UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA

ANÁLISE DE QTL PARA PRODUTIVIDADE NO CRUZAMENTO DE ARROZ EPAGRI 108 (*indica*) x IRAT 122 (*japonica*) POR MARCADORES SNPs

DANIANY RODRIGUES ADORNO SILVA

Orientador: Dr. Claudio Brondani

Goiânia - GO Brasil Agosto – 2016

DANIANY RODRIGUES ADORNO SILVA

ANÁLISE DE QTL PARA PRODUTIVIDADE NO CRUZAMENTO DE ARROZ EPAGRI 108 (*indica*) x IRAT 122 (*japonica*) POR MARCADORES SNPs

Dissertação apresentada ao Programa de Pós-Graduação em Genética e Melhoramento de Plantas, da Universidade Federal de Goiás, como requisito parcial à obtenção do título de Mestre em Genética e Melhoramento de Plantas.

Orientador: Dr. Claudio Brondani

Goiânia, GO – Brasil 2016

and the second second

TERMO DE CIÊNCIA E DE AUTORIZAÇÃO PARA DISPONIBILIZAR AS TESES E DISSERTAÇÕES ELETRÔNICAS NA BIBLIOTECA DIGITAL DA UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou *download*, a título de divulgação da produção científica brasileira, a partir desta data.

1. Identificação do material bibliográfico: [x] Dissertação [] Tese

2. Identificação da Tese ou Dissertação

Nome completo do autor: DANIANY RODRIGUES ADORNO SILVA

Título do trabalho: ANÁLISE DE QTL PARA PRODUTIVIDADE NO CRUZAMENTO DE ARROZ EPAGRI 108 (*indica*) × IRAT 122 (*japonica*) POR MARCADORES SNPs.

3. Informações de acesso ao documento:

Concorda com a liberação total do documento [x] SIM [] NÃO1

Havendo concordância com a disponibilização eletrônica, torna-se imprescindível o envio do(s) arquivo(s) em formato digital PDF da tese ou dissertação.

Assinatura do (a) autor (a) 2

Data: 23 / 08 / 2016

¹ Neste caso o documento será embargado por até um ano a partir da data de defesa. A extensão deste prazo suscita justificativa junto à coordenação do curso. Os dados do documento não serão disponibilizados durante o período de embargo.

²A assinatura deve ser escaneada.

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática do Sistema de Bibliotecas da UFG.

> Rodrigues Adorno Silva, Daniany Análise de QTL para produtividade no cruzamento de arroz Epagri 108 (indica) x Irat 122 (japonica) por marcadores SNPs. [manuscrito] / Daniany Rodrigues Adorno Silva. - 2016. 89 f.: il.

Orientador: Prof. Claudio Brondani. Dissertação (Mestrado) - Universidade Federal de Goiás, Escola de Agronomia (EA), Programa de Pós-Graduação em Genética & Melhoramentos de Plantas, Goiânia, 2016. Bibliografia. Anexos. Inclui gráfico, tabelas, lista de figuras, lista de tabelas.

1. Oryza sativa L.. 2. peso de 100 grãos. 3. SNP. 4. QTL x E. 5. seleção assistida por marcadores. I. Brondani, Claudio , orient. II. Título.

CDU 633

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO DE PLANTAS

ATA DA DEFESA PÚBLICA DA DISSERTAÇÃO DE DANIANY RODRIGUES ADORNO SILVA. Aos doze dias do mês de Agosto do ano de dois mil e dezesseis (12.08.2016), às 08h00min, no Auditório Centro de Excelência em Melhoramento Genético da Cana-de-Açúcar, na Escola de Agronomia, reuniram-se os componentes da Banca Examinadora, Prof. Dr. Claudio Brondani - Presidente/Orientador; Prof. Dr. Alexandre Sigueira Guedes Coelho; Drª. Paula Pereira Torga. Sob a presidência do orientador, e em sessão pública, procedeu-se à avaliação da defesa de Dissertação intitulada: "Análise de QTL para produtividade baseada em linhas puras recombinantes de arroz", de autoria de Daniany Rodrigues Adorno Silva, discente do Programa de Pós-Graduação em Genética e Melhoramento de Plantas, no nível de Mestrado, da Universidade Federal de Goiás. A sessão foi aberta pelo presidente da Banca Examinadora, Prof. Dr. Claudio Brondani, que fez a apresentação formal dos membros da Banca. A palavra, a seguir, foi concedida à autora da Dissertação que, em 40 minutos, apresentou o seu trabalho. Terminada a apresentação cada membro da Banca arguiu a mestranda, tendo-se adotado o sistema de diálogo sequencial. Ao final, a banca reunida em separado procedeu à avaliação da defesa. 0 título da dissertação foi alterado para ANDUSE DE ATL PARA PROPUTIVIDADE NO CRUZAMENTO DE AREOZ EPAGAI 108 (INDICA) × IRAF 122 (SPONICA 800 MARCAPOLEI SNIA

"De acordo com a Resolução nº 1053/2011, do CEPEC - Conselho de Ensino, Pesquisa, Extensão e Cultura, que regulamenta o Programa de Pós-Graduação em Genética e Melhoramento de Plantas, e desde que procedidas às correções recomendadas, a Dissertação será considerada pela Banca Examinadora, estando integralmente cumprido este APRO VLOA requisito para fins de obtenção do título de MESTRE EM GENÉTICA E MELHORAMENTO DE PLANTAS, pela Universidade Federal de Goiás. O mestrando deverá efetuar as modificações eventualmente sugeridas pela Banca Examinadora e encaminhar a versão definitiva da Dissertação à Secretaria do PGMP, no prazo máximo de trinta días após a data da Defesa. A conclusão do Curso e a emissão do Diploma darse-ão após o cumprimento do Artigo 52 da Resolução CEPEC nº 1053/2011. A Banca Examinadora recomenda a publicação de artigo(s) científico(s), oriundo(s) dessa Dissertação, em periódicos de circulação nacional e, ou, internacional, depois de procedidas as modificações sugeridas. Cumpridas as formalidades de pauta, às 12:30 . A presidência da mesa encerrou esta sessão de defesa de Dissertação e, para constar eu, Jéssica Almeida, secretária PGMP, lavrei a presente Ata que depois de lida e aprovada, segue assinada pelos membros da Banca Examinadora, em duas vias de igual teor.

Prof. Dr. Claudio Brondani Presidente/Orientador

Marida Diguni tes Callo

Prof. Dr. Alexandre Siqueira Guedes Coelho Membro Interno

Drª. Paula Pereira Torga Membro Externo

Dedico este trabalho ao meu amado esposo Carlos Silva, aos meus pais Rui e Cirene Adorno, e ao meu irmão e cunhada Rodrigo e Gabriela Adorno, por todo apoio, compreensão, amor e carinho que me dispuseram em toda esta trajetória. Amo todos vocês.

AGRADECIMENTOS

Agradeço primeiramente a Deus, por me conceder outra vitória em mais uma etapa da minha vida.

Aos meus pais e familiares, por terem me ajudado em tudo, aconselhando, dando força, incentivo. Sem eles meu sucesso nunca teria sido conquistado.

Ao meu querido esposo pela paciência e compreensão em que teve durante todo esse tempo, sempre me ajudando a nunca desistir dos meus sonhos.

A todos os meus amigos e colegas pelas alegrias, dificuldades e realizações vividas juntas.

A todos os meus Mestres que, com aconselhamento e ensinamentos contribuíram para o meu crescimento profissional e pessoal.

Ao meu orientador Claudio Brondani, por mais uma oportunidade e confiança em mim depositada para o desenvolvimento deste trabalho e por todo o apoio concedido.

À Embrapa Arroz e Feijão, por me conceder a oportunidade de executar e aprimorar meu conhecimento. E a Capes pela concessão de todos os recursos utilizados para a realização dessa pesquisa.

SUMÁRIO

LISTA	DE TABELAS	10
LISTA	DE FIGURAS	12
LISTA	DE ANEXOS	13
RESUN	40	14
ABSTI	RACT	16
1	INTRODUÇÃO	18
2	REVISÃO DE LITERATURA	21
2.1	A ESPÉCIE Oryza sativa	21
2.1.1	Importância econômica	21
2.1.2	Taxonomia	
2.1.3	Genoma do Arroz	
2.2	MARCADORES GENÉTICOS	
2.3	MAPEAMENTO DE QTL	
2.3.1.1	Populações utilizadas nas análises de QTL	
2.3.1.2	Métodos de Análise de QTL	
2.3.1.3	Interação QTL x Ambientes	
2.4	SELEÇÃO ASSISTIDA POR MARCADORES (SAM)	
3	MATERIAL E MÉTODOS	
3.1	DESENVOLVIMENTO DA POPULAÇÃO SEGREGANTE	35
3.2	EXPERIMENTOS DE CAMPO	35
3.2.1	Avaliação fenotípica dos experimentos	
3.2.2	Análise estatística	
3.3	ANÁLISES MOLECULARES	

6	REFERÊNCIAS	56
5.7	CONCLUSÃO	55
5.6	CONSIDERAÇÕES FINAIS	54
5.5	INTERAÇÃO QTL x AMBIENTES	54
5.4	QTL PARA PESO DE 100 GRÃOS	51
5.3	QTL PARA PRODUTIVIDADE	50
5.2	TAMANHO DA POPULAÇÃO E DENSIDADE DOS MARCADORES SNP . :	50
5.1	ANÁLISE FENOTÍPICA	49
5	DISCUSSÃO	49
4.5	MAPEAMENTO DE QTL PARA O PESO DE 100 GRÃOS	48
4.4	MAPEAMENTO DE QTL PARA PRODUTIVIDADE	46
4.3	DISTORÇÃO DA SEGREGAÇÃO MENDELIANA E MAPA GENÉTICO	45
4.2	MARCADORES POLIMÓRFICOS	44
4.1	ANÁLISE ESTATÍSTICA	41
4	RESULTADOS	41
3.4	ANALISE DE QIL	39
2 1		20

LISTA DE TABELAS

Tabela 1 . Espécies do gênero <i>Oryza</i>
Tabela 2 . Quantidade de genes que compõem as subespécies <i>indica</i> e <i>japonica</i> 24
Tabela 3 . Análise de Variância e coeficiente de variação dos dados de produtividade e pesode 100 grãos das RILs do experimento de Goianira41
Tabela 4 . Análise de Variância e coeficiente de variação dos dados de produtividade dasRILs do experimento de Boa Vista
Tabela 5 . Análise de Variância Conjunta e coeficiente de variação dos dados de produtivi- dade das RILs dos experimentos de Boa Vista e Goia- nira
Tabela 6 . Estatística para os caracteres agronômicos dos parentais Epagri 108, IRAT 122 eRIL7 nos experimentos de Goianira e Boa Vista
Tabela 7 . Estimativas das variâncias genéticas (σ^2_G), variâncias fenotípicas com base em médias (σ^2_F), variâncias residuais (σ^2_E) e coeficientes de herdabilidade com base em médias ($h_{\bar{x}}^2$) das RILs nos experimentos de Goianira e Boa Vista
Tabela 8. Número de marcadores SNP obtido pela genotipagem das RILs de arroz por GBS
 Tabela 9. QTL significativos para produtividade em linhas puras recombinantes de arroz (RIL) nos experimentos de Goianira (GO), Boa Vista (BV) e Análise conjunta (AC), usando mapeamento por intervalo composto modificado para vários ambientes (mCIM)
Tabela 10 . Relação da frequência alélica herdada pelos genitores na população RIL no experimento de Goianira
Tabela 11. Relação da frequência alélica herdada pelos genitores na população RIL no experimento de Boa Vista
Tabela 12 . QTL significativos para peso de 100 grãos em linhas puras recombinantes de arroz (RIL) no experimento de Goianira usando mapeamento por intervalo com- posto (CIM)

Tabela 13. QTL/genes já identificados como associados à produtividade em arroz......51

Tabela 14. QTL/genes já identificados como associados ao peso de 100 grãos em arroz.....53

LISTA DE FIGURAS

Figura 1. Plasticidade fenotípica e interação gene	ótipo x ambiente (G x E)31
Figura 2. Efeitos dos QTL específicos com o am	biente33
Figura 3. Distribuição de frequência para produ de linhas puras recombinantes de arroz Vista	utividade (kg. ha ⁻¹) e peso de 100 grãos (g) z (RIL) nos experimentos de Goianira e Boa
Figure 4 Créfices Royplet de produtividade (1	(a, ba^{-1}) a pasa da 100 grãos (g) am linhas

Figura 4. Gráficos Boxplot da produtividade (kg. ha⁻¹) e peso de 100 grãos (g) em linhas puras recombinantes de arroz (RIL) nos experimentos de Goianira e Boa Vista...43

LISTA DE ANEXOS

ANEXO A. Teste de Médias (Scott Nott) nos dados de produtividade de grãos das RILs
ANEXO B . Mapa de ligação dos marcadores moleculares polimórficos72
ANEXO C. Genes candidatos identificados perto de picos significativos dos QTL produti- vidade
ANEXO D. Genes candidatos identificados perto de picos significativos dos QTL para o peso de 100 grãos

RESUMO

SILVA, D. R. A. Análise de QTL para produtividade no cruzamento de arroz Epagri 108 (*indica*) x Irat 122 (*japonica*) por marcadores SNPs. 2016. 89 f. Dissertação (Mestrado em Genética e Melhoramento de Plantas) – Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2016.¹

O arroz (Oryza sativa) é um alimento básico para a maioria da população mundial. Um dos principais desafios para os programas de melhoramento dessa cultura é o aumento do potencial produtivo de cultivares comerciais. Para o desenvolvimento de linhagens e cultivares superiores é necessário que sejam incorporados alelos superiores em genitores dos programas de melhoramento. Uma das alternativas para a identificação da variabilidade genética útil é a realização de cruzamentos envolvendo genitores pouco aparentados e a genotipagem e fenotipagem de populações segregantes derivadas desses cruzamentos, com uma posterior análise de QTL (locos de caracteres quantitativos). Esse trabalho teve por objetivo identificar genes associados à produtividade de grãos em arroz por meio da genotipagem por sequenciamento (GBS), experimentos de campo e uma posterior análise de QTL envolvendo 232 RILs (linhas puras recombinantes) derivadas do cruzamento inter-subespecífico Epagri 108 (indica) x IRAT 122 (japonica) em dois locais (Goianira-GO e Boa Vista-RR). Para a análise de QTL foram mapeados 2.382 marcadores SNPs, os quais identificaram dois QTLs para produtividade, ambos localizados no cromossomo 6, exclusivamente para o experimento de Goianira. Os efeitos médios de substituição alélica foram de 1.365,20 kg.ha⁻¹ e 1.075,49 kg.ha⁻¹, e as proporções das variâncias fenotípicas explicadas pelos QTLs foram de 18% e 29%, classificadas como QTLs de grandes efeitos. Todos os alelos favoráveis para produtividade foram provenientes do genitor IRAT 122. Um dos QTLs identificados para a produtividade apresentou interação QTL x E, o que já era esperado devido à alta significância das interações G x E detectadas na análise de variância conjunta. Para o experimento de Goianira também foi analisado o peso de 100 grãos, e foram encontrados três QTLs, localizados nos cromossomos 5, 6 e 12. Os efeitos médios de substituição alélica para o peso de 100 grãos variaram de 0,12 a 0,14 gramas. As proporções da variância fenotípica explicadas pelos QTLs variaram de 6 a 8%. Cerca de 84% dos QTLs identificados para o peso de 100 grãos foram provenientes do genitor IRAT 122. Nas regiões cromossômicas dos QTLs identificados para produtividade de grãos estão contidos dois genes: o LOC_Os06g16870, um transposon En/Spm, e o LOC Os06g33320, de função ainda desconhecida, mas cuja expressão foi quase que exclusivamente identificada nas inflorescências de arroz. Para o peso de 100 grãos, a região cromossômica do QTL localizado no cromossomo 5 está contido em um bloco de ligação contendo 82 genes que co-segregam, e cujas funções putativas incluem, dentre outras, a regulação do perfilhamento, formação de pólen, enchimento de grãos e resistência a estresse abiótico. Para o QTL identificado no cromossomo 6, nesta região cromossômica está presente o gene LOC_Os06g16160, ainda sem atribuição de função, mas cuja expressão está localizada quase que exclusivamente na raiz. Já no cromossomo 12, a região cromossômica do QTL contém o gene LOC_Os12g41956, que expressa uma proteína da família galactosil-transferase, que participa da síntese dos RFOs (oligossacarídeos da família das rafinoses), regulando os níveis de oligossacarídeos de reserva nas sementes.

Palavras-chave: *Oryza sativa* L., peso de 100 grãos, SNP, QTL x E, seleção assistida por marcadores.

¹Orientador: Prof. Dr. Claudio Brondani. Embrapa Arroz e Feijão

ABSTRACT

SILVA, D. R. A. **QTL analysis for yield in rice crossing Epagri 108** (*indica*) **x Irat 122** (*japonica*) **by SNP markers**. 2016. 89 p. Dissertation (Master's degree in Genetics and Plant Breeding) – Agronomy School, Federal University of Goias, Goiania, 2016.1

The rice (Oryza sativa) is a staple food for the majority of the world's population. One of the main challenges for the breeding programs of this crop is the increase of the yield potential of commercial cultivars. For the development of superior lines and cultivars is necessary to identify and incorporate superior alleles in genetic breeding programs. One of the alternatives for the identification of useful genetic variability is the crossing involving genetically unrelated parents, as well as genotyping and phenotyping the segregating populations derived from these crossings, and posterior analysis of QTL (Quantitative Trait Locus). This study aimed to identify genes associated with yield of grains in rice through Genotyping by Sequencing (GBS), field experiments and a posterior analysis of QTL involving 232 RIL's (Recombinant Inbred Lines) derived from the inter-subspecific crossing Epagri 108 (indica) x IRAT 122 (japonica) in two locations (Goianira - State of Goias and Boa Vista - State of Roraima). For the QTL analysis it was mapped 2,382 SNP markers, which identified two QTLs for yield, both located on chromosome 6, exclusively for the experiment of Goianira. The average effects of allele substitutions were 1,365.20 kg.ha-1 and 1,075.49 kg.ha-1, and the proportions of the phenotypic variance explained by the QTLs were 18% and 29%, classified as QTL of large effect. All favorable alleles for yield were derived from genitor IRAT 122. One of the OTL identified to the productivity showed interaction OTL x E, which was expected due to the high significance of interactions G x E detected in the joint analysis. For the experiment of Goianira was also analyzed the trait hundred grain weight, and it were found three QTLs on chromosomes 5, 6 and 12. The average effects of the allelic substitution for the hundred grain weight ranged from 0.12 to 0.14 grams. The proportions of the phenotypic variance explained by the QTLs ranged from 6 to 8%. Approximately 84% of the QTLs for the hundred grain weight were obtained from the parent IRAT 122. In chromosomal regions identified QTLs for grain yield are contained two genes: the LOC_Os06g16870, a transposon En/Spm, and the LOC_Os06g33320 whose function remains unknown, but whose expression was almost exclusively found in the inflorescences of rice. For the hundred grain weight, the chromosome region of the QTL located on chromosome 5 is located in a linkage block with 82 genes that co-segregate, and whose putative functions include, among others, the adjustment of tillering, pollen formation, grain filling and resistance to abiotic stress. For the QTL located on chromosome 6 it was identified the gene LOC_Os06g16160, which the function still unassigned, but whose expression is located almost exclusively in the root. On chromosome 12, the QTL containing the gene LOC_Os12g41956 expresses a protein of the galactosyl-transferase family, which participates in the synthesis of the RFO's (Raffinose Family of Oligosaccharides), regulating the levels of reserve oligosaccharides in seeds.

Key words: Oryza sativa L., Hundred grain weight, SNP, QTLxE, Marker-Assisted Selection.

¹Adviser: Prof. Dr. Claudio Brondani. Embrapa Rice and Beans.

1 INTRODUÇÃO

Melhoramento do arroz para alta produtividade de grãos é um objetivo comum para os programas de melhoramento dessa cultura. O desenvolvimento de cultivares de arroz semi-anão (*Oryza sativa* L.), juntamente com híbridos, resultou em um aumento significativo da produtividade na Ásia desde os anos de 1960 (Gaikwad et al., 2014). No entanto, atualmente o ganho genético para produtividade tem sido cada vez menor, o que pode ser insuficiente para atender a demanda alimentar de uma população mundial crescente.

O arroz é cultivado em aproximadamente 161 milhões de hectares no mundo (Conab, 2015a), existindo cerca de 230 mil variedades únicas de arroz armazenadas em bancos de germoplasma (Reifschneider et al., 2015). Dentre estas variedades estão incluídas variedades silvestres, tradicionais e modernas representando com isso um dos maiores acervos de recursos genéticos entre as espécies vegetais de interesse econômico. No Brasil, a primeira coleção nuclear de arroz foi estabelecida por Abadie et al. (2005), sendo denominada Coleção Nuclear de Arroz da Embrapa (CNAE), estruturada a partir dos 10 mil acessos do Banco Ativo de Germoplasma (BAG) dessa instituição, na época de sua obtenção. A CNAE é composta por 550 acessos subdivididos em três estratos: 1) Linhagens e Cultivares Brasileiras (LCB), constituído por genótipos melhorados por programas de melhoramento da Embrapa e outras instituições brasileiras; 2) Linhagens e Cultivares Introduzidas (LCI), constituído por genótipos provenientes de programas de melhoramento de outros países; e 3) Variedades Tradicionais (VT), que reúne acessos obtidos por expedições de coleta de germoplasma realizadas em vários estados do Brasil, durante o período de 1979 a 2002. Dentro desses estratos, os acessos de arroz ainda foram divididos conforme sistemas de cultivo: irrigado (I) e sequeiro (S) (ou de terras altas). No estrato VT, foram incluídos ainda acessos que podem ser cultivados tanto no sistema de terras altas quanto irrigado, e cuja classificação foi denominada de sistema facultativo (F) (Abadie et al., 2005; Brondani et al., 2006). Apesar da extensa variabilidade genética disponível, os programas de melhoramento genético têm priorizado, desde o inicio da década de 1970, a utilização de um grupo restrito de genitores elite, com finalidade de serem preservadas as

melhores combinações de genes. A utilização exclusiva desses genitores tem resultado no estreitamento da base genética do arroz e na diminuição do aumento da produção, que está ao redor de 1% ao ano, o que é uma taxa inferior à necessária para atender à demanda de consumo prevista para 2050, que seria de 2,4% ao ano (Ray et al., 2013).

Muitas características de importância econômica, como altura de plantas, produtividade de grãos, dentre outras, apresentam um padrão continuo de variação, podendo ser explicada pela ação conjunta de um grande número de genes – poligenes – que embora apresente um padrão mendeliano normal individualmente, possuem um pequeno efeito sobre o fenótipo, sendo muito influenciado pelo efeito ambiental (Bearzoti, 2000). Com o advento dos marcadores moleculares, capazes de detectar polimorfismos na molécula de DNA, houve a possibilidade do avanço no estudo dos caracteres quantitativos (Ramalho et al., 2012). Com isso, foi possível a elaboração de mapas genéticos que apresentassem grande densidade desses marcadores, etapa fundamental para o início do trabalho de mapeamento para identificar locos controladores de caracteres quantitativos, denominados QTL (*Quantitative trait locus*). Avanços em modelos estatísticos e tecnologia de marcadores de DNA, bem como a rapidez no desenvolvimento de recursos genômicos, geraram mapas genéticos e análises de QTL cada vez mais refinados para diversos caracteres de interesse, como para produtividade, resistência às doenças e tolerância à seca (Wade et al., 2015; Hur et al., 2016).

O mapeamento de QTL não está relacionado apenas com a determinação da posição destes no genoma, mas também a quantificação e a caracterização de seus efeitos, como interações alélicas - por exemplo, o grau de dominância - de cada um, e mesmo interações epistáticas e pleiotrópicas (Bearzoti, 2000). As populações derivadas de cruzamentos são utilizadas em mapeamento de QTL, permitindo a flexibilidade na escolha dos parentais, a determinação do esquema de cruzamento e do modo de avanço das populações segregantes. São frequentes o uso de Populações F₂, de Retrocruzamentos, Linhagens Puras Recombinantes (RILs), entre outras.

Embora o aumento da produção do arroz nas últimas décadas foi devido principalmente ao melhoramento genético aliada a expansão da área agrícola, o aumento da produtividade ainda se faz necessário, a fim de atender o rápido crescimento da população mundial, em um cenário que inclui diminuição da disponibilidade de água devido ao consumo humano, e a redução da área de plantio devido à degradação do solo e a competição com o plantio de outras culturas de maior interesse econômico (Yu et al., 2012).

Este estudo teve como objetivo a realização de uma analise de QTL para identi-

ficar marcadores SNPs relacionados à produtividade de grãos, e com isso, fornecer subsídios para o desenvolvimento de um conjunto de marcadores para seleção assistida para produtividade no programa de melhoramento genético de arroz da Embrapa, além de identificar as RILs mais produtivas para uso potencial como linhagens do referido programa.

2 REVISÃO DE LITERATURA

2.1 A ESPÉCIE Oryza sativa

2.1.1 Importância econômica

O arroz é um dos principais alimentos para população mundial. Considerando os dados da Conab (2016b), na safra 2015/16, o consumo brasileiro deverá ser em torno de 13 milhões de toneladas, ou seja, superior ao trigo, cuja previsão é o uso de 11,4 milhões de toneladas. Dada a sua relevância no abastecimento interno e na segurança alimentar da população, o arroz sempre teve grande importância na formulação e execução das políticas agrícolas e de abastecimento no Brasil.

O arroz é cultivado nos cincos continentes, porém cerca de 90% da produção e do consumo mundial está concentrada na Ásia. Os principais países produtores são: China, Índia e Indonésia. Segundo os dados divulgados pelo FAS/USDA, para a safra 2014/15, a produção mundial de arroz foi de 714,9 milhões de toneladas base casca ou 479,43 milhões de toneladas de arroz beneficiado. Para tanto, foram plantados 161,48 milhões de hectares, com uma produtividade média em torno de 4,5 mil Kg/ha (Conab, 2015b).

Analisando o mercado brasileiro, entre as safras 1990/91 e 2014/15, a produção expandiu-se 24,36%, resultante principalmente do aumento de produtividade. O grande impulsionador do crescimento do arroz no Brasil foi o Estado do Rio Grande do Sul (RS), que aumentou em 111,21% sua produção nesse período. Atualmente, somente o RS é responsável por aproximadamente dois terços da produção do grão no Brasil (Conab, 2015b).

2.1.2 Taxonomia

O gênero *Oryza* pertence à ordem Poales, família Poaceae, subfamília Oryzoideae, e tribo Oryzeae (Huang et. al., 2012). Descrito por Linnaeus em 1753 o gênero possui duas espécies cultivadas (*Oryza sativa* L. e *Oryza glaberrima* Steud) de genoma diplóide (2n = 24 cromossomos) AA, e cerca de 21 espécies silvestres distribuídas entre os trópicos da África, Ásia, Américas e Austrália, as quais podem possuir genoma diplóide ou tetraplóide, representando os genomas AA, BB, CC, BBCC, CCDD, EE, FF, HHJJ, GG e JJ (Ammiraju et al., 2010; Shivrain et al., 2010) (Tabela 1).

Espécie	Região de origem	Nº de cromossomos (2n)	Genoma		
Grupo Oryza sativa					
O. sativa L.	Ásia	24	AA		
O. barthii	África	24	AA		
O. glumaepatula	América	24	AA		
O. breviligulata	África	24	AA		
O. glaberrima	África	24	AA		
O. perennis	Ásia	24	AA		
O. longistaminata	África	24	AA		
O. meridionalis	Oceania	24	AA		
O. nivara	Ásia	24	AA		
O. rufipogon	Ásia	24	AA		
Grupo Oryza officinalis					
O. punciata	África	48	BBCC		
O. minuta	Ásia	48	BBCC		
O. eichingeri	África	24	CC		
O. officinalis	Ásia	24	CC		
O. rhizomatis	Ásia	24	CC		
O. alta	América	48	CCDD		
O. glandiglumis	América	48	CCDD		
O. latifolia	América	48	CCDD		
O. austranliensis	Oceania	24	EE		
O. brachvantha	África	24	FF		
Grupo Oryza granulata					
O. granulata	Ásia	24	GG		
O. meveriana	Ásia	24	GG		
Grupo Oryza ridleyi					
O. longiglumis	Ásia	48	HHJJ		
O. ridleyi	Ásia	48	HHJJ		

Tabela 1. Espécies do gênero Oryza.

Fonte: Vaughan & Morishima, 2003; Gonzales, 1985.

O. sativa possui duas subespécies, *Oryza sativa* spp. *indica* (Índica) e *Oryza sativa* spp. *japonica* (Japônica). A sub-especiação destas, segundo teoria mais aceita, é de que tenham sido originadas de dois eventos de domesticação distintos, ou seja, de duas populações diferentes da espécie silvestre *O. rufipogon* (Hu et al., 2006; Kawakami et al.,2008). A estimativa do tempo de divergência entre as duas subespécies é de aproximadamente 440 mil anos (Ma & Bennetzen, 2004).

O grupo Índica é amplamente cultivado em regiões tropicais e subtropicais (Wa-

tanabe, 1997). Morfologicamente, caracteriza-se por possuir colmos longos, alta capacidade de perfilhamento, folhas longas e decumbentes e ciclo longo, grãos longos e finos, e mostrase mais adaptada ao sistema irrigado.

Já o grupo Japônica é o grupo varietal mais amplamente cultivado nas zonas temperadas (Nordeste e leste da China, Japão e Coréia) (Watanabe, 1997). Caracteriza-se por apresentar colmos curtos e rígidos, pouca capacidade de perfilhamento, folhas estreitas de cor verde escura, grãos curtos e espessos, e ciclo curto.

2.1.3 Genoma do Arroz

Os cereais evoluíram independentemente a partir de um ancestral comum há cerca de 50 milhões de anos, porém seus genomas apresentam alta conservação de sequência de nucleotídeos (Goff et al., 2002). Algumas das características importantes que fizeram a cultura do arroz (*Oryza sativa*) ter seu genoma considerado modelo para as gramíneas foram: 1) possuir o menor genoma entre as plantas cultivadas com importância econômica; 2) possuir uma associação colinear com os membros da família das gramíneas, incluindo todos os cereais importantes; 3) possuir sequências genômicas de alta resolução de diversos acessos, armazenadas em bancos de dados públicos; 4) possuir um grande número de marcadores moleculares desenvolvidos (SSR e SNPs); e 5) possuir uma extensa lista de genes de interesse anotados, publicamente disponíveis (Xing & Zhang, 2010).

O arroz foi a primeira cultura de importância agrícola a ter seu genoma sequenciado. Em 2002 foram publicados dois trabalhos independentes do sequenciamento do genoma do arroz: um grupo de pesquisa na China (BGI) sequenciou a cultivar da subespécie *indica* 93-11 (Yu et al., 2002), e um consórcio internacional sequenciou o genoma do cultivar da subespécie *japonica* Nipponbare (Goff et al., 2002). Esse consórcio, denominado IRGSP (*International Rice Genome Sequencing Project*), tem atualizado frequentemente as informações de sequências no seu banco de dados por meio do portal RGAP (*Rice Genome Annotation Project*) (<http://rice.plantbiology.msu.edu/index.shtml>). De acordo com os dados mais recentes, o tamanho do genoma do arroz é de aproximadamente 370 Mpb, distribuídos em 12 cromossomos (Tabela 2) e possui um total de 55.986 locos com função predita, incluindo 39.045 locos de não-ETs (elementos transponíveis) codificando 49.066 modelos gênicos, 16.941 locos de ETs codificando 17.272 modelos gênicos (Kawahara et al., 2013), e cerca de 4.723.468 marcadores SNPs identificados entre os grupos Índica e Japônica (RIS, 2015). O conhecimento da localização de todos os genes no genoma aumenta a utilidade de marcadores moleculares, pois permite a identificação de genes candidatos envolvidos no controle de características específicas de interesse (Sasaki & Burr, 2000).

Índ	ica	Japônica		
Cromossomos	Genes totais	Cromossomos	Genes totais	
1	6.174	1	5.761	
2	4.942	2	4.605	
3	5.514	3	4.986	
4	4.317	4	3.987	
5	3.897	5	3.696	
6	3.967	6	3.682	
7	3.484	7	3.555	
8	3.611	8	3.252	
9	2.660	9	2.558	
10	2.821	10	2.710	
11	2.881	11	2.813	
12	2.716	12	2.705	
Total	46.984	Total	44.310	

 Tabela 2. Quantidade de genes identificados até o momento para as subespécies de arroz

 Índica e Japônica.

Fonte: RIS, (2015).

2.2 MARCADORES GENÉTICOS

Marcadores genéticos são caracteres com herança simples que podem ser empregados para avaliar diferenças genéticas entre dois ou mais indivíduos. Estes marcadores podem ser divididos em dois grupos básicos: marcadores morfológicos e marcadores moleculares (Bered et al., 1997).

A tecnologia de marcadores moleculares viabiliza a caracterização genética de grande número de genótipos através de procedimentos relativamente simples e rápidos (Bered et al., 1997). Entre os marcadores mais conhecidos identificados por hibridização estão os marcadores RFLP e minissatélites ou locos VNTR (*Variable Number of Tandem Repeats*) (Jeffreys et al., 1985). A classe de marcadores revelados por amplificação por PCR (*Polymerase Chain Reaction*) inclui os marcadores RAPD (*Random Amplified Polymorphic DNA*) (Williams et al., 1990), os microssatélites ou SSRs (*Simple Sequence Repeats*) (Litt & Lutty, 1989), os ISSRs (*Inter Simple Sequence Repeats*) (Zietkiewicz et al., 1994) e os SNPs (*Single Nucleotide Polymorphisms*), que geralmente apresentam natureza bialélica (Rafalski, 2002).

O grande marco para o emprego em rotina de marcadores SNPs, que por definição, é um sítio do DNA onde foi observada a substituição de uma única base entre amostras de indivíduos (Risch et al., 1996), foi com o desenvolvimento da tecnologia NGS. Essa tecnologia é capaz de produzir uma enorme quantidade de dados de sequência, da ordem de bilhões de bases, em um curto intervalo de tempo, em sistemas automatizados, a um baixo custo por base sequenciada (Ganal et al., 2009). Dessa forma, essa tecnologia aumentou significativamente a velocidade de descoberta de SNPs e, consequentemente, estimulou a sua aplicação em diversas áreas, inclusive na conservação de germoplasma e no melhoramento genético de plantas (Silveira, 2014).

O advento das tecnologias de sequenciamento de nova geração (NGS) tem permitido o desenvolvimento de novas metodologias para estudos que envolvem a genotipagem de indivíduos de populações naturais, acessos de bancos de germoplasma e populações de programas de melhoramento genético (Davey & Blaxter, 2011). Com isso, vários métodos foram desenvolvidos para a descoberta de marcadores moleculares e genotipagem de alto desempenho utilizando enzimas de restrição. Todos os métodos envolvem os seguintes passos principais: a) a digestão de várias amostras de DNA genômico com enzimas de restrição; b) uma seleção ou redução dos fragmentos de restrição resultantes, e o sequenciamento de nova geração com o grupo de fragmentos finais. Entre as abordagens NGS, destacam-se o sequenciamento de representação reduzida (RRLs e CRoPS); e técnicas de sequenciamento que utilizam códigos de barra e agrupamento dos fragmentos (Rad-seq; Dart-seq e GBS) (Elshire et al., 2011).

A genotipagem por sequenciamento (GBS) é um tipo de metodologia utilizado a partir da tecnologia NGS, possuindo um bom custo-benefício para os estudos no melhoramento de plantas. Essa técnica possui alta capacidade na produção de polimorfismos de nucleotídeo único (SNPs) para uso na análise genética. Para a realização dessa metodologia é utilizado enzimas de restrição sensíveis à metilação com o objetivo de reduzir a complexidade do genoma e evitar a fracção repetitiva do genoma, onde a metilação terá mais chance de ocorrer. Outras vantagens principais deste sistema incluem a redução do manuseamento da amostra, menos passos de purificação e de PCR, não possuindo fraccionamento de tamanho, aliado a um menor custo de codificação, pois é utilizado adaptadores contendo códigos de barra.

O desenvolvimento de marcadores moleculares, e suas aplicações na construção de mapas genéticos e mapeamento de QTL facilitaram a investigação das bases genéticas dos caracteres quantitativos. Em arroz, mapas de ligação foram inicialmente obtidos com base no polimorfismo de fragmentos de restrição (RFLP) (McCouch & Doerge, 1995) e

marcadores microssatélites (SSR) (McCouch et al., 1997). Populações de mapeamento especificamente desenvolvidas para dissecação das bases genéticas da produtividade através do mapeamento de QTL permitiram a identificação de centenas de genes relacionados ao caráter (Xing & Zhang, 2010).

2.3 MAPEAMENTO DE QTL

O mapeamento genético é de grande utilidade para os programas de melhoramento de plantas por possibilitar o mapeamento de locos que controlam características quantitativas (QTL – *Quantitative Trait Loci*). Proporciona também o conhecimento sobre a posição de um gene e a sua região adjacente, juntamente a predição de descendências de cruzamentos controlados, além de contribuir para estudos de sintenia ou mapeamento comparativo e clonagem de genes (Shirasawa et al., 2013). Uma das mais importantes utilidades dos mapas genéticos é, sem dúvida, o mapeamento de genes e QTL. A partir do mapeamento de QTL é possível estudar a base genética dos caracteres complexos (Bhering & Cruz, 2008), como é o caso da maioria dos caracteres de interesse econômico das plantas cultivadas.

QTL refere-se a uma associação estatística entre uma região do genoma e um caráter (Resende, 2008). A base de toda a detecção de QTL, independentemente da cultura à qual ele é aplicado, é a identificação de associação entre os fenótipos geneticamente determinados e marcadores genéticos específicos. Qualquer fenótipo mensurável é, em princípio, passível de análise de QTL (McCouch & Doerge, 1995). O número de QTL que podem ser detectados num único experimento ou numa única população é particularmente pequeno. No entanto, isso não indica que a variação da característica nessa determinada população é contribuída apenas por poucos genes. Em vez disso, o pequeno número de QTL reflete no resultado dos limites rigorosos usados para controlar os efeitos do falso positivo (erro tipo I). As consequências destes limites rigorosos são que apenas locos que conferem efeitos maiores poderiam ser considerados como QTL, deixando de ser detectados a maioria dos genes que causam efeitos menores (Xing & Zhang, 2010).

Atualmente, conforme o banco de dados PubMed do NCBI, cerca de 80 trabalhos têm relação com a análise de QTL para produtividade de grãos na cultura de arroz (NCBI, 2015). Segundo o portal Gramene (www.gramene.org) estão catalogados 8.646 QTLs para todas os caracteres da planta do arroz já estudados, dos quais 2.877 são QTLs relacionados à produtividade. Comparando os trabalhos realizados para produtividade e para seus componentes (número de panículas por planta, o número de grãos por panículas e peso de grãos), foram encontrados menores números de QTLs exclusivamente para produtividade (cerca de 974 QTLs) do que para seus componentes (cerca de 1.903 QTLs), por se tratar de uma característica mais complexa (Xing & Zhang, 2010). De acordo com esses autores, uma das razões para isso é que os dados de produtividade geralmente são relacionados a maiores erros experimentais.

2.3.1.1 Populações utilizadas nas análises de QTL

A seleção da população para mapeamento envolve a escolha de genitores e a determinação do tipo de cruzamento, juntamente ao método de condução da população segregante, sendo considerada uma etapa crítica para o sucesso da construção do mapa e posterior análise de QTL (Staub et al., 1996). No entanto, independentemente dessa escolha, duas condições básicas devem ser atendidas: o máximo de polimorfismo entre os genitores, e que sejam produzidas gerações em que os locos estejam em desequilíbrio de ligação (Paterson et al., 1991; Tanksley, 1993).

Os tipos de populações mais utilizadas para a construção de mapas de QTL são linhas puras recombinantes (RIL's - Recombinant Inbred Lines), populações obtidas por retrocruzamento, populações F2, linhagens de duplo-haplóides ou populações geradas a partir de cruzamento entre parentais heterozigotos (Carneiro et al., 2002; Collard, et al., 2005). Populações RILs (tipo de população utilizada neste estudo) são geradas a partir do cruzamento entre dois parentais homozigotos, seguido de etapas sucessivas de autofecundação por SSD (single seed descent) a partir da população F₂, ou de cruzamento entre irmãos, que resultam na criação de uma população de linhagens puras, cujo genoma é um mosaico (recombinação) dos genomas dos parentais (Broman, 2005). Em geral, o tempo necessário para o desenvolvimento desse tipo de população varia entre seis a oito gerações. Dado o maior número de gerações de recombinação neste caso, o desequilíbrio de ligação presente na população utilizada é menor do que aquele encontrado nas populações de retrocruzamento e F₂, o que diminui o poder de detecção de ligação entre os locos. No entanto este delineamento produz genótipos que podem ser perpetuados e distribuídos para diversos laboratórios em muitos locais diferentes. Isto torna possível o desenvolvimento de estudos de mapeamento conjunto por parte de diversos grupos de pesquisas, que podem assim colaborar entre si para a elaboração de um mapa único mais complexo (Coelho, 2000).

Os diversos tipos de populações que podem ser utilizados para realizar o mapeamento genético de espécies vegetais têm em comum o fato de que são produzidas gerações em desequilíbrio de ligação para os locos segregantes, permitindo a realização da análise de ligação. O desequilíbrio de ligação pode ser decorrente de diversos fatores, incluindo seleção e deriva genética. Entretanto, em gerações segregantes derivadas de cruzamentos entre linhagens (geração F_2 e de retrocruzamentos), a causa predominante do desequilíbrio de ligação é a ligação física dos locos, a qual atinge seu ponto máximo nas populações derivadas de cruzamentos controlados e, como consequência, a capacidade de detectar a ligação também é máxima (Coelho, 2000).

2.3.1.2 Métodos de Análise de QTL

Diferentes abordagens estatísticas são usadas no mapeamento de QTL, dependendo da estrutura da população de mapeamento, do número (densidade) e tipo de marcadores usados. Com limitado número de marcadores por cromossomo e desequilíbrio de ligação apenas dentro de famílias ou cruzamentos, a estratégia da análise de ligação deve ser usada. Com grande número e alta densidade de marcadores no genoma, torna-se possível a associação mais próxima dos QTLs, em vez da utilização da análise de ligação, utiliza a abordagem de análise de desequilíbrio de ligação, que se baseia no desequilíbrio de ligação entre marcador e o QTL na população inteira e não apenas dentro de famílias. Para que isso ocorra, marcador e QTL devem estar em ligação muito próxima e, portanto, haverá uma baixa taxa de recombinação (Resende, 2008).

O sucesso do mapeamento de QTL envolve cinco etapas importantes: 1) escolha cuidadosa dos parentais, que devem ser contrastantes para o caráter de interesse; 2) obtenção da população segregante, maximizando o potencial de evidenciar o desequilíbrio de ligação entre um loco marcador e região genômica associada ao controle do caráter de interesse; 3) genotipagem dos indivíduos que compõem a população segregante; 4) avaliação fenotípica da população segregante; e 5) análise estatística da co-segregação marcador/fenótipo (Coe-lho, 2000; Hao & Lin, 2010).

Dentre os métodos gerais de análise e mapeamento de QTL, destacam-se: 1) a análise de marcas simples (um marcador de cada vez), que é útil quando o objetivo é somente a detecção de QTL ligado ao marcador, mas não a estimação da posição e dos efeitos do QTL; 2) o mapeamento por intervalo simples, proposto por Lander & Botstein (1989), que considera marcadores adjacentes e então propicia um aumento no poder de detecção e estimativas mais precisas da posição e efeitos dos QTL; e 3) o mapeamento por intervalo composto apresentado por Jansen (1993) e Zeng (1994), que considera vários marcadores simultaneamente e é uma abordagem ainda melhor quando múltiplos QTL estão ligados nos múltiplos intervalos, pois considera vários QTL simultaneamente e permite incluir os efeitos epistáticos no modelo (Resende, 2008).

Alguns exemplos encontrados na literatura utilizando diferentes abordagens estatísticas: Zhang et al. (2014) identificaram um importante QTL para a formação da folha bandeira e conteúdo de clorofila em arroz (*qLSCHL*₄) utilizando para isso uma população de 207 RILs, proveniente do cruzamento entre o cultivar 93-11 (Índica) e Nipponbare (Japônica). Foi construído um mapa genético de ligação com 150 marcadores SSRs, totalizando um tamanho de 1.476,6 cM. O método de mapeamento utilizado foi o intervalo composto, por meio do software Qgene versão 4.0. Os autores observaram que, após a clonagem e a análise de expressão, o QTL *LSCHL4* é alelo de *Nal1*, um gene mutante previamente relatado em linhagens geneticamente modificadas superexpressando *LSCHL4* no cultivar Nipponbare e uma linha quase isogênica de 93-11 (NIL-9311) aumentaram significativamente o teor de clorofila, o tamanho da folha bandeira e aumento da panícula. A produtividade média de NIL-9311 foi 18,70% maior do que a 93-11.

Peng et al. (2014) utilizaram uma população de 132 RILs de arroz a partir de um cruzamento entre 93-11 (Índica) e PA64s (Javânica). Para o mapeamento de QTL, utilizaram a abordagem de mapeamento por intervalo simples através do software MultiQTL 1.6. Foram identificados os QTL $qPPB_3$ e $qPPB_8$, que controlam o número de panícula do ramo primário. Com a utilização da população RC₃F₂ derivada de um retrocruzamento entre uma RIL contendo o alelo PA64s e a cultivar 93-11, qPPB3 foi mapeado para uma região genômica de 34,6 kpb no cromossomo 3. Análise de predição gênica identificou quatro genes putativos nessa região, entre os quais OsO3gO2O32OO, um gene previamente relatado para a altura das plantas e número de perfilhos.

Xu et al. (2015) estudaram o caráter peso de grãos de arroz, por meio de 234 RILs derivada de um cruzamento entre as cultivares Índica M201 (grãos de tamanho grande) e JY293 (grãos de tamanho pequeno). Para o mapeamento de QTL foi utilizado o modelo de mapeamento por intervalo simples por intermédio do software IciMapping v. 3.3. Duas regiões de marcadores foram relatadas em 24.600.000-24.850.000 pb e 25.000.000-25.350.000 pb no cromossomo 3, onde identificaram uma relação alta com o peso de mil grãos (TGW). Em seguida, um mapa de ligação do cromossomo 3 foi construído com 100 marcadores SSR e 202 marcadores SNPs. O mapeamento de QTL para o TGW, comprimento de grãos, largura de grãos, e espessura de grãos revelaram um grande QTL na segunda região e outros dois QTL menores para peso de grãos. Estes três QTL exibiram efeitos hierárquicos para o comprimento e peso de grãos, seguindo a seguinte ordem: qTGW3.2(qGL3), qTGW3.1 (GS3) e qTGW3.3. Comparações múltiplas de médias entre as oito combinações de 3 QTL revelou que as linhas com dois dos três QTL derivados do cultivar M201 exibiram um aumento para TGW (40.2g) e as linhagens com ambos alelos qTGW3.1 e qTGW3.3 proveniente do M201 (42.5g) tiveram TGW semelhante ao alelo sozinho qTGW3.2 (40,8 g). Foram propostas duas estratégias para melhorar o peso de grãos por seleção assistida por marcadores: 1) introduzir o novo alelo sozinho qTGW3.2, ou 2) piramidar os alelos qTGW3.3.

2.3.1.3 Interação QTL x Ambientes

O crescimento e o desenvolvimento de plantas são influenciados pelos componentes genético (G), ambiental (E), e de interação entre eles (G x E). Para o desenvolvimento de genótipos adaptados a vários ambientes, deve ser avaliada e contabilizada a interação G x E em programas de melhoramento de plantas (El-Soda et al., 2014). A capacidade de adaptação para plantas autógamas somente é possível através do fenômeno chamado "plasticidade fenotípica", que consiste na capacidade de sobrevivência e reprodução tanto em ambiente favorável, quanto com recursos escassos. Para que isso ocorra, há a necessidade de alterações na expressão genética e mudanças na fisiologia vegetal em resposta a estímulos ambientais (Van Kleunen & Ficher, 2005; Juenger, 2013).

Plasticidade fenotípica pode ser entendida, segundo essa concepção, como uma propriedade da norma de reação (Liefting & Ellers, 2008; Liefting et al., 2009). Para tornar essa interpretação possível, em geral o conceito de plasticidade fenotípica é limitado às alterações permanentes causadas pelo ambiente durante o desenvolvimento (tempo de desenvolvimento, tamanho, produtividade, etc.). Dessa forma, cada genótipo pode ter sua plasticidade fenotípica avaliada através de sua norma de reação: se um genótipo não apresenta plasticidade fenotípica em resposta a uma determinada variável ambiental, sua norma de reação será paralela ao eixo de variação ambiental, representando um fenótipo fixo independente do ambiente; caso contrário, havendo qualquer curvatura ou inclinação da norma de reação, o genótipo apresenta alguma plasticidade fenotípica em resposta à variação ambiental (Figura 1) (Rocha & Klaczko, 2012).

Figura 1. Plasticidade fenotípica e interação genótipo x ambiente (G x E). Quatro exemplos de normas de reação ilustram (A) a plasticidade fenotípica dos genótipos entre ambientes, e (B-D) uma diferença genética entre os genótipos para plasticidade indicando interação G x E. Genótipo 1 é a linha vermelha e o genótipo 2 a linha azul em cada gráfico. Em (A), os valores fenotípicos mudam entre ambientes, mas as normas de reação permanecem em paralelo, porque a resposta às condições ambientais é similar para ambos os genótipos. Em (B) e (C) existe uma interação de efeito de escala indicando interação G x E, uma vez que cada genótipo tem uma resposta diferente para cada um dos ambientes, mas sem as normas de reação se cruzarem, enquanto que em (D), existe um forte efeito sobre o fenótipo em resposta aos diferentes ambientes, também indicando interação G x E, causando normas de reação cruzada (El-Soda et al., 2014).

Quando plasticidade fenotípica difere entre os genótipos, ela é descrita como interação G x E (Assmann, 2013; Juenger, 2013). A interação G x E reduz a associação entre os valores fenotípicos e genotípicos e leva a distintos níveis de significância do efeito do QTL em diferentes ambientes (Vieira et al., 2006). A presença de interação QTL x E foi detectada pela inconsistência na detecção de QTL em ambientes distintos, bem como pela variação de seus efeitos (Boer et al., 2007; Bernardo, 2008).

Existem vários modelos estatísticos disponíveis que podem ser usados para detecção dessa interação QTL x E, como por exemplo ANOVA (Romagosa et al., 2009), Modelo multivariado de máxima verossimilhança em mapeamento por intervalo (Jiang & Zeng, 1995), matriz de covariância altamente estruturada (Piepho, 2005), abordagem de regressão multivariada (Knott & Haley, 2000) e método de mapeamento Bayesiano (Chen et al., 2010). QTL estáveis são os principais alvos para os programas de melhoramento, porque mostram um efeito consistente em todos os ambientes. Esta é a situação ideal para a utilização em seleção assistida, pois tais QTLs podem ser utilizados para melhorar o desempenho em todas as regiões em que a cultura pode ser estabelecida. No entanto, a maioria dos QTLs possuem efeito específico do ambiente sobre o fenótipo e, assim, contribui para a interação QTL x E. Embora o alvo para o melhoramento são os QTLs estáveis, os QTLs que possuem interações ambientais podem ser úteis em ambientes similares.

Segundo El-Soda et al. (2014), a base genética da interação G x E e da interação QTL x E origina-se da expressão diferencial dos genes ao longo dos ambientes e pode ocorrer de três maneiras (Figura 2): 1) um QTL pode afetar o mesmo caráter em ambientes diferentes, porém com efeitos significativamente diferentes entre os ambientes (Figura 2, QTL3); 2) alguns QTLs pode se expressar em um ambiente e não em outro, o que faz com que ele seja detectado de forma inconsistente entre os diferentes ambientes (Anderson et al., 2013; Tuberosa, 2014) (Figura 2, QTL4), sendo que estes QTLs são relativamente fáceis de incorporar em programas de melhoramento genético porque os alelos favoráveis selecionados irão conferir uma vantagem em alguns ambientes, enquanto que em outros ambientes, pelo menos, serão observados sem efeitos negativos; e 3) o mais crítico tipo de QTL, são aqueles que contribuem com efeitos opostos sobre o fenótipo para interação QTL x E (Figura 2, QTL5), pois o efeito do alelo favorável dependerá do ambiente em que o experimento está sendo conduzido. Além de considerar a interação QTL x E, o melhorista deve estar atento para a consistência dos QTLs entre diferentes populações (Groh et al., 2001).

Segundo Rumin (2005), a avaliação da consistência das associações implica em verificar se uma determinada associação marcador-fenótipo repete em todos os ambientes, ou ao menos na maior parte dos ambientes utilizados. A repetição das associações ao longo dos ambientes é tomada como evidencia da ausência de interação QTL x E, enquanto a de-tecção da associação em apenas um ou alguns dos ambientes é considerada como evidência de interação.

Figura 2. Efeitos dos QTL específicos com o ambiente. QTL1 e QTL2 são estáveis com efeitos aditivo variando positiva ou negativamente, não mostrando interação QTL x E. QTL3 mostra interação Q x E porque o seu efeito sobre o fenótipo é mais forte em um ambiente do que no outro. QTL4 também mostra Q x E, no entanto, é condicionalmente neutro, porque só é detectado no ambiente 1. QTL5 mostra forte interação Q x E porque os efeitos fenotípicos possuem valores opostos quando comparados os dois ambientes (El-Soda et al., 2014).

2.4 SELEÇÃO ASSISTIDA POR MARCADORES (SAM)

No processo de seleção genética para caracteres quantitativos, como a produtividade de grãos, em que a influência do ambiente é maior, espera-se maior contribuição dos marcadores moleculares, em razão das dificuldades envolvidas no processo de seleção fenotípica (Borém & Caixeta, 2006). Para que as informações de marcadores moleculares sejam úteis no processo seletivo, a primeira etapa é a identificação de marcadores associados aos QTL envolvidos no controle do caráter de interesse. Esses marcadores podem ser utilizados na seleção de genótipos superiores. A SAM consiste de dois passos principais: i) a identificação de associações entre locos marcadores e QTL; e ii) o uso dessas associações para o desenvolvimento de populações melhoradas (Bulfield, 1997). Entretanto, a SAM deve ser utilizada como ferramenta auxiliar e não substituta aos métodos tradicionais de melhoramento genético (Jangarelli et al., 2010a). Diversos trabalhos para identificação de QTL relacionados à produtividade de arroz têm sido realizados envolvendo genotipagem de SNPs de alta densidade, porém a conversão desse conhecimento em ferramenta para o melhoramento ou clonagem para geração de plantas geneticamente modificadas permanece um desafio (Mammadov et al., 2012; Swamy & Kumar, 2013; Tan et al., 2013). Um dos motivos da redução da correlação marcador/fenótipo é o ambiental, juntamente com o efeito do background genético (Xu, 2013).

A seleção assistida por marcadores (SAM), em relação aos caracteres quantitativos, é eficiente quando a herdabilidade do caráter é baixa e quando os marcadores explicam alta proporção da variância aditiva dos caracteres (Lande & Thompson, 1990). Como a produtividade de grãos é um caráter que apresenta baixa herdabilidade e é controlada por grande número de genes de pequeno efeito, para se identificar um grupo de marcadores que explique uma maior proporção da variação fenotípica, é necessário utilizar grande número de marcadores, dispersos no genoma (Bernardo, 2002; Xu et al., 2005).

Para incorporar informações dos marcadores moleculares aos programas de melhoramento, devem ser realizados trabalhos com a seleção assistida por marcadores moleculares em condições comuns às de programas de melhoramento que visem à obtenção de linhagens mais produtivas. Nesses programas, normalmente, as famílias a serem selecionadas são oriundas de populações com alta produtividade, obtidas a partir do cruzamento de linhagens elite e cultivares já melhoradas, e que apresentam, portanto, menor variabilidade do que em estudos básicos de mapeamento (Pereira et al., 2008).

3 MATERIAL E MÉTODOS

3.1 DESENVOLVIMENTO DA POPULAÇÃO SEGREGANTE

A população segregante RIL do cruzamento Epagri 108 (sistema de cultivo irrigado) x IRAT 122 (sistema de cultivo de sequeiro) foi desenvolvida na Embrapa Arroz e Feijão. Evidenciando que este estudo deriva de uma pesquisa anterior, conduzida na Embrapa Arroz e Feijão, onde foram geradas 198 combinações envolvendo genótipos da CNAE com alto potencial produtivo em esquema de cruzamento em dialelo. Desse total de combinações foram escolhidos quatro cruzamentos que apresentaram média de produtividade superior na geração F₂: Epagri 108 (irrigado) x IRAT 122 (sequeiro); Epagri 108 (irrigado) x Manijau (irrigado); Araguaia (sequeiro) x IRAT 122 (sequeiro); e Araguaia (sequeiro) x Manijau (irrigado). Um desses cruzamentos (Epagri 108 x IRAT 122), realizado em 2005, foi avaliado nesse estudo, após a etapa de avanço de 280 famílias da geração F₂ até F₇ pelo método SSD (*single seed descent*), dando origem então às linhas puras recombinantes (RILs, *recombinant inbred lines*). A escolha desses genitores levou em consideração a formação de gerações com divergência consideráveis entre si, por ser oriunda de um cruzamento intersubespecífico, e também pela alta capacidade especifica de combinação (CEC) para produção de grãos de arroz.

3.2 EXPERIMENTOS DE CAMPO

Foram avaliadas 280 RILs, os dois parentais e sete testemunhas (Maninjau, BRA051108, BR IRGA 409, BRS Alvorada, IRGA 417, BRS TAIM, BRS Catiana) sob o sistema de cultivo irrigado, em dois experimentos conduzidos em ambientes distintos, na mesma safra (novembro de 2014 a abril de 2015). Um dos experimentos foi instalado na Fazenda Palmital da Embrapa Arroz e Feijão, município de Goianira - GO (16° 26' S, 49° 23' W e altitude média de 728 m), e o outro na Embrapa Roraima, município de Boa Vista - RR (2° 48' N, 60° 39' W e altitude média de 61 m). O delineamento utilizado foi o Látice quadrado 17 x 17, com duas repetições, sendo a parcela constituída por quatro linhas de quatro metros de comprimento e densidade de semeadura de 80 sementes/metro no plantio

mecanizado (Embrapa Arroz e Feijão), e quatro linhas de cinco metros de comprimento no transplantio manual (Embrapa Roraima), ambos com espaçamento de 20 cm entre linhas. A área útil para estimar a produtividade de grãos foi constituída pelas duas linhas centrais (desconsiderados 50 cm da extremidade de cada linha), totalizando 1,2 m² para o ensaio da Embrapa Arroz e Feijão, e 1,6 m² para o ensaio da Embrapa Roraima.

3.2.1 Avaliação fenotípica dos experimentos

Foram avaliados os seguintes caracteres nos ensaios de campo:

- a) Produtividade de grãos (Prod): após a completa maturação fisiológica dos grãos de cada parcela, as panículas de arroz da área útil foram colhidas manualmente, acondicionadas em sacos de fibra de algodão e posteriormente, submetidas à trilha e abanação. Foi determinado o peso de grãos por parcela, posteriormente transformados para kg.ha⁻¹.
- b) Peso de 100 grãos (P100): contagem e determinação do peso de 100 grãos em gramas.

3.2.2 Análise estatística

Com a utilização dos dados por parcela, foram realizadas análises de variância para cada ambiente utilizando o modelo aleatório, além de uma análise conjunta, onde foi aplicado um modelo aleatório tanto para o efeito de ambientes, quanto para as interações linhagens x ambientes. As estimativas de componentes de variância foram obtidas pelo método de máxima verossimilhança residual (REML), com aplicação do procedimento de melhor predição linear não viesada (BLUP) para a predição dos valores genéticos dos efeitos aleatórios (EBLUP) associados a cada uma das RILs, de acordo com o procedimento descrito por Bueno et al. (2012).

Os dados de produção de grãos (Prod, em kg.ha⁻¹) e de peso de 100 grãos (P100, em gramas), envolvendo progênies RILs e testemunhas, considerando o delineamento de Látice 17 x 17, foram submetidos à análise de variância individual em cada experimento conforme o modelo a seguir:

$$y_{ijm} = \mu + r_p + b_{j/p} + t_m + g_{i/m} + \varepsilon_{ijm}$$

em que, segundo adaptação de Duarte et al. (2001):

- y_{ijm} é a observação do genótipo *i* no bloco *j*, sendo o genótipo pertencente ao tipo *m*;
- μ é a média geral (constante inerente a todas as observações);
- r_p é o efeito fixo de repetição p (p = 1, 2, ..., P; neste caso P = 2);

- $b_{j/p}$ é o efeito aleatório de bloco j (j = 1, 2, ..., J) dentro das repetições p;

- t_m é o efeito fixo de tipo m (m = 1, 2, ..., M; neste caso M = 2, com um grupo das progênies e outro de testemunhas);

- $g_{i/m}$ é o efeito aleatório de genótipo *i* (progênies ou testemunhas) dentro do tipo *m* (*i* = 1, 2,..., *P*, *P*+1, *P*+2,..., *P*+T; sendo *P* o número de progênies e T o número de testemunhas), assumindo $g_{i/m} \sim \text{NID} \cap (0, \sigma^2_{\text{gm}})$; e

- ε_{ijm} é o erro experimental associado à ijm-ésima parcela, assumindo-se independente e identicamente distribuído, sob NID \cap (0, σ^2).

Após a obtenção das análises individuais para apenas um local, os dados foram submetidos à análise conjunta de variância para todos os locais, conforme o modelo a seguir:

$$y_{ijkm} = \mu + l_k + b_{j/k} + t_m + g_{i/m} + tl_{mk} + g_{lik} + \varepsilon_{ijkm}$$

em que, segundo adaptação de Duarte et al. (2001):

- y_{ijkm} é a observação do genótipo *i*, no bloco *j*, no local *k*, sendo o genótipo pertencente ao tipo *m*;

- μ é a média geral (constante inerente a todas as observações);

- l_k é o efeito fixo de local k (k = 1, 2, ..., K);

- $b_{j/k}$ é o efeito aleatório de bloco j (j = 1, 2, ..., J), dentro do local k;

- t_m é o efeito fixo de tipo m (m = 1, 2, ..., M; neste caso M = 2, com um grupo das progênies e outro de testemunhas);

- $g_{i/m}$ é o efeito aleatório de genótipo *i* (progênies e testemunhas) dentro do tipo *m* (*i* = 1, 2, ..., *P*, *P* + 1, *P* + 2, ..., *P* + *T*; sendo *P* o número de progênies e *T* o número de testemunhas), assumindo $g_{i/m} \sim \text{NID} \cap (0, \sigma^2_{\text{gm}})$;

- tl_{mk} é o efeito aleatório da interação entre tipo *m* e local *k*, assumindo $tl_{mk} \sim \text{NID} \cap (0, \sigma^2_{tl})$; - g_{lik} é o efeito aleatório da interação entre o genótipo *i* e o local *k*, assumindo $g_{lik} \sim \text{NID} \cap (0, \sigma^2_{gl})$; e

- ε_{ijkm} é o erro experimental médio associado à *ijkm*-ésima parcela, assumido independente e identicamente distribuído, sob NID \cap (0, σ^2).

Os seguintes parâmetros genéticos dos tratamentos foram estimados para cada caráter com base nas variâncias obtidas pela ANOVA: variância genotípica (σ^2_G); variância

fenotípica com base nas médias dos tratamentos (σ^2_F); e $h_{\bar{x}}^2 = \frac{\sigma_G^2}{\sigma_F^2}$, em que $h_{\bar{x}}^2$ é o coeficiente de herdabilidade com base nas médias dos tratamentos. As análises estatísticas dos dados fenotípicos foram realizadas pelo programa *R* versão *3.2.4*.

3.3 ANÁLISES MOLECULARES

Os DNAs genômicos das 280 RILs e seus genitores foram obtidos a partir de folhas jovens, por meio do kit comercial DNeasy 96 Plant Kit (Qiagen). Para a genotipagem de ampla cobertura genômica foi utilizada a metodologia GBS (Genotyping by sequencing), conduzida no BGI, China. Nesta empresa foram construídas as bibliotecas genômicas e conduzido o sequenciamento das RILs. A coleta de dados foi realizada em uma plataforma Genome Analyzer II (Illumina) e o sequenciamento foi do tipo single-end com plexagem de 96 amostras. Após o recebimento dos dados de genotipagem dos SNPs (Single-nucleotide polymorphism) foi realizada uma análise básica através do programa Haploview versão 4.2, para a retirada dos alelos raros que poderiam gerar falsas associações com o fenótipo, utilizando estimativas prévias de desequilíbrio de ligação e índices de endogamia obtidos para a cultura do arroz. Para a detecção de SNPs presentes nas RILs, foi definido o valor de Frequência Mínima dos Alelos (FMA) como 0,05. Este valor corresponde à frequência mínima que o alelo deve apresentar para ser considerado na análise. Além disso, foram considerados como requisitos o coeficiente de endogamia igual a 0,9 e cobertura mínima dos locos igual a 0,2, ou seja, pelo menos 20% das linhagens deverão possuir os dados deste marcador, a qual por sua vez corresponde ao número de acessos com pelo menos uma marca (tag) em cada loco.

Com a utilização do programa *MapDisto* versão 1.7.7, foi realizado o teste de qui-quadrado para identificação dos desvios da segregação Mendeliana, empregando-se um nível de significância (α) conjunto de 5% de probabilidade, a partir do qual foi obtido o nível de significância individual para o teste de cada marcador, como sugerido por Bonferroni (Province, 2001). O mapa de ligação foi construído por esse mesmo programa, utilizando um LOD ≥ 2 e frequência máxima de recombinação $\theta = 0,3$, com cada grupo de ligação sendo mapeado separadamente, uma vez que a ordem dos marcadores em cada grupo de ligação foi pré-estabelecida no sequenciamento realizado pela empresa BGI. As frações de recombinação entre eles foram transformadas em distâncias genéticas (cM) pela função de KOSAMBI (1943).

3.4 ANÁLISE DE QTL

O mapeamento de QTL obtido por marcadores SNPs e as médias ajustadas das linhagens para os caracteres produtividade (Kg.ha⁻¹) e peso de 100 grãos (g), para cada local, foi realizada pelo programa computacional *QTL Cartographer* versão 2.5, módulo *JZmapqtl* (Wang et al., 2001). O método de mapeamento por intervalo composto expandido para múltiplos ambientes (mCIM) utilizando o modelo 6 e o teste de hipótese 14 (referente ao teste de interação ambiental para dados com dois genótipos por marcador), proposto por Jiang e Zeng (1995), foi utilizado para o mapeamento de QTL, pois além de conter informação da significância da interação QTL x ambiente, esse método avalia os QTL significativos para cada ambiente separadamente. Antes da entrada dos dados no programa, foram feitas algumas eliminações de indivíduos (linhagens geneticamente similares/contaminantes) e marcadores SNPs (composição genética similar) por meio do programa estatístico *R* versão *3.2.4*, pacote *R/QTL* (Broman et al., 2003), assumindo um cg (coeficiente de similaridade) > 0,9.

O modelo adotado para a análise de QTL foi: $Y_{jk} = b_{0k} + a_k x_j + \Sigma_1^t (c_{lk} v_{jl}) + e_{jk}$, sendo Y_{ik} a média fenotípica do j ésima linhagem no k ésimo ambiente (j = 1, ..., 232; k = 1, ... 2), onde b_{0k} é o efeito médio do modelo ambiente k; a_k é o efeito aditivo do QTL no ambiente k; x_i é a variável Índicadora do genótipo do provável QTL, assumindo os valores de 0 e 2 para os genótipos aa e AA, respectivamente, com probabilidades que dependem do genótipo dos marcadores que flanqueiam o possível QTL e da fração de recombinação entre o QTL e os marcadores; c_{lk} é o coeficiente de regressão parcial entre os valores fenotípicos e os valores atribuídos a v_{il}; v_{il} é a variável indicadora associada ao cofator l, assumindo t marcadores selecionados como cofatores para o controle da variação genética residual (l = 1, 2, ..., t); e e_{ik} é o resíduo do modelo. A obtenção dos cofatores foi realizada através do método de regressão stepwise (forward/backward), sendo selecionados os 5 marcadores mais informativos por ambiente, evitando a utilização de um elevado número de cofatores (Wang, 2001). Para o mapeamento de QTL foi utilizado um "walking speed" de 2 cM e *"window size"* de 10 cM. Para obtenção do limite de significância (*LOD_{max}*) com o intuito de rejeitar a hipótese H_0 : a = 0 (não há evidencia de efeito de QTL nesta posição), foi realizado o teste de permutação, com valor de $\alpha = 0.05$ e 1000 permutações.

No mapeamento de QTL através deste módulo *JZmapqtl*, o efeito de substituição alélica não é fornecido diretamente, sendo que este fornece apenas o efeito aditivo $[a = (a \pm d)/2]$. Como nestes experimentos foram desconsiderados os locos que ainda se encontravam em heterozigose, porque as porcentagens desses locos eram relativamente baixas (5,59% dos

locos se encontravam em heterozigose), o efeito de substituição alélica considerado (α_t = a ± d) foi obtido multiplicando-se o efeito aditivo fornecido pelo *QTL Cartographer* por 2 (Santos, 2008). A origem dos alelos favoráveis foi obtida de acordo com o sinal dos efeitos de substituições alélicas, conforme proposto por Lubberstedt et al. (1997). Por convenção, nas estimativas dos efeitos da substituição alélica, o valor fenotípico com sinal positivo (+) teve o alelo favorável oriundo do genitor Epagri 108 (AA), enquanto que o valor fenotípico com sinal negativo (-) teve o alelo favorável proveniente do genitor IRAT 122 (aa).

A porcentagem da variância fenotípica explicada para cada QTL significativo foi obtida de acordo com os procedimentos sugeridos por Bohn et al. (1997), sendo: $\hat{R}_F^2 = \frac{\hat{\sigma}_G^2}{\hat{\sigma}_F^2}$, em que \hat{R}_F^2 é a porcentagem da variância fenotípica explicada pelo QTL; $\hat{\sigma}_G^2$ é a variância genética explicada pelo QTL, e $\hat{\sigma}_F^2$ é a variância fenotípica com base na média das linhagens. Para as análises individuais $\hat{\sigma}_F^2 = \hat{\sigma}_G^2 + \left(\frac{\sigma_E^2}{R}\right)$, $\hat{\sigma}_G^2$ é a variância genotípica das linhagens em cada ambiente separadamente, σ_E^2 é a variância do erro experimental para cada ambiente e R é o número de repetições dos experimentos. Para as análises conjuntas foi utilizada a função $\hat{\sigma}_F^2 = \hat{\sigma}_G^2 + \left(\frac{\hat{\sigma}_G^2}{L}\right) + \left(\frac{\hat{\sigma}_E^2}{RL}\right)$, sendo $\hat{\sigma}_G^2$ a variância genotípica das linhagens obtidas pela análise conjunta, $\hat{\sigma}_G^2$, a variância da interação genótipos x ambientes, $\hat{\sigma}_E^2$ a variância do erro experimental da análise conjunta, L o número de locais e R o número de repetições dos experimentos. A variância genética de um QTL foi obtida utilizando a expressão $\hat{\sigma}_G^2 = \frac{1}{2} (\alpha_t)^2$, em que α_t é o efeito médio de uma substituição alélica para linhagens.

Os QTL significativos foram nomeados seguindo o método proposto por McCouch et al. (1997), onde a sigla "*GYLD*" está relacionada com a produtividade e "*HGRWT*" com o peso de 100 grãos. A identificação de genes candidatos subjacentes aos QTL de interesse foi obtida através de busca em bancos de dados do genoma do arroz (*Rice Genome Annotation Project* e *RiceFREND*) e na literatura existente à procura de regiões que estavam dentro ou perto dos picos dos QTL significativos.

4 **RESULTADOS**

4.1 ANÁLISE ESTATÍSTICA

As análises de variâncias detectaram diferenças altamente significativas pelo teste de razão de verossimilhança ($p \le 0,001$) entre as linhagens e seus genitores para a produtividade de grãos e peso de 100 grãos (Tabelas 3 e 4). A diferença verificada no grau de liberdade entre os experimentos de Goianira e Boa Vista, foi pelo motivo de maior perda de parcelas no experimento de Boa Vista. Na análise conjunta, a fonte de variação ambiental e a interação Linhagens x Ambientes foram altamente significativas para o caráter produtividade de grãos, mostrando que houve diferenças entre os ambientes na avaliação da população e a presença de linhagens mais adaptadas para cada ambiente específico (Tabela 5). O coeficiente de variação experimental (CVe) de 15,73% para produtividade e 4,37% para peso de 100 grãos para o experimento de Goianira, e 11,06% para produtividade para o experimento de Boa Vista, demostraram que houve boa precisão experimental, de acordo com os limites encontrados na literatura para a cultura do arroz (de Abreu et al., 2016; Singh et al., 2016) (Tabelas 3 e 4).

Fonte de Variação	GL	Quadrados Médios		
		Prod	P100	
Linhagens + Genitores	281	6429525***	0,10817***	
Resíduo	246	714645	0,016098	
^a CVe (%)		15,73	4,37	

Tabela 3. Análise de Variância e coeficiente de variação dos dados de produtividade epeso de 100 grãos das RILs do experimento de Goianira.

***significativo a $P \le 0,001$, pelo teste de razão de verossimilhança.

^a Coeficiente de variação experimental.

Fonte de Variação	GL	Quadrados Médios	
5		Prod	
Linhagens + Genitores	238	5078819***	
Resíduo	210	523711	
^a <i>CVe</i> (%)		11,06	

 Tabela 4. Análise de Variância e coeficiente de variação dos dados de produtividade das RILs do experimento de Boa Vista.

***significativo a $P \le 0,001$, pelo de razão de verossimilhança.

^a Coeficiente de variação experimental.

Tabela 5. Análise de Variância Conjunta e coeficiente de variação dos dados de produtivi-dade das RILs dos experimentos de Boa Vista e Goianira.

Fonte de Variação	GL	Quadrados Médios
1 onie de Fanação		Prod
Ambientes	1	35901289***
Linhagens + Genitores	281	498618***
Linhagens x Ambientes	239	1622581***
Resíduo	488	626669
^a <i>CVe</i> (%)		13,38

***significativo a $P \le 0,001$, pelo teste de razão de verossimilhança.

^a Coeficiente de variação experimental.

Os gráficos de distribuição de frequência apresentaram uma grande amplitude e variação dos dados experimentais (Figura 3). Ao realizar o teste *Kolmogorov-Smirnov*, foi verificada normalidade da distribuição dos resíduos para os caracteres produtividade e peso de 100 grãos. Não foram observados dados discrepantes (*outliers*) nos gráficos *Boxplot* (Figura 4), os quais também confirmaram a normalidade dos conjuntos de dados de produtividade e peso de 100 grãos por estarem próximos à simetria (Andriotti, 2010).

Figura 3. Distribuição de frequência para produtividade (kg.ha⁻¹) e peso de 100 grãos (g) das RILs nos experimentos de Goianira e Boa Vista.

Figura 4. Gráficos *Boxplot* da produtividade (kg.ha⁻¹) e peso de 100 grãos (g) das RILs nos experimentos de Goianira e Boa Vista.

As médias de produtividade das RILs no experimento de Goianira diferiram significativamente ($p \le 0.05$) das médias das RILs no experimento de Boa Vista de acordo com a análise de variância (Tabela 5). As médias de produtividade das RILs variaram de 1.365,02 kg.ha⁻¹ a 9.437,44 kg.ha⁻¹ no experimento de Goianira, e 3.911,17 kg.ha⁻¹ a 10.161,38 kg.ha⁻¹ no experimento de Boa Vista (Tabela 6). No experimento de Goianira o genitor mais produtivo foi o Epagri 108, enquanto que em Boa Vista, foi o IRAT 122, conforme mostrado o teste de médias Scott-Nott (Anexo A).

	Goianir	a	Boa Vista		
	Prod (kg.ha ⁻¹)	P100 (g)	Prod (kg.ha ⁻¹)	P100 (g)	
Média	5.374	2,90	6.544	-	
^a IC	5.186,31 - 5.561,69	2,88 - 2.93	6.362,56 - 6.725,44	-	
^b SD	1.627.93	0,19	1.449,02	-	
Epagri 108*	5.578,95	2,97	6.365,94	-	
IRAT 122*	4.817,45	2,74	7.753,59	-	

Tabela 6. Estatística para os caracteres agronômicos dos parentais Epagri 108, IRAT 122 e RIL₇ nos experimentos de Goianira e Boa Vista.

^a Intervalo de confiança para média da população usando distribuição t de Student com alfa de 0,05.

^b Desvio padrão.

* Média dos genitores.

As estimativas de variâncias genéticas das linhagens (σ^2_G) e coeficientes de herdabilidade com base nas médias das linhagens ($h_{\bar{x}}^2$) estão apresentadas na Tabela 7. Os maiores valores para variância genética e fenotípica foram encontrados no experimento de Goianira, porém com uma maior variância residual. As herdabilidades nas duas regiões foram iguais para o caráter produtividade, sendo de magnitude alta (0,89) e para o caráter peso de 100 grãos, na região de Goianira, foi também de magnitude alta (0,85).

Tabela 7. Estimativas das variâncias genéticas (σ^2_G), variâncias fenotípicas com base em médias (σ^2_F), variâncias residuais (σ^2_E) e coeficientes de herdabilidade com base em médias ($h_{\bar{x}}^2$) das RILs nos experimentos de Goianira e Boa Vista.

~	σ	² G	σ	² F		c	5^2E	h	2 <i>x</i>
Caráter*	Gyn ¹	BV ²	Gyn ¹	BV ²	(Gyn1	BV ²	 Gyn ¹	BV ²
Prod	2857440	2277554	3214763	2539410	71	4645	523711	0,89	0,89
P100	0,0460	-	0,0540	-	0,	0161	-	0,85	-

* produtividade de grãos (kg.ha⁻¹) e peso de 100 grãos (g).

¹ Experimento de Goianira.

² Experimento de Boa Vista.

4.2 MARCADORES POLIMÓRFICOS

A caracterização molecular das 280 RILs e os dois genitores por GBS forneceu um total de 93.795 SNPs distribuídos nos 12 cromossomos de arroz, contendo 94,41% dos locos em homozigose. Estes dados foram analisados pelo programa *Haploview*, sendo feita a retirada dos marcadores que ainda se encontravam em heterozigose, os que possuíam mais de 20% de dados faltantes, e os que não estavam em desequilíbrio de ligação. Também foram retirados os 44 indivíduos que tinham uma proporção menor que 25% dos cromossomos genotipados. Ao todo, foram selecionados 238 indivíduos e 12.112 marcadores SNPs para a análise de QTL (12,9% do total de SNPs disponíveis). O cromossomo 1 apresentou maior número de marcadores (1.846 marcadores), enquanto que o cromossomo 7 apresentou o menor número (575 marcadores) (Tabela 8).

Cromossomo	Números de SNPs	SNPs polimórficos com	SNPs selecionados para
		$\mathbf{F}\mathbf{W}\mathbf{A} = 0, 05$	
1	11.414	2.406	1.846
2	8.715	3.074	1.467
3	9.438	2.890	801
4	9.245	3.604	1.402
5	8.763	3.038	1.210
6	8.713	2.945	1.003
7	6.648	2.541	575
8	6.828	2.532	610
9	5.312	1.963	709
10	6.235	2.293	619
11	6.124	2.596	778
12	6.360	2.499	1.092
Total	93.795	32.381	12.112

Tabela 8. Número de marcadores SNP obtido pela genotipagem das RILs de arroz por GBS.

4.3 DISTORÇÃO DA SEGREGAÇÃO MENDELIANA E MAPA GENÉTICO

As populações que são utilizadas para mapeamento de QTL apresentam proporções de segregação alélica próprias. Para populações RILs, independentemente da classe do marcador utilizado (dominante ou codominante), a proporção de segregação esperada é de 1:1 (Broman, 2005). Com a utilização do programa *MapDisto*, foram selecionados 2.399 marcadores polimórficos, com segregação esperada de 1:1, segundo o teste da distorção mendeliana, que corresponde ao teste de qui-quadrado para os desvios da segregação esperada. A partir destes marcadores selecionados, distribuídos nos 12 cromossomos do arroz, foi gerado o mapa de ligação com tamanho de 1.129,28 cM e com distância média entre marcadores de 0,64 cM (Anexo B).

Antes da realização das análises de QTL foram ainda eliminados da análise 6 indivíduos e 9.730 marcadores com informação genética redundante por meio do programa

R versão *3.2.4*, pacote *R/qtl* (Broman, 2003), restando então 232 RILs e 2.382 marcadores SNPs polimórficos. Com este conjunto de genótipos e marcadores, a porcentagem dos marcadores oriundos dos genitores IRAT 122 e Epagri 108 no mapa de ligação foi de 50,18% e 49,81%, respectivamente.

4.4 MAPEAMENTO DE QTL PARA PRODUTIVIDADE

Os *LOD_{críticos}* significativos para a produtividade, em ambos os experimentos, foi de 4,20 para Goianira e 2,06 para Boa Vista. Na análise de QTL para produtividade em cada local, foram encontrados dois QTLs significativos específicos para o experimento de Goianira, *qGYLD*_{6.1} e *qGYLD*_{6.2}, ambos localizados no cromossomo 6. Nenhum QTL foi significativamente mapeado no experimento de Boa Vista (Tabela 9). As proporções da variância fenotípica explicadas pelos QTLs foram de 18 e 29%, ou seja, totalizando 47% para produtividade, sendo a soma dos efeitos de substituição alélica totalizando 2.440,69 kg.ha⁻¹. Para ambos os QTL, os alelos favoráveis dos SNPs foram oriundos do genitor IRAT 122.

Dos dois QTLs mapeados para produtividade de grãos em Goianira, apenas um foi significativo para interação QTL x ambientes. Porém, houve significância para uma região no experimento de Boa Vista ($qGYLD_{6.1}$), que não tinha sido significativa na análise individual (Tabela 9).

Para o experimento de Goianira, considerando apenas os conjuntos formados pelas 10 linhagens mais produtivas, com produtividades intermediárias e as menos produtivas, ficou demostrando que o aumento da proporção de alelos herdados do genitor IRAT 122 resultou no aumento na produtividade das RILs (Tabela 10). Porém para o experimento de Boa Vista, considerando os mesmos grupos de produtividade, os alelos de Epagri 108 e IRAT 122 estiveram na mesma proporção nas RILs de cada grupo (Tabela 11). Assim como a análise de QTL havia indicado, para Goianira, a seleção assistida poderia aumentar a frequência de alelos de IRAT 122, e consequentemente a produtividade, de populações do programa de melhoramento genético.

Tabela 9. QTLs significativos para produtividade em linhas puras recombinantes de arroz (RIL) nos experimentos de Goianira (GO), Boa Vista (BV) e Análise conjunta (AC), usando mapeamento por intervalo composto modificado para vários ambientes (mCIM).

Local	QTL	Posição (cM)	Marcador	Genes Candidatos	LOD	^a LOD (G x E)	^b A	^c R ²
GO	qGYLD _{6.1}	29.80	D6M9774110	LOC_Os06g16880	12,33	5,22	-1.365,20	29
00	qGYLD _{6.2}	52.90	D6M19403757	LOC_Os06g12600	7,00	2,42 ^{ns}	-1.075,49	18
								47
BV	qGYLD _{6.1}	29.80	D6M9774110	LOC_Os06g16880	0,06 ^{ns}	14,54	-480,62	4,55
								4,55
AC	qGYLD _{6.1}	29.80	D6M9774110	LOC_Os06g16880	12,38	41,72	-894,38	24,65
	qGYLD _{6.2}	52.90	D6M19403757	LOC_Os06g12600	7,01	21,16	-729,31	16,39
								41,04

^a Valor do LOD com interação GxE.

^b Efeito aditivo com valor negativo representa que a direção alélica proveio do genitor IRAT 122.

^c Valor da variação fenotípica explicada pelo QTL.

^{ns} Não significativo.

	permente	de Columna				
	* Mais produtivas		* Interm	ediárias	* Menos p	rodutivas
Chr	Epagri 108	IRAT 122	Epagri 108	IRAT 122	Epagri 108	IRAT 122
	(%)	(%)	(%)	(%)	(%)	(%)
1	46,5	53,5	53,04	46,96	43,86	56,13
2	61,26	38,74	56,10	43,90	51,25	48,74
3	38,66	61,34	51,53	48,47	51,48	48,51
4	64,24	35,76	64,78	35,22	75,03	24,96
5	52,36	47,64	40,77	59,23	40,55	59,44
6	25,31	74,69	42,17	57,83	77,17	22,82
7	54,67	45,33	41,23	58,77	47,82	52,17
8	53,85	46,15	47,14	52,86	51,66	48,33
9	44,2	55,8	58,08	41,92	68,04	31,95
10	51,95	48,06	48,35	51,65	47,81	52,18
11	41,62	58,38	31,28	68,72	48,66	51,33
12	46,43	53,57	37,90	62,10	42,06	57,93
Total	48,42	51,58	47,70	52,30	53,78	46,21

 Tabela 10. Relação da frequência alélica herdada pelos genitores na população RIL no experimento de Goianira.

* Conjunto das 10 RILs mais produtivas, intermediárias ou menos produtivas obtidas pelo teste Scott Knott. A parte em negrito indica onde os QTL para produtividade foram localizados.

	* Mais produtivos		* Interm	ediários	* Menos p	* Menos produtivos	
Chr	Epagri 108	IRAT 122	Epagri 108	IRAT 122	Epagri 108	IRAT 122	
	(%)	(%)	(%)	(%)	(%)	(%)	
1	43,54	56,46	55,39	44,61	50,28	49,72	
2	59,75	40,25	57,65	42,35	52,32	47,68	
3	47,26	52,74	51,81	48,19	68,03	31,97	
4	43,78	56,22	58,04	41,96	50,19	49,81	
5	55,21	44,79	34,25	65,75	50,14	49,86	
6	53,94	46,06	32,84	67,16	57,27	42,73	
7	58,79	41,21	47,83	52,17	59,84	40,16	
8	66,13	33,87	58,78	41,22	66,41	33,59	
9	29,63	70,37	47,74	52,26	57,65	42,35	
10	49,78	50,22	48,61	51,39	57,74	42,27	
11	63,03	36,97	33,07	66,93	39,98	60,02	
12	32,28	67,72	69,96	30,04	55,77	44,23	
Total	50,26	49,74	49,66	50,34	55,47	44,53	

Tabela 11. Relação da frequência alélica herdada pelos genitores na população RIL no experimento de Boa Vista.

* Conjunto das 10 RILs mais produtivas, intermediárias ou menos produtivas obtidas pelo teste Scott Knott.

4.5 MAPEAMENTO DE QTL PARA O PESO DE 100 GRÃOS

O $LOD_{crítico}$ significativo para o peso de 100 grãos no experimento de Goianira foi de 2,43. Foram mapeados três QTLs, dos quais em dois a contribuição alélica do parental IRAT 122 foi relacionada ao aumento do peso dos grãos (q*HGRWT*_{5.1} e q*HGRWT*_{6.1}), e em um (q*HGRWT*_{12.1}) o alelo favorável foi proveniente do parental Epagri 108 (Tabela 12). Conjuntamente, os três QTLs explicaram 21,58% da variação fenotípica total, e a soma de seus efeitos de substituição alélica resultou em um aumento de 0,39 g para o peso de 100 grãos.

Tabela 12. QTL significativos para peso de 100 grãos em linhas puras recombinantes de arroz (RIL) no experimento de Goianira usando mapeamento por intervalo composto (CIM)

po	sto (Chvi).					
QTL	Posição (cM)	$^{\#}\mathbf{IM}$	Genes Candidatos	LOD	^a A (g)	^b R ²
qHGRWT _{5.1}	85.70	D5M24288587 D5M24777044	*	2.99	-0,14	8.14
qHGRWT _{6.1}	28.70	D6M9205578	LOC_Os06g16160	3.06	-0,13	7.08
qHGRWT _{12.1}	58.70	D12M26019130	LOC_Os12g41956	2.52	0,12	6.36
						21.58

[#] Intervalo do mapa que possui o marcador SNP

^a Efeito aditivo com valor negativo representa que a direção alélica proveio do genitor IRAT 122.

^b Valor da variação fenotípica explicada pelo QTL.

* Genes localizados no Anexo D.

5 DISCUSSÃO

5.1 ANÁLISE FENOTÍPICA

A análise de variância revelou variação altamente significativa entre as RILs para os dois caracteres estudados, em ambos os ambientes, sugerindo a presença de variação genética suficiente e uma ampla margem para o melhoramento para a produtividade de grãos do arroz, resultados estes já observados por Bueno et al. (2012) em estudo com os 550 acessos da CNAE. A alta variabilidade genética detectada na população segregante pode ser explicada por ter sido originada de um cruzamento entre dois genótipos de subespécies distintas (Índica e Japônica), pois a variância genética das linhagens é função da divergência da população e do efeito de substituição alélica dos genitores. Os desempenhos produtivos dos genitores não foram coincidentes nos dois ambientes, com o genitor IRAT 122 apresentando maior produtividade no experimento de Boa Vista, e o genitor Epagri 108 no de Goianira. A média de produtividade das RILs no experimento de Boa Vista foi superior ao experimento de Goianira, que pode ser explicada pelo fato da adaptação/adaptabilidade dos genótipos em um ambiente mais favorável, reforçando os resultados obtidos por Bueno et al. (2012).

Conforme Ribeiro et al. (2009), com as sucessivas autofecundações para o desenvolvimento de populações RILs, há uma consequência de fixação dos locos nessas linhagens, ocorrendo duplicação no componente aditivo de variância, sendo correspondente a $2\sigma^2_A$. Sendo assim, toda a variação genética que compõem o fenótipo dessa população corresponde a variabilidade resultante de ação gênica aditiva, ou seja, a h^2 estimada corresponde à herdabilidade no sentido restrito. Esse é o motivo provável das altas estimativas de herdabilidade ($h_{\tilde{x}}^2$) para a produtividade em ambos os experimentos (89%) e para o peso de 100 grãos para o experimento de Goianira (85%), Índicando com isso o alto potencial da população para seleção de genótipos efetivamente superiores para o melhoramento destes dois caracteres. Segundo Jangarelli et al. (2010b) quando há uma alta herdabilidade para os caracteres, o ganho fenotípico médio para a proxima geração é superior em comparação à ocorrência de herdabilidades mais baixas, e isso é um importante requisito para a identificação da associação entre o QTL e determinado marcador molecular.

5.2 TAMANHO DA POPULAÇÃO E DENSIDADE DOS MARCADORES SNP Em populações para o estudo de QTL, a divergência genética dos parentais, o tamanho da população e a densidade dos marcadores são os principais fatores que afetam esse tipo de análise (Yu et al., 2011). Em geral, o aumento do tamanho da população aliada a uma alta densidade de marcadores moleculares são fatores fundamentais para uma boa resolução do mapa de QTL, pois haverá redução dos erros experimentais e maior poder de detecção, gerando assim uma análise de QTL mais robusta, que resultaria na identificação de um ou poucos genes por QTL mapeado (Wang et al., 2011; Jangarelli, 2015).

A identificação dos QTLs relacionados com a produtividade *GS3* e *qSW5* por Yu et al. (2011) foi baseada em uma distância média de 0,5 cM entre marcadores SNPs, em uma população primária de 210 RILs. Tan et al. (2013) genotiparam uma população de 197 RIL (Índica x Japônica) com 3.324 marcadores SNPs, resultando em mapa de ligação de 1.591,2 cM com distância média de 0,47 cM entre marcadores, identificando um total de 23 QTLs para a produtividade. Em geral, a resolução de mapeamento de QTL está em torno de 0,25 e 0,5 cM para marcadores SNPs (Tan et al., 2013) e, entre 5-10 cM quando são usados marcadores RFLP e SSR (Tan et al., 2000), com um tamanho de população de aproximadamente 200 linhagens, gerando mapas de ligação em torno de 1.600 cM para a cultura do arroz (Chen et al., 2002). Considerando esses parâmetros, pode-se concluir que a resolução do mapa genético do presente estudo foi adequada para uma análise de QTL (0,64 cM), assim como o número de genótipos avaliados (232 RILs).

5.3 QTL PARA PRODUTIVIDADE

A análise de QTL para a população RIL originada do cruzamento Epagri 108 x IRAT 122 identificou dois QTLs de grandes efeitos relacionados à produtividade dentro de um intervalo de 1,26 cM no cromossomo 6 somente para o experimento de Goianira. Os valores dos efeitos da variância fenotípica explicada pelos QTLs podem possuir efeito de superestimação. Caso os QTLs não sejam validados em futuros experimentos de seleção assistida em Boa Vista, os efeitos destes QTLs, de acordo com El-Soda et al. (2014), serão condicionalmente neutros, pois os alelos favoráveis identificados no experimento de Goianira, provavelmente não resultarão em efeitos negativos na produtividade em Boa Vista.

Ao posicionar as posições dos dois QTLs significativos para produtividade identificados nesse trabalho em estudos anteriores, estes foram localizados em QTLs relacionados a produtividade (Tabela 13), indicando que poderar haver sucesso para o aumento de produtividade como resultado da seleção dos alelos favoráveis desses dois marcadores em genótipos do programa de melhoramento de arroz da Embrapa.

	5		1
Autores	QTL/Gene	#IM	Caracteres Relacionados
Abdelkhalik et al. (2005)	qLDLJ-6-1,2,3	4234080-28130383	Dias para amadurecimento da panícula
Hua et al. (2002)	gp6	6927624-20691040	Florescimento
Nakagawa et al. (2005)	-	8054255-11750090	Florescimento
Lu et al. (1997)	gw-6	9282143-17933378	Peso de grãos
Aluko et al. (2004)	-	5425408-24913615	Qualidade de grãos
Xiao et al. (1996)	ph6	6927624-29906021	Altura de planta
Zhuang et al. (2001)	qNFGP-6	8751256-12402719	Número de grãos cheios por panícula
Mew et al. (1994)	Pi-2(t)	9536259-11765132	Resistencia à Brusone
Cho et al. (2007)	tgw6.1	10015514-28130383	Peso de grãos

Tabela 13. QTL/genes já identificados como associados à produtividade em arroz.

[#]Intervalo dos marcadores em pares de bases.

Os SNPs associados ao caráter produtividade foram posicionados no genoma de referência (cultivar Nipponbare, MSU Rice Genome version 7.0). Posteriormente foi obtida a sequência transcrita desses genes para a procura das respectivas funções putativas no website Rice Genome Annotation Project - RGAP (http://rice.plantbiology.msu.edu/) (Kawahara et al., 2013) e coexpressão gênica (http://ricefrend.dna.affrc.go.jp/). Para o QTL *qGYLD*_{6.1}, o SNP localizado na posição D6M9774110 encontra-se próximo (3,63 kpb) ao gene *LOC_Os06g16870*. Esse transcrito está relacionado a um transposon *En/Spm*, sendo a sua maior expressão na região anatômica do ovário da planta do arroz (Anexo C), e que pode estar envolvido com a produtividade de grãos. Transposons são fragmentos de DNA que podem ser integrados em diferentes locais ao longo de um cromossomo e gerar cópias duplicadas durante a transposição (Zhang et al., 2015), contribuindo para a alteração da estrutura da molécula de DNA, o que pode resultar na perda de função de determinado gene.

Para o QTL *qGYLD*_{6.2}, o SNP localizado na posição D6M19403757 está presente na região *éxon* do gene *LOC_Os06g33320*. Esse gene, de função desconhecida para o arroz, de acordo com a análise de ontologia do website Phytozome (https://phytozome.jgi.doe.gov), localiza-se no núcleo e membrana plasmática, cuja maior concentração da expressão foi identificada na inflorescência do arroz (Anexo C).

5.4 QTL PARA PESO DE 100 GRÃOS

O peso de grãos é um dos mais importantes fatores que determinam a produtividade do arroz (Huang et al. 2014). Assim, a identificação dos principais QTLs para esse caráter tem se tornado um objetivo para estudos de genética do arroz (Feng et al., 2016). Nesse estudo foram identificados três QTLs para o experimento de Goianira, localizados nos cromossomos 5, 6 e 12, dentro de um intervalo de 0,44 cM, 1,26 cM e 0,25 cM, respectivamente, que poderiam ser considerados de pequenos efeitos, como já foi relatado pelos autores Zhang et al. (2016).

Em comparação com estudos anteriores pelo website Gramene, todos os QTL identificados neste estudo para o peso de 100 grãos coincidiram com locos descritos na literatura (Tabela 14).

Autores	Chr	QTL/Gene	#IM	Caractere Relacionados
Li et al. (1998)	5	QPl5	18944261-29429411	Densidade de espiguetas
Cai & Morishima (1997)	5	APAGE1	22309016-25730022	Proteínas de reserva
Prashanth et al. (1998)	5	qNBL-5	19614740-27264019	Resistencia à brusone
Jun et al. (2006)	5	qRGR-5	24086072-27457701	Germinação/Dormência
Yoshida et al. (2002)	5	-	19258755-28755091	Qualidade de grãos
Hu et al. (2004)	5	qRFC-5	23597602-28841123	Teor de gordura nos grãos
Li et al. (1999)	5	QFla5	23597602-29429411	Ângulo da folha bandeira
Stangoulis et al. (2007)	5	-	21013626-25225759	Qualidade de grãos
Amarawathi et al. (2007)	6	asv6-1	4234080-28130383	Qualidade de grãos
Yan et al. (1999)	6	<i>S5</i>	6283432-9284248	Fertilidade das espiguetas
Hua et al. (2002)	6	gpб	6927624-20691040	Grãos por panícula
Xiao et al. (1996)	6	ph6	6927624-29906021	Altura de planta
Sirithunya et al. (2002)	6	-	8054255-9537572	Resistencia à brusone
Aluko et al. (2004)	6	-	5425408-24913615	Qualidade de grãos
Lin et al. (1996)	6	sd6	6023974-9537572	Densidade de espiguetas
Nakagawa et al. (2005)	6	-	8054255-11750090	Data de florescimento
Zhuang et al. (2001)	6	qSF-6	8751256-12402719	Fertilidade de espiguetas
Gu et al. (2006)	12	qSD12	23698130-26368115	Dormência das sementes
Hattori et al. (2008)	12	qNEI12	25203610-26368115	Número de entrenós
Nemoto et al. (2004)	12	-	23749070-26368115	Tolerância à submersão
Tang et al. (2005)	12	-	24616244-26389832	Tolerância à submersão
Kawano et al. (2003)	12	qLEI 4	24616244-27664972	Tolerância à submersão
Mishra et al. (2013)	12	-	17395485-17395614	Tolerância ao déficit hídrico

Tabela 14. QTL/genes já identificados como associados ao peso de 100 grãos em arroz.

[#]Intervalo dos marcadores em pares de bases.

Para o caráter peso de 100 grãos, as posições onde foram localizados os três QTLs, estão localizados 84 genes segregando com os marcadores SNPs (http://rice.plantbi-

ology.msu.edu/), localizados nos cromossomos 5, 6 e 12. Para o QTL $qHGRWT_{5.1}$, o marcador SNP localizado na posição D5M24777044 está contido em um bloco de ligação com tamanho de 488 kpb, onde foram localizados 82 genes (Apêndice D e Tabela 15).

O QTL q*HGRWT*_{6.1}, identificado pelo marcador SNP localizado na posição D6M9205578, encontra-se no éxon do gene $LOC_Os06g16160$. Este gene atua como proteína DUF231, cuja função ainda não foi relatada, porém a expressão está localizada quase que exclusivamente na raiz das plantas de arroz.

SNP	Transcrito	Função putativa	Trabalho relacionado		
	LOC_Os05g41490	Proteína ZGT	Huang et al., 2014b		
	LOC_Os05g41530 LOC_Os05g41790 LOC_Os05g41795	ZFP (Zinc finger protein)	Li et al., 2013		
	OseIF3f	Participação na microgametogênese	Li et al., 2016		
D5M24777044	AP2	Controle do desenvolvimento floral e estresse abiótico	Jisha et al., 2015		
	OsDegp8	Remoção de proteínas danificadas, ab- sorção de nutrientes, processamento de precursores proteicos, e sinalização	Schuhmann et al., 2012		
	MOC1	Perfilhamento do arroz	Li et al., 2003		
	OsGH3.4	Regulação do nível de auxina presente na planta	Jain et al., 2006		

Tabela 15. Transcritos descritos na literatura e identificados no bloco haplotípico no cro-
mossomo 5 onde o SNP foi relacionado ao peso de 100 grãos.

O QTL *qHGRWT*_{12.1}, identificado pelo marcador SNP na posição D12M26019130 localizou-se na região intron do gene *LOC_Os12g41956* (Anexo D). Esse gene está putativamente relacionado com a expressão de uma proteína da família galactosil-transferase, tendo função de regulação da enzima principal para a síntese dos RFOs (oligos-sacarídeos da família das rafinoses) (Honna, 2015). Segundo esse autor, a galactosil-transferase provavelmente regula os níveis de oligossacarídeos de reserva em órgãos específicos, como as sementes, sinalizando para o aumento da síntese de rafinose sob determinadas condições, como durante a maturação associada à dessecação das sementes, na sinalização

planta-patógeno, em danos causados por estresse bióticos e na resposta a diversos estresses abióticos.

5.5 INTERAÇÃO QTL x AMBIENTES

A estimativa da interação genótipos (G) x ambientes (E) é importante para a determinação da estabilidade dos efeitos alélicos em genótipos de programas de melhoramento genético vegetal (Xing et al., 2002). No caso da interação QTL x ambiente, deve-se atentar também para a consistência dos QTLs entre diferentes populações, quando o objetivo for a utilização dos marcadores para seleção em populações com backgrounds genéticos distintos (Wang et al., 2014). A maioria dos trabalhos envolvendo análise de QTL para a cultura do arroz tem realizado estudos para demonstrar a existência de interações ambientais entre genótipos e para a determinação da estabilidade varietal através da análise de dados em vários anos e locais (Adriani et al., 2016; Zhang et al., 2016).

Um dos QTL mapeados para produtividade no experimento de Goianira apresentou interação significativa com o ambiente, ou seja, não apresentando estabilidade fenotípica para esse marcador SNP (D6M9774110). Essa interação QTL x E era esperada conforme observado na significância da interação G x E da análise de variância. O efeito da interação QTL x E reduz a associação entre os valores fenotípicos e genotípicos, resultando em níveis distintos dos efeitos da variância fenotípica do QTL em diferentes ambientes, como foi demonstrado por Wang et al. (2014). Nesses casos, consequentemente deve-se ter maior cuidado no emprego da seleção assistida, pois quanto maior o valor da interação QTL x E, menor é a utilidade de determinado marcador em ambientes distintos daquele onde foi desenvolvido. Marathi et al. (2012) trabalhando com RILs provenientes de cruzamentos Índica x Japônica observaram os mesmos resultados para 78 QTLs associados a produtividade, pois houve identificação de QTL em apenas um ambiente específico, ou seja, dentre desses 78 QTLs, só poderiam ser utilizados na seleção assistida nos ambientes em que eles foram localizados, ou em ambientes semelhantes.

5.6 CONSIDERAÇÕES FINAIS

Nos experimentos de avaliação da produtividade de Boa Vista e Goianira não houve RILs com produtividade estatisticamente superior em relação às testemunhas (cultivares comerciais disponíveis). Porém, para o experimento de Goianira, um grupo de 50 RILs foram estatisticamente superiores para o peso de 100 grãos em relação com as testemunhas, embora, como pontuado acima, não tenham diferido quanto a produtividade. Como cruzamentos do tipo Índica x Japônica resultam normalmente em maior esterilidade, e consequentemente, maior número de grãos vazios, o maior peso de grão daquele grupo de RILs pode ter sido resultante do deslocamento de fotoassimilados para os grãos que foram fertilizados (teoricamente em menor número, em relação a cruzamentos dentro da mesma subespécie) na panícula dessas plantas. Essa plasticidade encontrada nesse grupo de RILs pode ser uma característica interessante para o programa de melhoramento genético, impedindo que eventuais problemas no período reprodutivo possam reduzir a produtividade.

Os cinco QTLs identificados nesse trabalho como relacionados à produtividade em arroz serão avaliados em experimentos adicionais, para validação. Uma nova população de 296 RILs derivada do cruzamento Epagri 108 (Índica) x Maninjau (Índica) foi avaliada na safra 2015/2016, enquanto que a população de 182 RILs derivada do cruzamento IRAT 122 (Japônica) x Araguaia (Japônica) será avaliada na safra 2016/2017. O objetivo dessas duas análises é verificar se os contrastes obtidos pelos genitores Epagri 108 e IRAT 122 em dois novos cruzamentos serão capazes de identificar os mesmos QTLs, assim como possibilitar a estimativa dos efeitos da interação QTL x ambiente. Para essas duas novas populações de RILs, três locais serão considerados: Boa Vista, Goianira e Pelotas.

5.7 CONCLUSÃO

Através desse estudo foram identificados dois QTLs de grande efeito exclusivamente para o experimento de Goianira para produtividade de grãos: $qGYLD_{6.1} e qGYLD_{6.2}$. Foram identificados também três QTLs de pequeno efeito para o peso de 100 grãos: $qHGRWT_{5.1}, qHGRWT_{6.1} e qHGRWT_{12.1}$.

No experimento de Goianira, os genes candidatos *LOC_Os06g16870* (transposon) e *LOC_Os06g33320* foram relacionados a QTL de produtividade de grãos. Os genes candidatos *LOC_Os06g16160* (DUF231) e *LOC_Os12g41956* (galactosil-transferase), e uma região contendo 82 genes candidatos, foram relacionados com QTL de peso de 100 grãos.

A população RIL analisada nesse estudo teve suficiente variabilidade genética para gerar contrastes capazes de identificar os QTLs de grandes efeitos. O método de genotipagem por sequenciamento (GBS) foi suficientemente robusto para gerar marcadores SNPs capazes de identificar QTLs para os caracteres mensurados.

6 **REFERÊNCIAS**

ADRIANI, D. E.; DINGKUHN, M.; DARDOU, A.; ADAM, H.; LUQUET, D.; LAFARGE, T. Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent. **Rice**, New York, v. 9, n. 1, p. 1-15, 2016.

ALUKO, G.; MARTINEZ, C.; TOHME, J.; CASTANO, C.; BERGMAN, C.; OARD, J. H. QTL mapping of grain quality traits from the interspecific cross *Oryza sativa* x *O. glaberrima*. **Theoretical and Applied Genetics**, Berlin, v. 109, n. 3, p. 630-639, 2004.

AMARAWATHI, Y.; SINGH, R.; SINGH, A. K.; SINGH, V. P.; MOHAPATRA, T.; SHARMA, T. R.; SINGH, N. K. Mapping of quantitative trait loci for basmati quality traits in rice (*Oryza sativa* L.). **Molecular Breeding**, Dordrecht, v. 21, n. 1, p. 49-65, 2008.

AMMIRAJU, J. S. S.; FAN, C.; YU, Y.; SONG, X.; CRANSTON, K. A.; PONTAROLI, A. C.; LU, F.; SANYAL, A.; JIANG, N.; RAMBO, T.; CURRIE, J.; COLLURA, K.; TALAG, J.; BENNET-ZEN, J. L.; CHEN, M.; JACKSON, S.; WING, R. A. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus *Oryza*. **The Plant Journal**, Oxford, v. 63, n. 3, p. 430-442, 2010.

ANDERSON, J. T.; LEE, C. R.; RUSHWORTH, C. A.; COLAUTTI, R. I.; MITCHELL-OLDS, T. H. O. M. A. S. Genetic trade-offs and conditional neutrality contribute to local adaptation. **Molecular Ecology**, Oxford, v. 22, n. 3, p. 699-708, 2013.

ANDRIOTTI, J. L. S. Interpretação de dados de prospecção geoquímica com o auxílio de estatística. **Porto Alegre: CPRM**, 2010.

ASSMANN, S. M. Natural variation in abiotic stress and climate change responses in Arabidopsis: implications for twenty-first-century agriculture. **International Journal of Plant Sciences**, Chicago, v. 174, n. 1, p. 3-26, 2013.

BAIRD, N. A.; ETTER, P. D.; ATWOOD, T. S.; CURREY, M. C.; SHIVER, A. L.; LEWIS, Z. A.; SELKER, E. U.; CRESKO, W. A.; JOHNSON, E. A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. **PloS one**, San Francisco, v. 3, n. 10, p. e3376, 2008.

WANG, S., BASTEN, C. J., ZENG, Z. B. **QTL Cartographer**. Raleigh: Department of Statistics, North Carolina State University, 2001. 161 p.

BEARZOTI, E. Mapeamento de QTL. In: PINHEIRO, J. B., CARNEIRO, I. F (Ed.). Análise de QTL no melhoramento de plantas. Goiânia: FUNAPE, 2000. p.63-223.

BERED, F.; BARBOSA NETO, J. F.; CARVALHO, F. I. F. Marcadores moleculares e sua aplicação no melhoramento genético de plantas. **Ciência Rural**, Santa Maria, v. 27, n. 2, 1997.

BERNARDO, R. **Breeding for quantitative traits in plants**. Woodbury: Stemma Press, 2002. 369 p.

BERNARDO, R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. **Crop Science**, Madison, v. 48, n. 5, p. 1649-1664, 2008.

BHERING, L. L.; CRUZ, C. D. Tamanho de população ideal para mapeamento genético em famílias de irmãos completos. **Pesquisa Agropecuária Brasileira**, Brasília, v. 43, n. 3, p. 379-385, 2008.

BOER, M. P.; WRIGHT, D.; FENG, L.; PODLICH, D. W.; LUO, L.; COOPER, M., van EEUWIJK, F. A. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. **Genetics**, Austin, v. 177, n. 3, p. 1801-1813, 2007.

BOHN, M. M.; KHAIRALLAH, M.; JIANG, C.; GONZÁLEZ-DE-LEÓN, D.; HOISINGTON, D. A.; UTZ, H. F.; DEUTSCH, J. A.; JEWELL, D. C.; MIHM, J. A.; MELCHINGER, A. E. QTL mapping in tropical maize: II. Comparison of genomic regions for resistance to *Diatraea* spp. **Crop** science, Madison, v. 37, n. 6, p. 1892-1902, 1997.

BORÉM, A.; CAIXETA, E. T. (Ed.). Marcadores moleculares. Viçosa: UFV, 2006. 374 p.

BROMAN, K. W. The genomes of recombinant inbred lines. **Genetics**, Austin, v. 169, n. 2, p. 1133-1146, 2005.

BROMAN, K. W.; WU, H.; SEN, Ś.; CHURCHILL, G. A. R/qtl: QTL mapping in experimental crosses. **Bioinformatics**, Oxford, v. 19, n. 7, p. 889-890, 2003.

BRONDANI, C.; RANGEL, P. H. N.; BRONDANI, R. P. V.; BORBA, T. C. de O.; MENDONÇA, J. A.; MOURA NETO, F. P.; de FRANCO, D. F.; UTUMI, M. M.; PEREIRA, J. A.; CORDEIRO, A. C. C.; FONSECA, J. R. Coleção nuclear de arroz da Embrapa – Parte I: Caracterização agronômica. Série Documentos 189. Embrapa, Santo Antônio de Goiás, 2006. 22 p.

BUENO, L. G.; VIANELLO, R. P.; RANGEL, P. H. N.; UTUMI, M. M.; CORDEIRO, A. C. C.; PEREIRA, J. A.; FRANCO, D. F.; NETO, F. M. MENDONÇA, J. A.; COELHO, A. S. G.; DE OLIVEIRA, J. P.; BRONDANI, C. Adaptabilidade e estabilidade de acessos de uma coleção nuclear de arroz. **Pesquisa Agropecuária Brasileira**, Brasília, v. 47, n. 2, p. 216-226, 2012.

BULFIELD, G. Strategies for the future. Poultry Science, Champaign, v.76, n.8, p.1071-1074, 1997.

CAI, H. W.; MORISHIMA, H. New storage protein genes detected by Acidic Formate-PAGE method. **Rice Genetics Newsletter**, Mishima, v. 14, p. 76-78, 1997.

CARNEIRO, M. S.; CAMARGO, L. E. A.; COELHO, A. S. G.; VENCOVSKY, R.; JÚNIOR, R. P. L.; STENZEL, N. M. C.; VIEIRA, M. L. C. RAPD-based genetic linkage maps of yellow passion fruit (*Passiflora edulis* Sims. f. flavicarpa Deg.). **Genome**, Ottawa, v. 45, n. 4, p. 670-678, 2002.

CHANG, T. T. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. **Euphytica**, Wageningen, v. 25, n. 1, p. 425-441, 1976.

CHEN, M.; PRESTING, G.; BARBAZUK, W. B.; GOICOECHEA, J. L.; BLACKMON, B.; FANG, G.; KIM, H.; FRISCH, D.; YU, Y.; SUN, S.; HIGINGBOTTOM, S.; PHIMPHILAI, J.; PHIMPHI-LAI, D.; THURMOND, S.; GAUDETTE, B.; LI, P.; LIU, J.; HATFIELD, J.; MAIN, D.; FAR-RARA, K.; HENDERSON, C.; BARNETT, L.; COSTA, R.; WILLIAMS, B.; WALSER, S.; AT-KINS, M.; HALL, C.; BUDIMAN, M. A.; TOMKINS, J. P.; LUO, M.; BANCROFT, I.; SALSE, J.; REGADE, F.; MOHAPATRAF, T.; SINGHF, N. K.; TYAGIG, A. K.; SODERLUND, C.; DEAN, R. A.; WING, R. A. An integrated physical and genetic map of the rice genome. **The Plant Cell**, Rockville, v. 14, n. 3, p. 537-545, 2002. CHEN, X.; ZHAO, F.; XU, S. Mapping environment-specific quantitative trait loci. **Genetics**, Austin, v. 186, n. 3, p. 1053-1066, 2010.

CHIES, T. T. DE S.; BURCHARDT, P.; ALVES, E. M. S.; ESSI, L., DOS SANTOS, E. K. O estudo da biodiversidade e evolução vegetal através de marcadores de DNA e citogenética: exemplos em Iridaceae e Poaceae. **Ciência e Natura**, Santa Maria, v. 36 Ed. Especial, 2014, p. 279–293.

CHO, Y. G.; KANG, H. J.; LEE, J. S.; LEE, Y. T.; LIM, S. J.; GAUCH, H.; EUN, M. Y.; McCOUCH, S. R. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. **Crop Science**, Madison, v. 47, n. 6, p. 2403-2417, 2007.

COELHO, A. S. G. Considerações Gerais Sobre a Análise de QTL's. In: PINHEIRO, J. B.; CAR-NEIRO, I. F (Org.). Análise de QTL no Melhoramento de Plantas: 2ª Jornada em Genética e Melhoramento de Plantas realizada na Escola de Agronomia da Universidade Federal de Goiás. Goiânia: Funape, 2000. p. 1-17.

COLLARD, B. C. Y.; JAHUFER, M. Z. Z.; BROUWER, J. B.; PANG, E. C. K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. **Euphytica**, Wageningen, v. 142, n. 1-2, p. 169-196, 2005.

COMPANHIA NACIONAL DE ABASTECIMENTO. Conab: Acompanhamento da Safra Brasileira de Grãos, Brasília, v. 2, n. 6, p. 1-103, 2015a.

COMPANHIA NACIONAL DE ABASTECIMENTO. **Conab: Perspectiva para a agropecuária**, Brasília, v. 2, p. 1-130, 2015b.

DAVEY, J. W.; BLAXTER, M. L. RADSeq: next generation population genetics. **Briefings in functional genomics**, Oxford, v. 9, n. 5, p. 416-423, 2011.

DE ABREU, H. K. A.; TEODORO, P. E.; DE ANDRÉA PANTALEÃO, A.; CORREA, A. M. Genetic parameters, correlations and path analysis in upland rice genotypes = Parâmetros genéticos, correlações e análise de trilha em genótipos de arroz de terras altas. **Bioscience Journal**, Uberlândia, v. 32, n. 2, p. 354-360, 2016.

ELSHIRE, R. J.; GLAUBITZ, J. C.; SUN, Q.; POLAND, J. A.; KAWAMOTO, K.; BUCKLER, E. S.; MITCHELL, S. E.A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. **PloS one**, San Francisco, v. 6, n. 5, p. e19379, 2011.

EL-SODA, M.; MALOSETTI, M.; ZWAAN, B. J.; KOORNNEEF, M.; AARTS, M. G. Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. **Trends in Plant Science**, Kidlington, v. 19, n. 6, p. 390-398, 2014.

FENG, Y.; LU, Q.; ZHAI, R.; ZHANG, M.; XU, Q.; YANG, Y.; WANG, S.; YUAN, X.; YU, H.; WANG, Y.; WEI, X. Genome wide association mapping for grain shape traits in Índica rice. **Planta**, Berlin, p. 1-12, 2016.

FERREIRA, M. E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores RAPD e RFLP em análise genética. Brasília: EMBRAPA-SENARGEM, 1995. 220 p.

GAIKWAD, S.; GORE, R.; GARAD, K. Checklist of the tree flora of the Balaghat Ranges, Maharashtra, India. **Check List**, São Paulo, v. 10, n. 5, p. 1071-1082, 2014.

GANAL, M. W.; ALTMANN, T.; RÖDER, M. S. SNP identification in crop plants. Current opinion in plant biology, London, v. 12, n. 2, p. 211-217, 2009.

GOFF, S. A.; RICKE, D.; LAN, T. H.; PRESTING, G.; WANG, R.; DUNN, M.; GLAZEBROOK, J.; SESSIONS, A.; OELLER, P.; VARMA, H.; HADLEY, D.; HUTCHISON, D.; MARTIN, C.; KATAGIRI, F.; LANGE, B. M.; MOUGHAMER, T.; XIA, Y.; BUDWORTH, P.; ZHONG, J.; MI-GUEL, T.; PASZKOWSKI, U.; ZHANG, S.; COLBERT, M.; SUN, W. L.; CHEN, L.; COOPER, B.; PARK, S.; WOOD, T. C.; MAO, L.; QUAIL, P.; WING, R.; DEAN, R.; YU, Y.; ZHARKIKH, A.; SHEN, R.; SAHASRABUDHE, S.; THOMAS, A.; CANNINGS, R.; GUTIN, A.; PRUSS, D.; REID, J.; TAVTIGIAN, S.; MITCHELL, J.; ELDREDGE, G.; SCHOLL, T.; MILLER, R. M.; BHATNAGAR, S.; ADEY, N.; RUBANO, T.; TUSNEEM, N.; ROBINSON, R.; FELDHAUS, J.; MACALMA, T.; OLIPHANT, A.; BRIGGS, S. A draft sequence of the rice genome (*Oryza sativa* L. ssp. *japonica*). Science, New York, v. 296, n. 5565, p. 92-100, 2002.

GONZÁLES, J. F. Origen, taxonomia y anatomia de la planta de arroz (*Oryza sativa* L.). In: TAS-CÓN, E. J.; GARCÍA, E. D. **Arroz: Investigación y Producción**, 1985. p. 45-80.

GRAMENE. Gramene database in 2010: updates and extensions. Nucleic Acids Res, 2010. Disponível em: cheese">http://archive.gramene.org/qtl/. Acesso em: 28 jun. 2015.

GROH, S.; KIANIAN, S. F.; PHILLIPS, R. L.; RINES, H. W.; STUTHMAN, D. D.; WESENBERG, D. M.; FULCHER, R. G. Analysis of factors influencing milling yield and their association to other traits by analysis in two hexaploid oat populations. **Theoretical and Applied Genetics**, Berlin, v. 103, p. 9-18, 2001.

GU, X. Y.; KIANIAN, S. F.; FOLEY, M. E. Isolation of three dormancy QTLs as Mendelian factors in rice. **Heredity**, London, v. 96, n. 1, p. 93-99, 2006.

GUPTA, P. K.; VARSHNEY, R. K.; SHARMA, P. C.; RAMESH, B. MOLECULAR markers and their applications in wheat breeding. **Plant breeding**, v. 118, n. 5, p. 369-390, 1999.

HAO, W.; LIN, H. X. Towards understanding genetic mechanisms of complex traits in rice. Journal of Genetics and Genomics, Beijing, v. 37, n. 10, p. 653-666, 2010.

HATTORI, Y.; NAGAI, K.; MORI, H.; KITANO, H.; MATSUOKA, M.; ASHIKARI, M. Mapping of three QTLs that regulate internode elongation in deepwater rice. **Breeding Science**, Tokyo, v. 58, n. 1, p. 39-46, 2008.

HE, J.; ZHAO, X.; LAROCHE, A.; LU, Z. X.; LIU, H.; LI, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. **Frontiers in plant science**, Lausanne, v. 5, p. 484, 2014.

HENSON, J.; TISCHLER, G.; NING, Z. Next-generation sequencing and large genome assemblies. **Pharmacogenomics**, London, v. 13, n. 8, p. 901-915, 2012.

HOHENLOHE, P. A.; AMISH, S. J.; CATCHEN, J. M.; ALLENDORF, F. W.; LUIKART, G. Nextgeneration RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. **Molecular Ecology Resource**, Oxford, v. 11, p. 117-122, 2011.

HONNA, P. T. **Obtenção e caracterização molecular e fisiológica de plantas de soja contendo o gene** *AtGolS2* **sob déficit hídrico**. 2015. 86 f. Dissertação (Mestrado em Agronomia: Genética e Melhoramento de Plantas) - Faculdade de Ciências Agrárias e Veterinárias, Unesp, Campus de Jaboticabal, 2015.

HU, H.; DAI, M.; YAO, J.; XIAO, B.; LI, X.; ZHANG, Q.; XIONG, L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.

Proceedings of the National Academy of Sciences, Washington, v. 103, n. 35, p. 12987-12992, 2006.

HU, Z. L.; LI, P.; ZHOU, M. Q.; ZHANG, Z. H.; WANG, L. X.; ZHU, L. H.; ZHU, Y. G. Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines. **Euphytica**, Wageningen, v. 135, n. 1, p. 47-54, 2004.

HUA, J. P.; XING, Y. Z.; XU, C. G.; SUN, X. L.; YU, S. B.; ZHANG, Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. **Genetics**, Austin, v. 162, n. 4, p. 1885-1895, 2002.

HUANG, X.; KURATA, N.; WEI, X.; WANG, Z. X.; WANG, A.; ZHAO, Q.; ZHAO, Y.; LIU, K.; LU, H.; LI, W.; GUO, Y.; LU, Y.; ZHOU, C.; FAN, D.; WENG, Q.; ZHU, C.; HUANG, T.; ZHANG, L.; WANG, Y.; FENG, L.; FURUUMI, H.; KUBO, T.; MIYABAYASHI, T.; YUAN, X.; XU, Q.; DONG, G.; ZHAN, Q.; LI, C.; FUJIYAMA, A.; TOYODA, A.; LU, T.; FENG, Q.; QIAN, Q.; LI, J.; HAN, B. A map of rice genome variation reveals the origin of cultivated rice. **Nature**, London, v. 490, n. 7421, p. 497-501, 2012.

HUANG, A.; XU, S.; CAI, X. Whole-Genome Quantitative Trait Locus Mapping Reveals Major Role of Epistasis on Yield of Rice. **PLoS ONE**, San Francisco, Florida, v. 9, n. 1, p. 1-11, 2014.

HUANG, X.; DUAN, M.; LIAO, J.; YUAN, X.; CHEN, H.; FENG, J.; HUANG, J.; ZHANG, H. S. *OsSLI1*, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (*Oryza sativa* L.). **The Scientific World Journal**, New York, v. 2014, 2014b.

HUR, Y. J.; CHO, J. H.; PARK, H. S.; NOH, T. H.; PARK, D. S.; LEE, J. Y.; SOHN, Y. B.; SHIN, D.; SONG, Y. C.; KWON, Y. U.; LEE, J. H. Pyramiding of two rice bacterial blight resistance genes, Xa3 and Xa4, and a closely linked cold-tolerance QTL on chromosome 11. **Theoretical and Applied Genetics**, Berlin, p. 1-11, 2016.

INTERNATIONAL HUMAN GENOME SEQUENCING CONSORTIUM. Finishing the euchromatic sequence of the human genome. **Nature**, London, v. 431, n. 7011, p. 931-945, 2004.

JAIN, M.; KAUR, N.; TYAGI, A. K.; KHURANA, J. P. The auxin-responsive GH3 gene family in rice (*Oryza sativa*). Functional & integrative genomics, Berlin, v. 6, n. 1, p. 36-46, 2006.

JANGARELLI, M. Acasalamento estratégico na seleção assistida por marcadores utilizando análise multivariada. **Ceres**, Viçosa, v. 61, n. 4, p. 443-450, 2015.

JANGARELLI, M.; EUCLYDES, R. F.; CECON, P. R. Estimação de parâmetros genéticos para diferentes níveis de significância na seleção assistida por marcadores. **Revista brasileira de biometria**, Lavras, v. 28, n. 3, p. 84-95, 2010a.

JANGARELLI, M.; EUCLYDES, R. F.; CRUZ, C. D.; CECON, P. R.; CARNEIRO, A. P. S. Análise de agrupamento de diferentes densidades de marcadores no mapeamento genético por varredura genômica. **Ceres**, Viçosa, v. 57, n. 6, 2010b.

JANNINK, J. L.; LORENZ, A. J.; IWATA, H. Genomic selection in plant breeding: from theory to practice. **Briefings in Functional Genomics**, Oxford, v. 9, n. 2, p. 166-177, 2010.

JANSEN, R. C. Interval mapping of multiple quantitative trait loci. **Genetics**, Austin, v. 135, n. 1, p. 205-211, 1993.

JEFFREYS, A. J.; WILSON, V.; THEIN, S. L. Hypervariable 'minisatellite' regions in human DNA. **Nature**, London, v. 314, n. 6006, p. 67-73, 1985.

JIANG, C.; ZENG, Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. **Gene-***tics*, Austin, v. 140, n. 3, p. 1111-1127, 1995.

JISHA, V.; DAMPANABOINA, L.; VADASSERY, J.; MITHÖFER, A.; KAPPARA, S.; RAMA-NAN, R. Overexpression of an AP2/ERF type transcription factor *OsEREBP1* confers biotic and abiotic stress tolerance in rice. **PloS one**, San Francisco, v. 10, n. 6, p. e0127831, 2015.

JUENGER, T. E. Natural variation and genetic constraints on drought tolerance. Current Opinion in Plant Biology, London, v. 16, n. 3, p. 274-281, 2013.

JUN, Y. O. U.; QIANG, L. I.; BING, Y. U. E.; WEI-YA, X. U. E.; LI-JUN, L. U. O.; XIONG, L. Z. Identification of quantitative trait loci for ABA sensitivity at seed germination and seedling stages in rice. Acta Genetica Sinica, v. 33, n. 6, p. 532-541, 2006.

KAUR, R.; MALIK, C. Next Generation Sequencing: A REVOLUTION IN GENE SEQUENCING. **CIBTech Journal of Biotechnology**, Amsterdam, v. 2, p. 1–20, 2013.

KAWAHARA, Y.; DE LA BASTIDE, M.; HAMILTON, J. P.; KANAMORI, H.; MCCOMBIE, W. R.; OUYANG, S.; SCHWARTZ, D. C.; TANAKA, T.; WU, J.; ZHOU, S.; CHILDS, K. L.; DA-VIDSON, R. M.; LIN, H.; QUESADA-OCAMPO, L.; VAILLANCOURT, B.; SAKAI, H.; LEE, S. S.; KIM, J.; NUMA, H.; ITOH, T.; BUELL, C. R.; MATSUMOTO, T. Improvement of the *Oryza sativa* Nipponbare reference genome using next generation sequence and optical map data. **Rice**, New York, v. 6, n. 1, p. 4, 2013.

KAWAKAMI, A.; SATO, Y.; YOSHIDA, M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. **Journal of Experimental Botany**, Oxford, v. 59, n. 4, p. 793-802, 2008.

KAWANO, R.; MOCHIZUKI, T.; YASUI, H.; DOI, K.; YOSHIMURA, A. QTL analysis for floating ability in rice. **Rice Genetics Newsletter**, Mishima, v. 20, p. 74-77, 2003.

KIM, C.; GUO, H.; KONG, W.; CHANDNANI, R.; SHUANG, L. S.; PATERSON, A. H. Application of genotyping by sequencing technology to a variety of crop breeding programs. **Plant Science**, Shannon, v. 242, p. 14-22, 2016.

KNOTT, S. A.; HALEY, C. S. Multitrait least squares for quantitative trait loci detection. **Genetics**, Austin, v. 156, n. 2, p. 899-911, 2000.

KOSAMBI, D. D. The estimation of map distances from recombination values. **Annals of eugenics**, Oxford, v. 12, n. 1, p. 172-175, 1943.

KRUGLYAK, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. **Nature Genetics**, New York, v. 22, p. 134-144, 1999.

LANDE, R.; THOMPSON, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. **Genetics**, Austin, v. 124, n. 3, p. 743-756, 1990.

LANDER, E. S.; BOTSTEIN, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. **Genetics**, Austin, v. 121, n. 1, p. 185-199, 1989.

LI, Q.; DENG, Z.; GONG, C.; WANG, T. The rice eukaryotic translation initiation factor 3 subunit f (*OseIF3f*) is involved in microgametogenesis. **Frontiers in plant science**, Lausanne, v. 7, 2016.

LI, W. T.; HE, M.; WANG, J.; WANG, Y. P. Zinc finger protein (ZFP) in plants-A review. **Plant Omics**, Lismore, v. 6, n. 6, p. 474, 2013.

LI, X.; QIAN, Q.; FU1, Z.; WANG, Y.; XIONG, G.; ZENG, D.; WANG, X.; LIU, X.; TENG, S.; HIROSHI, F.; YUAN, M.; LUO, D.; HAN, B.; LI, J. Control of tillering in rice. **Nature**, London, v. 422, n. 6932, p. 618-621, 2003.

LI, Z.; PINSON, S. R.; STANSEL, J. W.; PATERSON, A. H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (shape *Oryza sativa* L.). **Molecular Breeding**, Dordrecht, v. 4, n. 5, p. 419-426, 1998.

LI, Z.; PATERSON, A. H.; PINSON, S. R.; STANSEL, J. W. RFLP facilitated analysis of tiller and leaf angles in rice (*Oryza sativa* L.). **Euphytica**, Wageningen, v. 109, n. 2, p. 79-84, 1999.

LIEFTING, M.; ELLERS, J. Habitat-specific differences in thermal plasticity in natural populations of a soil arthropod. **Biological Journal of the Linnean Society**, London, v. 94, n. 2, p. 265-271, 2008.

LIEFTING, M.; HOFFMANN, A. A.; ELLERS, J. Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. **Evolution**, Lancaster, v. 63, n. 8, p. 1954-1963, 2009.

LIN, H. -X.; QIAN, H. -R.; ZHUANG, J. -Y.; LU, J.; MIN, S. -K.; XIONG, Z. -M.; HUANG, N.; ZHENG, K. -L. RFLP mapping of QTLs for yield and related characters in rice (*Oryza sativa* L.). **Theoretical and Applied Genetics**, Berlin, v. 92, n. 8, p. 920-927, 1996.

LITT, M.; LUTY, J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. **American journal of human genetics**, Baltimore, v. 44, n. 3, p. 397, 1989.

LONDO, J. P.; CHIANG, Y. C.; HUNG, K. H.; CHIANG, T. Y.; SCHAAL, B. A. Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple independent domestications of cultivated rice, *Oryza sativa*. **Proceedings of the National Academy of Sciences**, Washington, v. 103, n. 25, p. 9578-9583, 2006.

LU, C.; SHEN, L.; HE, P.; CHEN, Y.; ZHU, L.; TAN, Z.; XU, Y. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. **Theoretical and applied genetics**, Berlin, v. 94, n. 1, p. 145-150, 1997.

LUBBERSTEDT, T.; MELCHINGER, A. E.; SHCON, C. C.; UTZ, F.; KLEIN, D. QTL Mapping in testcrosses of European Flint lines of maize: I. comparison of diferentes testes for yield traits. **Crop Sciencie**, Madison, v. 37, n.3, p. 921-931, 1997.

LUO, X.; JI, S. -D.; YUAN, P. -R.; LEE, H. S.; KIM, D. -M.; BALKUNDE, S.; KANG, J. -W.; AHN, S. -N. QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. **Rice**, New York, v. 6, n. 1, p. 1, 2013.

MA, J.; BENNETZEN, J. L. Rapid recent growth and divergence of rice nuclear genomes. **Proceedings of the National Academy of Sciences of the United States of America**, Washington, v. 101, n. 34, p. 12404-12410, 2004.

MAMMADOV, J.; AGGARWAL, R.; BUYYARAPU, R.; KUMPATLA, S. SNP markers and their impact on plant breeding. **International journal of plant genomics**, New York, v. 2012, p. 11, 2012.

MARATHI, B.; GULERIA, S.; MOHAPATRA, T.; PARSAD, R.; MARIAPPAN, N.; KURUN-GARA, V. K.; ATWAL, S. S.; PRABHU, K. V.; SINGH, N. K.; SINGH, A. K. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (*Oryza sativa* L.). **BMC plant biology**, London, v. 12, n. 1, p. 1, 2012.

MARDIS, E. R. Next-Generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, Palo Alto, v. 9, p. 387-402, 2008.

MARGULIES, M.; EGHOLM, M.; ALTMAN, W. E.; ATTIYA, S.; BADER, J. S.; BEMBEN, L. A.; BERKA, J.; BRAVERMAN, M. S.; CHEN, Y. -J.; CHEN, Z.; DEWELL, S. B.; DU, L.; FI-ERRO, J. M.; GOMES, X. V.; GODWIN, B. C.; HE, W.; HELGESEN, S.; HO, C. H.; IRZYK, G. P.; JANDO, S. C.; ALENQUER, M. L. I.; JARVIE, T. P.; JIRAGE, K. B.; KIM, J. -B.; KNIGHT, J. R.; LANZA, J. R.; LEAMON, J. H.; LEFKOWITZ, S. M.; LEI, M.; L11, J.; LOHMAN, K. L.; LU, H.; MAKHIJANI, V. B.; MCDADE, K. E.; MCKENNA, M. P.; MYERS, E. W.; NICKERSON, E.; NOBILE, J. R.; PLANT, R.; PUC, B. P.; RONAN, M. T.; ROTH, G. T.; SARKIS, G. J.; SIMONS, J. F.; SIMPSON, J. W.; SRINIVASAN, M.; TARTARO, K. R.; TOMASZ, A.; VOGT, K. A.; VOLKMER, G. A.; WANG, S. H.; WANG, Y.; WEINER, M. P.; YU, P.; BEGLEY, R. F.; ROTH-BERG, J. M. Genome sequencing in microfabricated high-density picolitre reactors. **Nature**, London, v. 437, n. 7057, p. 376-380, 2005.

MCCOUCH, S. R.; CHEN, X.; PANAUD, O.; TEMNYKH, S.; XU, Y.; CHO, Y. G.; HUANG, N.; ISHII, T.; BLAIR, M. Microsatellite marker development, mapping and applications in rice genetics and breeding. **Plant molecular biology**, The Hague, v. 35, n. 1-2, p. 89-99, 1997.

MCCOUGH, S. R.; DOERGE, R. W. QTL mapping in rice. **Trends in Genetics**, Amsterdam, v. 11, n. 12, p. 482-487, 1995.

MELO, A. T. O. **Montagem e caracterização do transcritoma de cana-de-açúcar** (*Saccharum* **spp.**) **utilizando dados de sequenciamento de nova geração**. 2015. 102 f. Tese (Doutorado em Genética e Melhoramento de Plantas) – Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2015.

MEW, T. V.; PARCO, A. S.; HITTALMANI, S.; INUKAI, T.; NELSON, R.; ZEIGLER, R. S.; HUANG, N. Fine-mapping of major genes for blast resistance in rice. **Rice Genet Newsl**, Mishima, v. 11, p. 126-128, 1994.

MIRANDA FILHO, J. B.; NASS, L. L. Hibridação no melhoramento. In: NASS, L. L.; VALOIS, A. C. C.; MELO, I. S.; VALADARES-INGLIS, M. C. (Ed.). **Recursos Genéticos & Melhoramento**. Rondonópolis, 2001. p. 603-628.

MISHRA, K. K.; VIKRAM, P.; YADAW, R. B.; SWAMY, B. P. M.; DIXIT, S.; CRUZ, M. T. S.; MATURAN, P.; MARKER, S.; KUMAR, A. qDTY_{12.1}: a locus with a consistent effect on grain yield under drought in rice. **BMC genetics**, London, v. 14, n. 1, p. 1, 2013.

NAKAGAWA, H.; YAMAGISHI, J.; MIYAMOTO, N.; MOTOYAMA, M.; YANO, M.; NE-MOTO, K. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. **Theoretical and Applied Genetics**, Berlin, v. 110, n. 4, p. 778-786, 2005.

NARUM, S. R.; BUERKLE, C. A.; DAVEY, J. W.; MILLER, M. R.; HOHENLOHE, P. A. Genotyping-by-sequencing in ecological and conservation genomics. **Molecular Ecology**, Oxford, v. 22, n. 11, p. 2841-2847, 2013.

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. **NCBI**: PubMed. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed>. Acesso em 25 junho de 2015.

NEMOTO, K.; UKAI, Y.; TANG, D. Q.; KASAI, Y.; MORITA, M. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. **Theoretical and applied genetics**, Berlin, v. 109, n. 1, p. 42-47, 2004.

PATERSON, A. H.; TANKSLEY, S. D.; SORRELLS, M. E. DNA markers in plant improvement. Advances in agronomy, v. 46, p. 39-90, 1991.

PENG, Y.; GAO, Z.; ZHANG, B.; LIU, C.; XU, J.; RUAN, B.; HU, J.; DONG, G.; GUO, L.; LIANG, G.; QIAN, Q. Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice. **Plant cell reports**, Berlin, v. 33, n. 11, p. 1843-1850, 2014.

PEREIRA, H. S.; SANTOS, J. D.; SOUZA, T. D.; LIMA, I. A. Seleção fenotípica e assistida por marcadores moleculares de famílias de feijoeiro-comum com alta produtividade. **Pesquisa Agrope-**cuária Brasileira, Brasília, v. 43, n. 11, p. 1551-1558, 2008.

PETERSON, B. K.; WEBER, J. N.; KAY, E. H.; FISHER, H. S.; HOEKSTRA, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. **PloS one**, San Francisco, v. 7, n. 5, p. e37135, 2012.

PIEPHO, H. P. Statistical tests for QTL and QTL-by-environment effects in segregating populations derived from line crosses. **Theoretical and applied genetics**, Berlin, v. 110, n. 3, p. 561-566, 2005.

PINHEIRO, K. da C. **Avaliação do viés GC em plataformas de sequenciamento de nova geração**. 2015. 60 f. Dissertação (Mestrado em Biotecnologia) - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 2015.

POLAND, J. A.; RIFE, T. W. Genotyping-by-sequencing for plant breeding and genetics. **The Plant Genome**, Madison, v. 5, n. 3, p. 92-102, 2012.

PRASHANTH, G. B.; HITTALMANI, S.; SRINIVASACHARY, K. S.; SHASHIDHAR, H. E. Genetic markers associated with field resistance to leaf and neck blast across locations in rice (*Oryza sativa* L.). **Rice Genetics Newsletter**, Mishima, v. 15, p. 128-131, 1998.

RAFALSKI, A. Applications of single nucleotide polymorphisms in crop genetics. **Current opinion** in plant biology, London, v. 5, n. 2, p. 94-100, 2002.

RAMALHO, M. A. P.; ABREU, A. D. F.; SANTOS, J. D.; NUNES, J. A. R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: UFLA, 2012. 522p.

RAY, D. K.; MUELLER, N. D.; WEST, P. C.; FOLEY, J. A. Yield trends are insufficient to double global crop production by 2050. **PloS one**, San Francisco, v. 8, n. 6, p. e66428, 2013.

REIFSCHNEIDER, F. J. B.; NASS, L. L.; HEINRICH, A. G.; RIBEIRO, C. S. C.; HENZ, G. P.; EUCLIDES FILHO, K.; BOITEUX, L. S.; RITSCHEL, P.; FERRAZ, R. M.; QUECINI, V. **Uma pitada de biodiversidade na mesa dos brasileiros**. 1 ed. Brasília. REIFSCHNEIDER, F.; et al. 2015. 156 p.

RESENDE, M. D. V. Genética de Populações e Desequilíbrio de Ligação Gênica. In: Genômica Quantitativa e Seleção no Melhoramento de Plantas Perenes e Animais. Embrapa, 2008, p. 15.

RIBEIRO, E. H.; PEREIRA, M. G.; DE SOUZA COELHO, K.; JÚNIOR, S. D. P. F. Estimativas de parâmetros genéticos e seleção de linhagens endogâmicas recombinantes de feijoeiro comum (*phaseolus vulgaris* 1.). **Revista Ceres**, Viçosa, v. 56, n.5, p. 580-590, 2009.

RICE FUNCTIONALLY RELATED GENE EXPRESSION NETWORK DATABASE. **Rice-FREND**. Disponível em: http://ricefrend.dna.affrc.go.jp/. Acesso em: 30 de julho de 2016.

RICE GENOME ANNOTATION PROJECT. **Rgap**. Disponível em: http://rice.plantbio-logy.msu.edu/. Acesso em: 30 de julho de 2016.

RICE INFORMATION SYST. **RIS**. Disponível em: <http://rice.genomics.org.cn/rice/statistics/jsp/BGFgene/BGFgeneTotal.jsp?organism=syngenta>. Acesso em: 28 junho de 2015.

Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. **Science**, New York, v. 273, n. 5281, p. 1516-1517, 1996.

ROCHA, F. B.; KLACZKO, L. B. Connecting the dots of nonlinear reaction norms unravels the threads of genotype–environment interaction in Drosophila. **Evolution**, Lancaster, v. 66, n. 11, p. 3404-3416, 2012.

ROMAGOSA, I.; VAN EEUWIJK, F. A.; THOMAS, W. T. Statistical analyses of genotype by environment data. In: Cereals. Springer US, 2009. p. 291-331.

RUMIN, G. C. R. Análise da Interação Genótipo x Ambiente Assistida por Marcadores Moleculares em Milho (*Zea mays L.*). 2005. 230 f. Tese (Doutorado em Agronomia: Genética e Melhoramento de Plantas) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2005.

SANGER, F.; NICKLEN, S.; COULSON, A. R. DNA sequencing with chain-terminating inhibitors. **Proceedings of the National Academy of Sciences**, Washington, v. 74, n. 12, p. 5463-5467, 1977.

SANTOS, M. F. **Mapeamento de QTL em testecrosses de milho com diferentes testadores e níveis de acidez do solo**. 2008. 167 f. Tese (Doutorado em Agronomia em Genética e Melhoramento de Plantas) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2008.

SASAKI, T.; BURR, B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. **Current opinion in plant biology**, London, v. 3, n. 2, p. 138-142, 2000. SCHUHMANN, H.; et al. The family of Deg/HtrA proteases in plants. **BMC plant biology**, London, v. 12, n. 1, p. 1, 2012.

SHIRASAWA, K.; FUKUOKA, H.; MATSUNAGA, H.; KOBAYASHI, Y.; KOBAYASHI, I.; HI-RAKAWA, H.; ISOBE, S.; TABATA, S. Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. **DNA re-search**, Tokyo, v. 20, n. 6, p. 593-603, 2013.

SHIVRAIN, V. K.; BURGOS, N. R.; AGRAMA, H. A.; LAWTON-RAUH, A.; LU, B.; SALES, M. A.; BOYETT, V.; GEALY, D. R.; MOLDENHAUER, K. A. K. Genetic diversity of weedy red rice (*Oryza sativa*) in Arkansas, USA. Weed Research, Oxford, v. 50, n. 4, p. 289-302, 2010.

SILVEIRA, R. D. D. Análise do transcriptoma de arroz de terras altas (*Oryza sativa* L.) cultivado sob condição de seca. 2014. 115 f. Tese (Doutorado em Biologia: Biologia Celular e Molecular) – Instituto de Ciências Biológicas, Universidade Federal de Goiás. Goiânia, 2014.

SINGH1, P. K.; SINGH, K. K.; RATHORE, L. S.; BAXLA, A. K.; BHAN, S. C.; GUPTA, A.; GOHAIN, G. B.; BALASUBRAMANIAN, R.; SINGH, R. S.; MALL, R. K. Rice (*Oryza sativa* L.)

yield gap using the CERES-rice model of climate variability for different agroclimatic zones of India. **Current Science**, Bangalore, v. 110, n. 3, p. 405-413, 2016.

SIRITHUNYA, P.; TRAGOONRUNG, S.; VANAVICHIT, A.; PA-IN, N.; VONGSAPROM, C.; TOOJINDA, T. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (*Oryza sativa*). **DNA research**, Tokyo, v. 9, n. 3, p. 79-88, 2002.

STANGOULIS, J. C.; HUYNH, B. L.; WELCH, R. M.; CHOI, E. Y.; GRAHAM, R. D. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. **Euphytica**, Wageningen, v. 154, n. 3, p. 289-294, 2007.

STAUB, J. E.; SERQUEN, F. C.; GUPTA, M. Genetic markers, map construction, and their application in plant breeding. **HortScience**, Alexandria, v. 31, n. 5, p. 729-741, 1996.

SWAMY, B. P. M.; KUMAR, A. Genomics-based precision breending approaches to improve drought tolerance in rice. **Biotechnology advances**, Oxford, v. 31, n. 8, p. 1308-1318, 2013.

TANA, C.; HANA, Z.; YU, H.; ZHANA, W.; XIEA, W.; CHENA, X.; ZHAOA, H.; ZHOUB, F.; XING, Y. QTL scanning for rice yield using a whole genome SNP array. **Journal of Genetics and Genomics**, Beijing, v. 40, n. 12, p. 629-638, 2013.

TAN, Y. F.; XING, Y. Z.; LI, J. X.; YU, S. B.; XU, C. G.; ZHANG, Q. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. **Theoretical and Applied Genetics**, Berlin, v. 101, n. 5-6, p. 823-829, 2000.

TANG, D. Q.; KASAI, Y.; MIYAMOTO, N.; UKAI, Y.; NEMOTO, K. Comparison of QTLs for early elongation ability between two floating rice cultivars with a different phylogenetic origin. **Breeding science**, Tokyo, v. 55, n. 1, p. 1-5, 2005.

TANKSLEY, S. D. Mapping polygenes. **Annual review of genetics**, Palo Alto, v. 27, n. 1, p. 205-233, 1993.

THE PLANT GENOMICS RESOURCE. **Phytozome**. Disponível em: <https://phyto-zome.jgi.doe.gov> Acesso em: 30 de julho de 2016.

TIWARI, S.; KRISHNAMURTHY S. L.; KUMAR, V.; SINGH, B.; RAO, A. R.; MITHRA S. V. A.; RAI, V.; SINGH, A. K.; NAGENDRA K. S. Mapping QTLs for Salt Tolerance in Rice (*Oryza sativa* L.) by Bulked Segregant Analysis of Recombinant Inbred Lines Using 50K SNP Chip. **PloS one**, San Francisco, v. 11, n. 4, p. e0153610, 2016.

TUBEROSA, R. Phenotyping for drought tolerance of crops in the genomics era. **Drought Phenotyping in Crops: From Theory to Practice**, Lausanne, v. 3, p. 8, 2014.

VALOUEV, A.; ICHIKAWA, J.; TONTHAT, T.; STUART, J.; RANADE, S.; PECKHAM, H.; ZENG, K.; MALEK, J. A.; COSTA, G.; MCKERNAN, K.; SIDOW, A.; FIRE, A.; JOHNSON, S. M. high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequencedictated positioning. **Genome research**, Cold Spring Harbor, v. 18, n. 7, p. 1051-1063, 2008.

VAN KLEUNEN, M.; FISCHER, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. **New Phytologist**, London, v. 166, n. 1, p. 49-60, 2005.

VAN DIJK, E. L.; AUGER, H.; JASZCZYSZYN, Y.; THERMES, C. Ten years of next-generation sequencing technology. **Trends in genetics**, Amsterdam, v. 30, n. 9, p. 418-426, 2014.

VAUGHAN, D.A.; MORISHIMA, H. Biosystematics of the genus Oryza. In: SMITH, C. W.; DIL-DAY, R.H. **Rice. Origin, History, Tecnology and Production**. Jonh Wileyand Sons Inc. New Jersey, 2003. p. 27-65.

VENCOVSKY, R. Herança quantitativa. In: PATERNIANI, E.; VIEGAS, G. P. (Ed.). Melhoramento e produção do milho. 2. ed. Campinas: Fundação Cargill, 1987. v. 1, p.135-214.

VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 486 p.

VIEIRA, E. A.; NODARI, R. O.; DE CARVALHO, F. I. F.; FIALHO, J. D. F. Mapeamento genético de caracteres de quantitativos e sua interação com o ambiente. Planaltina, Embrapa Cerrados. Documentos, 2006. 28 p.

WADE, L. J.; BARTOLOME, V.; MAULEON, R.; VASANT, V. D.; PRABAKAR, S. M.; CHELLIAH, M.; KAMEOKA, I.; NAGENDRA, K.; REDDY, K. R. K.; VARMA, C. M. K.; PATIL, K. G.; SHRESTHA, R.; AL-SHUGEAIRY, Z.; AL-OGAIDI, F.; MUNASINGHE, M.; GOWDA, V.; SEMON, M.; SURALTA, R. R.; SHENOY, V.; VADEZ, V.; SERRAJ, R.; SHASHIDHAR, H. E.; YAMAUCHI, A.; BABU, R. C.; PRICE, A.; MCNALLY, K. L.; HENRY, A. Environmental response and genomic regions correlated with rice root growth and yield under drought in the Ory-zaSNP panel across multiple study systems. **PloS one**, San Francisco, v. 10, n. 4, p. e0124127, 2015.

WANG, L.; WANG, A.; HUANG, X.; ZHAO, Q.; DONG, G.; QIAN, Q.; SANG, T.; HAN, B. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. **Theoretical and applied genetics**, Berlin, v. 122, n. 2, p. 327-340, 2011.

Wang, S.; Meyer, E.; McKay, J. K.; Matz, M. V. 2b-RAD: a simple and flexible method for genomewide genotyping. **Nature methods**, New York, v. 9, n. 8, p. 808-810, 2012.

WANG, X.; PANG, Y.; ZHANG, J.; ZHANG, Q.; TAO, Y.; FENG, B.; ZHENG, T.; XU, Z.; LI, Z. Genetic background effects on QTL and QTL x environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. **The Crop Journal**, Amsterdam, v. 2, n. 6, p. 345-357, 2014.

WATANABE, Y. Genomic constitution of Genus Oryza. In: MATSUO, T.; FUTSUHARA, Y.; KIKUCHI, F.; YAMAGUCHI, H. (Ed.) **Science of the rice plant**. Tokyo: Food and Agriculture Policy Research Center, 1997. v. 3, p. 29-68.

WEIGEL, D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. **Plant physiology**, Lancaster, v. 158, n. 1, p. 2-22, 2012.

WELLER, J. I. **Quantitative trait loci analysis in animals**. London: CABI Publishing, 2001. 287 p.

WILLIAMS, J. G.; KUBELIK, A. R.; LIVAK, K. J.; RAFALSKI, J. A.; TINGEY, S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. **Nucleic acids rese-arch**, London, v. 18, n. 22, p. 6531-6535, 1990.

XIAO, J.; LI, J.; YUAN, L.; TANKSLEY, S. D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. **Theoretical and applied genetics**, Berlin, v. 92, n. 2, p. 230-244, 1996.

XING, Y.; TAN, Y.; HUA, J. P.; SUN, X.; XU, C.; ZHANG, Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of yield traits in rice. **Theoretical and Applied Genetics**, Berlin, v. 105, n. 2-3, p. 248-257, 2002.

XING, Y.; ZHANG, Q. Genetic and molecular bases of rice yield. **Annual review of plant biology**, Palo Alto, v. 61, p. 421-442, 2010.

XU, F.; SUN, X.; CHEN, Y.; HUANG, Y.; TONG, C.; BAO, J. Rapid identification of major QTL associated with rice grain weight and their utilization. **PloS one**, San Francisco, v. 10, n. 3, p. e0122206, 2015.

XU, S. Mapping quantitative trait loci by controlling polygenic background effects. **Genetics**, Austin, v. 195, n. 4, p. 1209-1222, 2013.

XU, Y.; MCCOUCH, S. R.; ZHANG, Q. How can we use genomics to improve cereals with rice as a reference genome? **Plant Molecular Biology**, The Hague, v. 59, n. 1, p. 7-26, 2005.

YAN, C. J.; LIANG, G. H.; ZHU, L. H.; GU, M. H. RFLP analysis on wide compatibility genes in rice variety dular of ecotype aus. **Yi chuan xue bao = Acta genetica Sinica**, Beijing, v. 27, n. 5, p. 409-417, 1999.

YOSHIDA, S.; IKEGAMI, M.; KUZE, J.; SAWADA, K.; HASHIMOTO, Z.; ISHII, T.; NAKA-MURA, C.; KAMIJIMA, O. QTL Analysis for Plant and Grain Characters of Sake-brewing Rice Using a Doubled Haploid Population. **Breeding Science**, Tokyo, v. 52, n. 4, p. 309-317, 2002.

YU, H.; XIE, W.; WANG, J.; XING, Y.; XU, C.; LI, X.; XIAO, J.; ZHANG, Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. **PLoS ONE**, San Francisco, v. 6, p. e17595, 2011.

YU, J.; HU, S.; WANG, J.; WONG, G. K.-S.; LI, S.; LIU, B.; DENG, Y.; DAI, L.; ZHOU, Y.; ZHANG, X.; CAO, M.; LIU, J.; SUN, J.; TANG, J.; CHEN, Y.; HUANG, X.; LIN, W.; YE, C.; TONG, T.; CONG, L.; GENG, J.; HAN, Y.; LI, L.; LI, W.; HU, G.; HUANG, X.; LI, W.; LI, J.; LIU, Z.; LI, L.; LIU, J.; QI, Q.; LIU, J.; LI, L.; LI, T.; WANG, X.; LU, X.; WU, T.; ZHU, M.; NI, P.; HAN, H.; DONG, W.; REN, X.; FENG, X.; CUI, P.; LI, X.; WANG, H.; XU, X.; ZHAI, Y.; XU, Z.; ZHANG, J.; HE, S.; ZHANG, J.; XU, J.; ZHANG, K.; ZHENG, X.; DONG, J.; ZENG, W.; TAO, L.; YE, J.; TAN, J.; REN, X.; CHEN, X.; HE, J.; LIU, D.; TIAN, W.; TIAN, C.; XIA, H.; BAO, Q.; LI1, G.; GAO, H.; CAO, T.; WANG, J.; ZHAO, W.; LI, P.; CHEN, W.; WANG, X.; ZHANG, Y.; HU, J.; WANG, J.; LIU, S.; YANG, J.; ZHANG, G.; XIONG, Y.; LI, Z.; MAO, L.; ZHOU, C.; ZHU, Z.; CHEN, R.; HAO, B.; ZHENG, Y.; CHEN, S.; GUO, W.; LI, G.; LIU, S.; TAO, M.; WANG, J.; ZHU, L.; YUAN, L.; YANG, H. A draft sequence of the rice genome (*Oryza sativa* L. ssp. *Índica*). **Science**, New York, v. 296, n. 5565, p. 79-92, 2002.

YU, Y.; HUANG, Y.; ZHANG, W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. **Field Crops Research**, Amsterdam, v. 136, p. 65-75, 2012.

ZENG, Z. B. Precision mapping of quantitative trait loci. **Genetics**, Austin, v. 136, n. 4, p. 1457-1468, 1994.

ZHANGA, G. H.; LIB, S. Y.; WANGA, L.; YEA, W. J.; ZENGA, D. L.; RAOA, Y. C.; PENGA, Y. I.; HUA, J.; YANGA, Y. L.; XUA, J.; RENA, D. Y.; GAOA, Z. Y.; ZHUA, L.; DONGA, G. J.; HUA, X. M.; YANA, M. X.; GUOA, L. B.; LIB, C. Y.; QIAN, Q. LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of Índica super rice 93-11. **Molecular plant**, Oxford, v. 7, n. 8, p. 1350-1364, 2014.

ZHANG, H. W.; FAN, Y. Y.; ZHU, Y. J.; CHEN, J. Y.; YU, S. B.; ZHUANG, J. Y. Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. **BMC genetics**, London, v. 17, n. 1, p. 1, 2016.

ZHANG, J.; CHIODINI, R.; BADR, A.; ZHANG, G. The impact of next-generation sequencing on genomics. Journal of genetics and genomics, Beijing, v. 38, n. 3, p. 95-109, 2011.

ZHANGA, L.; MAOA, D.; XINGD, F.; BAIA, X.; ZHAOA, H.; YAOA, W.; LIA, G.; XIEA, W.; XING, Y. Loss of function of *OsMADS3* via the insertion of a novel retrotransposon leads to recessive male sterility in rice (*Oryza sativa*). **Plant Science**, Shannon, v. 238, p. 188-197, 2015.

ZHUANG, J.; WU, J.; FAN, Y.; RAO, Z.; ZHENG, K. Genetic drag between a blast resistance gene and QTL conditioning yield trait detected in a recombinant inbred line population in rice. **Rice Genetics Newsletter**, Mishima, v. 18, 69-70, 2001.

ZIETKIEWICZ, E.; RAFALSKI, A.; LABUDA, D. Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. **Genomics**, San Diego, v. 20, n. 2, p. 176-183, 1994.

Experimento de Goianira																	
<mark>284</mark>	<mark>9958,3</mark>	a	48	7125,0	b	17	6000,0	с	130	5062,5	d	205	3937,5	d	87	2187,5	f
71	9750,0	a	273	7125,0	b	57	6000,0	с	185	5062,5	d	271	3916,7	d	162	2187,5	f
250	9666,7	a	37	7083,3	b	236	6000,0	с	253	5062,5	d	67	3895,8	d	140	2166,7	f
47	9604,2	a	68	7083,3	b	278	5979,2	с	262	5041,7	d	183	3875,0	d	189	2104,2	f
149	9395,8	a	153	7062,5	b	39	5979,2	с	38	5041,7	d	231	3854,2	d	141	1958,3	f
4	9000,0	a	69	7041,7	b	60	5979,2	с	259	5020,8	d	215	3812,5	d	279	1833,3	f
31	8895,8	a	83	7000,0	b	76	5979,2	с	58	4979,2	d	98	3750,0	d	174	1812,5	f
<mark>285</mark>	<mark>8729,2</mark>	a	254	6958,3	b	1	5958,3	с	170	4979,2	d	61	3708,3	d	186	1791,7	f
26	8645,8	a	32	6916,7	с	220	5958,3	с	28	4958,3	d	85	3666,7	d	142	1479,2	f
93	8625,0	a	132	6916,7	с	235	5958,3	с	124	4958,3	d	151	3645,8	е	97	1416,7	f
23	8437,5	a	24	6854,2	с	216	5937,5	с	110	4916,7	d	159	3604,2	e	280	1395.8	f
<mark>289</mark>	8437,5	a	228	6833,3	с	15	5895,8	с	226	4916,7	d	211	3604,2	e	171	1333,3	f
281	8312,5	a	35	6791,7	с	120	5895,8	с	272	4875,0	d	163	3583,3	e	277	1208,3	f
80	8291,7	a	257	6791,7	с	214	5875,0	с	282	4875,0	d	56	3562,5	e	165	979,2	f
14	8250,0	a	94	6770,8	с	261	5875,0	с	225	4854,2	d	103	3562,5	e		, i	
175	8187,5	a	198	6770,8	с	245	5854,2	с	99	4770,8	d	111	3562,5	е			
202	8187,5	a	100	6770,8	с	3	5833,3	с	276	4770,8	d	123	3541,7	e			
126	8166.7	a	13	6729.2	c	263	5833.3	c	190	4770.8	d	52	3520.8	e			
197	8125.0	a	287	6708.3	c	7	5812.5	с	75	4750.0	d	112	3520.8	e			
12	8020.8	b	30	6625.0	c	86	5812.5	с	10	4729.2	d	136	3520.8	e			
240	7937.5	b	64	6604.2	c	244	5812.5	c	148	4708.3	ď	164	3500.0	e			
195	7875.0	b	208	6583.3	с	172	5750.0	с	158	4708.3	d	239	3500.0	e			
246	7875.0	ĥ	36	6562.5	c	234	5708.3	c	90	4687.5	ď	265	3395.8	e			
207	7854.2	b	169	6541.7	c	270	5645.8	c	167	4687.5	d	187	3375.0	e			
65	7833.3	b	41	6500.0	c	283	5645.8		275	4687.5	ď	59	3354.2	e			
5	7812.5	b	33	6479.2	c	84	5625.0	c	154	4666.7	ď	74	3354.2	e			
72	7812.5	b	242	6458.3	c	218	5625.0	c	264	4666.7	ď	118	3333.3	e			
248	7791.7	b	54	6458.3	c	176	5562.5	c	105	4645.8	ď	274	3270.8	e			
66	7687 5	h	156	6395.8	c	249	5562,5	c	82	4625.0	d	44	3250.0	e			
191	7687.5	b	223	6395.8	c	62	5520.8	c	224	4625.0	d	212	3250.0	e			
201	7687 5	h	267	6375 0	c	104	5520,8	c	247	4625.0	d	91	3229.2	e			
252	7687.5	b	178	6354.2	c	181	5479.2	c	116	4562.5	ď	241	3208.3	e			
203	7666.7	b	8	6333.3	c	95	5458.3	c	200	4562.5	ď	9	3166.7	e			
135	7583.3	b	46	6312.5	c	137	5458.3	c	113	4520.8	ď	184	3166.7	e			
258	7562.5	b	49	6312.5	c	229	5458.3	c	88	4437.5	ď	131	3104.2	e			
238	7520.8	b	119	6312.5	c	243	5416.7	c	79	4416.7	ď	29	3083.3	e			
6	7500	b	129	6291.7	c	27	5395.8	c	122	4416.7	ď	227	3083.3	e			
232	7500	b	219	6291.7	c	-, 96	5395.8	c	173	4354.2	ď	18	3062.5	e			
288	7500	b	11	6270.8	c	106	5395.8	c	180	4333.3	ď	53	3000.0	e			
268	7479.2	b	155	6250.0	c	251	5395.8	c	50	4312.5	ď	209	2979.2	e			
73	7437.5	h	233	6208 3	c	77	5375 0	c	206	4291 7	d	145	2854.2	e			
19	7395.8	h	166	6208,3	c	89	5375.0	c	222	4291.7	d	43	2854.2	e			
55	7354.2	h	114	6166 7	c	260	5375.0	c	192	4229.2	d	42	2833.3	e			
147	7333 3	h	138	6166.7	c	70	5333 3	c	144	4208 3	d	143	2833,3	e			
266	7333 3	h	92	6125.0	c	188	5312.5	c	177	4125.0	d	168	2033,3	e			
78	7312.5	h	179	6125,0	c	51	5270.8	c	204	4125,0	d	19/	2729,2	6			
25	72917	h	237	6125,0	c	230	5270,8	c	204	4083 3	d d	152	2729,2	6			
63	7270.8	h	108	6083 3	c	256	5270.8	c	128	4062.5	d	127	25417	f			
150	7270,8	h	125	6083,3	c	182	5270,8	d	161	4062,5	d	157	2541,7	f			
115	7208 2	D h	21	6062 5	c	260	5229,2	u d	100	4002,5	u d	221	2520.8	ı f			
101	7208,3	ь Б	40	6062,5	c c	100	5187.5	u d	16	4020.8	u d	1/6	2320,0	ı f			
101	7187 5	D h	81	60/117	c	255	5187.5	u d	10	4020,8	u d	213	2410,7	ı f			
190	71667	<i>и</i> њ	217	6041.7	с 0	255	51/5 9	u A	102	3070.7	u A	1215	2410,7	ı f			
4.5	71667	D h	20	6020.8	C C	160	5104.2	u d	34	3058 2	u a	102	2312,3	ı f			
284	7145 9	D b	122	6020,8	U A	100	5082.2	u a	120	3027 5	u a	210	2270,0	1 F			
200 ×	143,8	U	100	0020,8	C	107	2003,5	u	139	5751,5	u	210	ZZ10,ð	1			

ANEXO A. Teste de Médias (Scott-Knott) nos dados de produtividade de grãos das RILs. Os dados em amarelo referem-se as testemunhas, e em vermelho os genitores.

Experimento de Boa Vista

200	10640,5	a	116	7689,5	b	135	6656,5	с	153	5625	c	182	4787,5	d
150	10594	a	282	7688	b	93	6641	c	224	5625	c	11	4786	d
139	10406	a	6	7625	b	190	6550	c	254	5609,5	c	43	4707,5	d
264	10297	a	118	7625	b	<mark>283</mark>	6484,5	c	59	5578	с	14	4703,5	d
151	10045,5	a	269	7594	b	49	6469	c	73	5570	с	241	4616,5	d
207	10031	a	197	7578	b	63	6469	c	164	5546,5	с	142	4562,5	d
<mark>289</mark>	<mark>9972</mark>	a	163	7562,5	b	216	6465,5	с	236	5516	с	74	4553	d
66	9875	a	106	7484,5	b	9	6437,5	с	174	5509,5	с	235	4410	d
83	9844	a	246	7484,5	b	38	6433	с	222	5497	с	181	4372	d
179	9703,5	a	209	7450	b	111	6406,5	с	131	5453,5	с	53	4368,5	d
155	9656,5	a	237	7437,5	b	88	6391	с	82	5445	с	105	4343,5	d
166	9640,5	a	265	7437,5	b	36	6390,5	с	1	5437,5	с	37	4315,5	d
<mark>286</mark>	9631,5	a	20	7406,5	b	30	6359,5	с	10	5424,5	с	102	4295	d
17	9594	a	196	7375,5	b	24	6337,5	с	2	5422	с	192	4250	d
175	9578.5	a	13	7328.5	b	262	6328	с	180	5390.5	с	108	4219	d
169	9497.5	a	178	7315.5	b	71	6320	с	44	5390	с	267	4203	d
168	9469	a	285	7315.5	b	50	6313.5	с	263	5324	d	56	4164	d
210	9469	a	54	7281.5	b	32	6281.5	с	225	5319	d	242	4150	d
234	9374	a	31	7260	b	61	6265,5	с	60	5297	d	121	4147	d
158	9344.5	a	238	7240.5	b	132	6265.5	c	277	5284.5	d	5	4094	d
94	9329.5	 8	75	7234.5	b	232	6265.5	c	140	5266	ď	113	4037.5	ď
98	9266	- я	69	7212.5	b	64	6234.5	c	144	5266	ď	104	4015.5	ď
284	9203		217	7175	ĥ	134	6203	c	103	5250	ď	33	4000	ď
189	9140 5	•• 9	62	7140 5	ĥ	160	6203	c	152	5250	ď	124	3950	ď
212	9094	u a	52	7125	h	251	6197	c	273	5250	d	58	3937 5	d
130	9031.5	ч я	183	7112	ĥ	146	6187.5	c	40	5240 5	ď	42	3867	ď
280	8970 5	ч я	92	7094	h	89	6175	c	3	5234 5	d	91	3845	d
72	8922	ч я	81	7077	h	248	6156	c	45	5234 5	d	26	3627	d
266	8914 5	a	250	7069	h	120	6140 5	c	127	5234,5	d	177	3609 5	d
126	8859.5	a 9	16	7047	h	228	6125	c	229	5228	d	177	5007,5	u
211	8703.5	a	10	7040 5	h	220	6109 5	c	137	5203	d			
147	8640.5	a	68	7040,5	h	249	6109,5	c	173	5177	d			
39	8618 5	a o	133	7000	h	156	6094	c	157	5156	u d			
41	8516	a 9	15	6984 5	h	274	6094	c	159	5114 5	u d			
80	8451	a	101	6969	h	170	6031	c	18	5094	d			
136	8410	a h	51	6965 5	h	214	6015 5	c	272	5093 5	d			
46	8397	h	162	6955.5	h	95	5985 5	c	21	5078	d			
185	8359 5	h	198	6937 5	h	223	5984 5	c	247	5078	u d			
167	8344	h	252	6932	h	204	5950 5950	c	55	5034	d			
79	8343 5	h	232 287	6906 5	h	215	5937 5	c	77	5031 5	d			
213	8297	h	271	6890 5	м Ь	270	5937 5	c	243	5016	u d			
245	8281	h	240	6875	h	275	5915 5	c c	7	5015 5	u d			
129	8265 5	h	19	6844	h	12	5912,5	r r	25	5005	u d			
117	8250	h	67	6844	h	256	5900	c	8	5000	d			
221	8234 5	h	220	6844	h	115	5875	c	253	4984 5	d			
227	8172	h	96	6798	h	87	5859 5	c c	65	4980	u d			
57	8125	h	125	6797	h	194	5859.5	c	28	4935	u d			
138	8125	h	172	6797	h	268	5800	c	208	4906 5	u d			
90	8037 5	h	112	6781 5	h	255	5781 5	c c	107	4875	u d			
205	7984 5	h	101	6778	b b	233	5734 5	c c	107	4860 5	u d			
195	7975	h	206	6775	h	145	5687 5	c c	123	4878 5	u d			
4	7977	Ь	230	6750	Ь	76	5664	c c	2 <u>81</u>	4020,5 4878	u A			
27	7707	ս Խ	100	6710	0	78	5664	C o	201	4812 5	<mark>и</mark> А			
196	1171 7710 E	Մ Խ	1/0	6706	c	10	5625	c	233	4012,3	۵ د			
100	1110,0	D	140	0700	c	122	5025	С	119	4193,3	a	1		

Cromossomo 1	Cromossomo 2	Cromossomo 3	Cromossomo 4	Cromossomo 5	Cromossomo 6	
0.0 D1M213093 2.0 D1M850120 2.0 D1M1758770 3.0 D1M3530360 6.0 D1M3530360 9.0 D1M1758770 12.0 D1M1758770 12.0 D1M1759776 12.0 D1M17097803 12.0 D1M70970803 13.0 D1M70970803 21.0 D1M17224538 20.0 D1M17508603 21.0 D1M17508603 21.0 D1M17508421 20.0 D1M114528345 30.0 D1M114528345 31.0 D1M11458714 30.0 D1M11588714 31.0 D1M11588714 31.0 D1M114583089 32.0 D1M114582345 33.0 D1M114588714 31.0 D1M115884491 33.0 D1M11588744 35.0 D1M11588744 30.0 D1M11588744 31.0 D1M14583089 99.0 D1M120418175 41	0.0 D2M34964 2.0 D2M837691 3.0 D2M1382249 5.0 D2M1382249 7.0 D2M2343506 9.0 D2M1382249 11.0 D2M1382249 12.0 D2M258636 9.0 D2M4145770 11.0 D2M6181568 16.0 D2M6181568 16.0 D2M6673081 32.0 D2M1087816 32.0 D2M11845771 35.0 D2M1087816 32.0 D2M1184771 70 D2M1087816 32.0 D2M118478121 38.0 D2M17843773 39.0 D2M17843773 39.0 D2M17847738 D2M11847738 D2M17843121 39.0 D2M17847738 0 D2M17847738 0 D2M17847738 0 D2M2162747738 14.0 D2M2162777 15.0 D2M2108777 46.0 D2M21852754 46.0 D	0.0 D3M164423 1.0 D3M727102 2.0 D3M906841 4.0 D3M1832761 6.0 D3M3940936 11.0 D3M3940936 11.0 D3M506505 13.0 D3M6065100 14.0 D3M605783 15.0 D3M8062782 19.0 D3M9068800 20.0 D3M1004863 21.0 D3M1004863 22.0 D3M110405007 22.0 D3M10465007 22.0 D3M10465007 23.0 D3M10465007 24.0 D3M1146500 25.0 D3M1146500 26.0 D3M1146500 28.0 D3M1146570 33.0 D3M14657400 33.0 D3M14657400 33.0 D3M12109177 85.0 D3M22629333 86.0 D3M22629333 90.0 D3M22629343754 91.0 D3M22629343754 92.0 D3M2262934374 93.0	0.0 D4M88178 0.0 D4M8241642 0.0 D4M3241642 0.0 D4M3241642 0.0 D4M3241642 0.0 D4M320029 0.0 D4M2192645 30.0 D4M22192545 30.0 D4M22362593 30.0 D4M22362593 30.0 D4M22362593 30.0 D4M22372269 33.0 D4M22488047 34.0 D4M22482007 34.0 D4M22482007 34.0 D4M22482007 34.0 D4M22482007 34.0 D4M22482007 35.0 D4M2248007 36.0 D4M2248007 38.0 D4M2764888422 38.0 D4M27648888 D4M27648088 39.0 D4M27648888 39.0 D4M27648888 39.0 D4M27648888 241.0 D4M28450181 241.0 D4M284540181 38.0 D4M2845450181 38.0 D4M28	0.0 D5M/89530 0.0 D5M/89530 1.0 D5M/80433 2.0 D5M/804372 3.0 D5M/10738 3.0 D5M/10738 3.0 D5M/10738 3.0 D5M/10738 3.0 D5M/17738 3.0 D5M/1738 3.0 D5M/1793285 35.0 D5M/2297499 38.0 D5M/2297499 38.0 D5M/3295791 42.0 D5M/15821182 45.0 D5M/1729871 46.0 D5M/729871 50.0 D5M/7329871 50.0 D5M/7329871 50.0 D5M/7329871 50.0 D5M/7329871 50.0 D5M/1325832 50.0 D5M/1323876038 50.0 D5M/1323876038 50.0 D5M/14897838 50.0 D5M/14897883 50.0 D5M/14897883 50.0 D5M/14897883 50.0 D5M/148942825 50.0	0.0 D6MT74937 13.0 D6M174937 13.0 D6M174937 13.0 D6M1747390 20.0 D6M1747390 23.0 D6M18503572 23.0 D6M15893572 24.0 D6M5857102 24.0 D6M5820459 24.0 D6M582012 24.0 D6M6928212 24.0 D6M6928212 24.0 D6M6928212 24.0 D6M6928212 24.0 D6M6928212 24.0 D6M6928212 06M6928602 D6M6928602 24.0 D6M6928602 24.0 D6M6928602 26.0 D6M6928602 26.0 D6M6928602 28.0 D6M6928602 29.0 D6M6920578 29.0 D6M6920578 29.0 D6M9205782 29.0 D6M1049205782 29.0 D6M10497178 29.0 D6M11048531 33.0 D6M190777412 33.0	

ANEXO B. Mapa de ligação. Distâncias cumulativas em cM à esquerda e distância em pb à direita de cada cromossomo.

(continua na próxima página)
(Continuação)

Cromossomo 7	Cromossomo 8	Cromossomo 9	Cromossomo 10	Cromossomo 11	Cromossomo 12
0.0 D7M456036 0.0 D7M6531560 1.0 D7M677511 2.0 D7M122872 3.0 D7M122872 3.0 D7M122872 3.0 D7M122872 3.0 D7M122872 3.0 D7M122872 3.0 D7M12287581 7.0 D7M529064 15.0 D7M520064 16.0 D7M542006 17.0 D7M542006 16.0 D7M542040 17.0 D7M5540081 17.0 D7M570865 19.0 D7M7190854 17.0 D7M7190854 21.0 D7M112244066 24.0 D7M11822406 27.0 D7M11822408 28.0 D7M11822408 28.0 D7M11822408 29.0 D7M11822408 21.0 D7M11822408 21.0 D7M11822408 21.0 D7M11822408 21.0 D7M11822408 21.0 D7M11822408 </td <td>0.0 DBM/57588 0.0 DBM/150073 0.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270592 1.0 DBM/288338 7.0 DBM/288491 1.0 DBM/2842965 10.0 DBM/2832486 11.0 DBM/273008 12.0 DBM/2843941 13.0 DBM/2843941 17.0 DBM/2843941 17.0 DBM/273008 12.0 DBM/273008 12.0 DBM/27407308 12.0 DBM/27407308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747307 12.0 DBM/2747307 12.0 DBM/2747433 21.0 DBM/2747307 22.0 DBM/2747307 22.0</td> <td>0.0 D9M150885 34.0 D9M247251 34.0 D9M653227 34.0 D9M247251 34.0 D9M2540058 35.0 D9M4226133 35.0 D9M4226131 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M1209561 43.0 D9M1209561 43.0 D9M12209561 43.0 D9M12209561 94.0 D9M12209561 94.0 D9M1582802 94.0 D9M15838714 48.0 D9M159249761 77.0 D9M1504406 99M15249761 D9M1564470 99M1610700 D9M1837681 82.0 D9M1610760 99M1957934 D9M1963201 99M1957934 D9M1967781 99M1967781 D9M19633047 99M1967871 D9M19678781 99M19677871 D9M1967842 <!--</td--><td>0.0 D10M88738 1.0 D10M882195 1.0 D10M1479829 1.0 D10M1479829 1.0 D10M1479829 2.0 D10M1479829 2.0 D10M1787918 2.0 D10M1787918 2.0 D10M1790100 2.0 D10M1208665 3.0 D10M2268653 3.0 D10M2286533 5.0 D10M228018 6.0 D10M222871 59.0 D10M3222871 59.0 D10M3410472 59.0 D10M34282471 61.0 D10M4928533 61.0 D10M341163 61.0 D10M4928545 61.0 D10M541701 66.0 D10M542522 66.0 D10M5541701 67.0 D10M5911402 70.0 D10M52053 74.0 D10M7051788 74.0 D10M7520679 74.0 D10M7520679 77.0 D10M7520673 74.0</td><td>0,0 D11M126292 0,0 D11M648550 2,0 D11M2126111 4,0 D11M2382398 5,0 D11M246961 5,0 D11M246961 5,0 D11M246961 6,0 D11M246961 6,0 D11M246981 7,0 D11M246981 9,0 D11M3211698 8,0 D11M3216928 9,0 D11M3216928 9,0 D11M3216928 9,0 D11M3272963 13,0 D11M5167017 13,0 D11M5167017 13,0 D11M614316 16,0 D11M6167017 11,0 D11M617017 13,0 D11M617017 14,0 D11M643316 14,0 D11M6297743 17,0 D11M6167037 21,0 D11M6164316 14,0 D11M643366 21,0 D11M11918223 28,0 D11M11918223 28,0 D11M1191444057 25,0</td><td>0.0 D12M790471 3.0 D12M239347 5.0 D12M3290112 6.0 D12M392071 9.0 D12M3581695 8.0 D12M3581695 9.0 D12M342677 9.0 D12M5475467 11.0 D12M5475467 12.0 D12M5475467 12.0 D12M5880995 14.0 D12M578578 15.0 D12M7892000 17.0 D12M78941446 16.0 D12M789276 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M1081821 21.0 D12M1081821 21.0 D12M1086549 21.0 D12M10866834 23.0 D12M10866834 24.0 D12M13822788 31.0 D12M13821788 31.0 D12M13821788 31.0 D12M148422379 <td< td=""></td<></td></td>	0.0 DBM/57588 0.0 DBM/150073 0.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270582 1.0 DBM/270592 1.0 DBM/288338 7.0 DBM/288491 1.0 DBM/2842965 10.0 DBM/2832486 11.0 DBM/273008 12.0 DBM/2843941 13.0 DBM/2843941 17.0 DBM/2843941 17.0 DBM/273008 12.0 DBM/273008 12.0 DBM/27407308 12.0 DBM/27407308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747308 12.0 DBM/2747307 12.0 DBM/2747307 12.0 DBM/2747433 21.0 DBM/2747307 22.0 DBM/2747307 22.0	0.0 D9M150885 34.0 D9M247251 34.0 D9M653227 34.0 D9M247251 34.0 D9M2540058 35.0 D9M4226133 35.0 D9M4226131 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M4226151 36.0 D9M1209561 43.0 D9M1209561 43.0 D9M12209561 43.0 D9M12209561 94.0 D9M12209561 94.0 D9M1582802 94.0 D9M15838714 48.0 D9M159249761 77.0 D9M1504406 99M15249761 D9M1564470 99M1610700 D9M1837681 82.0 D9M1610760 99M1957934 D9M1963201 99M1957934 D9M1967781 99M1967781 D9M19633047 99M1967871 D9M19678781 99M19677871 D9M1967842 </td <td>0.0 D10M88738 1.0 D10M882195 1.0 D10M1479829 1.0 D10M1479829 1.0 D10M1479829 2.0 D10M1479829 2.0 D10M1787918 2.0 D10M1787918 2.0 D10M1790100 2.0 D10M1208665 3.0 D10M2268653 3.0 D10M2286533 5.0 D10M228018 6.0 D10M222871 59.0 D10M3222871 59.0 D10M3410472 59.0 D10M34282471 61.0 D10M4928533 61.0 D10M341163 61.0 D10M4928545 61.0 D10M541701 66.0 D10M542522 66.0 D10M5541701 67.0 D10M5911402 70.0 D10M52053 74.0 D10M7051788 74.0 D10M7520679 74.0 D10M7520679 77.0 D10M7520673 74.0</td> <td>0,0 D11M126292 0,0 D11M648550 2,0 D11M2126111 4,0 D11M2382398 5,0 D11M246961 5,0 D11M246961 5,0 D11M246961 6,0 D11M246961 6,0 D11M246981 7,0 D11M246981 9,0 D11M3211698 8,0 D11M3216928 9,0 D11M3216928 9,0 D11M3216928 9,0 D11M3272963 13,0 D11M5167017 13,0 D11M5167017 13,0 D11M614316 16,0 D11M6167017 11,0 D11M617017 13,0 D11M617017 14,0 D11M643316 14,0 D11M6297743 17,0 D11M6167037 21,0 D11M6164316 14,0 D11M643366 21,0 D11M11918223 28,0 D11M11918223 28,0 D11M1191444057 25,0</td> <td>0.0 D12M790471 3.0 D12M239347 5.0 D12M3290112 6.0 D12M392071 9.0 D12M3581695 8.0 D12M3581695 9.0 D12M342677 9.0 D12M5475467 11.0 D12M5475467 12.0 D12M5475467 12.0 D12M5880995 14.0 D12M578578 15.0 D12M7892000 17.0 D12M78941446 16.0 D12M789276 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M1081821 21.0 D12M1081821 21.0 D12M1086549 21.0 D12M10866834 23.0 D12M10866834 24.0 D12M13822788 31.0 D12M13821788 31.0 D12M13821788 31.0 D12M148422379 <td< td=""></td<></td>	0.0 D10M88738 1.0 D10M882195 1.0 D10M1479829 1.0 D10M1479829 1.0 D10M1479829 2.0 D10M1479829 2.0 D10M1787918 2.0 D10M1787918 2.0 D10M1790100 2.0 D10M1208665 3.0 D10M2268653 3.0 D10M2286533 5.0 D10M228018 6.0 D10M222871 59.0 D10M3222871 59.0 D10M3410472 59.0 D10M34282471 61.0 D10M4928533 61.0 D10M341163 61.0 D10M4928545 61.0 D10M541701 66.0 D10M542522 66.0 D10M5541701 67.0 D10M5911402 70.0 D10M52053 74.0 D10M7051788 74.0 D10M7520679 74.0 D10M7520679 77.0 D10M7520673 74.0	0,0 D11M126292 0,0 D11M648550 2,0 D11M2126111 4,0 D11M2382398 5,0 D11M246961 5,0 D11M246961 5,0 D11M246961 6,0 D11M246961 6,0 D11M246981 7,0 D11M246981 9,0 D11M3211698 8,0 D11M3216928 9,0 D11M3216928 9,0 D11M3216928 9,0 D11M3272963 13,0 D11M5167017 13,0 D11M5167017 13,0 D11M614316 16,0 D11M6167017 11,0 D11M617017 13,0 D11M617017 14,0 D11M643316 14,0 D11M6297743 17,0 D11M6167037 21,0 D11M6164316 14,0 D11M643366 21,0 D11M11918223 28,0 D11M11918223 28,0 D11M1191444057 25,0	0.0 D12M790471 3.0 D12M239347 5.0 D12M3290112 6.0 D12M392071 9.0 D12M3581695 8.0 D12M3581695 9.0 D12M342677 9.0 D12M5475467 11.0 D12M5475467 12.0 D12M5475467 12.0 D12M5880995 14.0 D12M578578 15.0 D12M7892000 17.0 D12M78941446 16.0 D12M789276 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M7892000 17.0 D12M1081821 21.0 D12M1081821 21.0 D12M1086549 21.0 D12M10866834 23.0 D12M10866834 24.0 D12M13822788 31.0 D12M13821788 31.0 D12M13821788 31.0 D12M148422379 <td< td=""></td<>

ANEXO C. Genes candidatos verificados dentro dos picos significativos dos QTL para produtividade.

Gene candi- dato	MSUv7_LocID	Rga	RiceFREND	
		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os06g0280500	LOC_Os06g16870	Transposon protein, putative, CACTA, En/Spm sub-class, expressed	9766794 - 9770480	R Sistema Vegetativo Radicular Florescimento Semente
Os06g0524300	LOC_Os06g33320	Extra-large G-protein-related, putative, expressed	19401016 - 19406760	Porescimento Semente

ANEXO D.	Genes candidatos	identificados adjacentes	ou dentro dos picos	significativos dos	OTL para o	peso de 100 grãos.
		J	1	\mathcal{O}		. 0

Cono condidato	MSUy7 LocID	Rga	RiceFREND	
Oche canuluato	MSCV/_LOCID	Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0494500	LOC_Os05g41480	Domain of unknown func- tion, DUF250 domain contai- ning protein, expressed	24287569-24289620	Bistema Sistema Sistema Radicular Florescimento
Os05g0494600	LOC_Os05g41490	Circadian clock coupling fac- tor ZGT, putative, expressed	24291470-24292858	Sistema vegetativo Radicular Florescimento Semente
Os05g0494700	LOC_Os05g41500	Expressed protein	24298176-24298999	Plorescimento
Os05g0494800	LOC_Os05g41510	SH2 motif, putative, expres- sed	24301347-24311126	Television Sistema Vegetativo Sistema Vegetativo Sistema Vegetativo Sistema
ZOS5-11 - C2H2	LOC_Os05g41530	Zinc finger protein, expressed	24312853-24317067	With the second

Cono condidoto	MSUv7 LocID	R	lgap	RiceFREND
Gene canulato	MSCV7_Locid	Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0495200	LOC_Os05g41540	bZIP transcription factor domain containing pro- tein, expressed	24321000-24322781	Vegetativo Sistema Vegetativo Radicular Florescimento Semente
Os05g0495300	LOC_Os05g41550	Expressed protein	24324455-24329940	Sistema Sistema Florescimento Semente
LOC_Os05g41560.1	LOC_Os05g41560	Transposon protein, pu- tative, unclassified, ex- pressed	24332493-24341384	-
LOC_Os05g41570.1	LOC_Os05g41570	Expressed protein	24342547-24342927	-
Os05g0495600	LOC_Os05g41580	Calcium-transporting ATPase, plasma mem- brane-type, putative, ex- pressed	24347205-24354543	Were the second
Os05g0495700	LOC_Os05g41590	Glycerol-3-phosphate dehydrogenase, putative, expressed	24357908-24361190	Sistema Vegetativo Radicular

Gene candidato	MSUv7 LocID	Rga	RiceFREND	
Oche canuluato	MSCV/_LOCID	Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0496000	LOC_Os05g41620	Expressed protein	24374975-24376837	Bistema Sistema Forescimento Semente
OseIF3f	LOC_Os05g41630	Translation initiation factor eIF3 subunit, putative, ex- pressed	24376912-24377903	Bistema Sistema Florescimento Semente
Os05g0496200	LOC_Os05g41640	Phosphoglycerate kinase pro- tein, putative, expressed	24378361-24381762	Bistema Sistema Florescimento Semente
Os05g0496300	LOC_Os05g41645	Chalcone synthase, putative, expressed	24382439-24382876	-
Os05g0496400	LOC_Os05g41660	ICE-like protease p20 domain containing protein, putative, expressed	24383180-24384628	Negetativo Sistema Florescimento Semente
Os05g0496500	LOC_Os05g41670	ICE-like protease p20 domain containing protein, putative, expressed	24384901-24387468	Wegetativo Sistema Florescimento Semente

Gene candidato MSUv7 LocID		Rg	RiceFREND	
Gene canuluato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
LOC_Os05g41680.1	LOC_Os05g41680	Retrotransposon protein, putative, unclassified, ex- pressed	24389110-24390890	-
LOC_Os05g41690.1	LOC_Os05g41690	Retrotransposon protein, putative, unclassified, ex- pressed	24391665-24394874	-
LOC_Os05g41700.1	LOC_Os05g41700	Retrotransposon protein, putative, unclassified, ex- pressed	24395495-24401125	-
LOC_Os05g41710.1	LOC_Os05g41710	Retrotransposon protein, putative, unclassified	24402550-24403008	-
LOC_Os05g41720.1	LOC_Os05g41720	Retrotransposon protein, putative, unclassified, ex- pressed	24404739-24412491	-
Os05g0497150	LOC_Os05g41750	RecF/RecN/SMC N termi- nal domain containing pro- tein, expressed	24423072-24426490	Negetativo Radicular Florescimento Semento

Cono condidato	MSUv7 LocID	Rį	gap	RiceFREND
Gene canuluato	WISCV7_LOCID	Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
AP2	LOC_Os05g41760	AP2 domain containing protein, expressed	24427885-24428869	Vegetativo Sistema Vegetativo Radicular
LOC_Os05g41770.1	LOC_Os05g41770	Retrotransposon protein, putative, unclassified, ex- pressed	24436009-24439054	-
AP2/EREBP51	LOC_Os05g41780	AP2 domain containing protein, expressed	24444060-24445189	Piorescimento Semente
С-х8-С-х5-С-х3-Н	LOC_Os05g41790	Zinc finger C-x8-C-x5-C- x3-H type family protein, expressed	24464254-24469517	Weight of the second statement
C3HC4	LOC_Os05g41795	Zinc finger C3HC4 type family protein, putative, expressed	24473136-24478871	-
Os05g0497675	LOC_Os05g41800	Ribosomal protein L11 me- thyltransferase-related, pu- tative, expressed	24480751-24483094	-

Gene candidato	Gene candidato MSUv7 LocID		gap	RiceFREND
Gene candidato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
OsDegp8	LOC_Os05g41810	Putative Deg protease homologue, expressed	24483670-24488993	Bistema Sistema Vegetativo Radicular
LOC_Os05g41820.1	LOC_Os05g41820	Expressed protein	24492456-24493152	Sistema Vigetativo Vigetativo Sistema
LOC_Os05g41830.1	LOC_Os05g41830	Retrotransposon protein, putative, Ty1-copia sub- class, expressed	24496497-24501715	-
Os05g0498000	LOC_Os05g41840	Expressed protein	24504454-24505077	-
LOC_Os05g41850.1	LOC_Os05g41850	Retrotransposon protein, putative, Ty3-gypsy sub- class, expressed	24506095-24511638	-
LOC_Os05g41860.1	LOC_Os05g41860	Retrotransposon protein, putative, Ty3-gypsy sub- class, expressed	24512558-24515418	-

Cono condidoto	MSUy7 LocID	Rga	р р	RiceFREND
Gene canuluato	WISCV7_LOCID	Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0498200	LOC_Os05g41870	Glycine-rich cell wall protein, putative, expressed	4518823-24519740	Sistema Vegetativo Radicular
Os05g0498300	LOC_Os05g41880	MutS domain V family pro- tein, expressed	24522895-24532290	B B B B B B B B B B B B B B B B B B B
Os05g0498350	LOC_Os05g41890	Expressed protein	24533226-24535879	-
Os05g0498400	LOC_Os05g41900	Translation initiation factor SUI1, putative, expressed	24537785-24539935	under state and
Os05g0498500	LOC_Os05g41910	Expressed protein	24541182-24544300	evente Bistema Sistema Sistema Radicular Florescimento Semente
Os05g0498666	LOC_Os05g41920	Expressed protein	24551181-24551846	-

Gene candidato	MSUv7 LocID	Rg	ap	RiceFREND
		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0498700	LOC_Os05g41930	N-rich protein, putative, expressed	24552398-24555167	Wegetative Radicular
Os05g0498800	LOC_Os05g41940	Transposon protein, puta- tive, CACTA, En/Spm sub-class, expressed	24560496-24563885	Portugative sistema Vigetative Radicular Protocological Sistema Vigetative Radicular Plorescimento
Os05g0498900	LOC_Os05g41950	Protein kinase, putative, expressed	24569152-24571817	Vegetativo Sistema Vegetativo Radicular
LOC_Os05g41960.1	LOC_Os05g41960	Expressed protein	24575672-24576202	-
SSA1 – 2S	LOC_Os05g41970	Albumin seed storage fam- ily protein precursor, ex- pressed	24576897-24577736	The second secon
LOC_Os05g41980.1	LOC_Os05g41980	cysteine proteinase At4g11310 precursor, pu- tative	24579007-24579675	-

Gene candidato	Gene candidato MSUv7 LocID		pap	RiceFREND
Gene canulato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0499300	LOC_Os05g41990	Peroxidase precursor, pu- tative, expressed	24583250-24584945	yegetativo Radicular Vegetativo Radicular
Os05g0499400	LOC_Os05g42000	Peroxidase precursor, pu- tative, expressed	24587145-24589539	Sistema Vigetativo Sistema Vigetativo Radicular Florescimento Semente
Os05g0499450	LOC_Os05g42010	TraB family protein, puta- tive, expressed	24588324-24593259	With High Sistema Florescimento Semente
Os05g0499600	LOC_Os05g42020	UDP-glucoronosyl and UDP-glucosyl transferase domain containing protein, expressed	24594918-24597258	Bistema Sistema Florescimento Semente
LOC_Os05g42030.1	LOC_Os05g42030	transposon protein, puta- tive, unclassified, ex- pressed	24601986-24604931	-
Os05g0499800	LOC_Os05g42040	UDP-glucoronosyl and UDP-glucosyl transferase domain containing protein, expressed	24605715-24607928	Sistema Sistema Vegetativo Radicular

Gene candidato	MSUv7_LocID	Rga	RiceFREND	
Gene canulato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0500000	LOC_Os05g42060	UDP-glucoronosyl/UDP-glu- cosyl transferase, putative, expressed	24611755-24613221	The stateman of the stateman o
Os05g0500200	LOC_Os05g42070	UDP-glucose flavonoid-O- glucosyltransferase, putative, expressed	24616204-24617365	-
Os05g0500200	LOC_Os05g42080	Expressed protein	24618428-24618837	Radicular Vegetativo Radicular
Os05g0500400	LOC_Os05g42100	Expressed protein	24623313-24624621	Sistema Vegetativo Radicular Plorescimento Semente
Os05g0500450	LOC_Os05g42110	Allyl alcohol dehydrogenase, putative, expressed	24626346-24626852	-
Os05g0500500	LOC_Os05g42120	Heat shock protein, putative, expressed	24627221-24629162	Sistema Florescimento Semente

Cene candidato	MSUv7_LocID	Rgap		RiceFREND
Othe candidato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
MOC1	LOC_Os05g42130	Putative, expressed	24631172-24632715	Vigetativo Sistema Florescimento Semente
Os05g0500700	LOC_Os05g42140	Methyltransferase do- main containing protein, expressed	24633021-24633940	With a statema statema Florescimento Semente
OsGH3.4	LOC_Os05g42150	Probable indole-3-acetic acid-amido synthetase, expressed	24643516-24646086	Porscimento Semente
LOC_Os05g42160.1	LOC_Os05g42160	Expressed protein	24647410-24647772	-
LOC_Os05g42170.1	LOC_Os05g42170	Transposon protein, pu- tative, unclassified	24658434-24658835	-
Os05g0501200	LOC_Os05g42180	Ethylene-responsive pro- tein related, putative, ex- pressed	24663914-24666109	Sistema Vogetativo Vogetativo Semente

Gene candidato	MSUv7_LocID	Rgap		RiceFREND	
Gene cunuluito		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica	
Os05g0501300	LOC_Os05g42190	NADPH-dependent FMN re- ductase domain containing protein, expressed	24669652-24673135	Vegetativo Radicular Florescimento Semente	
Os05g0501350	LOC_Os05g42200	Cyclin-B1-1, putative, ex- pressed	24674707-24676177	-	
Os05g0501400	LOC_Os05g42210	Serine/threonine-protein ki- nase receptor precursor, puta- tive, expressed	24676774-24682628	Torescimento Semente	
Os05g0501600	LOC_Os05g42220	Leucine rich repeat domain containing protein, putative, expressed	24691255-24695487	Bistem Sistem Florescimento Semente	
Os05g0501700	LOC_Os05g42230	Universal stress protein do- main containing protein, pu- tative, expressed	24696315-24697163	Pisterna Nisterna Vegetativo Nationala Pisterna Nisterna	
Os05g0501800	LOC_Os05g42240	Expressed protein	24702380-24703630	-	

Cana candidata	MSUy7 LocID	Rgap		RiceFREND
Gene canuldato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0502000	LOC_Os05g42250	Cyclic nucleotide- gated ion channel 2, putative, expressed	24711968-24716742	Biatena Vegetativo Vegetativo Nisterna
LOC_Os05g42260.1	LOC_0s05g42260	Expressed protein	24720870-24721619	-
Os05g0502200	LOC_Os05g42270	Acyltransferase, puta- tive, expressed	24724324-24727260	R Sistema Vegetativo Radicular Ploreacimento Semente
Os05g0502500	LOC_Os05g42280	Expressed protein	24729478-24732945	Wanting Sistema Sistema Porescimento Semente
Os05g0502700	LOC_Os05g42290	Expressed protein	24735520-24737763	-
Os05g0502800	LOC_Os05g42300	NAF1 domain con- taining protein, ex- pressed	24738575-24742551	B Sistema Sistema Florescimento Semente

Cono condidato	MSUv7_LocID	Rgap		RiceFREND
Gene canuluato		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
LOC_Os05g42310.1	LOC_Os05g42310	Retrotransposon protein, putative, unclassified, ex- pressed	24745148-24748439	-
LOC_Os05g42320.1	LOC_Os05g42320	Retrotransposon protein, putative, unclassified, ex- pressed	24749067-24755222	
Os05g0503000	LOC_Os05g42330	Secretory carrier-associ- ated membrane protein, putative, expressed	24762161-24767769	Wind Stateman Sisteman Florescimento Semente
Os05g0503100	LOC_Os05g42340	Ubiquitin E3 ligase ICP0, putative, expressed	24774717-24775631	-
Os06g0272800	LOC_Os06g16160	Protein of unknown func- tion DUF231, plant do- main containing protein.	9206466 - 9202757	Sistema Vogetativo Radicular
Os12g0613850	LOC_Os12g41956	Galactosyltransferase fa- mily, putative, expressed	26016668-26020765	-

Gene candidato	MSUv7_LocID	Rgap		RiceFREND
		Função do gene	Coordenadas CDS (5'-3')	Coexpressão gênica
Os05g0495900	LOC_Os05g41610	Glycosyl hydrolases fam- ily 17, putative, expressed	24371212-24374703	Vegetativo Radicular