cores forms a multiprocessor. The device has k multiprocessors,
that is, p = kb. Each multiprocessor has its shared memory unit with M words and
individually executes programs launched by the host [38]. The Figure 2.2 shows a
simplified architecture of a GPU.

Figure 2.2: AGPU Model [38]

Multiprocessors do not communicate with each other. The host can synchronize
the multiprocessors by waiting for all multiprocessors in the device to complete executing
programs. All cores in a multiprocessor run the same instruction at the same time, but data
addresses of their operands can be arbitrary [38].

The global memory unit is high-capacity, low-speed and can be accessed by the
host and all multiprocessors in the device, whereas the shared memory units are low-
capacity, high-speed and can be accessed only by cores in the multiprocessor. The GPU
presents the global memory unit into blocks of b words.

2.3 Types of parallelism

2.3.1 Data parallelism and task parallelism

Data parallelism is parallelization over many processors in parallel computing
environments. It focuses on distributing the data across different nodes, which operate on
the data in parallel. It can be applied to regular data structures like arrays and matrices by
working on each element in parallel.
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A variety of data-parallel programming environments are available now, most
popularly employed of which are:

• Message Passing Interface is a cross-platform message-passing programming inter-
face for parallel computers. It defines the semantics of library functions to allow
users to write portable message-passing programs in C, C++, and Fortran;
• Open Multi-Processing (OpenMP) is an Application Programming Interface (API)

which supports shared-memory programming models on multiple platforms of
multiprocessor systems;
• CUDA and OpenACC are parallel computing API platforms designed to allow

programmers to utilize GPU’s computational units for general purpose processing.

Task parallelism, also known as control parallelism, is a form of parallelization
of computer code across various processors in parallel computing environments. Task
parallelism focuses on distributing tasks -concurrently performed by processes or threads
across different processors. In contrast to data parallelism which involves running the
same task on different components of data, task parallelism is distinguished by running
many different tasks at the same time on the same data.

2.3.2 Granularity

In parallel computing, granularity (or grain size) of a task is a measure of
the amount of work (or computation) which is performed by that task [29]. Another
definition of granularity takes into account the communication overhead between multiple
processors or processing elements. It defines granularity as the ratio of computation time
to communication time, wherein, computation time is the time required to perform the
computation of a task and communication time is the time required to exchange data
between processors [41]. Depending on the amount of work which is performed by a
parallel task, parallelism can be classified into couple categories: fine-grained and coarse-
grained parallelism.

In fine-grained parallelism, a program is broken down into a large number of
small tasks. These tasks are assigned individually to many processors. The amount of
work associated with a parallel task is low and the work is evenly distributed among
the processors. Hence, fine-grained parallelism facilitates load balancing. As each task
processes less data, the number of processors required to perform the complete processing
is high. This, in turn, increases communication and synchronization overhead. Fine-
grained parallelism is best exploited in architectures which support fast communication.
Shared memory architecture which has a low communication overhead is most suitable
for fine-grained parallelism.
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In coarse-grained parallelism, a program is split into large tasks. Due to this,
a large amount of computation takes place in processors. This might result in load
imbalance, wherein certain tasks process the bulk of the data while others might be idle.
Further, coarse-grained parallelism fails to exploit the parallelism in the program as most
of the computation is performed sequentially on a processor. The advantage of this type
of parallelism is low communication and synchronization overhead.

Granularity affects the performance of parallel computers. Using fine grains or
small tasks results in more parallelism and hence increases the speedup [13]. However,
synchronization overhead, scheduling strategies can negatively impact the performance
of fine-grained tasks. To reduce communication overhead, granularity can be increased.
Coarse-grained tasks have less communication overhead but they often cause load im-
balance. Hence the optimal performance is achieved between the two extremes of fine-
grained and coarse-grained parallelism [83].

2.4 Taxonomy of computers

Taxonomy of Flynn traditionally has classified computers since 1996. Two
factors are essential for this method: instruction flow and data flow. From these two factors
it is possible to obtain four categories:

1. Single instruction, single data stream - SISD: A single instruction is executed on
a single datum during each fetch-execute cycle;

2. Single instruction, multiple data stream - SIMD: Single instruction executed on
multiple data. This allows us to perform vector or matrix operations with single
instructions. Two forms of SIMD architectures are: Vector processors (each pro-
cessor operates on 1 datum of a 1-D array) and Matrix processors (each processor
operations on 1 datum of a 2-D array);

3. Multiple instruction, single data stream - MISD: is a type of parallel computing
architecture where many functional units perform different operations on the same
data. Pipeline architectures belong to this type, though a purist might say that the
data is different after processing by each stage in the pipeline.

4. Multiple instruction, multiple data stream- MIMD: MIMD are true parallel
processors, i.e, each unit is a full processor (control unit, ALU, cache).

2.5 The Bulk Synchronous Parallel model

There is not yet a preferred model adopted by the scientific community. In
this chapter, we present the Bulk Synchronous Parallel (BSP) model since it has been
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successfully used when mapping a fine-grain parallel algorithm to the GPU.
The BSP model was developed by Leslie Valiant of Harvard University during

the 1980s. This model focuses on three important concepts: an abstract parallel machine,
a BSP parallel algorithm, and h-relation. A BSP computer consists of:

1. components capable of processing and local memory transactions (i.e., processors);
2. a network that routes messages between pairs of such elements;
3. a hardware facility that allows for the synchronization of all or a subset of compo-

nents.

Intended to be employed for distributed-memory computing, the model assumes
a BSP machine consists of p same processors, which can execute r floating point oper-
ations per second. Each processor has access to its local memory. These processors can
communicate with each other through an all-to-all network, providing uniform point-to-
point access times and bandwidth capacity. The Figure 2.3 shows an abstract machine of
the BSP model. Where P is a processor and M a memory.

Figure 2.3: Networking communication in BSP model

The interconnection network is abstracted by the two-parameter model L and
g. The parameter L represents the time to synchronize all processors. The parameter g

represents the ability of a communication network to deliver data. These parameters are
determined experimentally by each parallel computer. With this method of abstracting
parallel architectures, this model approaches real parallel machines [74].

In many parallel programming systems, communications are considered at the
level of individual actions: sending and receiving a message, memory to memory transfer,
etc. The BSP model considers communication actions en masse. In BSP, a parallel
program runs across a set of virtual processors (called processes to distinguish them
from physical processors) and executes as a sequence of parallel super steps separated by
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barrier synchronizations. Each super step is composed of three ordered phases, as shown
in Figure 2.4. The Supersteps consist of the following steps:

1. Concurrent computation: every participating processor may perform local com-
putations, i.e., each process can only make use of values stored in the local fast
memory of the processor. The computations occur asynchronously of all the others
but may overlap with communication;

2. Communication: The processes exchange data between themselves to facilitate
remote data storage capabilities;

3. Barrier synchronization: When a process reaches this point (the barrier), it waits
until all other they have achieved the same barrier.

In the BSP model, the cost complexity is given by the function: T(h) = w + hg

+ L, where w is the longest computing time, the parameter h represents the maximum
number of incoming or outgoing messages for a super steep . Only by going through the
three stages of a super step, the algorithm goes to the next one. The cost of the algorithm
then is the sum of the costs of each super step.

Figure 2.4: Supersteps

The BSP model works similarly to the Parallel Random Access Machine
(PRAM) model. It can be considered a generalization of the PRAM model, when the BSP
machine has the parameter value g small (g = 1) [74]. At a high level, BSP algorithms
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can be mapped into super steps, with the bulk synchronization happening in between the
kernel launches.

2.6 Summary

In this chapter, we have taken a general approach to the main topics related to
parallel computing such as parallel architectures, parallel programming models. In this
research, we adopted as a strategy to develop parallel fine-grained data parallelism algo-
rithms for similarity document searching and word embedding generation using Nvidia’s
CUDA architecture. The CUDA abstractions provide fine-grained data parallelism and
task parallelism, nested within coarse-grained data parallelism and task parallelism. They
guide the programmer to partition the problem into coarse sub-problems that can be solved
independently in parallel by blocks of threads, and each sub-problem into finer pieces that
can be solved cooperatively in parallel by all threads within the block. Although most im-
plementations of parallel algorithms were using fine-grained data parallelism, we also
used task parallelism to split queries across multiple GPUs into a specific version of the
kNN algorithm.



CHAPTER 3
Text Representation and Document Similarity
Search

The text mining studies are getting more attention recently because of the
availability of the increasing number of the electronic documents from a variety of
sources. The resources of unstructured and semi structured information include the many
large data sets from World Wide Web. Today, the internet is the primary source for
text documents and in order to process this data two aspects deserve highlighting: text
representation and text comparison. In this research, we focus on two algorithms: k-
nearest neighbors (kNN) for text comparison and Word2Vec for text representation.

3.1 Vector Space Model

Vector space model is an algebraic model for representing text documents (and
any objects, in general) as vectors of identifiers [67], such as, for example, index terms1.
It is used in information filtering, information retrieval, indexing. Documents and queries
are represented as vectors: di = (w1,i,w2,i, . . . ,wt,i) and q = (w1,q,w2,q, . . . ,wn,q). Each
dimension corresponds to a separate term. If a term occurs in the document, its value in
the vector is non-zero. Each weight is a feature that measures the importance of an index
term in a document or a query, respectively. Several different ways of computing these
values, also known as term weights, have been developed.

3.1.1 The bag-of-words model (BoW)

The bag-of-words model (BoW) is a way of extracting features from the text
for use in modeling, such as with machine learning algorithms. A bag-of-words is a
representation of text that describes the occurrence of words within a document. It means

1The definition of the term depends on the application. Typically terms are single words or longer
phrases. If words are chosen to be the terms, the dimensionality of the vector is the number of words in
the vocabulary - the number of distinct words occurring in the corpus.
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couple points: (i) A vocabulary of known words; (ii) a measure of the presence of known
words. It is called a “bag” of words because any information about the order or structure
of words in the document is discarded. The model is only concerned with whether known
words occur in the document, not wherein the document. In other words, BoW is a
document representation that computes how many times a word appears in a text. Those
word counts allow us to compare texts and calculate their similarities for applications
like search, document classification where the frequency of each word expresses a feature
for training a classifier. In this model, a document is represented as the bag of its words,
ignoring grammar and even word order but keeping multiplicity [50].

Consequently, BoW model is a tool of feature production. After transforming the
text into a “bag of words” we can determine many measures to discriminate the document.
Terms are document features. Term frequency (TF) is a measure of occasions a word
appears in the text. Nevertheless, the most frequent word is a less useful metric because
some words like ‘this’, ‘a’ occur very frequently across all documents. Consequently, we
also need a measure of how unique a word is. Another technique to estimate the topic of
a document by the words it contains is Term-frequency-inverse document frequency (TF-
IDF)2. The IDF weight is defined as log(N/n j), i.e., the log of the inverse of the fraction
of texts in the whole set which contain term j, where n j is the number of documents
containing term j and the total number of documents is N. Therefore, TF-IDF measures
relevance, not frequency, i.e., this metric is a numerical statistic that is intended to reflect
how relevant a word is to a text in a corpus.

BoW is distinct from Word2vec, which we will cover next. The principal differ-
ence is that Word2vec produces one vector per word or document, whereas BoW provides
one number (a word count). Word2vec is useful for texts because it recognizes semantics.
The vectors generated by Word2Vec represent each word’s context.

3.1.2 Limitations of Bag-of-Words

The bag-of-words model is easy to understand and implement. It has been used
on prediction problems like language modeling and document classification. Although, it
suffers from some weaknesses, such as:

• Vocabulary: Large vocabulary impacts the sparsity and dimensional of the docu-
ment representations;
• Sparsity and dimensionality: Sparse and high dimensional representations are

harder to model both for computational reasons: space and time complexity;

2Tf-IDF is a weight or value that is associated with each document feature.
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• Semantic: Discarding word order neglects words context in the document. Context
and meaning can offer a lot to the model, that if modeled could tell the difference
between the same words differently arranged or synonyms (“old car” versus “used
car”), etc.

3.1.3 Software that implements the vector space model

• Apache Lucene: It is a high-performance, full-featured text search engine library
written entirely in Java;
• Elasticsearch: It is a high-performance, full-featured text search engine using

Lucene;
• Gensim: It is a Python+NumPy framework for Vector Space modelling. It contains

incremental (memory-efficient) algorithms for term frequency-inverse document
frequency, etc;
• Weka: It is a popular data mining package for Java including Word Vectors and Bag

Of Words models;
• Word2vec: It uses vector spaces for word embeddings.

3.2 Document Similarity Search

In recent years, there has been lots of interest in producing effective techniques
for non-generalizable search and retrieval in relational databases, document etc. A stan-
dard approach to handle this problem is top-k querying. This method provides a ranking
from the results and returning the k elements with the highest scores. In the last years,
researchers introduced many alternatives to the top-k retrieval problem and several algo-
rithms. In this research, we will cover kNN algorithm. This algorithm can be applied to
generate the top-k more similar documents as the result of a query.

k-Nearest Neighbor (kNN) is an algorithm classified as a distance-based method.
Generally, the distance measure used in the kNN is the Euclidean or Cosine distance. kNN
is an extension of the 1-NN algorithm. Rather than considering only a neighbor, kNN
considers k objects in the training set closest to the test point. The term k is a parameter
of the algorithm. The choice of k is essential in building the kNN model because it can
influence the quality of predictions. This algorithm is one of those algorithms that are
very simple to understand and represents one of the most known paradigms of inductive
learning: objects with similar characteristics belong to the same group.

kNN assumes that the data is in feature space. This approach allows having a
notion of distance between the features. The data used by kNN can be scalars or possibly
even multidimensional vectors. This algorithm has k closest training examples in the
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feature space as input and the output depends on whether kNN is used for classification
or regression. In classification, the output is a class membership. In regression, the output
is the property value for the object (the average of the values of its k nearest neighbors).

The kNN algorithm consists of two stages: the training phase and the classifica-
tion phase. In the training phase, the training examples are vectors in a multidimensional
feature space. In this phase, the feature vectors and class labels of training samples are
stored. In the classification phase, k is a user-defined constant, a query is classified by
assigning a label, which is the most recurrent between the k training samples nearest to
that query point [66].

It is important to note that kNN is a non-parametric method used for classification
and regression. It considered non-parametric because it does not make any assumptions
on the underlying data distribution. It means most of the practical data does not obey the
typical theoretical assumptions made. kNN is a lazy learning algorithm where its function
is approximated locally and all computations are delayed until classification. No actual
model is performed during the training phase, although a training dataset is needed, it is
used only to populate a sample of the search space with instances whose class is known,
for this reason, this algorithm is also known as lazy learning algorithm. It means that
the training data points are not used to do any generalization and all the training data is
required during the testing phase. When an instance whose class is unknown is presented
for evaluation, the algorithm computes its k closest neighbors, and the class is assigned by
voting among those neighbors. In kNN algorithm, training phase is very fast but testing
phase is costly in terms of both time and memory.

In other words, the algorithm is considered lazy because all the computation is
postponed until the classified phase since the learning process consists only in memorizing
the objects. Another important factor is the performance of kNN. The training phase
requires little computational effort. However, classifying an object (a test sample) requires
computing the distance of this object to all training objects. Therefore, prediction can be
costly, and for a large set of training objects, this process can be time-consuming. Like
all distance-based algorithms, kNN is affected by the presence of redundant or irrelevant
attributes. Another striking factor in kNN performance is related to the dimensionality of
the samples. The space defined by the attributes of a problem grows exponentially with
the number of attributes. The number of attributes defines the number of dimensions of
the space.

Similarity searching algorithm is at the core of document retrieval systems and
performance is crucial for it. The kNN algorithm ranks the documents closest to a query.
For this, it scores queries against documents and computes the highest scoring documents
for presentation to the user in ranked order. Representing a document as a vector is the
most traditional way of finding the nearest neighbors. In the vector space model [67], a
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document is a vector with one component for each unique term (word) in the vocabulary
of the corpus. As the vocabulary can be arbitrarily large, the dimensionality of this space
is usually very high, with tens of thousands of terms used routinely.

The weight, for that term in a document, represents each word in a text. A
function of the frequency of the word, TF-IDF, provides this weight. Representing a
document as a vector is also known as a bag-of-words representation. In this model, only
the counts of words mattered. In practice, we can use the bag-of-words model as a tool
for feature generation. Also, since most coordinates contain terms that do not occur in
the document (zero weight), documents are represented by sparse vectors. Vectors also
represent queries. Similarity search ranks documents concerning their similarity to the
query. The similarity measure most commonly used is the cosine of the angle between the
query vector and the document vectors ‘Doc 1’ and ‘Doc 2’ as can see in Figure 3.1.

Figure 3.1: Cosine similarity

At retrieval time, the documents are ranked by the cosine of the angle between
the document vectors and the query vector. For each document and query, the cosine
of the angle is calculated as the ratio between the inner product between the document
vector and the query vector, and the product of the norm of the document vector by the
norm of the query vector. The documents are then returned by the system by decreasing
cosine [55].

3.3 Word/Document Embedding

Word embedding is the collective name for a set of language modeling and fea-
ture learning techniques in natural language processing where words or phrases from the
vocabulary are mapped to vectors of real numbers in a low-dimensional space relative
to the vocabulary size (“continuous space”). Methods to generate this mapping include
neural networks [42], dimensionality reduction on the word co-occurrence matrix [46],
probabilistic models, and explicit representation in terms of the context in which words
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appear [45]. Word, phrase and document embeddings, when used as the underlying input
representation, have been shown to boost the performance in NLP tasks such as syntac-
tic parsing [75], sentiment analysis [75], automatic document classification [82]. Cur-
rent methods for generating word embeddings fall into two categories: count-based meth-
ods [10] (e.g. Latent Semantic Analysis), and predictive methods (e.g. neural probabilis-
tic language models). In this project, we focus on Word2Vec [56], which is a predictive
method with low computational costs that permits the processing of large datasets.

Word2Vec learns continuous word embeddings from plain text in an entirely
unsupervised way. The model assumes the Distributional Hypothesis [27], which states
that words that appear in the same contexts tend to share semantic meaning. This allows us
to estimate the probability of two words occurring close to each other. With Word2Vec,
a neural network is trained with streams of n-grams of words so as to predict the n-
th word, given words [1, ...,n− 1] or [n+ 1,n+ 2, ...]. The output is a matrix of word
vectors or context vectors. Since the neural network used has a simple linear hidden
layer, the intensity of correlation between words is directly measured by the inner product
between word embeddings. Such a shallow neural network might not produce as precise
distributed representations as deep neural networks on relatively small datasets, but they
can process data much more efficiently. When operating on large datasets, this approach
usually produces better results than using a more sophisticated algorithm [57].

The two neural network models used by Word2Vec are known as continuous
bag-of-words (CBOW) and Skip-gram. Rather than predicting a word conditioned on its
predecessor, as in a traditional bi-gram language model, the CBOW model [56] predicts
the current word based on the context, while the Skip-gram model [56] predicts the
neighborhood words given the current word. The training of these models has to compute
normalization terms, which has complexity O(|V |), where |V | is the vocabulary size. To
reduce this high computational cost, Word2Vec uses fast training algorithms: hierarchical
softmax and negative sampling [46]. Hierarchical softmax makes use of a Huffman tree
representation of the vocabulary, which saves calculations, at the potential loss of some
accuracy. On the other hand, negative sampling avoids using the words observed next to
one another in the training data as positive examples, and instead sample random words
from the corpus and present to the network as negative examples. Word2Vec remains a
popular choice for building word vectors due to their efficiency and simplicity. Although
these fast algorithms are widely used, generating word embeddings is still too costly,
which impacts negatively on the time for conducting experiments in both Information
Retrieval and Machine Learning applications.
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3.3.1 Word2Vec Softmax output layer

In mathematics, the softmax function (normalized exponential function) is a
generalization of the logistic function. The softmax function is used to obtain a well-
defined probabilistic (multinomial) distribution among words. This function limits the
range of the normalized data to values between 0 and 1. These values can be considered as
probabilities given an input in the artificial neural network. The softmax function is often
used in the final layer of artificial neural networks, which are applied to classification
problems.

The weights between the input layer and the output layer can be represented by
a V ×N matrix W. Where V is vocabulary size and N is the hidden layer size. Each row
of W is the N-dimensional vector representation vword of the associated word of the input
layer. Given a context word (neighbor word), assuming xb = 1 and xb′ = 0 for b’ 6= b,
where the b value represents a bit position in a word embedding vector3, then:

h = xT W := vwordinput (3-1)

The vector h represents a word embedding derived from one-hot encoding vector
input in Word2Vec Neural Network. In other words, this operation is essentially copying
the b-th row of W to h. vwordinput is the vector representation of the input word wordi.
From the hidden layer to the output layer, there is a different weight matrix W’ = word’i j,
which is a N × V matrix. Using these weights, we can compute a score u j for each word
in the vocabulary:

u j = v’word j .h (3-2)

where v’word j is the j-th column of the matrix W’. Then we can use softmax to
obtain the posterior distribution of words, which is a multinomial distribution [65].

p(word j | wordinput) = y j =
exp(u j)

∑
N
j′=1 exp(u j′)

(3-3)

where y j is the output of the j-th node in the output layer. Substituting (3-1) and
(3-2) into (3-3), we obtain equation 3-4:

3In other words, only one element of {x1, ..., xV } is 1, and all other elements are 0.
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p(word j | wordinput) =
exp(v′wordout put

T vwordinput )

∑
N
j′=1 exp(v′word′j

T vwordinput )
(3-4)

Note that vword and v’word are two representations of the word word. vword comes
from rows of W, which is the input → hidden weight matrix, and v’word comes from
columns of W’, which is the hidden → output matrix. In subsequent analysis, we call
vword as the “input vector”, and v’word as the “output vector” of the word word.

The next step is to derive the weight update equation for this model. The training
objective is to maximize (3-4), the conditional probability of observing the actual output
word word (denote its index in the output layer as j∗) given the input context word wordi

with regard to the weights.

maxp(word j | wordinput) = u∗j − log
N

∑
j′=1

exp(u j′) :=−E (3-5)

where E = log p(word j | wordinput) is our loss function (we want to minimize
E), and j∗ is the index of the actual output word in the output layer. The next step is to
derive the update equation of the weights between hidden and output layers. Take the
derivative of E with regard to j-th node’s net input u j, we obtain equation 3-6 where e j is
the prediction error:

ϕE
ϕu j

= y j− t j := e j (3-6)

where t j = 1 (j = j∗), i.e., t j will only be 1 when the j-th node is the actual output
word, otherwise t j = 0. Note that this derivation is the prediction error e j of the output
layer. Next we take the derivative on wordi j to obtain the gradient on the hidden→ output
weights.

ϕE
ϕword’i j

=
ϕE
ϕu j

.
u j

ϕword’i j
= e j.hi (3-7)

Therefore, using stochastic gradient descent, we obtain the weight updating
equation for hidden→ output weights:
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v’word j
(new) = v’word j

(old)−η . e j .h | j = 1, 2, ..., N. (3-8)

where η > 0 is the learning rate, e j = yi - t j, and hi is the i-th node in the hidden
layer; word’ j is the output vector of word j.

Having obtained the update equations for W’, we can now move on to W. We
take the derivative of E on the output of the hidden layer, obtaining

ϕE
ϕhi

=
V

∑
j=1

ϕE
ϕu j

.
u j

ϕhi j
=

V

∑
j=1

e j .word’i j := EHi (3-9)

where hi is the output of the i-th node of the hidden layer; u j is defined in (3-2),
the net input of the j-th node in the output layer; and e j = y j - t j is the prediction error of
the j-th word in the output layer. EH, a N-dim vector, is the sum of the output vectors of
all words in the vocabulary, weighted by their prediction error.

Next we should take derivative of E on W. The hidden layer performs a linear
computation on the values from the input layer. Expanding the vector notation in (3-1) we
get equation 3-10:

hi =
V

∑
k=1

xk .wordki (3-10)

Now we can take the derivative of E with regard to W, obtaining equation 3-11:

ϕE
ϕwordi j

=
ϕE
ϕhi

.
hi

ϕwordki
= EHi.xk (3-11)

from which we obtain V× N matrix. Since only one component of x is non-zero,
only row of ϕE

ϕW is non-zero, and the value of that row is EH, a N-dim vector. We obtain
the update equation of W as:

vword j
(new) = vword j

(old)−η .EH (3-12)

where vwordi is a row of W, the “input vector” of the only context word, and is
the only row of W whose derivative is non-zero.

After Word2Vec training, the softmax layer stores final probability values. These
values can be accessed by passing the input and output words. The artificial neural
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network training process shown in this section considers all vocabulary words in the
calculation performed between the hidden and output layers. It is important to emphasize
that this process is not feasible due to computational complexity.

Therefore, the process should be optimized because normalization is computa-
tionally expensive. Thus, to achieve a computational efficiency, there are two methods to
handle this: Hierarchical Softmax and Negative Sampling.

Hierarchical Softmax uses a binary Huffman tree to represent all words in the
vocabulary for fast training. The V words must be leaf nodes of the tree. For each leaf
node, there exists a unique path from the root to the node; and this path is used to estimate
the probability of the word represented by the leaf node. Negative Sampling is another
way to handle Word2Vec training complexity. This method is more straightforward than
Hierarchical Softmax, because we can just sample some of the nodes which we compute
scores for [65].

CBOW architecture allows us to define the number of input words: one-word or
multi-word. The amount of words is defined according to the size of the context or window
of words neighboring the word target. The difference between one-word represented in
Figure 3.2 and multi-word context represented in Figure 3.3 is instead of directly copying
the input vector of the input context word, the CBOW model takes the average of the
vectors of the input context words, and use the product of the input to hidden weight
matrix and the average vector as the output.

Figure 3.2: CBOW model with a one-word context setting [65]

The new value of h in CBOW model with a multi-word context setting is defined
in 3-13 and 3-14. Figure 3.3 shows the CBOW model with a multi-word context setting.

h =
1
C

W.(X1 +X2 + ...+XC) (3-13)
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h =
1
C
.(vw1 +vw2 + ...+vwC) (3-14)

Figure 3.3: CBOW model with a multi-word context setting [65]

The skip-gram model is introduced in Mikolov[57]. Figure 3.4 shows the skip-
gram model. It is the opposite of the CBOW model. The target word is now at the input
layer, and the context words are on the output layer[65].
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Figure 3.4: Skip-gram model [65]

In natural language processing demands, producing a good measure of the
similarity of two documents depends Word2Vec architecture suitable choice. Besides,
creating a good measure of the similarity of two documents can be a helpful building
block. Kusner et al. proposes Word Mover’s Distance (WMD) [28]. They adapted the
earth move’s distance to the space of documents: the distance between two documents is
given by the total amount of bulk required to transfer the words from one side into the
other, calculated by the distance the words need to move. So, starting from a measure of
the distance between different words, we can get a document-level distance.

Word Mover’s distance (WMD) uses the word2vec vector embeddings of words
to assess the distance between two text documents. It calculates the cumulative sum of
minimum distance each embedded word of one document needs to move to the closest
embedded word of another document. Thus, even when the two documents have no
words in common, the WMD is able to accurately measure the similarity between the
two documents. Thus, documents sharing many words (the same or related word) end up
having smaller distances compared to documents with very dissimilar words.

Formally the WMD is described as follows. We are given a word embedding
matrix X ∈ Rd×n for a vocabulary of n words. Let xi ∈ Rd be the representation of the ith
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word and da, db be the n-dimensional normalized bag-of-words (BOW) vectors for two
documents. Also, let da

i be the number of times word i appears in da, normalized over all
words in da. The WMD works with a ‘transport’ matrix T ∈ Rn×n, in which Ti j describes
how much of da

i should be transported to db
j [28].

3.4 Summary

In this chapter, we present different ways of representing documents and words
as vectors. These vectors allow us to calculate the similarity between documents or words.
In the next two chapters, we present our proposals to improve the performance of both the
similarity search and embedding generation by exploiting parallel processing.



CHAPTER 4
Parallel approaches to Document Similarity
Search and TOP-K Applications

The similarity search for textual data is commonly performed through a k nearest
neighbor search in which pairs of document vectors are compared and the k most similar
are returned. For this task, in this chapter, we propose FaSST-kNN, a fine-grain parallel
algorithm, that applies filtering techniques based on the most common important terms of
the query document using tf-idf.

4.1 k-NN

The k nearest neighbors (kNN) is an optimization problem for finding the closest
k elements in metric spaces. Many techniques have used to tackle this problem. One
approach to solving the kNN problem is an exhaustive search technique (also known
as brute-force) to find the nearest neighbors of a point. In this technique, all distances
between a query q and the points in metric space are computed. The next step is sorting the
computed distances and selecting the k elements corresponding to the k smallest distances.
The disadvantage of this approach is the high computational cost: O(nd) for calculating
the n distances and O(nlogn) for sorting them.

Several kNN algorithms have been proposed to reduce computation cost [18,
19, 39, 47, 73, 59]. In general, the idea is to reduce the number of distances calculated.
Some algorithms apply a method to partition the data points in a hierarchically way. In this
category, we can use a tree-based data structure as known as kd-tree. This approach allows
calculating distances within nearby space [18]. The increase in the cost of preprocessing
is drawback’s tree structured approach. Furthermore, for sufficiently high dimension, this
method ends up having to search many additional nodes and offer little improvement over
brute-force exhaustive searching.

Find only approximate nearest neighbors is an approach to achieving more
efficiency. However, it sacrifices some accuracy or precision. Instead, to compute the
exact nearest neighbors, an approximate method prefers to compute neighbors that are
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close enough to the query item. Locality-sensitive hashing (LSH) is one of the popularly
used approximate methods. LSH uses a family of hash functions to cluster nearby items
into bins with a high probability [60]. Query objects are hashed into one bin whose items
are used as potential candidates for the final results. The search time is sublinear in
the collection data size. However, the bin sizes are usually broad enough to require an
exact kNN search in the chosen bin. Besides, to scale, approximate methods sacrifice
effectiveness using an approximated kNN solution.

4.2 TOP-k Applications

Searching is one of the critical fundamental problems in computer science,
present in practically all applications. Most of the new searching algorithms were created
with the traditional notion of exact search, i.e., it consisted of finding an element whose
identifier matched exactly to a given search key. Nowadays, a high number of applications
have to work with databases containing mostly unstructured data. In this scenario, it is
not always possible to define important search keys for each database element. Besides,
the rise of high dimensional big data from different data sources (e.g. images, sounds,
text), and the lack of a natural ordering among dimensions made it hopeless to search
using classical exact search techniques hierarchically. In modern information retrieval
systems, the queries usually ask for relevant objects, which are related, to a given one,
whereas comparison for exact identity is exceptional. Hence, the focus of searching has
been changed to similarity search.

Besides that, with the expansion of e-commerce, recommender systems are at-
tracting more and more attentions. E-commerce web sites are based on users’ purchasing
and browsing information, and then they recommend relevant products to the users. What
will be recommended in the system is called item, which can be books, movies or restau-
rants, etc. Items of the same kind make an item set.

The principle of recommendation is estimating the candidate item set for a
certain user, and then the item with the highest prediction value will be recommended to
him or her. The most widely used recommending technology is Collaborative Filtering
(CF). The principle most CF algorithms is creating a user-item rating matrix, then
predicting how many users u may like an unknown item i, by analyzing a group of
users who have the similar interest with u [33]. Nevertheless, CF has a significant
drawback: the user-item rating matrix is very sparse, the accuracy of using CF will be
significantly reduced. Therefore, Top-K recommender system has been used to tackling
this disadvantage.
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4.3 Related works

4.3.1 GT-kNN - the base algorithm of FaSST-kNN

The proposed parallel implementation, called GPU-based Textual kNN (GT-
kNN), greatly improves the k nearest neighbors search in textual datasets[11]. The
solution efficiently implements an inverted index in the GPU, by using a parallel counting
operation followed by a parallel prefix-sum calculation, taking advantage of Zipf’s law,
which states that in a textual corpus, few terms are common, while many of them are
rare [51]. This makes the inverted index a good choice for saving space and avoiding
unnecessary calculations. At query time, this inverted index is used to quickly find
the documents sharing terms with the query document. This is made by constructing a
query index which is used for a load balancing strategy to evenly distribute the distance
calculations among the GPU’s threads. Finally, the k nearest neighbors are determined
through the use of a truncated bitonic sort to avoid sorting all computed distances. Next
we present a detailed description of these steps.

Creating the Inverted Index

The inverted index is created in the GPU memory, assuming the training dataset
fits in memory and is static. Let V be the vocabulary of the training dataset, that is the set
of distinct terms of the training set. The input data is the set E of distinct term-documents
(t,d), pairs occurring in the original training dataset, with t ∈ V and d ∈Dtrain. Each pair
(t,d)∈ E is initially associated with a term frequency t f , which is the number of times the
term t occurs in the document d. An array of size |E | is used to store the inverted index.
Once the set E has been moved to the GPU memory, each pair in it is examined in parallel,
so that each time a term is visited the number of documents where it appears (document
frequency - d f ) is incremented and stored in the array d f of size |V |. A parallel prefix-
sum is executed, using the CUDPP library [68], on the d f array by mapping each element
to the sum of all terms before it and storing the results in the index array. Thus, each
element of the index array points to the position of the corresponding first element in
the invertedIndex, where all (t,d) pairs will be stored ordered by term. Finally, the pairs
(t,d) are processed in parallel and the frequency-inverse document frequency t f -id f (t,d)

for each pair is computed and included together with the documents identification in
the invertedIndex array, using the pointers provided by the index array. Also during this
parallel processing, the value of the norm for each training document, which is used in the
calculus of the cosine or Euclidean distance, is computed and stored in the norms array.
Algorithm 4.1 depicts the inverted index creation process.
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Algorithm 4.1: CreateInvetedIndex(E)
input : term-document pairs in E[0 . . |E |−1 ].
output: d f , index, norms, invertedIndex.

1 array of integers d f [0 . . |V |−1 ] // document-frequency array, initialized with zeros.
2 array of integers index[0 . . |V |−1 ].
3 array of floats norms[0 . . |Dtrain−1| ].
4 invertedIndex[0 . . |E |−1 ] // the inverted index

5 Count the occurrences of each term in parallel on the input and accumulates in d f .
6 Perform an exclusive parallel prefix sum on d f and stores the result in index.
7 Access in parallel the pairs in E, with each processor performing the following tasks:
8 begin
9 Compute the tf-idf value of each pair.

10 Accumulate the square of the tf-idf value of a pair (t,d) in norms[d].
11 Store in invertedIndex the entries corresponding to pairs in E, according to index.
12 end
13 Compute in parallel the square root of the values in array norms.
14 Return the arrays: count, index, norms and invertedIndex.

Figure 4.1 illustrates each step of the inverted index creation for a five documents
collection where only five terms are used. If we take t2 as an example, the index array
indicates that its inverted document list (d2,d4) starts at position 3 of the invertedindex

array and finishes at position 4 (5 minus 1).
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Figure 4.1: Creating the inverted index
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Calculating the distances

Once the inverted index has been created, it is now possible to calculate the
distances between a given query document q and the documents in Dtrain. The distances
computation can take advantage of the inverted index model, because only the distances
between query q and those documents in Dtrain that have terms in common with q have to
be computed. These documents correspond to the elements of the invertedIndex pointed
to by the entries of the index array corresponding to the terms occurring in the query q.

The obvious solution to compute the distances is to distribute the terms of
query q evenly among the processors and let each processor p access the inverted lists
corresponding to terms allocated to it. However, the distribution of terms in documents of
text collections is known to follow approximately the Zipf Law. This means that few terms
occur in large amount of documents and most of terms occur in only few documents.
Consequently, the sizes of the inverted list also vary according to te Zipf Law, thus
distributing the work load according to the terms of q could cause a great imbalance
of the work among the processors.

In this work besides using an inverted index to boost the computation of the
distances, they also propose a load balance method to distribute the documents evenly
among the processors so that each processor computes approximately the same number
of distances [11]. In order to facilitate the explanation of this method, suppose that
we concatenate all the inverted lists corresponding to terms in q in a logical vector
Eq = [0 . . |Eq| − 1 ], where |Eq| is the sum of the sizes of all inverted lists of terms in
q. Considering the example in Fig. 4.1 and supposing that q is composed by the terms
t1, t3 and t4, the logical vector Eq would be formed by the following pairs of the inverted
index: Eq = [(t1,d1), (t1,d3), (t1,d5), (t3,d1), (t3,d5), (t4,d1)] and |Eq| equals to six.

Given a set of processors P = {p0, · · · p|P|−1}, the load balance method should
allocate elements of Eq in intervals of approximately the same size, that is, each processor
pi ∈P should process elements of Eq in the interval [id |Eq|

|P|e,min((i+1)d |Eq|
|P|e−1, |Eq|−

1)]. Consider the example stated above, and suppose that the set of processors is P =

{p0, p1, p2}. Thus elements of Eq with indices in the interval [0,1] would be assigned to
p0, indices in [2,3] would be processed by p1 and indices in [4,5] would be processed by
p2.

Since each processor knows the interval of the indices of the logical vector Eq

it has to process, all that is necessary to execute the load balancing is a mapping of the
logical indices of Eq to the appropriate indices in the inverted index (array invertedIndex).
In the case of the example associated to Fig. 4.1, the following mappings between logical
indices and indices of the invertedIndex array must be performed: 0→ 0, 1→ 1, 2→ 2,
3→ 5, 4→ 6 and 5→ 7. Each processor executes the mapping for the indices in the
interval corresponding to it and finds the corresponding elements in the invertedIndex
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array for which it has to compute the distances to the query.
Let Vq ⊂ V be the vocabulary of the query document d. The mapping pro-

posed in this work uses three auxiliary arrays: d fq[0 . . |Vq|−1 ], startq[0 . . |Vq|−1 ]] and
indexq[0 . . |Vq| − 1 ]. The arrays d fq and startq are obtained together by copying in par-
allel d f [ti] to d fq[ti] and index[ti] to startq[ti], respectively, for each term ti in the query
q. Once the d fq is obtained, an inclusive parallel prefix sum on d fq is performed and the
results are stored in indexq.

Algorithm 4.2: DistanceCalculation(invertedIndex,q)
input : invertedIndex, d f , index, query q[0 . . |Vq|−1 ].
output: distance array dist[0 . . |Dtrain|−1 ] initialized according to the distance function used.

1 array of integers d fq[0 . . |Vq|−1 ] initialized with zeros
2 array of integers indexq[0 . . |Vq|−1 ]
3 array of integers startq[0 . . |Vq|−1 ]

4 for each term ti ∈ q, in parallel do
5 d fq[i] = d f [ti];
6 startq[i] = index[ti];
7 end
8 Perform an inclusive parallel prefix sum on d fq and stores the results in indexq
9 foreach processor pi ∈P do

10 for x ∈ [id |Eq |
|P| e,min((i+1)d |Eq |

|P| e−1, |Eq|−1)] do
// Map position x to the correct position indInvPos of the invertedIndex

11 pos = min(i : indexq[i]> x);
12 if pos = 0 then
13 p = 0; o f f set = x;
14 else
15 p = indexq[pos−1]; o f f set = x− p;
16 end
17 indInvPos = startq[pos]+o f f set
18 uses q[pos] and invertedIndex[indInvPos] in the partial computation of the distance between q and the

document associated to invertedIndex[indInvPos]
19 end
20 end

Algorithm 4.2 shows the pseudo-code for the parallel computation of the dis-
tances between documents in the training set and the query document. In lines 4-7 the
arrays d fq and startq are obtained. In line 8 the array indexq is obtained by applying a
parallel prefix sum on array d fq. Next, each processor executes a mapping of each posi-
tion x in the interval of indices of Eq associated to it to the appropriate position of the in-
vertedIndex. This mapping is described in lines 10-17 of the algorithm. Then, the mapped
entries of the inverted index are used to compute the distances between each document
associated with these entries and the query.

Figure 4.2 illustrates each step of Algorithm 4.2 for a query containing three
terms, t1, t3 and t4, using the same collection presented in the example of Figure 4.1.
Initially, the arrays d fq and startq are obtained by copying in parallel entries respectively
from arrays d f and index, corresponding to the three query terms. Next a parallel prefix
sum is applied to array d fq and the indexq array is obtained. Finally the Figure shows the
mapping of each position of the logical array Eq into the corresponding positions of the
invertedIndex array.
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Figure 4.2: Example of the execution of Algorithm 4.2 for a query
with three terms.

Finding the k Nearest Neighbors

With the distances computed, it is necessary to obtain the k closest documents.
This can be accomplished by making use of a partial sorting algorithm on the array
containing the distances, which is of size |Dtrain|. For this, we implemented a parallel
version of the Truncated Bitonic Sort (TBiS), which was shown to be superior to other
partial sorting algorithms in this context [73]. One advantage of the parallel TBiS is
data independence. At each step, the algorithm distributes elements equally among the
GPU’s threads avoiding synchronizations as well as memory access conflicts. Although
the partial bitonic sort is O(|Dtrain| log2 k), worse than the best known algorithm which is
O(|Dtrain| logk), for a small k the ratio of logk becomes almost negligible. Their parallel
TBiS implementation also uses a reduction strategy, allowing each GPU block to act
independently from each other on a partition of array containing the computed distances.
Results are then merged in the CPU using a priority queue.

Although the kNN algorithm can be applied broadly, it has some shortcomings.
For large datasets and high dimensional space, its complexity O(nd) can easily become
prohibitive. Moreover, if m succesive queries are to be performed, the complexity further
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increases to O(mnd). This has motivated a number of parallel implementations of the
kNN method over the last years. More recently, with the powerful and affordable GPU
(Graphics Processing Units) many-core accelerators, some proposals have been presented
to accelerate the kNN algorithm via a highly mutithreaded fine-grained data parallel
approach.

Canuto’s et al. work presents a new GPU-based implementation of kNN, called
GPU-based Textual kNN (GT-kNN), specially designed for high-dimensional and sparse
datasets. This algorithm allows a very fast and much more scalable meta-feature gen-
eration which allows one to apply this technique in large collections much faster. This
solution does not use any filtering technique [11].

4.3.2 Other related algorithms

Johnson et al. proposed FAISS, an approximate kNN search algorithm for dense
vectors [35]. It uses domain compression techniques, and inverted lists to build lookup
tables for fast searching. It also provides an exact kNN search for dense datasets. It
implements a brute force approach through matrix operations by using cuBLAS, a CUDA
linear algebra library, and a novel GPU k-selection method that is applied during matrix
multiplication. Although it is not suited for very high dimensions when the data is too
large to fit in GPU memory the problem is tiled over query batches, while using pinned
memory to overlap the data transfer and computation.

Gutiérrez et al. proposed GPU-SME-kNN (Scalable and Memory Efficient kNN)
to accelerate kNN for large datasets with a memory efficient tiling scheme. Their method
is able to incrementally select k neighbors by tiling the distance matrix and merging the
k distances from the previous tile with a novel quicksort-inspired k-selection [26]. This
work is not suited for sparse datasets.

Chen et al. proposed a GPU-based kNN that uses triangular inequality. It first
creates clusters for the query and target sets, then applies an upper bound filter to discard
distant target clusters. A second filtering is done on the remaining clusters by sorting the
clusters and candidate points, in order to increase the effectiveness of filtering by triangle
inequality. It also can adapt its algorithm according to input data [14].

Wang et al. proposed a similarity search for high-dimensional and sparse
datasets, which implements novel LSH techniques that make it not require similarity com-
putations and high memory. This work does not provide an exact solution, but it is the
state-of-the-art GPU approximate kNN [80].

An approach that exploits fine granularity processing in an exact way is the G-
kNN [64]. The G-kNN is a parallel algorithm of the kNN and was also implemented
on GPUs. This algorithm stands out because it exploits high-dimensional and sparse
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datasets, which is an advantage over other algorithms in the literature that parallelize
kNN using GPU. This algorithm was developed to run in an environment with a single
GPU. An indexing strategy based on a graph data structure was adopted and the algorithm
was divided into two phases: the generation of the model and the classification of the
documents. The first phase consists of two steps: calculating the distance between each
test object and all training objects and ordering these distances. In the second phase, each
test document is classified according to the nearest k training objects [64].

Matsumoto and Yiu proposed an exact solution by applying a fast sampling-
based pruning method to compress distance matrices. In this work, samples are chosen
at random from the full dataset. On a small sample, initial distance computation with
a set of queries can be done quickly, with the k-th nearest neighbor extracted as the
threshold value. Objects that have a distance from the query greater than the threshold
are discarded. To balance parallelism and compression, queries are arranged into smaller
batches. Besides that, they use a standard matrix-based approach to compute Euclidean
(L2) distance between the data points and the query points [52].

Alewiwis et al. approach proposes the application of a new filtering technique
that decreases the number of comparisons between the query set and the search set to find
highly similar documents. In general, this method proposes a filtering technique known as
prefix filtering, in which only the most important features are used to find highly similar
documents. This work [2] does not provide an exact solution and its implementation is a
coarse granularity solution. Another effort, not directly related to this work, use GPUs to
accelerate the kNN search for low dimensional data with a kd-tree data structure [20].

4.4 Proposed work

Our proposal [1] differs from the above mentioned work in many aspects. First, it
is an exact kNN solution but it does not use the brute-force approach. Since we deal with
textual datasets, we avoid comparing the query with all documents in the collection, by
creating an inverted index and quickly finding the documents sharing terms with the query
document. This also save us a lot of space since the inverted index corresponds to a sparse
representation of the data. Our proposal also handles well batches of queries, by simply
processing one after another on a multi-GPU environment. In addition, our algorithm uses
filtering techniques to discard documents that do not have important terms in common in
relation to the query document. This strategy avoids unnecessary computing by further
enhancing performance. Our goal is to achieve a high similarity value between the
samples and the current query. At query time, we implement a threshold-based filtering by
selecting samples (documents) that share terms with high TF-IDF values. The threshold
is chosen among these samples, then all distances smaller than it can be pruned, while
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the higher distances are compacted into a smaller array1. Our method uses the cosine as
distance calculation. Finally, the k nearest neighbors are determined through the use of a
radix sort algorithm on this smaller array.

4.5 A Parallel kNN Proposal

A fine-grained parallel algorithm takes advantage of data parallelism by pro-
cessing individual items, terms of an individual document, in parallel. This greatly im-
proves the k nearest neighbors search in textual datasets and can be easily mapped to
modern highly threaded accelerators like manycore GPUs. Our implementation, called
Fast Similarity Search for Text (FaSST-kNN), efficiently implements an inverted index
taking advantage of Zipf’s law, which states that in a textual corpus, few terms are com-
mon, while many of them are rare [51]. This makes the inverted index a good choice for
saving space and avoiding unnecessary calculations. At query time, this inverted index
is used to quickly find the documents sharing terms with the query document. This is
made by constructing a query index which is used for a load balancing strategy to evenly
distribute the distance calculations among the GPU’s threads. The inverted index and dis-
tance calculation were based on GT-kNN [11]. Also at query time, it implements a new
threshold-based filtering by selecting samples (documents) that share terms with high TF-
IDF values. The threshold is chosen among these samples, then all distances smaller than
it can be pruned. This is done on the GPU with a parallel compaction algorithm, which
copies all distances greater than the threshold into a smaller array. Finally, the k nearest
neighbors are determined through the use of a radix sort algorithm on this smaller array. In
addition to exploiting intra-query parallelism, the solution also deals with inter-query par-
allelism, which allows the use of modern multi-GPU systems. Next, we present a detailed
description of these steps.

4.5.1 Data Indexing

The data indexing process consists of creating an inverted index in the GPU
memory, assuming the input dataset fits in memory and is static. Let V be the vocabulary
of the input dataset, that is the set of distinct terms of the input set of documents Din. The
input data is the set E of distinct term-documents (t,d), pairs occurring in the original
dataset, with t ∈ V and d ∈ Din. Each pair (t,d) ∈ E is initially associated with a term
frequency t f , which is the number of times the term t occurs in the document d. An array
of size |E | is used to store the inverted index. Once the set E has been moved to the GPU

1Since the cosine distance is a similarity metric, the nearest distances are the higher ones.
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memory, each pair in it is examined in parallel, so that each time a term is visited the
number of documents where it appears (document frequency - d f ) is incremented and
stored in the array d f of size |V |. A parallel prefix-sum is executed on the d f array by
mapping each element to the sum of all terms before it and storing the results in the index

array. Thus, each element of the index array points to the position of the corresponding
first element in the invertedIndex, where all (t,d) pairs will be stored ordered by the
term. Finally, the pairs (t,d) are processed in parallel and the term frequency-inverse

document frequency t f − id f (t,d) for each pair is computed and included together with
the documents identification in the invertedIndex array, using the pointers provided by
the index array. Also during this parallel processing, the value of the norm for each input
document is computed and stored in the norms array. These values are used later when
calculating the cosine distances. [11].

4.5.2 k Nearest Neighbors Search

Given a query, the kNN search consists of two steps. First, the distances of the
query (document) q to all input data (documents in Din) have to be computed. Then, the
top k documents, that is, those closer to the query, are selected. The distances computation
can take advantage of the inverted index model, because only the distances between query
q and those documents in Din that have terms in common with q have to be computed.
These documents correspond to the elements of the invertedIndex pointed to by the
entries of the index array corresponding to the terms occurring in the query q.

The obvious solution to compute the distances is to distribute the terms of
query q evenly among the processors and let each processor p access the inverted lists
corresponding to terms allocated to it. However, the distribution of terms in documents
of text collections is known to follow approximately the Zipf’s Law. This means that few
terms occur in large amount of documents and most of terms occur in only few documents.
Consequently, the sizes of the inverted list also vary according to the Zipf’s Law, thus
distributing the work load according to the terms of q could cause a great imbalance of
the work among the processors.

The load balancing technique described in [11] is used to boost the computation
of the distances, by distributing the documents evenly among the processors so that each
processor computes approximately the same number of distances. After the distances
are computed, the k closest documents to the query are selected. This is accomplished
by making use of a sorting algorithm on the array containing the distances, which is of
size |Din|. For this, we used the CUDA Thrust radix sort. Next, we describe our filtering
proposal that reduce both this array’s size and its sorting time.
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4.5.3 Threshold-based Filtering

In order to increase the efficiency of the kNN computation, we propose a filtering
techniques to decrease the sorting time of kNN candidates. By choosing a number of
samples (documents) that have high similarity to the query, a threshold value can be
chosen to discard all candidates whose similarity value are lower than it. In order to keep
the kNN search exact, at least k samples need to be chosen, and the k-th smallest of those
needs to be the threshold. This way, at most |Din| - k candidates are filtered, in the best
case where the true k are sampled. In the worst case, when the smallest of all distances is
in the sample, no candidate would be discarded since there is no distance smaller than it.

For a query document x, we exploit the numerator from the cosine similarity
function: cos(x,y) = x . y∥∥x

∥∥∥∥y
∥∥ , aiming to maximize it with documents y that share terms

with high TF-IDF values. The main idea of our proposal is to sort the query’s terms by
TF-IDF in a descending order2 and to execute one of the two possible proposed sampling
methods. Also, to further increase the chance of selecting samples that will yield a higher
similarity, we sort each inverted list by TF-IDF as well, as shown later in our proposal’s
flowchart.

Sampling Method #1

The first proposed method is based on choosing the documents’ Ids from the
inverted index list of the first query term, until k samples is completed. If it is not enough to
complete the k required documents, the documents of the list of the next term are chosen;
if it still does not complete, the choice is performed randomly. A set data structure is used
to ensure that the samples have distinct Ids. This also applies for sampling method #2.

Sampling Method #2

The second proposed method receives a parameter T , which is the number of
terms to be used. Then, the documents’ Ids are chosen by doing a round-robin on the T

inverted lists of the first T terms of the query, until it completes the required number of
samples; if it is not enough, the documents in the list of the next term T + i are chosen, like
in the first method; if it still does not complete the sample size, it chooses randomly. For
both methods, the random sampling only happens when the query’s terms corresponding
inverted lists has few documents, or the query itself has few terms.

2Meaning the first terms are likely to contribute more to the final cosine similarity value.
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4.5.4 Fast Similarity Search for Text (FaSST-kNN)

Figure 4.3 shows the flowchart of our proposal FaSST-kNN, divided in four steps.
First, the input data is read, then copied to GPU memory and is built as an inverted index.
Then the inverted index lists are sorted on the GPU by using two stable sorts by key, an
efficient approach to sort many sub arrays (inverted lists). One with the term id as the
key, then one with the index TF-IDF as key. This sorted inverted index by TF-IDF is
copied back to the CPU, where the samplings for queries are done. The next three steps
are done for each query. The query is received, then sorted. Its terms are used in one of
the proposed sampling methods, which will return a list of the chosen documents Ids,
and copy it to the GPU. In the third step, the query is sent to the GPU, where the cosine
distance is calculated against the inverted index, and written in a distance vector of size
|Din|. By using the sample lists, only the chosen distances are copied to the CPU, where
the threshold is returned with the QuickSelect k-selection algorithm. Finally, at step four,
the threshold is sent to the GPU, where a GPU parallel compaction algorithm prunes all
distances smaller than the threshold, and writes the distances greater than it at a smaller
vector. This vector is sorted with Thrust radix sort, then the first k are copied to the CPU,
and the corresponding document Ids are printed.

Figure 4.3: FaSST-kNN flowchart.

To facilitate the understanding of the algorithm, we show in the following figures
what the algorithm does step-by-step. In Figure 4.4, we have 16 documents with Doc ID
between 0 and 15. Each document with its terms and tf-idfs.
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Figure 4.4: Documents.

In Figure 4.5, we have represented a query with terms 1, 3, and 2 with unordered
tf-idf values. Each ID term has an inverted list containing which documents have it. At
this step, the documents are not sorted by tf-idf.
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Figure 4.5: Inverted Index and Query.

In Figure 4.6, we have the inverted lists sorted in descending order. This opera-
tion aims to sample documents that have high common terms.
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Figure 4.6: Inverted Index and Query sorted by TF-IDF in de-
scending order.

In Figure 4.7, we assume that we want to get the 3 most similar documents. Our
sample is defined as 2 × k, so let’s initially select the documents that have the common
term 2. At first, let’s try to fill the list with all documents with term 2, but we might not
have six documents with this term. In this case, we do have six documents with term
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2. Otherwise, we would select the second most important query term, term 3 with tf-idf
equal to 7. If we could not fill the rest of the list with documents containing this term, the
list would be completed with random samples.
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Figure 4.7: Sampling method #1 with 6 samples.

The next step, shown in Figure 4.8, is to calculate the scalar product between the
query and the sample list documents considering term 2.
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Figure 4.8: Distance calculation. Dot product with term 2.

We repeat the same process as in Figure 4.8 for terms 3 and 1 in the Figure 4.9
and Figure 4.10 respectively.
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Figure 4.9: Distance calculation. Dot product with term 3.
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Figure 4.10: Distance calculation. Dot product with term 1.

After performing the same process for all query terms, the remainder of the
distances is calculated as shown in Figure 4.11.
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Figure 4.11: Distance calculation. Dividing the dot product by the
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To accelerate matrix ordering of distances calculated in the previous step, we
will generate a threshold to prune the matrix and generate a smaller matrix. Our method
selects distance candidates considering only the documents with the most important terms
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in common regarding the query as can be seen in Figure 4.7. The matrix with the candidate
distances of size 2 times k is then sorted in ascending order. After that, a threshold will
be selected as the k-th element, in the case of Figure 4.12, is the third element with value
0.68. From this threshold, documents having a distance greater than or equal to 0.68 will
be selected and then sorted in descending order to select, in this case, the most similar k

documents.
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Figure 4.12: Example of compaction phase with k=3 and sam-
ples=6

Our method is accurate as it considers all calculated distances. The goal of
the threshold is to eliminate as many elements as possible before sorting, which is a
computationally expensive process. The calculated threshold may prune too little or not
prune the matrix at all. To visualize this, imagine that the threshold is picked from the
document with Doc ID 9 represented in the Figure 4.12 with distance zero. In this case,
none element could be discarded, i.e., there would be no compaction.

In Figure 4.13, we have a situation where the Doc ID 3 document is not used in
sampling. Note that in the final array of distances this document appears, but is not among
the three most similar (k = 3).
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4.5.5 Multi-Query kNN Search

The FaSST-kNN algorithm[1] was designed having in mind a manycore architec-
ture (accelerator) with (global) shared memory. It exploits data parallelism when process-
ing a single query, and uses a single accelerator. It does that by making use of thousands of
threads to index the dataset and to find the nearest neighbors of a single query document.
However, in many situations, the kNN search has to be invoked repeatedly, to deal with the
processing of many queries. The FaSST-kNN algorithm can handle that by processing the
queries one after another, once the input data has been indexed. This streaming operation
requires that the k nearest neighbors are returned before another query can be processed.
In addition, a query specific memory allocation is needed for every query. Moreover,
machines with more than one accelerator (GPU) can not take advantage of the extra com-
puting power for the kNN search. This has motivated us to extend the FaSST-kNN to deal
with multiple queries in a multi-GPU platform.

In the multi-GPU version, called SFaSST-kNN, task parallelism is exploited in
addition to data parallelism. The data indexing step is performed by replicating the input
data E in each of the g available GPUs and then, in parallel, creating g copies of the
inverted-index. Thus, each GPU receives the same input and they all produce the same
inverted-index in their memory. Next, each GPU performs the kNN search by dynamically
requesting queries, so that there is no load imbalance between GPUs when queries sizes
differ greatly. This is possible since the queries are completely independent of each other.
Since the queries are of different size, we preallocate memory based on the biggest query,
i.e. the document with the largest number of terms. This saves us a lot of time since GPU
memory allocation can be very costly.
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4.5.6 Scalable Fast Similarity Search for Text (SFaSST-kNN)

To increase the scalability of our FaSST-kNN algorithm, we implemented an
inverted index distributed among GPUs. Step 1 as shown in Figure 4.3 has been adjusted
to enable this implementation. While reading training data, a CPU thread takes care of
distributing the data that is used to create the inverted index on existing GPUs. If we have
N GPUs, then N input vectors (doc_id, term_id, and tf_idf tuples) will be allocated. Each
document is read in a round-robin fashion as shown in Figure 4.14. Each document has its
ID remapped between 0 and N / number of GPUs to have a contiguous vector. Maintaining
the contiguous vector is important because it avoids vector gaps that would never be
accessed, which would lead to more memory usage and worsen coalesced memory access.
For each GPU is allocated a vector of equal size, that is, the final size of the CPU input
vector. Each GPU creates its partial inverted index. The indexes are sorted and each CPU
thread gets a copy of the partial indexes (only the index associated with the current GPU)
to sample. Because sampling is done by document ID, using the partial index from another
thread would give an error because it does not exist at the current index.
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Figure 4.14: Example of compaction phase with k=2, samples=4
and two distributed indexes.

So during a query, a single CPU thread prepares it. The CPU threads sample in
parallel on their partial inverted indexes and send the sample Ids to the GPU. After this
process, the distance calculation is performed and then the filter is applied according to the
threshold from the sample. As a result of applying the filter, we will have the partial kNN
of each thread. After this, a merge is performed to generate the final kNN. Importantly,
when the batch size is greater than 1, each CPU thread works in a different batch query,
so when the batch size increases, the SFaSST gain is higher.
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This new proposal differs from the FaSST-kNN in many aspects. First, it is an
exact kNN solution but it does not use the brute-force approach. Since we deal with
textual datasets, we avoid comparing the query with all documents in the collection,
by creating an inverted index and quickly finding the documents sharing terms with the
query document. This also save us a lot of space since the inverted index corresponds to
a sparse representation of the data. Other advantage of our approach is that we do not
have to rely on multiple queries to achieve high performance. A single query is enough to
completely occupy the GPU and this is important since some applications may require a
fast processing of a continuous streaming of data. However, our proposal also handles well
batches of queries, by simply processing one after another on a multi-GPU environment.
In addition, our algorithm uses filtering techniques to discard documents that do not
have important terms in common in relation to the query document. This strategy avoids
unnecessary computing by further enhancing performance. Our goal is to achieve a high
similarity value between the samples and the current query. At query time, we implement
a threshold-based filtering by selecting samples (documents) that share terms with high
TF-IDF values. The threshold is chosen among these samples, then all distances smaller
than it can be pruned, while the higher distances are compacted into a smaller array3.
Our method uses the cosine as distance calculation. Finally, the k nearest neighbors are
determined through the use of a radix sort algorithm on this smaller array.

4.6 Summary

Intensive use of kNN, combined with the high dimensionality and sparsity of
textual data, makes it a challenging computational task. We have presented a fine-grained
parallel algorithm and a very fast and scalable GPU-based approach for computing the
top k nearest neighbors search in textual datasets. Different from other GPU-based kNN
implementations, we avoid comparing the query document with all training documents.
Instead, we use an inverted index in the GPU that is used to quickly find the documents
sharing terms with the query document. Although the index does not allow a regular
and predictable access to the data, a load balancing strategy is used to evenly distributed
the computation among thousand threads in the GPU. Furthermore, we proposed a
filtering technique that decreases the sorting time of kNN candidates. Our filtering
method allows the removal of documents with similarity less than a threshold so that
our algorithm spends less time in the sorting phase of the nearest k documents. Our
proposal was extended to exploit multi-GPU platforms thus permitting the processing
of multiple queries in parallel. We tested our approach in a very memory-demanding

3Since the cosine distance is a similarity metric, the nearest distances are the higher ones.
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and time-consuming task which requires intensive and recurrent execution of kNN. The
FaSST-kNN improved the top k nearest neighbors search by up to 60x compared to a
baseline. Improving the kNN performance will enhance several TOP-K applications. kNN
complexity has motivated some parallel implementations of the kNN method over the last
years, and we found new opportunities to improve them. Thus, we implement the FaSST-
kNN and SFaSST-kNN, two fast GPU-based tool for computing the top k nearest in high
dimensional and sparse data.



CHAPTER 5
Parallel approaches to accelerate word
embedding generation with fine-grain
parallelism

Word embedding is the collective name for a set of language modeling and
feature learning techniques in natural language processing. Word2vec is a collection of
related models that are used to produce word embeddings. Words or phrases from the
vocabulary are mapped to vectors of real numbers in a low-dimensional space (typically
of several hundred dimensions) relative to the vocabulary size. These word vectors are
positioned in the vector space such that words that share common contexts in the corpus
are located in proximity to one another in the space [57]. Word2Vec remains a popular
choice for building word vectors due to their efficiency and simplicity. Although these
fast algorithms are widely used, generating word embeddings are still too costly, which
impacts negatively on time for conducting experiments in both Information Retrieval and
Machine Learning applications. For this task, in this chapter, we present how to accelerate
the generation of word embeddings used in the context of Automated Program Repair. In
particular, the word embedding implemented is an extension of the well known Word2Vec
with the CBOW model. Besides, we present how we can exploit fine-grained parallelism
in this context and how we developed a new way of choosing negative samples that is
beneficial for exploiting parallelism.

5.1 Related works

The first state-of-the-art algorithms for Word embeddings including Word2Vec
have been parallelized for multi-core CPU architectures but are based on vector-vector
operations that are memory-bandwidth intensive and do not efficiently use computational
resources. The original Word2Vec was implemented this way.

To reduce generation time for word vectors, [Liu, 2014] implemented the opti-
mization CBOW model in CUDA. He made an in-warp approach to CUDA architecture.
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A WARP works with one word and updates the hidden layer of the artificial neural net-
work in shared memory. Each WARP of thread updates the weights for one word of the
sentence. It uses one warp to handle one data (one word), and 32 threads manage the
parallelism in one data in a warp [48].

In [30], it was shown that the reuse of various data structures in the algorithm
through the use of mini-batching, allows one to express the problem using matrix product
operations producing good strong scalability. In [78], it was explored an unconventional
training method to train networks without gradient descent steps.

In [25], they present BlazingText, a high performance distributed Word2Vec
implementation that leverages massive parallelism provided by modern GPUs. They
exploit GPU parallelism to discover the right balance between throughput and accuracy.
That work replicated the matrices and processed disjoint parts of sentences in each GPU.
Their work uses one thread block per sentence. Since the corpus is too large to fit in the
GPU memory, this work uses disk stream to the GPU and several sentences are batch
transferred to decrease the cost of data transfer between CPU and GPU. And at regular
intervals, their algorithm produces a combination of matrix weights (one coming from
each GPU) and transmits the new weights (new matrices) for each GPU to continue its
iteration. According to the authors, there was no significant fall in accuracy with multi-
GPU implementation. Their proposed implementation achieves near-linear scalability
across multiple GPUs.

In [70], they propose a fast approximation method of a softmax function with a
very large vocabulary using singular value decomposition (SVD). SVD-softmax targets
fast and accurate probability estimation of the topmost probable words during inference
of neural network language models. The proposed method transforms the weight matrix
used in the calculation of the output vector by using SVD. The approximate probability
of each word can be estimated with only a small part of the weight matrix using a few
large singular values and the corresponding elements for most of the words.

In [72], the authors propose new methods to increase the speed of the Word2Vec
on multi-core shared memory CPU systems, and on modern NVIDIA GPUs with CUDA.
They perform this on multi-core CPUs by batching training operations to increase thread
locality and to reduce accesses to shared memory. They propose new heterogeneous
NVIDIA GPU CUDA implementations of both the skip gram hierarchical softmax and
negative sampling techniques that utilize shared memory registers and in-warp shuffle
operations for maximized performance.

Grave et al. proposes an approximate strategy to train neural network based lan-
guage models over vast vocabularies efficiently. Their approach, called adaptive softmax,
avoids the linear dependency on the vocabulary size by exploiting the unbalanced word
distribution to form clusters that explicitly minimize the expectation of computational
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complexity. Their approach further reduces the computational cost by employing the
specificities of modern architectures and matrix-matrix vector operations[23].

The proposals of the related works can be summarized in reducing the weight
matrices of the Word2Vec model; perform matrix multiplication operations rather than
vector-matrix; perform operations on batch matrices in order to hide latency; to exploit
low-level GPU resources (operations using in-warp functions) in order to increase scal-
ability and reduce memory access. As shown in the next section, some of these ideas
were used in our proposed approach. However, none of these works implement the word
embedding proposed in [4]. That extension of Word2Vec is able to provide two metrics
based on Word2Vec softmax output and embedded words distances. These embedding-
based metrics are required to evaluate program patches that are candidates to fix a bug.

5.2 Parallel solution

Our algorithm is an evolution of one of Word2Vec’s first manycore implemen-
tations focused on CBOW architecture. The implementation that served as the starting
point for our application was not in scientific articles, but its source code served as a basis
for other publications, and it is in a public repository [Liu, 2014]. This code is an adap-
tation of the original implementation of Mikolov, the creator of Word2Vec, to work with
a single GPU. The methodology of this implementation consists of the following steps:
(i) to fragment the input dataset (corpus) in sentences using one CPU process; (ii) to send
sentences asynchronously to the GPU using pinned memory to speed up data transfer.

To reduce generation time for word vectors, [Liu, 2014] has implemented the
optimization CBOW model in CUDA. He has made an in-warp approach to CUDA
architecture [48]. A WARP 1 works with one word and updates the hidden layer of the
artificial neural network in shared memory. Next we describe our proposal’s workflow in
Figure 5.2.

Our main contribution is to make the multi-GPU implementation, following the
principles of the BlazingText article [25], but making necessary changes that guarantee
the accuracy of the model and enable new approaches of parallelism in Word2Vec. A
CPU thread is associated with each GPU, and our algorithm distributes sentences equally
distributed for each one. Each GPU has its updated model and at the end of an iteration,
they copy the arrays of the input and output models to the CPU. With multiple threads, the
array is averaged and then sent back to all GPUs. BlazingText used the NCCL library for

1A WARP is the most basic unit of the scheduling of the NVIDIA GPU, i.e, it is the smallest executable
unit of code or processes a single instruction over all of the threads in it at the same time or is the minimum
size of the data processed in SIMD fashion. A WARP currently consists of 32 threads on NVIDIA hardware.
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this, using direct transfer between GPUs. But this reduction and synchronization operation
implemented in the CPU took less than 1% of the total time.

Initial experiments with the new multi-GPU implementation produced linear
speedup, but the accuracy of the model was very low compared to Mikolov’s original
application. We have identified that the word per warp approach [Liu, 2014] has increased
the conflict of updating the model matrices. We changed the WARP approach by a thread-
block per word approach. As a result of this adjustment, the accuracy was very close to
the ideal value generated by the original implementation of Word2Vec.

We implemented the reduction operation with partial reductions in each warp
of the block with warp shuffle, and one more at the end applied on the partials in the
shared memory. Reduction processing time decreased when we removed the random
number variables from shared memory because there was a synchronization barrier for
only one thread to update every time. Then it was implemented the possibility to execute
multiple CPU threads for the same GPU, dividing the set of sentences again. It gave a
small performance gain of approximately 5%. To improve accuracy, we used a vector for
the persistence of the random numbers generated for each block, since for each sentence
the value always starts from the same seed, which was the id of the block. With this vector,
the value starts from where it had stopped.

To improve the accuracy of negative sampling, we have implemented a new
strategy to select negative samples as can seen in Figure 5.1. Negative samples for a given
word are the k less similar or farthest neighbor words (kFN - k - Farthest Neighbors).
The metric used for this is the cosine similarity. We have applied the cosine similarity
between the array vectors from all words to all2. This array stores the final vectors of
words. First, in each GPU the L2 norm of each word/vector is calculated using a warp per
word approach, and then a reduction with warp shuffle is applied.

2It is a traditional kNN but returns the farthest k vectors. It is not a version of kNN proposed in this
research.
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Figure 5.1: The proposal workflow.

Then each GPU calculates the kFN of a portion of all words, then joins the results
in the CPU, and sends the complete set of kFNs to each GPU. We calculated the distances
on the GPU, with a kernel launch per word, where each warp calculates the similarity
of a word to the current target word. These distances are ordered with Thrust Radix Sort
[8], and then the first (less similar) k words are copied to a vector where the kFNs of
each word are stored. The kFN is applied after the synchronization of the matrices of the
models. Then its result is only applied in the next iteration. During negative sampling
method, samples are taken from the kFN vector of the current word.

As the arrays are randomly initialized, applying the kFN in the first iterations will
generate neighbors that do not match what is expected. Therefore, a parameter was added
to choose from which iteration the kFN would be used in place of the original sampling of
negative sampling (based on the use of unigram table). Thus, the matrix would be closer
to the ideal, allowing the kFN to find neighbors close to the real ones.

5.3 Application

Our purpose to accelerate the generation of word embeddings has enabled us to
contribute a new way of assessing potential fixes in the area of Automated Program Repair
(APR). As aforementioned, one of the applications that makes use of word embeddings
is the APR. In such a field, a lot of code has to be analyzed in order to improve machine
learning models for helping fix programs in an autonomous manner. Besides, a word
embedding extracted from source code is relevant for APR when generating metrics useful
to evaluate program patches. This task is performed during the process of generation and
validation of program variants candidate to fix a bug.

In the last decades, software has gained increasingly more importance in several
activities of our daily lives. Common tasks such as taking a taxi, as well as more
complex ones, such as air traffic control, are widely supported by software, be it simple



5.3 Application 72

or sophisticated. The maintenance of these software becomes indispensable to keep
our society going on, while avoiding financial losses or fatal accidents, for instance.
Meanwhile, according to [9], software maintenance is typically a costly activity, in
which fixing buggy programs accounts for approximately 21% of all resources in the
maintenance phase.

Besides, [81] argues that repairing a single failure may cost up to 200 working
days and they amounted 1.7T USD in lossesfrom software failures in 2017 [79].

In this chaotic scenario, various approaches have been developed aiming at
automatizing the software repair process and, consequently, reducing manual efforts of
software maintenance. These works are leveraging an area called Automated Program

Repair (APR) by applying several computational techniques with promising results.
To name a few examples of APR techniques: [7], [43] applied Genetic Programming
concepts; [37] and [54] used both symbolic execution and constraint solvers to produce
software corrections; finally, [49] and [24] proposed different learning methods to fix
incorrect fragments of code. In summary, they all exploit the space of solutions by
automatically generating variants from an original buggy program and then evaluating
them with some quality measure.

Despite recent findings, real-world APR applicability still continues to be a com-
plex task, mainly because some of its essential steps are not trivial. For instance, evaluat-
ing variants (i.e. patches) generated by APR methods is a challenging task since different
source codes (syntax) may share the same semantics. There is also the complexity of com-
paring partial results. The most common way to evaluate a patch is to rely on test cases
or formal specifications. Typically, given an automatically generated program variant and
a test suite, a possible evaluation is a weighted sum of how many test cases this variant
passes [43]. Unfortunately, this kind of evaluation leads to plateaus, where patches with
distinct source code have the same evaluation score as they pass in the same number of
test cases, regardless of whether they are different test cases or not. Therefore, test case-
driven methods are typically insufficient to establish a distinction over variants that pass
the same number of test cases.

Assuming source codes are regular and predictable [16], we speculate that
software naturalness can help the evaluation process of potential fixes for buggy programs.
Some researchers have captured this naturalness of software through statistical models
[63] and then used them for named entity recognition [71], coding standards checkers
and suggesting accurate method and class names [3]. Due to good results of previous
works using embedding words and sequence-to-sequence methods, we believe that these
approaches, including Word2vec, can also be applied to modeling fix naturalness and then
improve the evaluation process of the variants.

To the best of our knowledge, this is the first work which applies word em-
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beddings in software source code to generate new metrics for evaluating potential fixes.
To investigate this approach, we consider a corpus of fixes from six different programs
(checksum, digits, grade, median, smallest, and syllables) from the IntroClass Bench-
mark [44]. Overall, our results show that Word2vec is a promising method to recognize
the naturalness pattern of source code and, therefore, the derived metrics (Softmax output
layer and distance between document vectors) can help the evaluation process of variants.
Our experiments are done with C projects, but they can be made for any programming
language. For this, we can train our system with a corpus formed by fixed codes (found
in repositories of open source projects).

Our main contributions are:

• A method to statically evaluate variants generated by automated program repair
methods;
• A methodology based on embedded words and sequence-to-sequence models to

evaluate the naturalness of a potential fix;
• An experimental study using standard program repair benchmarks.

5.3.1 Approach

This section presents the proposed approach to evaluate variants generated by
APR methods.

Corpus Selection Tokenization Learning Evaluation

Corpus

Learning 
Model

Trained Model

Program variant
(from a repair method)

score

Vocabulary

Figure 5.2: Proposal’s flowchart

Our approach has three phases (Figure 5.2). The first phase, called Corpus
Selection, consists in selecting the fix corpus, which is a reference for determining the
semantic programming patterns of a developer community. The quality of the selected
fixes has a critical impact on the performance of the proposal since the learning method
uses this data to recognize the pattern.

The second phase, called Tokenization, defines how the source codes from the
corpus are split and are used to create the vocabulary. The input to this phase is a corpus of
fixes, syntax formatted and standardized. The output is a vocabulary with all recognizable
tokens (classes).
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The third phase, called Learning, builds a model able to predict the next token
(target) given its context (set of tokens). For each pair (context token and target token) in
a training fix code, Word2vec examines lots of pairs to effectively learn that “token X and
Y often appear together” and “token X and W do not”. The algorithm output is a matrix
with word vectors (a trained model).

The fourth phase, called Evaluation, uses the embedded words or softmax layer
output to calculate the score for each variant. After that, the highest score variant is chosen
as the RefCode (Reference Code).

To perform the last phase, we adapted Word2Vec algorithm to obtain the proba-
bilities in the output softmax layer after the artificial neural network training finish. Fig-
ure 3.2 shows the network with one-word or one-token context, the architecture used in
this work. In our setting, the vocabulary size is V, and the hidden layer size is N. The
nodes on adjacent layers are fully connected. The input vector is the one-hot encoded
vector, which means that for a given output context word, only one node of {x1, . . . ,xV}
is 1, and all other nodes are 0 [65].

5.3.2 Related Work

Many works have focused on proposing and evolving techniques to address
automated software repair. As we discussed before, almost all of these approaches are
based on software specification, for example [21], [34], [5] or test cases [6], [17], [22],
[53], [58], [61], [62], [76] and [77]. In other words, these techniques are vulnerable to
partial specifications, pool test suites and time concerns, because typically it is necessary
to run or, at least, simulate all tests for each variant under evaluation. Especially when
evolutionary techniques are used, executing a large number of test cases may be infeasible
or their absence may cause weakness in the fitness evaluation.

Our proposal performs a static analysis by applying the learned model, thus, it
does not require to execute test case or even original program and variants for evaluating
a patch.

Recently, some works proposed metrics or mechanisms to alleviate test cases
dependence. In [31] is introduced a re-usability metric to help on repairing programs using
fix ingredients from similar code extract from correct programs. To compound the metric,
the proposal analyzes ASTs (Abstract Syntax Trees) and defines a level of similarity and
difference between a buggy program and a fix candidate fragment of an external code.
The authors argue that the similarity component is used to find fix ingredients whereas
the difference component prevents picking up a code with the same bug under repairing.
In opposition to our method, the metric re-usability is not able to rank a set of candidate
patches, but only create a threshold through which it selects a set of promising variants.
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The work proposed by [84] applies Genetic Programming to repair bugs, but it
uses a model checking instead of a test suite to evaluate program variants. In summary,
there is a module with a model checking that receives the candidate program states and
measures a fitness level according to the number and type of the errors found while
traversing all model paths. Despite the fitness, the evaluation does not depend on test
cases, the model checking requires a set of properties to be verified, for example, built-in
properties or custom assertions. Meanwhile, our proposal does not require any predefined
properties because our assumption is that they can be captured automatically by the
learning model.

It is known that, in practice, a test Oracle may not be available or its usage is too
expensive. Thus, [32] applied the concept of Metamorphic Test (MT) aiming to alleviate
the test Oracle problem for generating program repair. MT verifies the relations among
multiple test cases and their outputs instead of checking individual test cases correctness.
Despite that, the proposal does not require an oracle to guide the search process, it is
necessary to run a set of MT to evaluate a program variant.

Hence, one alternative for costly test suite-based evaluation approach is the static
analysis of “naturalness”. The “naturalness” of software was studied in [16], where the
authors investigate the assumption that codes of programs are likely to be repetitive and
predicted, as the natural languages. Using a common language model called n-grams, it
was possible to capture regularity on the tokens in Java and C corpus of code. Based
on the previous discovery, it was implemented an Eclipse plugin to improve the code
completion engine of the Eclipse IDE. By considering a training corpus of Java projects
the new plugin outperformed the native one especially for predicting little tokens. So the
n-gram frequency is associated with the “naturalness”.

Inspired by great results of language models and the embedding words for text
mining, we speculated that these methods can also help the evaluation process in the
field of automatic program repair. So we proposed our method based on Word2vec.
The Word2vec has been used on many problems, for instance, it was used in [71] to
support predictions on Name Entity Recognition problem. That is, given a word, it must
be identified as a location, person or organization. The authors report interesting results
by combining Word2vec and Linear Support Vector Classification algorithm on the task
of classifying words from a corpus of newspaper articles.

Although some works try to evaluate variants with lower cost and greater effec-
tiveness, we did not find any work that used sequence-to-sequence model or embedded
words for this.
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5.4 Summary

In this chapter, we have shown how to accelerated the generation of word
embeddings used in the context of Automated Program Repair. In particular, the word
embedding implemented is an extension of the well known Word2Vec with the CBOW
model. We exploited fine-grained parallelism by launching thousands of threads of a
manycore architecture to process words of textual datasets. In this process we developed
a new way of choosing negative samples that is beneficial for exploiting parallelism. This
allowed us to efficiently produce the embedding-based metrics needed for Automated
Program Repair systems. As additional contributions, we have introduced two word
embedding-based metrics useful to differentiate program variants.



CHAPTER 6
Experiments and Results

In this chapter, we present the experiments conducted for the FaSST-kNN and
sFaSST-kNN algorithms which can be seen in Section 6.1 and 6.2 respectively. And
we present in Section 6.3 the experiments to evaluate the acceleration of fine-grained
parallelism word embedding. Also, we present in Section 6.4 the experiments performed
on the application of word embeddings for Automated Software Repair.

6.1 FaSST-kNN

FaSST-kNN is our fine-grained parallel algorithm, that applies filtering tech-
niques based on the most common important terms of the query document using tf-idf.

6.1.1 Experimental Evaluation

The experimental work was conducted on a machine running Debian 9.4, with
a Intel Xeon E5-2620, 16GB of ECC RAM, and four GeForce Nvidia GTX Titan Black,
with 6GB of RAM and 2,880 cuda cores each. The CPU code was compiled with GCC
6.3.0 while the GPU code used the compiler provided by the CUDA 9.0. All the codes
targeted the native architecture and had the O3 optimization flag set. In order to consider
the costs of all data transfers in our experiments, we report the wall times on a dedicated
machine so as to rule out external factors, like high load caused by other processes. The
reported numbers are average of 10 independent runs.

In order to evaluate the kNN search, we consider a large real-world textual
dataset, MEDLINE, which has the characteristics of high dimensionality and sparsity.
For it, we performed a traditional preprocessing task: we removed stopwords, using the
standard SMART list, and applied a simple feature selection by removing terms with low
“document frequency (DF)”1. Regarding term weighting, we used TF-IDF. The specific

1We removed all terms that occur in less than six documents (i.e., DF<6).
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details of the resulting MEDLINE are: 268,766 terms, 861,454 documents and 30.88
density2.

We compare the computation time to perform a kNN search using the following
algorithms: (1) FaSST-kNN, (2) SFaSST-kNN, our GPU-based implementations of kNN;
(3) G-KNN, a GPU kNN implementation using CUDA proposed by Rocha et al. [64]. We
chose G-KNN because it is the only exact similarity search implementation we have found
that deals with high dimensionality and sparsity found in textual datasets like MEDLINE.
We adopted k = {32,64,128,256,512} and sample size as 2 × k in all experiments3 .
To measure our proposals’ performance, we selected 20% of the dataset as search queries
(Around 172,290 documents).

Computational Time

Table 6.1 shows the total time to process all queries using ours and the base-
line’s kNN implementations. From here on, we refer the variations of FaSST-kNN as:
“NoFilter”4 for a version that does not use our proposed filtering; “Random” for a ran-
dom sampling scheme; “M1” for sampling method 1; “M2-TX” for sampling method 2,
where X indicates the value of its parameter T (the number of terms). We only show
T = {2,3,4} due to space restrictions.

As can be seen, our filtering methods shows a higher efficiency with lower k,
going from 441 to below 200 seconds, since less time is spent on sampling. The random
sampling had no advantage, showing that our methods works. M2 ended up selecting
better samples than M1, having a lower processing time. In this test, the parameter T = 3
achieved its best overall performance. We show the speedup regarding M2-T3.

FaSST-kNN shows significant speedups over the G-KNN implementation, in
comparison, reaching up to 37x for k = 32. This is mainly due to its implementation that
computes the distance to all documents, while ours use an inverted index and the filter
technique. Our best method achieved a speedup of 2.4x when comparing with NoFilter
and k = 32, showing that the filtering could greatly compact the distance vector. For higher
k the speedup gets lower, since more time is spent on sampling on the CPU.

Table 6.8 shows the time and speedup for SFaSST-kNN with 2 and 4 GPUs,
comparing NoFilter and M2-T3. The performance of M2-T3 over NoFilter remained
similar to when 1 GPU was used, and over M2-T3 with 1 GPU (1-M2-T3) the speedup
was around the ideal of 2x and 4x, for 2 and 4 GPUs, respectively. This shows that our
GPU kNN search scales well with more devices5.

2Density is the average number of terms in a document.
3A higher ratio yields a higher compaction ratio, but also a greater sampling time.
4This is like GT-kNN [11], but with Thrust library functions for sorting and prefix-sum.
5An ideal speedup is also expected for G-KNN if it used more GPUs.
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Table 6.1: Query times in seconds and speedups to find the K
nearest neighbors with 1 GPU.

Query time M2-T3 Speedup

K G-KNN NoFilter Random M1 M2-T2 M2-T3 M2-T4 G-KNN NoFilter

32 6657 441.09 521.71 188.49 180.35 178.88 176.52 37.21 2.47

64 6674 459.55 542.19 216.43 202.66 204.19 208.97 32.68 2.25

128 6694 486.10 581.88 262.78 258.83 256.30 257.48 26.12 1.90

256 6718 522.40 656.69 358.84 343.55 342.72 343.78 19.60 1.52

512 6741 586.62 850.89 523.76 517.08 515.24 522.43 13.08 1.14

Table 6.2: Query times in seconds and speedups to find the K
nearest neighbors with 2 and 4 GPUs.

2 GPUs 4 GPUs

Query time Speedup M2-T3 Query time Speedup M2-T3

K NoFilter M2-T3 NoFilter 1-M2-T3 NoFilter M2-T3 NoFilter 1-M2-T3

32 229.34 87.69 2.62 2.04 115.50 45.13 2.56 3.96

64 233.18 104.28 2.24 1.96 117.45 51.29 2.29 3.98

128 241.76 126.99 1.90 2.02 121.54 63.32 1.92 4.05

256 258.13 173.07 1.49 1.98 127.38 85.19 1.50 4.02

512 293.43 257.70 1.14 2.00 142.45 127.36 1.12 4.05

Runtime Profiling

We show the impact of sorting the inverted index before doing the sampling
method on Table 6.3. For k = 32, the compaction ratio up to more than 3 times when using
the sorted version, while for k = 512 it increases up to 1.6 times. For k = {62,128,256}
this value decreased from 3x to 1.6x as k increased. This confirms that our proposals
benefits further from this sorting of the data. The random sampling achieved only 1.05x
of compaction.

The FaSST-kNN and SFaSST-kNN sampling and sorting times are shown in
Tables 6.4 and 6.5. It represents the sum of time spent in these operations in each query.
Since the sampling is done on the CPU, we can see that the time spent on it is quite high,
specially for k = 512, reaching the hundreds of seconds for sampling method 2 (M2).
This is partially due to associating a single CPU thread to a GPU, lacking any multicore
parallelism or overlap of data transfer and computation. Its time decreases almost linearly
with the number of GPUs. It also shows that, despite M2 taking more time in sampling,
the total and sorting times decreased enough to make it the better method.

Table 6.5 shows that the sorting time decreases greatly with our proposed
methods, going from 405 to just 20 seconds with k = 32 and the best method M2-T3.
As k goes up to 512, the gain over NoFilter decreases, since the compaction ratio also
decreases when using the selected sample size of 2× k.

Although not listed in any table, the CPU I/O, indexing, and inverted index
sorting times, are 12, 1 and 1.2 second, respectively. For 1 GPU, the threshold selection
time was 1 and 6 seconds for k = 32 and k = 512, respectively. And the compaction time
was 24 and 38 seconds, for these same values of k. With multi-GPUs these times got
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Table 6.3: Impact of the sorted inverted index on the compaction
ratio.

K Data state M1 M2-T2 M2-T3 M2-T4
32 unsorted 107.19x 106.42x 90.73x 77.44x
32 sorted 214.78x 278.27x 277.80x 268.98x
512 unsorted 10.09x 41.49x 39.66x 37.29x
512 sorted 16.68x 51.92x 52.92x 53.40x

Table 6.4: Sum of sampling times in seconds.
1 GPU 2 GPUs 4 GPUs

K Random M1 M2-T2 M2-T3 M2-T4 Random M1 M2-T3 Random M1 M2-T3
32 6.18 24.42 24.12 25.07 22.34 3.28 11.00 11.36 1.62 5.33 5.75
64 10.36 28.49 27.53 29.51 31.11 5.30 13.65 14.44 2.62 6.48 6.82
128 18.11 34.67 38.96 40.01 39.79 9.41 17.09 19.34 4.63 7.97 9.06
256 31.84 49.29 56.89 58.29 57.85 17.80 24.74 29.90 9.35 11.71 14.17
512 58.11 76.01 96.22 102.19 106.88 35.42 40.68 51.99 19.34 20.04 24.81

Table 6.5: Sum of sorting times in seconds.
1 GPU 2 GPUs 4 GPUs

K NoFilter M1 M2-T2 M2-T3 M2-T4 NoFilter M1 M2-T3 NoFilter M1 M2-T3
32 405.73 26.78 21.66 20.57 21.82 200.07 13.87 10.68 107.32 7.09 5.70
64 406.39 35.76 28.47 27.13 28.44 201.20 18.50 14.46 106.62 9.52 7.30
128 405.57 49.36 41.78 39.15 40.21 201.89 26.32 20.11 105.85 14.02 10.63
256 406.13 74.66 59.34 57.62 57.92 202.39 39.34 30.37 103.40 21.52 16.04
512 408.87 112.74 85.96 84.62 86.71 202.72 60.98 44.91 101.20 33.10 24.57

almost ideals speedups. The FaSST-kNN performs multiple queries exceptionally well
but it excels at single query kNN search. Once the dataset has been read, moved to the
GPU and indexed, subsequent queries can be processed very fast. Considering 1 GPU and
k = 512, FaSST-kNN takes 3 milliseconds6 at average to process a single query, making
it suitable for on-the-fly top k search using real datasets.

6.2 SFaSST-kNN

FaSST-kNN is our fine-grained parallel algorithm, that applies filtering tech-
niques based on the most common important terms of the query document using tf-idf
and a distributed inverted index in the multi-GPU system.

6.2.1 Experimental Evaluation

The experimental work was conducted on a machine running Debian 9.4, with
a Intel Xeon E5-2620, 16GB of ECC RAM, and four GeForce Nvidia GTX Titan Black,
with 6GB of RAM and 2,880 cuda cores each. The CPU code was compiled with GCC
6.3.0 while the GPU code used the compiler provided by the CUDA 9.0. All the codes
targeted the native architecture and had the O3 optimization flag set. In order to consider
the costs of all data transfers in our experiments, we report the wall times on a dedicated

6We calculated with the time of method 2 with T = 3 and the size of the query set (172,290).
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machine so as to rule out external factors, like high load caused by other processes. The
reported numbers are average of 10 independent runs.

In order to evaluate the kNN search, we consider two large real-world textual
datasets, Medline and PubMed, which both have the characteristics of high dimensionality
and sparsity. For both, we performed a traditional preprocessing task: we removed
stopwords, using the standard SMART list, and applied a simple feature selection by
removing terms with low “document frequency (DF)”7. Regarding term weighting, we
used TF-IDF. The specific details of the resulting datasets are described in Table 6.6,
showing number of terms, documents, non-zero entries, density8, and sparsity9. With that,
each PubMed entry’s size is closer to the real size of a document.

Table 6.6: General information on the datasets.

Dataset # terms # docs # non-zeros Density Sparsity
Medline 362,717 861,454 26,537,087 30.805 0.0085%
PubMed 958,067 729,937 624,260,424 855.223 0.0892%

We compare the computation time to perform a kNN search using the following
algorithms: (1) FaSST-kNN, (2) SFaSST-kNN, our GPU-based implementations of kNN;
(3) G-KNN, a GPU kNN implementation using CUDA proposed by Rocha et al. [64].
We chose G-KNN because it is the only exact similarity search implementation we have
found that deals with high dimensionality and sparsity found in textual datasets like
Medline and PubMed. We adopted k = {32,64,128,256,512}, sample size as 2 × k in
all experiments10, and batch size B = {1,5,10}. To measure our proposals’ performance,
we selected 20% of the dataset as search queries.

Computational Time

From here on, we refer as “NoFilter”11a version of FaSST-kNN that does not
use our proposed filtering, and “SNoFilter” for a version of SFaSST-kNN. When using
a single GPU, both implementations produce the same results. Table 6.16 shows the
total time to process all queries of Medline using our kNN implementations. We only
show B = {1,5,10} due to space restrictions, and also because there were no significant
improvements with B > 10.

As can be seen, our filtering method can reduce the time to find the k nearest
neighbors from 300 to 138 seconds, when using a single GPU in both implementations.
For FaSST, the use of batch size 5 is enough to provide a small gain in performance, while

7We removed all terms that occur in less than six documents (i.e., DF < 6).
8Density is the average number of terms in a document.
9Sparsity is the percentage of Density per number of terms.

10A higher ratio yields a higher compaction ratio, but also a greater sampling time.
11This is like GT-kNN [11], but with Thrust library functions for sorting and prefix-sum.
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Table 6.7: Query times in seconds to find the K nearest neighbors
in Medline.

FaSST NoFilter
B K 32 64 128 256 512 32 64 128 256 512

1 GPU
1 119.53 121.13 124.35 129.00 137.67 289.40 291.49 292.21 294.39 299.23
5 111.39 113.49 116.10 121.00 130.16 291.11 291.87 292.50 294.97 299.45
10 111.26 113.31 116.06 121.50 130.27 292.92 293.63 294.49 296.60 300.75

4 GPUs
1 29.74 30.15 30.85 32.23 34.18 70.87 71.87 72.15 72.69 73.84
5 27.72 28.08 28.94 30.20 32.27 71.59 72.17 72.24 72.77 73.96
10 27.88 28.41 29.04 30.21 32.40 72.06 72.43 72.64 73.48 74.53

SFaSST SNoFilter

1 GPU
1 120.19 122.38 124.96 130.19 138.67 290.10 292.25 293.01 295.47 299.97
5 111.58 113.47 116.63 121.35 130.40 291.60 292.30 292.85 295.41 299.46
10 111.55 113.56 116.37 121.52 130.37 292.96 293.67 294.53 296.72 301.26

4 GPUs
1 67.16 68.81 72.11 79.47 94.41 102.07 107.40 97.58 98.22 99.41
5 45.79 47.52 51.24 57.81 72.00 88.43 89.38 90.64 93.09 96.75
10 44.68 46.17 50.22 56.62 70.29 89.35 90.50 90.56 93.41 97.18

Table 6.8: Speedups with 4 GPUs and over NoFilter solutions in
Medline.

FaSST 4 GPUs speedup NoFilter 4 GPUs speedup
B K 32 64 128 256 512 32 64 128 256 512
1 4.02 4.02 4.03 4.00 4.03 4.08 4.06 4.05 4.05 4.05
5 4.02 4.04 4.01 4.01 4.03 4.07 4.04 4.05 4.05 4.05
10 3.99 3.99 4.00 4.02 4.02 4.07 4.05 4.05 4.04 4.04

SFaSST 4 GPUs speedup SNoFilter 4 GPUs speedup
1 1.79 1.78 1.73 1.64 1.47 2.84 2.72 3.00 3.01 3.02
5 2.44 2.39 2.28 2.10 1.81 3.30 3.27 3.23 3.17 3.10
10 2.50 2.46 2.32 2.15 1.85 3.28 3.24 3.25 3.18 3.10

FaSST speedup over NoFilter SFaSST speedup over SNoFilter

1 GPU
1 2.42 2.41 2.35 2.28 2.17 2.41 2.39 2.34 2.27 2.16
5 2.61 2.57 2.52 2.44 2.30 2.61 2.58 2.51 2.43 2.30
10 2.63 2.59 2.54 2.44 2.31 2.63 2.59 2.53 2.44 2.31

4 GPUs
1 2.38 2.38 2.34 2.26 2.16 1.52 1.56 1.35 1.24 1.05
5 2.58 2.57 2.50 2.41 2.29 1.93 1.88 1.77 1.61 1.34
10 2.58 2.55 2.50 2.43 2.30 2.00 1.96 1.80 1.65 1.38

NoFilter actually loses a bit. This behavior remains the same with 4 GPUs for both, while
decreasing the query time by 4 times, getting as low as 28 seconds. As for SFaSST, due
to the query sharing among each CPU thread that controls a GPU, a higher batch size
yields better performance since each query can be processed (read and sampling steps)
in parallel. As expected, the synchronization between the threads and the merging of the
results increased the query time up to 38 seconds more in comparison with FaSST, when
k = 512. But SFaSST remains the sole version that can deal with datasets bigger than the
GPU’s memory size.

Table 6.8 shows the speedups of our implementations with 4 GPUs, and over
the NoFilter versions. For FaSST and NoFilter with 4 GPUs, due to the independent
query processing between GPUs, an ideal speedup was achieved. For SFaSST, the highest
speedup is only 2.5x because of the query sharing where other threads need to wait
for a single thread, and also the synhcronization and merging steps. This also occurs
because the time spent in GPU is really low in comparison to the CPU time. This shows
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Table 6.9: Query times in seconds and speedups to find the K
nearest neighbors in PubMed.

1 GPU 4 GPUs Speedup 4 GPUs
K SFaSST / FaSST SNoFilter / NoFilter FaSST NoFilter SFaSST SNoFilter FaSST SFaSST
32 6404.39 6544.51 1597.69 1630.42 975.74 1007.28 4.01 6.56
64 6407.63 6548.60 1601.55 1634.82 977.86 1008.68 4.00 6.55

128 6412.09 6551.27 1607.31 1640.30 981.05 1010.50 3.99 6.54
256 6419.71 6556.00 1612.39 1646.28 985.28 1013.64 3.98 6.52
512 6433.49 6567.51 1619.07 1654.42 991.52 1017.25 3.97 6.49

Table 6.10: G-KNN comparison with FaSST / SFaSST using 1 GPU
and batch size 10.

G-KNN time (s) FaSST speedup
Dataset K 32 64 128 256 512 32 64 128 256 512
Medline 6657 6674 6694 6718 6741 59.83 58.90 57.68 55.29 51.74
PubMed 359338 359340 359343 359348 359357 56.11 56.08 56.04 55.98 55.86

in SNoFilter speedup, since the more time spent on sorting the result in GPU ended up
giving it a higher speedup. When comparing FaSST with NoFilter, just the reduction of
the sorting time gave up to 2.6x higher efficieny, showing how demanding that step is
in k nearest neighbor search. The lowest efficiency gain was with SFaSST when using
k = 512, since higher k also means higher merging time on CPU.

Table 6.9 shows the total query time and speedups for our implementations when
using PubMed. Due to the higher density, using B > 1 actually increased the overall time
so the table only shows batch size B = 1. Also due to density, and higher number of
non-zeros in the inverted index, the distance calculation phase had a higher impact on
the overall time. Thus, the sorting phase where the filter is used to reduce the number of
elements to be sorted, ends up contributing just a little for the efficiency. That reduction
was 140 seconds at most when k = 32, decreasing the total time from 6544 to 6404
seconds. This decrease is similar when using 4 GPUs, with a reduction of around 30
seconds.

For FaSST and NoFilter, its speedups were ideal at 4x, but for the versions
with a distributed inverted index a super linear speedup of 6.5x was achieved. Due to
the distribution of documents between GPUs, the number of positions for the distances’
vector is 4 times lower in SFaSST than FaSST. One implementation detail is that each
document’s distance is updated atomically in the GPU’s highly parallel code. And having
less positions to update means a higher chance of different atomic operations being
coalesced, or hitting the same cache lines. This was proven by running the NVIDIA
profiling tool nvprof, where it showed that the atomic throughput for FaSST was 339
GB/s and for SFaSST 210 GB/s, among other metrics with similar behavior.

Table 6.10 shows significant speedups over the G-KNN12 implementation, in

12An ideal speedup is expected for G-KNN if it used more GPUs.
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comparison, reaching up to 60x for k = 32. This is mainly due to its implementation that
computes the distance to all documents, while ours use an inverted index and the filter
technique. It specially shows when processing PubMed, which takes around 100 hours to
complete.

Runtime Profiling

In Table 6.11 we describe the compaction ratio of the proposed filter in both
implementations. For single GPU and FaSST with 4 GPUs the ratio is the same, since
the inverted index is the same for during sampling. Only for SFaSST with multiple GPUs
that the ratio is different due to each thread doing the sampling on its own associated
partial index. The overall behavior is that for lower k the compaction is higher. Medline
has a higher ratio in comparison to PubMed due to its lower density, which means that
its meaningful terms weigh more in relation to the document’s size. The ratio for SFaSST
is lower due to the use of partial indexes, which reduces the quantity of good candidates
during sampling. This ratio was only achieved due to the sorting of the inverted index
prior to the queries processing.

The sampling and compaction times for FaSST and SFaSST in Medline are
shown in Table 6.12. It represents the sum of time spent in these operations in each
query. The values are the average for each batch size (1, 5, 10) followed by its standard
deviation13. Even though sampling is done on the CPU, it still takes just a few seconds
in the overall time, with the higher batch sizes having the lower times. For FaSST with 4
GPUs the time decreases proportionally, but for SFaSST the time for higher k increases
more. This was due to lack of independent processing of queries, which makes the CPUs
spend more time doing the sampling of the same query, and the use of partial indexes
which decreases the amount of possible samples. This increases the chance of having to
complete the 2× k samples with random ones.

For compaction time, it is the same for all k due to the code having to iterate
over all distances for flagging each position. Both implementations have the same time
with 1 GPU, and with 4 GPUs FaSST has a linear decrease due to its independent query
processing, while this lack of processing overlap makes SFaSST only 4 seconds faster
than before.

For the sorting time in Medline for all implementations Table 6.13 shows the
values averaged by batch size followed by its standard deviations. For the NoFilter
versions the value is the same for all k, since the sorting is always the same. When the
proposed filtering method is applied, the time is greatly reduced, from 215 to as low as
12.7 seconds. For single GPU FaSST and SFaSSt are equal, while with 4 GPUs SFaSST is

13We present it this way due to space restrictions.
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Table 6.11: Compaction ratios for FaSST and SFaSST using 1 and
4 GPUs.

1 GPU (Both) and 4 GPUs (FaSST) 4 GPUs (SFaSST)
K Med Pub Med Pub
32 254.89 110.46 113.66 62.06
64 170.81 83.73 75.43 45.90

128 113.29 62.04 48.68 33.99
256 75.47 45.90 30.66 25.64
512 48.61 34.00 19.57 19.20

Table 6.12: Sum of sampling and compaction times in seconds for
Medline with FaSST and SFaSST using 1 and 4 GPUs.

Sampling time Compaction time
1 GPU 4 GPUs 1 GPU 4 GPUs

K FaSST SFaSST FaSST SFaSST FaSST SFaSST FaSST SFaSST
32 1.50±0.82 1.67±1.06 0.39±0.22 1.63±1.60 16.00±0.23 15.96±0.22 3.90±0.06 11.60±0.36
64 1.56±0.81 1.76±1.07 0.40±0.22 1.86±1.67 16.05±0.22 16.07±0.19 3.92±0.06 11.68±0.30

128 1.70±0.85 1.87±1.09 0.43±0.22 2.32±1.49 16.08±0.21 16.09±0.19 3.93±0.06 11.83±0.22
256 1.97±0.81 2.12±1.10 0.50±0.23 3.67±0.98 16.12±0.18 16.15±0.15 3.94±0.06 11.90±0.20
512 2.55±0.96 2.68±1.18 0.64±0.23 7.73±0.83 16.18±0.15 16.18±0.17 3.95±0.06 11.96±0.17

Table 6.13: Sum of sorting times in seconds for Medline for all
implementations using 1 and 4 GPUs.

1 GPU 4 GPUs
K FaSST NoFilter SFaSST SNoFilter FaSST NoFilter SFaSST SNoFilter
32 12.72±0.46 215.20±0.23 12.72±0.41 215.21±0.28 3.07±0.12 52.00±0.53 12.19±0.80 71.34±0.15
64 13.78±0.41 215.41±0.28 13.72±0.46 215.41±0.14 3.30±0.12 52.20±0.13 12.94±0.73 71.39±0.23
128 15.12±0.41 215.49±0.27 15.07±0.40 215.48±0.15 3.62±0.12 52.11±0.18 14.15±0.53 71.15±0.24
256 17.06±0.47 215.56±0.14 17.09±0.38 215.64±0.08 4.06±0.13 52.10±0.19 15.92±0.52 71.27±0.19
512 19.97±0.27 215.87±0.09 19.97±0.30 215.78±0.20 4.71±0.12 51.92±0.49 18.68±0.51 71.16±0.24

Table 6.14: Sum of sorting times in seconds for Pubmed for all
implementations using 1 and 4 GPUs.

1 GPU 4 GPUs
K FaSST NoFilter SFaSST SNoFilter FaSST NoFilter SFaSST SNoFilter
32 13.45 169.56 13.33 169.64 3.40 41.99 11.90 57.48
64 14.67 171.68 14.45 171.73 3.70 42.07 12.82 57.65
128 16.42 171.77 15.90 171.60 4.09 41.98 13.97 57.56
256 18.72 171.77 17.98 171.17 4.58 42.12 15.38 57.85
512 21.28 172.17 21.07 171.55 5.27 42.16 17.27 57.87

slower due to lower compaction ratio and also lack of independence between queries that
helps FaSST win over it. For PubMed in Table 6.14 the behavior is the same, reinforcing
that the filter to reduce sorting time works. And Table 6.15 shows the sum of sampling
and compaction times of PubMed, which also has equal behavior to the one described
for Medline. It takes just a few seconds in total, even though its a bigger dataset, further
showing that in its case the bigger portion of time is spent on distances calculation.

Although not listed in any table, the CPU I/O, indexing, and inverted index
sorting times, are 12, 0.3 and 0.15 second, respectively for Medline, and 200, 1.8 and
0.6 second for PubMed. FaSST-kNN performs exceptionally well and it excels at kNN
search. Once the dataset has been read, moved to the GPU and indexed, subsequent
queries can be processed very fast. Considering 1 GPU and k = 512, FaSST-kNN takes
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Table 6.15: Sum of sampling and compaction times in seconds for
Pubmed with FaSST and SFaSST using 1 and 4 GPUs.

Sampling time Compaction time
1 GPU 4 GPUs 1 GPU 4 GPUs

K FaSST SFaSST FaSST SFaSST FaSST SFaSST FaSST SFaSST
32 2.69 3.14 0.68 4.15 13.30 13.18 3.35 9.89
64 2.80 3.09 0.69 4.18 13.23 13.32 3.37 9.83
128 2.79 3.16 0.73 4.23 13.37 13.15 3.39 9.92
256 3.04 3.49 0.76 4.35 13.72 13.49 3.38 9.76
512 3.38 3.79 0.83 5.01 13.49 13.58 3.44 9.86

0.75 millisecond at average to process a single query of Medline and 26.85 milliseconds
of PubMed, making it suitable for on-the-fly top k search using real datasets. And for
datasets that do not fit the memory of a single GPU, SFaSST can be used to deal with
those while practically having the same efficiency.

6.3 Accelerating word embedding generation with fine-
grain parallelism

6.3.1 Experimental Evaluation

In this context, there are two open questions that are going to guide this research:

• How to exploit parallelism in text representation in an efficient and scalable way?
• How to apply the parallel proposals in the context of Automated Program Repair

application?

The experimental work was conducted on a machine running Debian 9.4, with
2x Intel Xeon E5-2620, 16GB of ECC RAM, and four GeForce Nvidia GTX Titan Black,
with 6GB of RAM and 2,880 CUDA cores each. The CPU code was compiled with GCC
6.3.0 while the GPU code used the compiler provided by the CUDA 9.0.

Corpus and Parameterization

We experimented with the following corpus:
1 Billion Word Language Model Benchmark - A standard corpus used in

language modeling [12]. Parameters used for this dataset: window size 10, minimum
frequency 5 and random word discard set to 1e-4.

Defects4J - A collection of reproducible bugs and a supporting infrastructure
with the goal of advancing software engineering research [36]14. Parameters used for this
dataset: window size 3, minimum frequency 1 and no random word discard.

14Available at https://github.com/rjust/defects4j
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The remaining parameters for both datasets were: 20 iterations, 10 unigram
negative samples and hidden layer size N ∈ {200, 400}. When kFN was applied, the
initial kFN iteration was 16 and k ∈ {5, 10, 20}. Results are an average of 10 runs.

Defects4J Preprocessing

The source codes were processed in the following way: i) Removal of comments
and Java annotations; ii) Space inserted at the sides of each non-alphanumeric charac-
ter (i.e, like operators and brackets); iii) Literals substituted by corresponding tokens
(INT_TOKEN, STRING_TOKEN, and so on); iv) Compound operators like "+=" are
rejoined after step ii. The remaining steps are for variables and variable types substitu-
tion. The new variable name is built according to each element that precedes it. Modifiers
like final, static, private, < T >, [ ], etc are mapped to a token of its own and then are
appended to the new name. Primitive types like int or float are left as is, while classes
are given a new name considering the amount of nested generics (< T >) that it has.
Finally, the variable type, whether it is a class or not, is appended to the variable name.
This is first applied to method’s declaration variables, then for every variable declaration
succeeded by the "=" operator. Finally, for all words preceding an assignment or compar-
ison statement, which has not been substituted, a generic token is used to replace it. This
tokenization process is not perfect, due to difficulty in finding regular expressions that
match the variables exactly. Also, variables with the same name but in different scopes,
will have the same new name since substitution is done in the whole file.

Experiments Discussion

Our first experiment was to evaluate the performance of our algorithm with kFN
used to select the negative samples against the Mikolov implementation. Also, we tested
our parallel implementation of Word2Vec without the use of kFN. In the Table 6.16, we
tested our algorithm using 1 or 4 GPUs15. The hidden layer size of the Word2Vec neural
network was defined with 200 and 400 neurons. When the hidden layer of the Word2Vec
neural network has 200 neurons, our non-kFN algorithm can match the performance of
our baseline when scaling a GPU to 4 GPUs. Using kFN our algorithm performs close to
our baseline. Although kFN has not improved the accuracy of Word2Vec when comparing
to Mikolov’s, as can be seen in the Table 6.17. A smaller accuracy was expected due to the
highly parallel GPU and the synchronization step, but the use of kFN actually improved
over the GPU version without kFN, the highest being with k = 20. In addition, kFN makes
it possible to apply parallel algorithms that have excellent performance when working

15In our testing environment, we have no more than 4 GPUs for the experiment.
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with dense vectors. This opportunity is interesting for algorithms that do not use artificial
neural networks to generate word vectors, such as using Pointwise Mutual Information
Matrix (PMI) [46]. Our algorithm has linear speed-up relative to our baseline when we
use 4 GPUs as can be seen in the Table 6.18 with N = 400 having higher speedup due to
more exploitation of data parallelism in the GPU.

6.3.2 Results

Table 6.16: Execution time for hidden layer size 200 and 400.

N = 200
No kFN k = 5 k = 10 k = 20

Mikolov 1 GPU 4 GPUs 1 GPU 4 GPUs 1 GPU 4 GPUs 1 GPU 4 GPUs
1 Billion 84043 34934 8536 37645 9199 38827 9508 41776 10249
Defects4J 25212 20617 5233 20130 5122 20102 5081 21885 5573

N = 400
1 Billion 140437 42567 11015 43666 10454 46247 11219 48624 11770
Defects4J 51609 23944 5819 23551 5800 23997 5764 25562 6280

Table 6.17: Accuracy percentage for 1Billion with hidden layer
size 200 and 400.

No kFN k = 5 k = 10 k = 20
Mikolov 1 GPU 4 GPUs 1 GPU 4 GPUs 1 GPU 4 GPUs 1 GPU 4 GPUs

N = 200 64.71 62.89 62.38 61.98 63.57 61.77 63.06 61.65 62.52
N = 400 58.10 62.62 63.28 62.94 64.16 62.26 63.92 61.86 64.16

6.4 A new word embedding approach to evaluate poten-
tial fixes for APR

We present in this section the experiments and results of each program regarding
metrics Prob and Dist.

Table 6.18: Speedup for 4 GPUs x Mikolov

N = 200
No kFN k = 5 k = 10 k = 20

1 Billion 9.84 9.13 8.83 8.2
Defects4J 4.82 4.92 4.96 4.52

N = 400
1 Billion 12.75 13.43 12.51 11.93
Defects4J 8.87 8.9 8.93 8.22
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6.4.1 Experiments

Setup

The experiments were conducted on a machine running CentOS 7.2 64-bits, with
an Intel R© Xeon R©E5-2620 2GHz and 16GB RAM. Our proposal is as follows:

• Phase 1 (Corpus Selection): we use the programs checksum, digits, grade, median,
smallest and syllables from IntroClass16 to validate our proposal. We create a corpus
composed of all IntroClass benchmark codes (fixes made by humans). The idea is
to capture the naturalness of code from the programming community in general.
• Phase 2 (Tokenization): we split each fixed code in a corpus line-by-line. Thus, a

token is an entire line because we speculate that the line has enough semantic.
• Phase 3 (Learning): we use a token as context and the next one as a target. Then,

each pair (context, target_token) in a training fixed code is a sample to train the
model. We use the Word2vec toolkit to fit the model’s parameters to recognize
the sequence. Each token has a representative vector. The vector size produced
in most WordVec applications is between 100 and 500 units (neurons). These
applications usually have vocabularies with hundreds of thousands of words. Since
the vocabulary used in programming is usually small, we have chosen to reduce the
word vector size to 50. The chosen Word2Vec architecture was CBOW because this
model predicts which token is more likely to happen given another context token.
Also, CBOW is faster to train and it has better accuracy for more frequent words
than Skip-gram architecture. In addition, Skip-gram model works best for small
databases and when we need to represent rare words or phrases17. The size of the
context window used in model training was one (1). This size captures pieces of
codes that have a more recurring neighborhood. Therefore, we can score codes that
have more naturalness. This phenomenon was observed empirically in several tests
performed with many windows.
• Phase 4 (Evaluation) we use two metrics based on Word2Vec softmax output and

embedded words distances. These are explained in section 6.4.1.

Metrics

We use two metrics Prob and Dist based on the proposal’s Phase 4 outputs. The
metric Prob uses the pairwise probability obtained from the last layer of Word2vec. Thus,
for each variant evaluated, the metric Prob is the average of the pairwise probabilities

16https://github.com/ProgramRepair/IntroClass
17https://code.google.com/archive/p/word2vec
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(context, target_token) obtained from it. Let M denote the number of tokens in a fix, the
metric Prob is calculated by (6-1).

Prob(variant) =
∑

M−1
i=1 probability(tokeni, tokeni+1)

M
(6-1)

The metric Dist uses the vectors, semantically meaningful representations, ob-
tained from the embedded word layer of Word2vec. The metric Dist in this work is the
Word Mover’s Distance (WMD). The WMD distance measures the dissimilarity between
two documents as the minimum amount of distance that the embedded words of one doc-
ument need to “travel” to reach the embedded words of another document [40]. Since this
metric evaluates the dissimilarity, we choose the fixed code in the corpus with the highest
Prob as the reference for comparison with the variant under evaluation.

Scenarios

We evaluated the proposal on three scenarios. For each scenario, we simulate
variants applying different mutation operators. We applied the operator one to ten times
in a reference code (highest Prob on corpus) to analyze the impact of naturalness reduction
on evaluation. Thus, we analyzed whether the metrics are sensitive to changes.

The first scenario applies the delete operator to generate variants; the second one
applies the insert operator; and the third applies the swap operator.

All operators were applied on different levels, and the result for each level is
the average of ten independent applications of the operator. Thus, the level one is the
single random application of an operator, the second level is the random application of
an operator two times and so on. Consequently, each level represents a reduction level of
naturalness, since more perturbation and entropy in the code causes less naturalness.

Therefore, we aim to answer the following research questions with the scenarios
aforementioned:

• RQ1) Is the metric Prob able to capture the loss of naturalness of variants?
• RQ2) Is the metric Dist able to capture the loss of naturalness of variants?

6.4.2 Results

Overall, as the perturbation level increases, we observe an increase in the
distance and a decrease in the probability. This behavior can be more easily seen in Figures
6.1(a), 6.2(a) and 6.3 for the metric Prob. For the metric Dist on Figures 6.1(b) and 6.2(b).
The metric Dist for the Swap operator is always 0 since the order of the tokens (line of
code) does not affect it. Thus the variant is equal to the reference fix for this metric.
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The results show that the variants’ Prob decreased when lines of RefCode were
deleted. In some cases, the probability score can increase when the level goes up. For
example, the metric Prob increased at level 5 for checksum and digits, and at levels 3 and
4 for grade. This happens when a line of code that occurs less frequently in the corpus is
removed. Thus, we note that it is possible for an incomplete variant to have a higher score
than a fix, although this occurs rarely.

However, the metric Dist does not present exceptions. As the perturbation level
increases, the metric Dist also increases or at least maintains equal to the previous level.

The insert operator causes the variant score to decrease as the level increases
since equal tokens out of sequence are not expected. As for the delete operator, tokens
from the training corpus of the model that have low frequency can be removed. This can
cause the score to diminish with less intensity or even rise. Therefore, the insert operation
had more linear behavior than the delete operation.

When the metric Prob results in a high score for a variant, we can use the metric
Dist to see how far the variants are from the RefCode, as shown in the charts 6.1(b) and
6.2(b). The increase in mutation level results in a higher distance from it in relation to the
RefCode.
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Figure 6.1: Results after Delete operator: (a) Prob (b) Dist
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Figure 6.2: Results after Insert operator: (a) Prob (b) Dist
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Figure 6.3: Prob results after Swap operator

There were benchmark programs that did not behave as expected in terms of
decreasing the metric Prob as the level of mutation increases. This is because there are
an increased variety of fixes to the same problem (different developers). For instance, the
smallest program has the fixes with a strong similar structure whereas the grade program
is not.

Metrics based on test cases (baseline) have as a disability the generation of a lot
of plateaus. Our metrics have a low probability of generating plateaus. Exceptions occur
rarely in the delete operation when the same line of the variant is removed in level 1 as can
be seen in Table 6.19 for variants 9 and 10 in the smallest problem and for variants 8 and
9 in the checksum problem. Another exception is the swap operation for the metric Dist.
Most problems in delete and insertion operations do not occur on a plateau. An example
can be seen in the level 1 of the delete operator for the grade problem.

For most cases, the metric Prob have good results, as can be seen on charts
6.1(a), 6.2(a) and 6.3, capturing the loss of naturalness of variants. The metric Dist is able
to capture the loss of naturalness of variants because it obtained linear behavior with the
increase of the level of mutation for all problems.
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Table 6.19: Scores of different variants for each program gener-
ated by delete operator level 1

smallest checksum grade
V. ID Prob Dist Prob Dist Prob Dist

1 0.7162 0.7891 0.5169 0.7271 0.6065 0.443

2 0.7229 0.7013 0.5784 0.6353 0.5847 0.3387

3 0.7690 0.6584 0.5836 0.6489 0.6314 0.38

4 0.7632 0.7891 0.5307 1.0395 0.6244 0.3933

5 0.7142 0.6524 0.5504 0.8576 0.5713 0.5094

6 0.7632 0.6772 0.5817 0.6259 0.5847 0.3387

7 0.7311 0.8467 0.5178 0.6546 0.5943 0.8573

8 0.7690 0.7013 0.5712 0.9185 0.6637 0.4267

9 0.7196 0.729 0.5712 0.9185 0.6980 0.3818

10 0.7196 0.7843 0.5367 0.6967 0.6659 0.4525

In addition to these experiments, we run GenProg, an automated software repair
method, to generate smallest problem fixes called variant A and variant B as can be seen
in Figure 6.4. The purpose of this experiment is to verify whether Prob and Dist metrics
can distinguish variants that have alike or equal fitness values measured only by test case
coverage. The metric Dist shows how semantically far the candidate to fix is from a correct
program that was selected from known fixes.

In a qualitative analysis of the codes, we notice the variant B is closer to the
correct program for smallest since the variant A has the statement return within blocks of
if-clauses. It is not common for this statement to be present within conditional blocks in
the C language, thus, the metric Prob was able to capture that the co-occurrence between
the neighboring statements of the statement return (0) is not common.

Whereas the Prob value for variant B is 0.74, indicating that it is more likely to
be a fix, being each of its pair of subsequent lines more similar to the sequences in the
correct code (Figure 6.4). Regarding the Dist values, the variant B presents a lower value
than variant A. This is natural due to the later has a programming structure closer to the
correct program.

Therefore, we can argue the proposal is able to deal with fitness plateaus, that is
a huge problem for some automated software repair methods, like GenProg.

Thus, we can answer the research questions:

• RQ1) Yes, the metric Prob can capture the loss of naturalness of variants, since for
most of the cases this metric decreased as the perturbation level increases. Finally,
the metric helps to avoid the plateaus, since in only two cases, the generated variants
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obtained the same score.
• RQ2) Yes, the metric Dist is also able to capture the loss of naturalness of variants,

since almost all cases this metric increased as the perturbation level increased. The
exception was for the swap operator because the tokens remain the same in the
variant after the operation.

#include <stdio.h>

#include <math.h>

int main() {

    a, b, c, d;int 

    ( );printf "Please enter 4 numbers separated by spaces>"

    ( , &a, &b, &c, &d);scanf "%d %d %d %d"

    ((a <= b) && (a <= c) && (a <= d)) { if

    }  ((b <= a) && (b <= c) && (b <= d)) {    else if

        printf ( , b );"%d is the smallest\n"

    } ((c <= a) && (c <= b) && (c <= d)) {else if 

        printf( , c);"%d is the smallest\n"

    }  (( d <= a ) && ( d <= b ) && (d <= c)) {else if

        ( , d);printf "%d is the smallest\n"

    }

}

#include <stdio.h>

#include <math.h>

int main() {

    a, b, c, d;int 

    ( );printf "Please enter 4 numbers separated by spaces>"

    ( , &a, &b, &c, &d);scanf "%d %d %d %d"

  ((a <= b) && (a <= c) && (a <= d)) {if

    printf( , a);"%d is the smallest\n"

     (0);return

 } ((b <= a) && (b <= c) && (b <= d)) {    else if

    printf( , b);"%d is the smallest\n"

     (0);return

 } ((c <= a) && (c <= b) && (c <= d)) {else if

    printf ( , c) ;"%d is the smallest\n"

     (0);return

    } else if((d <= a) && (d <= b) && (d <= c)) {

       printf ( , d);"%d is the smallest\n"

        (0);return

    } {else 

 printf ( , a);"%d is the smallest\n"

    }

}

#include <stdio.h>

#include <math.h>

int main() {

    a, b, c, d;int 

    ( );printf "Please enter 4 numbers separated by spaces>"

    ( , &a, &b, &c, &d);scanf "%d %d %d %d"

 ((a <= b) && (a <= c) && (a <= d)) {if

  printf( , a);"%d is the smallest\n"

 } ((b <= a) && (b <= c) && (b <= d)) { else if

  printf( , b);"%d is the smallest\n"

 } ((c <= a) && (c <= b) && (c <= d)) {else if

  printf( , c );"%d is the smallest\n"

 } ((d <= a) && (d <= b) && (d <= c)) {else if

  printf ( , d);"%d is the smallest\n"

 }

  (0);return

}
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Figure 6.4: Examples of two canditate variants obtained from Gen-
Prog and one correct code for smallest problem.

6.5 Summary

In this chapter, we present our FaSST-kNN and sFaSST-kNN experiments for
high-dimensionality and sparse text datasets. These algorithms implemented on a GPU
improved the top k nearest neighbors search by up to 60x compared to a baseline.
Regarding word embeddings experiments, the algorithm implemented on a multi-GPU
system scaled linearly and was able to generate embeddings 13x faster than the original
multicore Word2Vec algorithm while keeping the accuracy of the results at the same level
as those produced by standard word embedding programs. Besides we were able to show
that the negative sampling proposed keeps the accuracy of the results at the same level as
those produced by standard word embedding programs. The proposed implementation can
deal with large corpus, in a computationally efficient way, being a promising alternative to
the processing of million source code files needed in Automated Program Repair. Also, we
propose new word embeddings-based metrics for evaluating potential fixes in Automated
Program Repair.



CHAPTER 7
Conclusions

Intensive use of kNN, combined with the high dimensionality and sparsity of
textual data, makes it a challenging computational task. We have presented a fine-grained
parallel algorithm and a very fast and scalable GPU-based approach for computing the
top k nearest neighbors search in textual datasets. Different from other GPU-based kNN
implementations, we avoid comparing the query document with all training documents.
Instead, we use an inverted index in the GPU that is used to quickly find the documents
sharing terms with the query document. Although the index does not allow a regular and
predictable access to the data, a load balancing strategy is used to evenly distributed the
computation among thousand threads in the GPU. Furthermore, we proposed a filtering
technique that decreases the sorting time of kNN candidates. Our filtering method allows
the removal of documents with similarity less than a threshold so that our algorithm
spends less time in the sorting phase of the nearest k documents. Our proposal was
extended to exploit multi-GPU platforms thus permitting the processing of multiple
queries in parallel. We tested our approach in a very memory-demanding and time-
consuming task which requires intensive and recurrent execution of kNN. Our results
show very significant gains in speedup when compared to our baselines.

Given the great advantage of working with complex semantic relationships
between words, word embeddings continue to being used in a number of applications.
In this work we accelerated the generation of word embeddings used in the context
of Automated Program Repair. In particular, the word embedding implemented is an
extension of the well known Word2Vec with the CBOW model. We exploited fine-grained
parallelism by launching thousands of threads of a manycore architecture to process words
of textual datasets. In this process we developed a new way of choosing negative samples
that is beneficial for exploiting parallelism. This allowed us to efficiently produce the
embedding-based metrics needed for Automated Program Repair systems. In order to
validate our proposal we made extensive experimental evaluation using a standard natural
language dataset and a novel source code modified dataset. The results showed that our
implementation achieves linear scalability on a multi-GPU machine and competitive
speedups of up to 13x when compared to the original Word2Vec implementation. In
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addition we were able to show that the negative sampling proposed keeps the accuracy of
the results at the same level as those produced by standard word embedding programs. The
proposed implementation is able to deal with large corpus, in a computationally efficient
way, being a promising alternative to the processing of million source code files needed
in Automated Program Repair.

Assessing fixes quality generated by Automated Program Repair methods is
challenging mainly due to the lack of compliance information, the cost of the task and
the number of variables. Several techniques have been applied to evaluate the quality of
a fix. The most used is based on test suite execution, especially by search-based program
repair methods. But it is costly and imprecise since it generates plateaus, decreasing
the search performance. Thus, we proposed a method based on word embeddings to
analyze statically the generated variants as to its naturalness and consequently evaluate its
quality. To validate our proposal, we used a corpus of fixes from repositories of IntroClass
Benchmark. We simulated the variants changing a RefCode in different ways. For each
variant, two scores were assigned: Prob and Dist. Fixes with higher Prob and lower Dist

are considered more natural. Overall, our experiments show promising results, endorsing
our hypothesis that embedded words and softmax output from Word2vec can be used
as metrics of quality of variants. Therefore, in this context, our main contribution is a
method to evaluate statically the variants generated by automated program repair methods.
Calculating the metrics for a variant may require more computation as several variants and
larger codes need to be evaluated.

7.1 Summary of contributions

With respect to automated program repair application and word embeddings
generation, the main contributions of this research can be summarized as:

• A method to statically evaluate variants generated by automated program repair
methods;
• A methodology based on embedded words and sequence-to-sequence models to

evaluate the naturalness of a potential fix;
• An experimental study using standard program repair benchmarks.
• A multi-GPU implementation that generates word embeddings and achieves linear

speed-up on a multi-GPU machine while maintaining the accuracy of the results;
• Development of a new approach for selecting negative samples in the CBOW

model;
• Development of a specialized tokenization for a large dataset used in the context of

Automated Program Repair;
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• Extensive experimental evaluation of the proposed implementation in both texts
from natural language and source codes from programming languages.

With respect to kNN, the main contributions of this research can be summarized
as:

• A threshold-based filtering technique that improves the sorting time of kNN candi-
dates;
• A scalable multi-GPU implementation that exploits both data parallelism and task

parallelism;
• A distributed inverted index implementation in MultiGPU system;
• The possibility of batch processing multiple queries;
• Extensive experimental work with a standard real-world textual datasets: PubMed.

7.1.1 Discussion and Limitations of our proposals

The FaSST-kNN is a very fast GPU-based tool for computing the top k nearest in
high dimensional and sparse data. However, it has some limitations. First, it is tailored to
textual data that can be efficiently represented using an inverted index. It also requires a
pre-processing of the dataset to conform to the input format. Second, the tool can only be
ran in machines with NVIDIA accelerators, since it has been developed using CUDA.
Third, although we were able to process large datasets, the GPU memory limits the
maximum size to only a few tens of gigabytes. Fourth, the inverted index is not distributed
over the GPU’s memory but replicated in each memory, which further increases the
memory problem. Finally, it can process similarity search real fast due to its filtering
scheme, specially for lower k values, and batching of queries. The memory problem
was solved by the proposed SFaSST-kNN, where the inverted index is distributed among
multiples GPUs, turning the solution scalable according to the number of devices. When
processing a higher density dataset, PubMed, both solutions could not gain much better
efficiency with the filtering scheme, since distance calculation phase had a greater weight
in the total query time.

Thus, we propose a new implementation of word embedding generation, in
particular, the CBOW architecture (not skip-gram architecture), in manycore architecture
that allows increasing the scalability of this algorithm with the insertion of more GPUs.

7.1.2 Published papers

1. A Fast Similarity Search kNN for Textual Datasets. In: 2018 Symposium on High
Performance Computing Systems (WSCAD), São Paulo, Brazil, 2018, pp. 229-
236.(Qualis B3), Publisher: IEEE[1];
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2. A Fast Word2Vec implementation on manycore architectures for Text Representa-
tion and its applications. In: VI Escola Regional de Informática de Goiás, Goiânia
- GO, 14 e 15 de Setembro de 2018 (short paper);

3. A New Word Embedding Approach to Evaluate Potential Fixes for Automated
Program Repair. In: 2018 International Joint Conference on Neural Networks
(IJCNN) 2018 International Joint Conference on Neural Networks (IJCNN), Rio
de Janeiro, 2018, pp. 1-8. (Qualis A1), Publisher: IEEE[4];

4. Accelerating word embedding generation with fine-grain parallelism. In: 8th Brazil-
ian Conference on Intelligent Systems (BRACIS) and the XV Encontro Nacional
de Inteligência Artificial e Computacional (ENIAC) (Qualis B2), Publisher: IEEE,
2019;

7.1.3 Manuscripts in review process

1. A Scalable Fast Similarity Search kNN for Textual Datasets. Submitted in: Concur-
rency and Computation: Practice and Experience. (Qualis A2).

7.1.4 Main award

1. Artigo com menção honrosa no XIX Simpósio em Sistemas Computacionais
(WSCAD-SSC) - “A Fast Similarity Search kNN for Textual Datasets”, Sociedade
Brasileira de Computação.

7.1.5 Future works

With regard to FaSST-kNN, a better performance could be achieved if a filtering
scheme was done during the distance calculation, with the use of the Cauchy-Schwarz
inequality, for example. Since this work uses weighted vectors and the cosine similarity
function to calculate the distance between vectors (documents) of the dataset, Cauchy-
Schwarz inequality can be considered to obtain an upper bound pruning limit through
partial scalar product estimates between vectors, and thereby reduce the size of the
inverted index, eliminate most possible candidates, and decrease the number of full scalar
product calculations between dataset vectors.

With respect to automated program repair application and word embeddings gen-
eration, to gain more performance and scalability of Word2Vec in many-core architec-
tures, we speculate that the following experiments can accomplish promising results:

• Regarding implementation in Multi-GPU, we can develop new schemes to dis-
tribute the gradient for Artificial Neural Network used by Word2Vec. These
schemes can be inspired by articles of Deep Learning in Distributed Systems [15];
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• Search for a data structure that better exploits the features of manycore architectures
(that allows exploiting more parallelism i.e without leaving idle processors) in order
to replace the Huffman tree in the Hierarchical Softmax;
• Group words that are most likely to co-occur in order to generate vectors for word

classes [69]. As a consequence, the number of vectors that need to be updated will
decrease. It is a similar effect when reducing matrices using SVD (Singular Value
Decomposition). This idea explores the use of K-Nearest Neighbors algorithm
and uniform sampling to approximate the softmax function and achieve O(

√
V )

runtime1;
• Explore matrix batch multiplication operations for CBOW Architecture in Multi-

GPU;
• One way that can increase scalability for word embeddings generation is to re-

place the use of artificial neural networks with another method of generating co-
occurrence matrices. One possibility is to work with word embeddings generation
from the PPMI (Positive Pointwise mutual information) matrix. The PPMI matrix
generates a very sparse matrix, which makes it possible to apply our SFaSST-kN
algorithm to speed up the search for vectors that can represent more similar words,
tokens or documents.

1http://cs231n.stanford.edu/reports/2017/pdfs/130.pdf
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