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Resumo
Prever o recurso solar é uma ferramenta essencial para sua integração com a rede elétrica.
Esta tese foca em previsão solar intra-diária, com uma análise robusta de previsão de
irradiância testada em múltiplas localidades e uma proposta de implementação de pre-
visão de potência fotovoltaica (FV). Dois algoritmos de aprendizagem de máquinas são
avaliados para previsão intra-diária da irradiância solar: programação genética multigene
(PGMG) e redes neurais artificiais do tipo multilayer perceptron (MLP). PGMG é um
algoritmo evolucionário e um método tipo "caixa branca" e é uma nova técnica na área.
Os algoritmos de aprendizagem de máquinas também são comparados com um modelo de
persistência inteligente (smart persistence) para prever a irradiância solar com dados de
seis localidades. Os horizontes de previsão considerados são 15–120 minutos à frente. Os
resultados das simulações mostram um aprimoramento consistente das previsões quando
variáveis climáticas exógenas são adicionadas como entrada aos modelos, sendo 5.68% o
aprimoramento pelo cálculo de erro médio absoluto (MAE) e 3.41% o aprimoramento pelo
cálculo de raiz do erro quadrático médio (RMSE). Os resultados também mostram que
localidade, horizonte de previsão e métrica de erro escolhida influenciam a dominância de
acurácia dos modelos. Dois modelos de irradiância de céu claro foram implementados, mas
os resultados indicam para uma baixa influência dos modelos na acurácia de previsão para
previsões multivariadas por aprendizagem de máquinas. Em uma perspectiva genérica,
PGMG apresentou resultados mais precisos e robustos que MLP em previsões individuais,
provendo soluções mais rápidas. Entretanto, MLP apresentou mais precisão em previsões
do tipo ensemble, porém estas apresentam também maior complexidade e maior custo
computacional. A implementação de previsão de potência FV mostrou resultados consis-
tentes, aprimorando valores de RMSE de previsões de persistência em 9.79%–23.75% para
horizontes de 15–120 minutos.

Palavras-chave: Redes neurais artificiais; previsão solar intra-diária; programação gené-
tica multigene; operação de sistema elétrico de potência; previsão de potência FV; previsão
de curto prazo.



Abstract
Forecasting solar resources is an essential tool for its integration into electrical utility
grids. This thesis focuses on intraday solar forecasting, with a robust analysis of irradiance
forecasting tested on multiple sites and a proposed PV power forecast implementation.
Two machine learning (ML) algorithms for intraday solar irradiance forecasting were
evaluated: multigene genetic programming (MGGP) and the multilayer perceptron (MLP)
artificial neural network (ANN). MGGP is an evolutionary algorithm white-box method
and is a novel approach in the field. The ML algorithms are also compared with a smart
persistence model to forecast irradiance for databases from six locations. The forecast
horizons under consideration are 15–120 minutes ahead. The results show a consistent
improvement of MAE and RMSE values by adding exogenous weather variables as input to
the ML algorithms of 5.68% and 3.41%, respectively. The results also show that location,
forecast horizon and error metric definition affect model accuracy dominance. Two clear sky
models were implemented, but results indicate a low influence of them in multivariate ML
forecast accuracy. MGGP presented more accurate and robust results in single prediction
cases in a general perspective, providing faster solutions. In contrast, ANN presented
more accurate ensemble forecasting results, although it presented higher complexity and
required additional computational effort. The implementation of the PV power forecasting
model has shown consistent results, improving RMSE values from a kPV index smart
persistence by 9.79%–23.75% for horizons of 15–120 minutes.

Keywords: Artificial neural networks; Intraday solar forecasting; Multigene genetic
programming; Power system operation; PV power forecasting; Short-term forecasting.
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1 Introduction

Power systems are traditionally dependent on fossil fuels, which are energy sources
whose power plants emit a high amount of carbon dioxide and other carbon compounds
(high carbon footprints) (MESSAGIE et al., 2014; WANG et al., 2018). In the USA,
electricity from coal, natural gas and petroleum accounted for 69.2% and 62.9% of total
electricity production in 2009 and 2019, respectively (EIA, 2020). In Europe, electricity
generated from fossil fuels accounted for 51.3% and 40% in 2009 and 2018, respectively
(EEA, 2012; EUROSTAT, 2020). In Brazil, electricity generated from fossil fuels accounted
for 15.3% and 14.2% in 2008 and 2018, respectively (EPE, 2009; EPE, 2019).

Solar photovoltaic (PV) and wind energy have been the new bet for reducing carbon
emissions from traditional power systems, since carbon emissions are known as greenhouse
gases and are considered the leading cause of climate change (JACOBSON, 2010). In the
USA, solar and wind accounted for 1.9% and 9.0% of total electricity production in 2009
and 2019, respectively (EIA, 2020). In Europe, they increased from 4.5% in 2009 to 15%
in 2018 (EUROSTAT, 2020). In Brazil, they increased from nearly 0% in 2008 to 8.1% in
2018 (EPE, 2009; EPE, 2019).

In contrast to the climate benefit, the increase of intermittent renewable energy
sources (RES) penetration (solar and wind) into power systems has created a challenge to
systems operation (Ela; O’Malley, 2012). In order to avoid stability issues, power systems
operators need to keep the balance between production and demand permanently (Kundur
et al., 2004). Traditional power plants scheduling has relied on predictions of variable loads
(Barcelo; Rastgoufard, 1997). Now, scheduling and system operation also need to consider
forecasting of variable power production from solar and wind energy (Bakirtzis; Biskas,
2017).

Examples of stochastic and deterministic unified unit commitment and economic
dispatch models for power systems operation that are based on intermittent RES forecasting
are presented in Bakirtzis and Biskas (2017). The optimization models were formulated as
mixed-integer linear programming (MILP) problems that own an objective function that
minimizes the sum of a) unit marginal cost function, b) start-up and shut down costs,
c) system reserve costs and d) cost of load and wind power curtailment (same concepts
can be applied for integration of solar power into the grid). Load and RES forecasts were
inputs of power balance equations that were inserted in the models as constraints. In order
to support operation reliably, the power system needs to be optimized separately for each
subsequent future time-window, usually in 15-minute resolution for short horizons and in
1-hour resolution for longer horizons.
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The International Energy Agency (IEA) classifies solar energy forecasts in terms
of the horizons evaluated as: intraday forecasting, when the target of forecasts is from a
few minutes up to 6h ahead; and day-ahead forecasting, when predictions are performed
for the next day (PELLAND et al., 2013). The IEA report also suggests that statistical
techniques such as time-series machine learning provide good performances in the intraday
context, while physical models based on numerical weather prediction (NWP) provide
good performances in the day-ahead context.

For several reasons, research is needed to develop new studies and solar forecasting
methods for better power systems operation. Firstly, literature review shows that the
measured values of forecasting errors from different studies are generally not negligible. For
example, in Aguiar et al. (2016), Root Mean Square Error (RMSE) values in a range of
83-120 W/m2 were obtained for solar irradiance forecasts from 1h to 6h horizons at Pozo
Izquierdo (Spain). At Las Palmas (Spain), the RMSE values obtained were in a range
of 104-147 W/m2 evaluated at the same horizons. In Kallio-Myers et al. (2020), RMSE
values in a range of 94-184 W/m2 were obtained for solar irradiance forecasts from 1h to
4h horizons at some sites in Finland.

Another reason for the need of solar forecasting development is that literature
review does not provide a decisive method that results in best accuracy for every case
study. A review of solar forecasting research indicates that machine learning is probably
the most adopted methodology in the field (YANG et al., 2018), mainly due to suitable
performance of algorithms when enough data is available. Specific review of machine
learning methods for solar radiation forecasting concluded that ranking these methods in
literature is a not a simple task (VOYANT et al., 2017), as numerous factors influence
comparison among different studies and their results, namely differences in locations and
datasets analyzed; processing strategies; data acquisition systems; time resolution and
forecast horizons; performance indicators evaluated, etc.

Most studies rely on single location analysis, which does not bring potential
generalization of results, as the solar resource presents stochastic nature in spatial and
temporal levels. Sperati et al. (2015) concluded that more methods need to be evaluated
at more locations to improve the solar forecasting field.

1.1 Main objective
Based on this initial background, the objective of this research is to evaluate

and compare novel and traditional machine learning (ML) methods for intraday solar
irradiance forecasting at multiple sites: Multigene Genetic programming (MGGP) (novel)
and multilayer perceptron (MLP) Neural Networks (traditional).

The datasets analyzed in this research were historical measurements from weather
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stations located at six different sites. Future studies may compare the methods for day-
ahead forecasts if NWP data is made available.

1.2 Secondary objectives
Some other specific objectives of this research are:

a) Evaluate data processing strategies for intraday solar forecasting;

b) Evaluate clear sky models influence on intraday solar forecasting;

c) Review research on solar forecasting;

1.3 Summary
The thesis content is divided into six chapters. Besides this introductory chapter,

the second one brings a literature review; the third one presents the methodology; the
fourth and fifth chapters present the results. The sixth chapter brings a general conclusion
of the work.

Chapter 2 presents a literature review on solar forecasting research field. An
overview on the topic is presented, regarding main types of data acquisition systems that
have been adopted, statistical methods that have been developed and error metrics that
have been used to assess different forecasts.

Chapter 3 presents the methodology developed to build intraday solar forecasts
based on multigene genetic programming (MGGP) modeling and simulation. The statistical
methods used as benchmarks and the metrics used to evaluate the proposed methodology
are also presented in this chapter.

Chapter 4 brings a first case study comparing MGGP and MLP neural networks
for intraday solar irradiance forecasting using large datasets from multiple locations of 3
different countries.

Chapter 5 poses the results of a second case study on developing multivariate
intraday solar PV forecasting models based on MLP neural networks and a combination of
PV output power measurements and meteorological station measurements acquired from
the EMC–UFG facilities.

Chapter 6 closes the text with the author’s conclusions and suggestions for future
works in the field.
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2 Solar Forecasting Research
This chapter brings a comprehensive literature review about the solar forecasting
research field and presents the main aspects that have driven methodologies in
the field.

2.1 Solar Energy Variability
The potential of solar radiation as a renewable energy source is commonly measured

as the variable Irradiance (G) in W/m2. The variability of Irradiance on a horizontal
surface depends on deterministic components and stochastic components. Deterministic
components such as day of the year, solar zenith angle, local latitude, time of the day
and solar radiation incident on a horizontal plane outside the atmosphere affect solar
irradiance incident on the earth’s surface. Equations 2.1 and 2.2 describe the influence of
time variables in Extraterrestrial Irradiance (Go) is described in the following Equations
(DUFFIE; BECKMAN, 2013):

Go = Gsc(1 + 0.033 cos 360n
365 ) cos θz (2.1)

Go = Gsc(1 + 0.033 cos 360n
365 )(cosφ cos δ cosω + sinφ sin δ) (2.2)

Where Gsc is the solar constant, equal to 1367 W/m2, n is the day of the year (1 for
January 1st and 365 for December 31st), θz is the solar zenith angle, φ is the local latitude,
δ is the declination angle, and ω is the hour angle. These equations represent in practice
the influence of earth-sun distance and the influence of Earth’s rotation movement in the
irradiance at a specific horizontal plane at a given location in the globe. The deterministic
variability of solar irradiance occurs daily and yearly, as shown in Figure 2.1. During
the day, irradiance increases from 0, at sunrise time, to a peak value at solar noon and
then decreases to 0 at sunset time. During the year, irradiance levels raise to maximum
theoretical values at the summer solstice and reduce to minimum values at the winter
solstice.

Stochastic variability is the influence of the atmosphere in solar radiation. Scattering
and absorption of radiation are atmospheric phenomena that have been estimated by
several clear sky models of irradiance at the ground level (DUFFIE; BECKMAN, 2013).
Indeed, clouds are the physical phenomena that influence solar irradiance more significantly
and generate stochastic time series with significant deviations in solar resources. Solar
forecasting studies have tried to model and predict clouds to increase the PV penetration
in electrical grids. Figure 2.2 presents global horizontal irradiance (GHI) at ground level
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Figure 2.1 – Extraterrestrial irradiance (Go) in a horizontal plane located in Goiania at
an yearly point of view (top) and daily point of view (bottom).
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Figure 2.2 – Global horizontal irradiance (G) curves from EMC-UFG Weather Station
at an yearly point of view (top) and daily point of view (bottom) - year of
reference: 2016.
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from the EMC-UFG weather station. Although the behavior of irradiance on the horizontal
ground plane is random, this specific site presents more clear days during the winter and
more solar radiation variability during the summer, the classical period of rain days in the
Brazilian Midwest.
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2.2 Solar Forecasting Reviews
Solar forecasting is a field of research that has been extensively studied in the

last years. Firstly, due to its central importance to increase solar energy penetration
into electrical grids. Secondly, the complex space-temporal stochastic behavior of solar
variability and peculiarities seems not yet promptly predictable for diverse sites.

Solar forecasting is considered the field of research that addresses solar resource
predictions, irradiance and PV power, as both quantities are closely related.

Several review articles have been published in the last years in the solar forecasting
research field. Review articles intend to compare, present differences and similarities, and
classify research articles. Table 2.1 shows leading review articles that are adopted as
guidelines for definitions and classifications in this thesis.

Table 2.1 – Some of the main review articles in solar forecasting literature.
Reference Article Title Google

Scholar
Citations

Scopus
Citations

(INMAN; PEDRO;
COIMBRA, 2013)

Solar forecasting methods for renewable energy
integration

708 498

(DIAGNE et al.,
2013)

Review of solar irradiance forecasting methods
and a proposition for small-scale insular grids

496 347

(VOYANT et al.,
2017)

Machine learning methods for solar radiation fore-
casting: A review

561 395

(YANG et al., 2018) History and trends in solar irradiance and PV
power forecasting: A preliminary assessment and
review using text mining

169 134

Source: authors.

Note: Citations numbers were obtained on December 1st, 2020.

In Inman, Pedro and Coimbra (2013), an extensive review of methods used for
solar forecasting until 2013 was produced. This review article focused on classifying solar
forecasts (irradiance or PV power) using different approaches:

a) Regressive methods, such as autoregresssive (AR), autoregressive moving average
(ARMA) and autoregressive integrated moving average (ARIMA), with or
without exogenous variables;

b) Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANNs)
and k-nearest neighbors (k-NN);

c) Remote sensing models, such as satellites;

d) Numerical Weather Prediction (NWP);

e) Local sensing, such as sky imagers or pyranometers that directly measures
irradiance;
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f) Hybrid systems that combine two or more of the previous methods;

The solar forecasting classification by Inman, Pedro and Coimbra (2013) also
regards the spatial resolution and forecasting horizon that each technique was able to
achieve the best results, as shown in Figure 2.3.

Figure 2.3 – Spatial resolution and forecast horizon domains of different solar forecasting
methods by the classification of Inman, Pedro and Coimbra (2013).

Reference: (INMAN; PEDRO; COIMBRA, 2013).

Diagne et al. (2013) published a review on solar forecasting covering papers up to
2013. The survey focused on specific research to predict solar irradiance and the authors
classified articles in terms of forecasting horizons as intraday (1h-6h), intra-hour (15-min
to 2-h) and day-ahead forecasts (1 day to 3 days) and classified solar predictions in terms
of the data acquisition system as:

a) Statistical methods, such as ARIMA techniques and ANNs;

b) Cloud imagery and satellite-based models;

c) Numerical Weather Prediction (NWP) models;

d) Hybrid models;

Diagne et al. (2013) also related the types of solar forecasts with their spatial and
temporal areas in which they provide good performances, as shown in Figure 2.4.
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Figure 2.4 – Spatial resolution and forecast horizon domains of different solar forecasting
methods by the classification of Diagne et al. (2013).

Reference: (DIAGNE et al., 2013).

Yang et al. (2018) presented a review about solar forecasting publications up to
2018 based on a text-mining technique to review a substantial number of research articles,
spotting the prominent technical journals in the field and highlighting methods, emerging
technologies, and error metrics available. This extensive review considers machine learning
as the most adopted statistical method in the area. Voyant et al. (2017) devoted a review
exclusively to machine-learning-based solar forecasting.

2.3 Types of data acquisition systems
There is a specific relationship between the type of data acquisition system, forecast-

ing modeling, and the spatial-temporal resolution for each distinct forecasting methodology.
This section describes some characteristics of data acquisition systems.

2.3.1 Meteorological stations and power meters

Many proposed solar forecasting methodologies are based on meteorological station
data, for solar irradiance forecasting based on pyranometers, or power meter data, for
PV power forecasting. While pyranometers present measurement uncertainty ranges of +-



Chapter 2. Solar Forecasting Research 31

4–7.6%, power meters tend to present lower measurement uncertainties (KLEISSL, 2013).
Distributed ground meter networks are going to play an essential role in the future of solar
forecasting (YANG et al., 2018).

When forecasts are based exclusively on weather station data or power meter
historical measurements, the idea is to develop statistical relations between the recently
measured data and the future values of the measured target variable (irradiance or PV
power). These are statistical forecasts, according to the definition of Diagne et al. (2013).
These kinds of forecasts present its advantages and drawbacks:

a) a) If ground sensors are close to the PV system, they will provide good quality
input to forecast models, and the accuracy tends to decay with the distance of
the sensor from PV modules, as shown in Figure 2.4.

b) b) Since forecast models rely on last hours’ measurements and no future infor-
mation about the solar resource is available, the accuracy of models is generally
limited to one to six hours ahead, as shown in Figure 2.4.

There are two classes of predictions based exclusively on irradiance, weather
variables, and PV power measurements: point forecasting and regional forecasting.

Table 2.2 presents a summary of characteristics of some studies on point forecasting
in literature based on meteorological stations and power meters. The study of Pedro and
Coimbra (2015b) evaluated the performance of statistical methods (k-NN and ANN) for
global horizontal irradiance (G) forecasting based on historical data from meteorological
stations in the USA. The forecast skill range was 10.2-26% compared to the benchmark
persistence method for forecasts horizons with a range of 15–120 min. The models dealt
with forecasts of clear sky indexes (normalization of irradiance data) as the first step for
irradiance forecasts.

The study of Nobre et al. (2016) evaluated the performance of ARIMA and a
hybrid ARIMA-Persistence method to predict irradiance from a meteorological station
in Singapore with a forecast horizon of 15–30 min. The study of Rana, Koprinska and
Agelidis (2016) evaluated the performance of Support Vector Regression (SVR) and Neural
Networks Ensemble (NNens) to forecast power output from a PV plant in Brisbane,
Australia, for a horizon of 5-60 min.

There are several studies in the literature addressing statistical point forecasting
based on meteorological stations and power meters. Studies differ in how they seek improved
forecasts as many factors influence performance, viz:

a) Input or output data time-resolution scheme (intra-hour resolutions contain
more information of solar resource and weather variability);

b) Choice of statistical method;
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Table 2.2 – Characteristics of data relations of point forecast studies in literature based
on meteorological stations for irradiance forecasting (PEDRO; COIMBRA,
2015b; NOBRE et al., 2016) and on PV power meters (RANA; KOPRINSKA;
AGELIDIS, 2016). ∆τ is the forecast horizon, ∆tin is the time resolution of
input data, ∆tout is the time resolution of output data. MAE and s are error
metrics defined in 2.5.

Locations ∆τ ∆tin ∆tout Input Data Output Data Results
15 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 12–14.5% (ANN)

s 10.7–14.7% (kNN)
Merced, 30 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 11.1–16.0% (ANN)

Davis, s 10.2–16.8% (kNN)
San Diego, 45 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 10.5–18.1% (ANN)

Bellingham, s 11.4–18.0% (kNN)
Ewa Beach 60 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 10.7–18.8% (ANN)

s 12.0–18.2% (kNN)
90 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 14.1–21.4% (ANN)

s 15.8–23.3% (kNN)
120 5 15 k∗

t (t−5, ..., t−120) k∗
t (t+ ∆τ) s 15.6–25.7% (ANN)

s 17.3–26.0% (kNN)
5 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 47.72 kW (NNens)
10 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 64.48 kW (NNens)
15 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 72.28 kW (NNens)
20 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 77.70 kW (NNens)
25 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 82.05 kW (NNens)
30 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 85.84 kW (NNens)

Brisbane 35 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 89.25 kW (NNens)
40 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 92.67 kW (NNens)
45 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 95.04 kW (NNens)
50 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 96.67 kW (NNens)
55 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 98.59 kW (NNens)
60 5 5 Po(t−5, ..., t−840) Po(t+ ∆τ) MAE 100.23 kW

(NNens)
15 15 15 k∗

t (t− 15) k∗
t (t+ ∆τ) s 5.8% (Hybrid Pers-

ARIMA)
Singapore 30 15 15 k∗

t (t− 15) k∗
t (t+ ∆τ) s 5.0% (Hybrid Pers-

ARIMA)

References: (PEDRO; COIMBRA, 2015b; NOBRE et al., 2016; RANA; KOPRINSKA;
AGELIDIS, 2016).

c) Influence of exogenous input addition (weather variables or deterministic time
variables);

d) Choice of clear sky model for analysis;

e) Data pre-processing strategy;

f) Data post-processing strategy;

g) Hybridization strategies;

h) Ensemble strategies;

It is possible to develop a regional forecasting model if a network of distributed
pyranometers or power meters over a specific area is available, as Gutierrez-Corea et al.
(2016) previously reported. Intraday irradiance forecasting from a meteorological station
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was improved by adding neighbor stations’ information in an MLP-based forecasting model
(GUTIERREZ-COREA et al., 2016). The proposed method improved RMSE in 5.89%,
6.97% and 2.55%, for 1-h, 2-h and 3-h ahead forecast, respectively, compared to traditional
point forecasting.

2.3.2 Numerical Weather Prediction

Numerical Weather Prediction (NWP) systems are models that directly simulate
solar irradiance at multiple levels in the atmosphere and traditionally would not produce
predictions of GHI. However, the currently emerging need for solar forecast has required
the obtention of GHI from NWP systems (YANG et al., 2018). NWP systems solve fluid
motion equations and simulate the atmosphere behavior to achieve a broad spatial and
temporal horizon, although this method usually does not provide high spatial and temporal
prediction resolutions. One example is the Global Forecast System (GFS), an NWP model
available for free access and global coverage. NWP has proved to be a relevant tool for
day-ahead solar forecasting, usually providing better results than local sensing for this
forecast horizon.

Some other traditional NWP methods have gained prominence in the forecasting
research field. Lorenz et al. (2009) used the European Centre for Medium-Range Weather
Forecasts (ECMWF) model to develop day-ahead forecasting of distributed PV systems in
Germany (Lorenz et al., 2009). Lima et al. (2016) evaluated the accuracy of the Weather
Research and Forecasting (WRF) Model for day-ahead forecasting of GHI at multiple
sites in the northeast of Brazil (LIMA et al., 2016). According to Yang et al. (2018), the
ECMWF model has shown better performance than other models (YANG et al., 2018).

Ogliari et al. (2017) carried out a comparative study between two day-ahead PV-
power forecasting methods using NWP-derived data (OGLIARI et al., 2017). The NWP
service provides GHI and other weather variables forecasts for each hour of the next day.
The first method consisted of forecasts based on deterministic physical models of PV cells
applied to weather data derived from the NWP service, as disclosed in Figure 2.5 and
Equation 2.4.The second method consisted of forecasts based on a physical hybrid artificial
neural network (PHANN) that combined NWP derived data with a theoretical clear sky
model to fit values to PV local historical measurements. The second method includes
local sensing to improve the first alternative and has reduced the MAE values by 25.13 to
34.55%.

I = IPV − I0(exp V +RS,CI

nVt
− 1)− V +RS,CI

RSH,C

(2.3)

Where I is the current in A, IPV is the light-generated current in A, I0 is the
reverse saturation current in A, V is the voltage in V , RS,C is the cell series resistance
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and RSH,C is the cell shunt resistance.

Figure 2.5 – Deterministic 5 parameters PV equivalent circuit for physical PV power
forecasting applied by Ogliari et al. (2017).

Reference: (OGLIARI et al., 2017).

Almeida et al. (2017) used a similar approach employing Random Forest (RF)
fitting for PV measurements to improve a parametric methodology based on physical
models applied to NWP day-ahead weather forecast (ALMEIDA et al., 2017).

Dolara, Leva and Manzolini (2015) analyzed the use of physical models for PV
power estimation based on weather variables. Paiva et al. (2017) also reported physical
models that can be similarly applied to PV power estimation (PAIVA et al., 2017).

2.3.3 Satellite data acquisition

Solar forecasting researchers have applied satellite imagery to develop alternative
models for solar forecasting. As a type of remote sensing method, satellite imagery presents
the potential to reach large areas as forecast targets. As an example, Pedro, Marquez and
Coimbra (2013) developed this technique as expressed in Figure 2.6. The method consists
of three steps: 1) Cloud indexing; 2) Image velocimetry; and 3) ANN predictions.

Cloud indexing estimates a pixel intensity by the following equation:

E(t) = I0ρ cos θ(t)(1+α) (2.4)

Where E(t) is the pixel intensity, I0 is the solar constant, ρ is the pixel albedo, θ
is the solar zenith angle and α is an empirical parameter determined by trial-and-error.
The proposed method was a hybrid satellite imagery-meteorological measurement model
and it was evaluated for forecast horizons of 30–120 min.
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Figure 2.6 – An example of the cloud indexing procedure. a) Reference ground albedo
image obtained by taking the minimum pixel intensities for each pixel location.
b) Original image taken on 11/23/2011. c) Cloud indexed image after applying
normalization. The two dots identify the forecasting locations. North-most
Davis. South-most Merced.

Reference: (MARQUEZ; PEDRO; COIMBRA, 2013).

Recent studies evaluated pure satellite-imagery-based intraday forecasting models
Miller et al. (2018) concluded that the assumption of cloud invariance is a significant
limitation to cloud advection schemes, i.e., the assumption that clouds are not permitted
to grow or dissipate during the forecast period yield significant errors and satellite-based
forecast techniques require more effective methodologies. Investments in the availability of
higher resolution data basis is a promising approach to mitigate the issue.

2.3.4 Ground based sky imagers

Ground-based sky imagers are another type of local sensors as pyranometers and
power meters adopted for solar forecasting. Instead of directly measuring the solar resource,
sky imagers capture cloud cover index and cloud motion behavior to derive solar forecasts.

Pedro et al. (2018) reported results where sky imagers provide potential forecast
improvement for forecast horizons of 1-30 min. Pedro et al. (2018) used a security camera
that provided 24-bit images compressed in jpeg format, with 8 bits per color channel (Red,
Green and Blue) and an overall image resolution of 1563 by 1538 pixels. Figure 2.4 explains
how the proposed methodology associates sky images with irradiance measurements to
improve solar forecasts.

Pedro et al. (2018) incorporated cloud cover information from sky images, 10
minutes before forecasting time, as inputs to k-nearest neighbors (k-NN) and gradient
boosting (GB) algorithms to develop improved intra-hour forecasts. An image processing
algorithm computed the average (µ), standard deviation (σ) and entropy (e) for the red,
green and blue ratio data sets.
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Figure 2.7 – Relations between sky images, cloud detection and irradiance measurements
in the methodology of Pedro et al. (2018).

Reference: (PEDRO et al., 2018).

The analysis of sky imager data-addition to GHI forecasts indicated improvements
in RMSE values in a range of 0.8–4% using k-NN and a range of 5.2–4.7% using GB
for forecast horizons of 5–30 min. The RMSE values for direct normal irradiance (DNI)
forecasts improved in a range of 1.3–3.9% using k-NN and 3.8–1.2% using GB for forecast
horizons of 5–30 min.

2.4 Statistical methods for solar forecasting
There are several forecasting approaches in the literature; however, the majority

rely on statistical techniques to associate data from different acquisition systems to predict
solar irradiance or PV power. The most frequent statistical methods applied to solar
forecasting literature are described as follows.

2.4.1 Persistence and Smart Persistence

Persistence is the less complex statistical method in the field of solar forecasting.
It consists of considering that the future value of the target variable will be equal to its
last observed value, as described in equation 2.5:
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ŷ(t+ ∆τ) = y(t) (2.5)

Where ŷ(t+ ∆τ) is the persistence forecast and y(t) is the last observed value of
the target variable. When the persistence is applied to the clearness index (kt) or clear sky
index (k∗

t ), the method is also called smart persistence and equations 2.6 and 2.7. Smart
persistence improves a persistence applied to irradiance or PV power in most cases, as
indexes are ratios of theoretical solar resource curves. These indexes capture the amount
of cloud cover in the last observed time window. A persistence value can also be applied
to a clear sky photovoltaic definition, like the kPV defined by Engerer and Mills (2014).

Ĝ(t+ ∆τ) = kt(t)Go(t+ ∆τ) (2.6)

Ĝ(t+ ∆τ) = k∗
t (t)Gclr(t+ ∆τ) (2.7)

Persistence is widely used as a benchmark to evaluate more complex forecast
models due to its simplicity, particularly in intraday forecasting. Intelligent persistence
demonstrates satisfactory performance to forecast the first future time windows of solar
resources, as shown in Figure 2.4.

Not always is the last observed time window the best persistence value. In some
cases, the clear sky index from a time window before the last observed one provides more
accurate forecast results. An optimized persistence may be used in these cases, as reported
by Pedro and Coimbra (2015b).

2.4.2 Autoregressive method

Autoregressive (AR) processes are less complex regression models used in time-series
forecasting. The model is defined according to Equation 2.8.

ŷ(t+ ∆tin) = α + β1yt−∆tin
+ ...+ βly(t− l∆tin) + et+∆tin

(2.8)

Where ŷ(t+ ∆tin) is the AR forecast, α is a constant term, β1 ... βl are the model’s
coefficients, l is the order of the AR model and et+∆tin

is a white noise with zero mean
and constant variance. The regression parameters β1 ... βl can be obtained by an Ordinary
Least Squares (OLS) methodology, or also by Gradient Boosting (GB). In the last case, a
numerical optimization is conducted in order to achieve improved forecasts.

The ARX model is derived from the AR model by adding exogenous variables
as inputs. Autoregressive solar forecasting performance becomes more effective when
applied for spatio-temporal forecasts, leading to satisfactory improvement over simple AR
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time-series, as shown by Bessa, Trindade and Miranda (2015). Figure 2.8 presents the
improvement of the spatio-temporal forecasting achieved by Bessa, Trindade and Miranda
(2015) over AR applied to forecast based on single-site data.

Figure 2.8 – Improvement of Autoregressive (AR) forecasts for 1-6h forecast horizons by
application of a spatio-temporal model.

Reference: (Bessa; Trindade; Miranda, 2015).

2.4.3 Autoregressive integrated moving average (ARIMA) models

ARIMA models are the most usual time-series models for solar forecasting (YANG
et al., 2018). Equation 2.9 describes the ARIMA(p, d, q) method:

(1−
p∑
i=1

φil
i)(1− l)dyt = δ + (1 +

q∑
i=1

θil
i)et (2.9)

ARIMA models consist of an autoregressive factor of order p, an integrated factor
of order d, and a moving average factor of order q. The Box-Jenkings procedure comprises
three iterative steps, viz., identification, estimation, and diagnostic checking (BOX et
al., 2015), and is the most appropriate way to choose an ARIMA model for a particular
forecasting application. When d is null, the ARIMA(p, d, q) model is reduced to an
ARMA(p, q) model. If q is null, the ARMA(p, q) model becomes an AR model, and if p is
null, the ARMA(p, q) becomes a moving average (MA) model.
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Studies that evaluated ARIMA models for intraday solar forecasting have shown
similar performances in comparison to smart persistence (NOBRE et al., 2016; REIKARD;
HANSEN, 2019).

The main limitation of ARIMA models and time-series, in general, is neglecting
to capture the physical behavior of the atmosphere. Therefore, ARMAX models with
exogenous weather inputs have improved the pure ARMA and ARIMA models. According
to Li, Su and Shu (2014), day-ahead solar forecasts applying ARMAX enhanced ARIMA
models improved RMSE and MAE by 26.7% and 28.4% in respect to, respectively.

2.4.4 Artificial neural networks

Artificial neural network (ANN) is the most traditional machine learning (ML)
technique in solar forecasting due to its ability to develop non-linear regressions (VOYANT
et al., 2017).

Neural networks are connections of neurons grouped in multiple layers. Figure 2.9
presents the neuron structure that relates the output a with inputs p1, ..., pR. In this case,
the inputs are multiplied by the weights w1,1, ..., w1,R, and the weighted values are inputs
to the sum block with a bias b; finally, a transfer function f is applied to the previous
addition to result in the output a, as depicted in Equation 2.10.

a = f(Wp + b) (2.10)

Multiple-layer neural networks are as shown in Figure 2.10. In this case, the outputs
of each intermediate layer of neurons become inputs to the following layer.

Neural networks are entitled recurrent neural networks (RNN) when the layer’s
outputs are feedback connected to the inputs.

Elman (1990) developed a neural network called feedforward neural networks
(FFNN), where the NN directly connects inputs and outputs without loop iterations.
Multilayer perceptron (MLP) and the radial basis function (RBF) neural networks are
examples of FFNN.

MLP, as in Figure 2.10, consists of at least three layers of nodes, namely, an input
layer, one or more hidden layers with n neurons – 3 hidden layers in the case of Figure
2.10 – and an output layer.

The common characteristic of neural networks and other ML methods is optimizing
solutions in three steps, viz., iterative-algorithm training over a specific dataset, testing,
and finally validating solutions relying on error metrics. For neural networks, training
consists of adjusting the weights and the bias to minimize the output errors. There are
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Figure 2.9 – Structure of a single neuron with inputs p1, ..., pR, weights w1,1, ..., w1,R, a
bias b and an output a.

Reference: (GUIDE, 2002).

Figure 2.10 – Structure of a multiple-layer neural network.

Reference: (GUIDE, 2002).

several algorithms for neural network training, such as backpropagation, quasi-Newton,
and Levenberg-Marquadt (GUIDE, 2002).

MLP neural networks present the ability to extract information in multivariate
solar forecasting models successfully. Numerous implementations combine solar radiation
or PV power with different categories of exogenous inputs to improve forecast models.
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2.4.5 Support Vector Machines

Support Vector Machines (SVM) are extensively applied methods in solar forecasting
and, together with ANN, form the machine learning basis in the field (YANG et al., 2018).
Zendehboudi, Baseer and Saidur (2018) presented a review of SVM applications on solar
and wind energy (ZENDEHBOUDI; BASEER; SAIDUR, 2018). SVM was originally
proposed by Cortes and Vapnik (1995) based on transforming the nonlinear-input area
to an area with high-dimensional properties to find a hyperplane via nonlinear mapping.
Figure 2.11 presents an example of a separable problem in bi-dimensional space as proposed
by Cortes and Vapnik (1995).

Figure 2.11 – Example of a separable problem in a bi-dimensional space by Cortes and
Vapnik (1995). Support vectors are marked with grey squares and define the
margin of largest separation between two classes.

Reference: (CORTES; VAPNIK, 1995).

If the optimal hyperplane is constructed from a small number of support vectors
relative to the training set size, the generalization ability of the SVM will be high, even
in an infinite-dimensional space (CORTES; VAPNIK, 1995). Equation 2.11 defines the
optimal hyperplane.

w0 · z + b0 = 0 (2.11)

Where w0 are the weights for the optimal hyperplane obtained by a linear combi-
nation of support vectors, according to equation 2.12, and the linear decision function in
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the feature space is obtained from equation 2.13.

w0 =
∑

supportvectors

αizi (2.12)

I(z) = sign(αizi · z + b0) (2.13)

Where αi are the adjusted weights of the ith support vector zi, zi · z is the
dot-product between support vectors zi and vector z and b0 is a bias term.

2.4.6 k-Nearest Neighbors

The k-NN method is one of the most direct and robust available methods of pattern
recognition and machine learning and consists of recognizing the instances in the past that
represent the current conditions of a target variable as close as possible (YAKOWITZ,
1987).

The most effective forecast model in k-NN methodology relies on comparing the
current vector with the time-series past values as defined in equations 2.14 and 2.15
(PEDRO; COIMBRA, 2012):

ŷt+1 = yK+1 (2.14)

Where K is such that:

√∑
i=1

(Qt,i −QK,i)2 ≤
√∑
i=1

(Qt,i −Qk,i)2 (2.15)

k = 1, ..., n;

k 6= K

−→
Qt = (yt, yt−1, ..., yt−τ ) (2.16)

Where −→Qt is the current vector of features or patterns and −→Qk is the features space.

2.4.7 Random Forest

The Random Forest (RF) belongs to the regression tree (RT) family and is an
improved bagging regression tree with promising results for intraday solar forecasting,
being more accurate than MLP Neural Networks at some locations (BENALI et al., 2019).

Breiman (1996) proposed the RF method by randomly growing numerous trees in
subsets of the predictors.



Chapter 2. Solar Forecasting Research 43

Equation 2.17 describes the bootstrap aggregating procedure, also known as bagging.

φB(x) = avBφ(x,£B) (2.17)

Where £ is a learning set, x is the input vector, φ is a single predictor and φB is
an aggregated predictor.

2.4.8 Gradient Boosted Regression Trees

A promising machine learning method found in solar forecasting literature is the
Gradient Boosted Regression Trees (GBRT) that has yielded satisfactory accuracies for
intraday PV power forecasting at multiple sites Persson et al. (2017).

The GBRT algorithm consists of an iterative algorithm that adds new regression
trees to a fitness function. A fitness function performs a regression to restrict the tree to
function residuals in each iteration, as defined in Equation 2.18.

Fm(xi,t) = Fm−1(xi,t) + hm(xi,t) (2.18)

Where hm(xi,t) is the newly added regression tree at iteration m, equal to the
current residuals, which is the negative gradients of the squared error loss function as in
Equation 2.19.

−
δ 1

2(Yi,t+k − Fm−1(xi,t))2

δFm−1(xi,t)
= Yi,t+k − Fm−1(xi,t) (2.19)

Finally, each regression tree’s contribution is weighted by the scaling factor v to
avoid overfitting, as shown in Equation 2.20.

Fm(x) = Fm−1(x) + vhm(x) (2.20)

Where Yi,t+k is the vector of target values in the training set, Fm−1(xi,t) is the
regression model at iteration m− 1 and Fm(xi,t) is the regression model at iteration m.

2.4.9 Comparison of forecasting methods

Voyant et al. (2017) compare forecasting methods from multiple research articles,
presenting an overview of machine learning methods from various locations and research
groups, as seen in Table 2.4.9. It is possible to perceive comparing methods for distinct
locations is not straightforward as a given method presents different performance depending
on the site. Moreover, each article refers to diverse forecast horizons, data time-resolution,
error-metric definition, type of data acquisition system, and other distinctions.
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Table 2.3 – Table of comparison of single machine learning methods for solar forecasting
by Voyant et al. (2017).

Reference Location Result
Burrows (1997) Canada Regression Tree (RT) > Linear Regression
Mihalakakou, Santamouris e Asimakopoulos (2000) Greece ANN = AR
Podestá et al. (2004) Argentina Generalized regression is useful
Tso e Yau (2007) China RT > ANN > Linear regression
Paoli et al. (2010) France ANN > AR > k-NN > Bayesian > Markov
Marquez e Coimbra (2011) USA ANN > Persistence
Moreno, Gilabert e Martínez (2011) Spain ANN = generalized regression
Ben Taieb et al. (2012) Benchmark MIMO-ACFLIN strategy wins
Demirtas et al. (2012) Turkey k-NN > ANN
Ferrari et al. (2012) Italy SVM > ANN > kNN > Persistence
Mori e Takahashi (2012) Japan RT interesting to select variables
Olaiya e Adeyemo (2012) Nigeria ANN = RT
Fernández, Gala e Dorronsoro (2014) Spain SVM = Persistence
Zamo et al. (2014) Benchmark RF > SVM > generalized regression >

boosting > bagging > Persistence
Almeida et al. (2017) Spain Quantile regression forests coupled with

NWP give a good accuracy for PV prediction
Wolff, Lorenz e Kramer (2016) Germany SVR > k-NN
Lauret et al. (2015) Fr. Islands ANN = Gaussian = SVM > Persistence
Lazzaroni et al. (2015) Italy SVR > ANN > AR > k-NN > Persistence
McGovern et al. (2015) Benchmark RT > NWP
Pedro and Coimbra (2015a) USA k-NN > Persistence

Voyant et al. (2017) reviewed articles about ensemble forecasts combining single
predictors from one or more statistical methods, generally computing an average of the
predictors.

Table 2.4 – Table of comparison of ensemble machine learning methods for solar forecasting
by Voyant et al. (2017) (LR = Linear Regression).

Reference Location Result
Mori e Kosemura (2001) Japan (RT-ANN) > ANN
Cao e Lin (2008) China (ANN-Wavelet) > ANN
Reikard (2009) USA (ARMA) > ANN
Gastón et al. (2010) Spain (SVM-kNN) > Climatology
Chakraborty et al. (2012) USA Bayesian > (SVM-ANN)
Bouzerdoum, Mellit e Massi Pavan (2013) Italy (SARIMA-SVM) > SARIMA > SVM
Chu, Pedro and Coimbra (2013) USA (GA-ANN) > ANN
Prokop et al. (2013) Czech Rep. (ANN-SVM) > SVM > ANN
Aggarwal e Saini (2014) USA (ANN-LR) > ANN > LR
Alobaidi et al. (2014) UAE (ANN) > ANN
Bilionis, Constantinescu e Anitescu (2014) USA (PCA-Gaussian Process) > NWP
Wu et al. (2014) Singapore (GA-kmean-ANN) > ANN > ARMA
Wu, Chen e Rahman (2014) Malaysia (GA-SVM-ANN-ARIMA) > SVM > ANN > ARIMA
Yang et al. (2014) Taiwan (ANN-SVM) > SVM > ANN
Chu et al. (2015) USA (GA-ANN) > Persistence
De Felice, Petitta e Ruti (2015) Italy SVM > Linear Model
Dong et al. (2015) USA (ANN-SVM) > ARMA
Samanta, Srikanth and Yerrapragada (2015) USA (SVR) > SVR > SVR-PCA > ARIMA > LR

Reported reviews reveal that ensemble predictions typically overcome single pre-
dictions, although it cannot be a general conclusion to rank methods applied to distinct
locations and with particularities of each circumstance. Nevertheless, additional analyses
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are needed to reveal conclusive results and rankings.

2.5 Error metrics for solar forecasting
Error-metric definition and interpretation are critical factors in solar forecasting

research, as no model is entirely accurate. The error of a single forecast calculated for a
single time window is defined by Equation 2.21.

e(t+∆τ) = ŷ(t+∆τ) − y(t+∆τ) (2.21)

Where e(t+∆τ) is the forecast error, ŷ(t+∆τ) is the forecasted value and y(t+∆τ) is
the observed one.

The reliability of solar forecasting models relies on the analyses of numerous samples,
while solar resource and climate are stochastic variables dependent on the specific season
of the year and time of the day. The interpretation of single-time windows as in Equation
2.21 is limited to visualization plots, such as in Figure 2.12 (LEVA et al., 2017). The error
e defined from Equation 2.21 is normalized, and a percentage error e% is obtained based
on the predicted PV power in Equation 2.22 , and a percentage of the measured PV power
is defined by Equation 2.23.

e%,p = |e(t+∆τ)|
ŷ(t+∆τ)

(2.22)

e%,m = |e(t+∆τ)|
y(t+∆τ)

(2.23)

The classic error-metrics for solar forecasting analysis integrate the errors over
specific periods of a testing dataset, viz., the mean absolute error (MAE), stated in
Equation 2.24, and the root-mean-square error (RMSE), defined by Equation 2.25:

MAE =
∑Nsamp

i=1 |(ŷi − yi)|
Nsamp

(2.24)

RMSE =

√√√√∑Nsamp

i=1 (ŷi − yi)2

Nsamp

(2.25)

Where Nsamp is the number of samples of the specific dataset, yi is the observed
value at sample i and ŷi is the predicted value at sample i. MAE is the average of
absolute errors evaluated for a specific dataset. RMSE has been consistently adopted as
error-metric for point solar forecasting (YANG et al., 2018). The advantage of RMSE to
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Figure 2.12 – Analysis of day-ahead forecast percentage errors in a sort distribution by
Leva et al. (2017).

Reference: (LEVA et al., 2017)

.

evaluate forecast accuracy is that it penalizes higher errors, mainly in RES forecasting, as
solar-resource steep ramps are the central issue for application in electrical grids.

A similar definition to the MAE is the mean absolute percentage error (MAPE)
that computes the relative gap between predicted and observed values, as established in
Equation 2.26:

MAPE = 1
Nsamp

Nsamp∑
i=1

|(ŷi − yi)|
yi

(2.26)

The mean bias error (MBE), as in Equation 2.27, gives the average bias between
forecast and target variable for the dataset. A negative bias means that the total predicted
energy obtained was lower than the total measured energy. Satisfactory MBE should be
close to zero.

MBE =
∑Nsamp

i=1 (ŷi − yi)
Nsamp

(2.27)

The forecast skill (s) is also a conventional error-metric in solar forecasting, com-
puted as in Equation 2.28. The forecast skill measures the RMSE improvement of a given
method relative to the benchmark persistence.

s = 1− RMSEforecast
RMSEpersistence

(2.28)
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MAE and RMSE calculations yield absolute values that vary considerably depending
on location and climate, making direct comparisons inaccurate. Thus, errors are frequently
normalized by the average of observed irradiance or PV power as in nMAE and nRMSE.

nMAE = MAE

yi
(2.29)

nRMSE = RMSE

yi
(2.30)

The Envelope-Weighted MAE (EMAE) and the Objective MAE (OMAE) are also
examples of error definitions proposed for PV power forecasting analysis (Leva et al., 2020;
Paiva et al., 2019).

EMAE =
∑Nsamp

i=1 |ŷi − yi|∑Nsamp

i=1 max(ŷi, yi)
(2.31)

OMAE = MAE∑Nsamp

i=1 Gclr

(2.32)

2.6 Summary
This chapter brought a comprehensive literature review on solar forecasting current

techniques. While day ahead forecasts usually rely on NWP data, intraday forecasting has
chiefly relied on improved statistical methods applied to local sensing. Ranking statistical
methods from literature has not been an elementary task, as depicted in section 2.4.9.
Recent studies and methods need to be investigated over multiple locations in order to
obtain improved forecasts.

The next chapter reports the methodology of this work and proposes multigene
genetic programming (MGGP) as an innovative method for solar prediction. The proposal
is validated by comparing simulation results with state-of-the-art methods over multiple
location datasets.
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3 Intraday Solar Irradiance Forecasting using
Machine Learning Algorithms
This chapter describes the proposed methodology to analyze machine learning
algorithms in multiple sites.

The flowchart shown in Figure 3.1 summarizes the methodology applied in this
research using multiple traditional forecasting methods reported in the literature to obtain
improved results. The methodology is composed of three steps: pre-preprocessing to
prepare data to the machine learning algorithms; subsequently, multiple machine learning
algorithms are simulated to provide enough results to be generalized; finally, postprocessing
analyzes error metrics for parameter tuning of machine learning algorithms or to compare
methods for solar forecasting at a given horizon and location.

Figure 3.1 – Flowchart of the intraday solar irradiance forecasting methodology.

Reference: authors

.
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3.1 Data Collection
In this research, databases from 6 meteorological stations were obtained and used

to apply the methodology from Figure 3.1. The meteorological stations are located in
three different countries: Brazil, Italy and USA, as shows Figure 3.2 (PAIVA et al., 2020).

Figure 3.2 – Locations of the meteorological stations under analysis presented in a world
map.

Reference: (PAIVA et al., 2020)

.

3.1.1 Goiania, Brazil

The first database was obtained from the Federal University of Goias (UFG)
meteorological station. The station is based at the rooftop of the Electrical, Mechanic and
Computer Engineering School (EMC) in the city of Goiania, Brazil. The configurations of
the equipments are described in Table 3.1. The coordinates of this station are latitude
-16.67◦ (Southern Hemisphere) and longitude -9.24◦ (West). The station is located 749 m
above sea level (SOLAR. . . , a). The database is a total of 36 months of measurements
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of weather variables in samples of 1-min resolution from August 2015 to July 2018. The
weather variables are: global horizontal irradiance in W/m2, ambient temperature in ◦C,
atmospheric pressure in mBar, relative humidity in % and wind speed in m/s.

Table 3.1 – Description of the equipment used at the Federal University of Goias (UFG)
weather station, the parameters they measure and their accuracy and range of
operation.

Equipment Parameter Measured Information
Pyranometer Hukseflux LP02 Global horizontal irradiance Second class ISO 9060:
calibrated in-field uncertainty of

±5%, calibration
uncertainty < 1.8%

R. M. Young Wind 03002 Wind speed Range 0 to 50 m/s and
accuracy of ±0.5 m/s

Wind direction Accuracy of ±5%
Texas Electronics TB-2012M Atmospheric pressure Calibration range 878 to

1080 mBars, Uncertainty
of ±1.3 mBar

Texas Electronics TTH-1315 Ambient temperature Operating ranges
Relative humidity −40 ◦C–+60 ◦C and

0–100%, accuracies
of ±0.3 ◦C and ±1.5% RH

Texas Electronics TR-525I Rainfall Accuracy of ±1%
Datalogger Campbell Scientific Automatic data acquisition
CR800X

3.1.2 Milan, Italy

The second database was obtained from the Politecnico di Milano (PoliMi) meteo-
rological station (SOLAR. . . , b). The station is based at Bovisa Campus, Politecnico di
Milano, in the city of Milan, Italy. The coordinates of this station are latitude +45.50◦

(Northern Hemisphere) and longitude 49.24◦ (East). The station is located 120 m above
sea level. The database is a total of 26 months of measurements of weather variables in
samples of 1-min resolution from September 2016 to October 2018. The weather variables
are: global horizontal irradiance in W/m2, ambient temperature in ◦C, horizontal diffuse
irradiance in W/m2, relative humidity in % and wind speed in m/s.

3.1.3 SURFRAD stations, USA

The third database was obtained from the USA National Oceanic and Atmospheric
Administration (NOAA) Surface Radiation Network (SURFRAD). Four meteorological
stations from SURFRAD network were chosen to compose the complete database for
analysis of this thesis. The coordinates of these sites are as follows: Desert Rock, latitude
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+36.62◦ (north), longitude -116.02◦ (west), altitude of 1007 m; Pennsylvania State University
(PSU), latitude +40.72◦ (north), longitude -77.93◦ (west), altitude of 376 m; Bondville,
latitude +40.05◦ (north), longitude -88.37◦ (west), altitude of 213 m; and Sioux Falls,
latitude +43.73◦ (north), longitude -96.62◦ (west), altitude of 473 m. The database is a
total of 36 months of measurements of weather variables in samples of 1-min resolution from
January 2013 to December 2015. The weather variables are: global horizontal irradiance
in W/m2, ambient temperature in ◦C, atmospheric pressure in mBar, relative humidity in
% and wind speed in m/s.

3.2 Data Pre-processing

3.2.1 Visualization of Irradiance Curves

An overview of the irradiance datasets is presented here in order to relate the
obtained results with the characteristics of each dataset and location. Figures 3.3, 3.4 and
3.5 present the irradiance curves of the datasets in 15-min time windows. It is important
to notice the diference in peak values of GHI at each season for each location, and also, the
1-year cyclical behavior of GHI increasing from lowest values in winter to highest values in
summer. Goiania presents the highest peak values both in summer and winter, because it
is located in Southern Hemisphere.

Figure 3.3 – Global Horizontal Irradiance (GHI) curves of Goiania and Milan complete
datasets in 15-min time windows.
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Figure 3.4 – Global Horizontal Irradiance (GHI) curves of Desert Rock and Pennsylvania
SU complete datasets in 15-min time windows.
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Figure 3.5 – Global Horizontal Irradiance (GHI) curves of Bondville and Sioux Falls
complete datasets in 15-min time windows.
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Table 3.2 presents the statistics of GHI per year for each database: total yearly
GHI in kWh/m2, average GHI in 15-min time windows µ15 and standard deviation of
GHI in 15-min time windows σ15. It is interesting to notice the low variability for each
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calculated metric from one year to the next one.

Table 3.2 – Statistics of Global Horizontal Irradiance (GHI) for each database: total yearly
GHI in kWh/m2, average GHI in 15-min time windows µ15 and standard
deviation of GHI in 15-min time windows σ15.

Year 1 Year 2 Year 3
GHI µ15 σ15 GHI µ15 σ15 GHI µ15 σ15

Goiania 1921 465.4 308.9 1903 461.8 309.8 1934 463.1 308.1
Milan 1433 357.2 275.8 1364 344.4 268.5
Des. Rock 2082 512.9 300.4 2082 512.2 304.2 1954 494.0 299.3
Penn. SU 1317 329.2 266.7 1350 335.9 271.5 1366 339.9 273.9
Bondville 1438 356.5 276.4 1458 364.8 278.6 1438 363.6 274
Sioux Falls 1410 350.9 261.2 1384 354.8 261.4 1437 359.6 263.6

Another important point to notice is that when data is processed in 15-min time
windows, the real variability of solar resource decreases, since 1-min measurements are
processed into an average 15-min value, as shows Figure 3.6.

Figure 3.6 – Global Horizontal Irradiance (GHI) curves for 2 days in Milan dataset
presenting raw 1-min data (blue curve) and processed 15-min time windows
data (red curve).
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3.2.2 Data Quality Control

Data quality control is a very important step to build accurate solar forecasts. In
this research, first quality control step is applied to remove impossible values in exogenous
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variables: Hr, Ta, pa and Ws. The quality control procedure is described by the following
code:

Algoritmo 1: Data quality control code
if (Xt < Xmin) or (Xt > Xmax) then

Xt = Xt−1
end

The code consists of applying a persistent value for outliers in weather data. Outliers
can significantly reduce the accuracy of machine learning algorithms if not filtered. Figure
3.7 presents an example of a Hr graph after being pre-processed by the data quality control
algorithm.

Figure 3.7 – Relative humidity graph of a specific year with an outlier (top) and after
being pre-processed by the data quality control algorithm (bottom).
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3.2.3 Normalization and useless data removal
1Independent of whether forecasts are performed with the use of artificial intelligence

methods or classical regressions, the data processing strategy and input–output scheme play
a key role in developing improved forecasts. The first data processing strategy considered
global horizontal irradiance (G) as a target value, combining past values of irradiance
and weather variables in addition to deterministic variables (in order to capture temporal
trends in datasets) (de Paiva et al., 2018b; PAIVA et al., 2020).
1 Some texts from this session onwards have been extracted from this research publication version at

Energies journal (PAIVA et al., 2020).
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The proposed approach was refined by adopting a data processing strategy that
forecasts normalized indexes in order to remove seasonality in solar data, yielding prompter
ML algorithm convergence for irradiance forecasting. Values measured at night and during
solar elevations (h) less than 5◦ were neglected. Normalization of solar data can be
performed by the application of Equation 3.1, where k∗

t is the so-called clear sky index,
G is the observed global horizontal irradiance (GHI) and Gclr is the theoretical clear sky
irradiance (PAIVA et al., 2020).

k∗
t = G

Gclr

(3.1)

Clear sky irradiance models used in the literature range from simple functions of
extraterrestrial irradiance models to complex approaches that take numerous measured
atmospheric parameters into account. It was found that Haurwitz clear sky irradiance and
Ineichen–Perez models are simple and sufficiently accurate models that were systematically
employed to evaluate meteorological data from a wide number of sites in the USA (RENO;
HANSEN; STEIN, 2012; PAIVA et al., 2020).

The Haurwitz clear sky irradiance model was developed in 1945 and is given by
Equation 3.2, where θz is the solar zenith angle (complementary to the solar elevation
angle h). The constants 1098 and –0.057 were obtained by the least-squares method in
order to fit measured cloudless sky irradiance data from a site in the USA to a theoretical
curve based on a zenith angle exponential function. The exponential function is decreased
by a factor proportional to cos θz from sunrise to sunset (PAIVA et al., 2020).

Gclr = 1098 cos θz exp −0.057
cos θz

(3.2)

The solar zenith angle is defined as the angle between the zenithal axis and the
line to the sun. Thus, this angle varies instantly, according to the rotation movement of
the Earth. The cosine of the solar zenith angle is obtained from Equation 3.3, where δ is
the declination angle, φ is the latitude of the weather station location, and ω is the sun
hour angle. A detailed definition and calculation of solar geometry variables is provided in
Duffie e Beckman (2013) (PAIVA et al., 2020).

cos θz = cosφ cos δ cosω + sinφ sin δ (3.3)

Ineichen–Perez clear sky irradiance uses optical air mass ratio (AM), atmospheric
turbidity and altitude of location in clear sky irradiance modeling (INEICHEN; PEREZ,
2002). Ineichen–Perez Gclr is calculated by Equation 3.4, where Go is the extraterrestrial
irradiance, h is the solar elevation angle, a1, a2, fh1 and fh2 are constant functions of
local altitude, TL is the Linke turbidity factor and AM is the optical air mass ratio. The
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constants in Equations 3.5 and 3.6 were added empirically by Ineichen and Perez to
improve previous clear sky models which were logarithmically dependent on the Linke
turbidity factor and limited to specific location and zenith angles. TL was obtained in this
study from a map of monthly averaged values for each site (SODA, 2017). In order to
avoid discontinuities in TL and Gclr calculations, a daily fitness procedure was used as
presented by Ineichen (2006) and Engerer e Mills (2014) (PAIVA et al., 2020).

Gclr = a1 ·Go · sin h · exp[−a2 · AM · (fh1 + fh2 − (TL − 1))] (3.4)

a1 = 5.09 · 10−5 · altitude+ 0.868 (3.5)

a2 = 3.92 · 10−5 · altitude+ 0.0387 (3.6)

Figure 3.8 presents the daily fitness procedure applied to each evaluated site.

Figure 3.8 – Linke turbidity daily fitness (blue lines) and monthly averaged values (red
dots) for each location.
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3.2.4 Clear sky index curves and statistics

Figure 3.9 presents the clear sky index graph of the complete dataset of Goiania
(15-min time windows), based on Ineichen clear sky model. It is possible to observe how
the normalization procedure removes daily and yearly seasonality in solar data. In the
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case of Goiania, variability is lower in winter, because this region is characterized by dry
climate and many clear sky days in winter. Variability is higher in summer, the rainy
season in this region.

Figure 3.9 – Ineichen clear sky index curve for the complete dataset of Goiania (top) and
for 5 winter and summer days (bottom) (15-min time windows data).
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Table 3.3 – Data statistics of training, validation and test datasets for each location: Nsamp

is the number of samples of each dataset, µ is the average Ineichen k∗
t and σ

is the standard deviation of k∗
t .

Train. Valid. Test.
Nsamp µ σ Nsamp µ σ Nsamp µ σ

Goiania 25,813 0.7379 0.3042 11367 0.7458 0.2983 11,163 0.7423 0.3022
Milan 17,828 0.8544 0.3843 7969 0.8069 0.3897 7944 0.7999 0.4194
Desert Rock 25,959 0.9139 0.2380 10,929 0.9133 0.2451 10,865 0.9025 0.2458
Pennsylvania 25,706 0.6741 0.3534 10,998 0.6260 0.3492 11,177 0.6604 0.3572
Bondville 25,935 0.7246 0.3593 10,818 0.6974 0.3660 11,005 0.7197 0.3478
Sioux Falls 25,839 0.7579 0.3455 10,898 0.7476 0.3594 10,708 0.7638 0.3353

Figures 3.10 and 3.11 presents the clear sky index curves of complete data sets.
From top to bottom: Milan, Desert Rock, Pennsylvania SU, Bondville and Sioux Falls,
respectively. As seen in Figure 3.9, it is possible to observe how the normalization procedure
successfully removes daily and yearly seasonality in solar data. After normalization, both
peak and lower values are similar along the years.

Statistics of each site is presented in Table 3.3, achieved by applying the Ineichen
clear sky model for 15-min averaged point databases. Results in Table 3.3 show that
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Figure 3.10 – Clear sky index curves of complete data sets. From top to bottom: Milan,
Desert Rock and Pennsylvania SU.
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Figure 3.11 – Clear sky index curves of complete data sets. From top to bottom: Bondville
and Sioux Falls.
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training, validation and testing datasets present similar mean and standard deviations for
k∗
t , an important requirement to implement ML forecasting models. Results from Desert

Rock present a behavior with more clear sky conditions as opposed to other locations,
thus presenting the highest mean k∗

t with lowest standard deviations, while results from
Milan present the highest variabilities (σ) (PAIVA et al., 2020).

3.3 Data relations
The ML forecasting methodology is a Multiple Input Single Output (MISO) System.

It consists of a “multivariate” data structure of inputs, as defined in (RANA; KOPRINSKA;
AGELIDIS, 2016), to forecast k∗

t (single output), using relations among data based on
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output past values, past values of weather variables and deterministic solar variables.
Irradiances are then obtained by multiplying back the normalized index outputs by
respective clear sky irradiances (PAIVA et al., 2020).

The MISO system can be visualized in Figure 3.12.

Figure 3.12 – Data relations of the MISO system methodology for intraday solar irradiance
forecasting.

Reference: authors

.

A total of 65 inputs are used by ML algorithms to build forecast models for each
forecast horizon from 15-min to 120-min ahead. The input variables are:

- k∗
t (-5). . . (-60): the 12 past values of k∗

t in time windows of 5 min averages.

- Ta(-5). . . (-60): the 12 past values of ambient temperature in ◦C.

- Ws(-5). . . (-60): the 12 past values of wind speed in m/s.

- Hr(-5). . . (-60): the 12 past values of relative humidity in %.

- pa(-5). . . (-60): the 12 past values of atmospheric pressure in mBar.

- h is the elevation angle of the forecast time window in radians, varying from around
0.0873 (5◦) to 1.5708 (90◦).

- ts is the time difference in respect to sunrise in minutes.

- ωs is the solar time angle in radians.
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- “Day” is the day of forecast interval. The days of the year are counted starting one
day after the winter solstice and ending on the winter solstice of the next year. We
decided to adopt this definition to follow the solar cycle starting from the day of
lowest irradiance levels, since the traditional day counting does not have a direct
mathematical relation to the evolution of solar variables throughout the year.

- “Month” is the month of the forecast interval, varying from 1 to 12.

3.4 Multigene genetic programming
Genetic programming (GP) is an artificial intelligence technique which was originally

proposed by Koza (1992) in the in the evolutionary computation field; it is considered as
an extension of genetic algorithms. GP is inspired by population genetics and biological
evolution at the population level (BROWNLEE, 2011) (Algorithm 2). GP has proved to
be competitive in time series forecasting in relation to other statistical techniques based on
artificial intelligence, such as ANN and the support vector machine (SVM) (LEE; TONG,
2011; GARG; SRIRAM; TAI, 2013; MEHR; KAHYA; OLYAIE, 2013). It has been applied
in numerous studies of predictions of natural resources—e.g., hydrology (GHORBANI et
al., 2018; MEHR; JABARNEJAD; NOURANI, 2019)—and has also been applied to daily
or monthly solar irradiance forecasting in PV power systems (RUSSO et al., 2014; PAN;
PANDEY; DAS, 2013; GHIMIRE et al., 2019) (PAIVA et al., 2020).

When GP is used to build a mathematical model based on sampled data with the
aim of predicting future values, it is named symbolic regression (SR). GP models are
typically described as in Equation 3.7, where y is the observed output variable, ŷ is the
predicted output, and x1. . .xn are the observed input variables. In contrast to other soft
computing methodologies, such as feed-forward ANNs and SVMs, trained GP models
are basic constitutive equations that can be implemented without a specific software
environment in any modern programming language (PAIVA et al., 2020).

ŷ = f(x1, ..., xn) (3.7)

GP models can be classified into three different categories according to their
mathematical model complexity: naive SR, when the model requires only one gene to relate
input data with output data; scaled SR, when the model employs one gene associated to a
bias term to relate input and output data; and multigene SR, when the GP uses multiple
genes and a bias term to relate input and output data (Figure 3.13) (PAIVA et al., 2020).

Figure 3.13 illustrates a population individual and a multigene GP model, usning
Equation 3.8, where a bias term d0 is added to two genes with weights d1 and d2 in a
tree structure. The terms “plus”, “times”, “square root” and “tanh” are known as node
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Figure 3.13 – Example of a multigene symbolic regression (SR) model presented in a tree
structure (PAIVA et al., 2020).
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Algoritmo 2: Genetic programming pseudocode (PAIVA et al., 2020)
Input: Populationsize, Nodefunctions, Maxgenerations, Maxgenes, Maxdepth, κ, pc,
pm, pr, elitrate;
Output: Sbest
Population
← InitializePopulation(Populationsize, Nodefunctions,Maxgenerations,Maxgenes,
Maxdepth);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while StopCondition() do

Children ← ∅;
while Size(Children) < Populationsize do

Operator ← SelectGeneticOperator(pc, pm, pr)
if Operator = CrossoverOperator then

Parent1, Parent2 ← SelectParents(Population,Populationsize)
Child1, Child2 ← Crossover(Parent1, Parent2)
Children ← Child1
Children ← Child2

end
if Operator = MutationOperator then

Parent1 ← SelectParents(Population,Populationsize)
Child1 ← Mutate(Parent1)
Children ← Child1

end
if Operator = ReproductionOperator then

Parent1 ← SelectParents(Population,Populationsize)
Child1 ← Reproduce(Parent1)
Children ← Child1

end
end
EvaluatePopulation(Children);
Sbest ← GetBestSolution(Children,Sbest);
Population ← Children;

end
return Sbest
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functions. Both weights and nodes are obtained in a GP training procedure (PAIVA et al.,
2020).

ŷ = d0 + d1(0.41x1 + tanh(x2x3)) + d2(0.45x3 +√x2) (3.8)

GP evolves a population of candidate solutions (population size) in multiple
generations by the application of genetic operators with a tournament selection of best
individuals. A crossover operation exchanges genes between individuals to assess possible
structural improvements of individuals. Mutation is a fine adjustment operation that
changes pieces or entire genes into new, random ones to evaluate a possible structural
improvement in terms of fitness. Bias and gene weights of individuals are then optimized
in terms of least root mean square errors applied to training data according to Equation
3.9. Applying an elitism strategy with a given elitism rate, a percentage of best fitness
solutions is stored over generations. Based on these procedures, GP evaluates thousands
of possible regression structures with optimized weights to relate inputs and outputs.
Table 3.4 summarizes the parameters adopted in GP, which are considered again in results
analysis (PAIVA et al., 2020).

s∗ = min

√√√√∑Nsamp

i=1 (yi − ŷi)2

Nsamp

(3.9)

Table 3.4 – Summary of genetic programming (GP) simulation parameters.

Parameter Adopted Setting
Node functions +, −, ·, /, x2, tanh, exp√

x, exp−x, sin, cos
Population size 300
Maximum generations 150
Maximum number of genes 5
Maximum tree depth 4
Tournament size (κ) 6
Lexicographic selection True
Elitism fraction 0.3
Fitness function Root mean squared error (RMSE)
Crossover probability (pc) 0.88
Mutation probability (pm) 0.12
High-level crossover probability 0.5
Ephemeral random constants range from −10 to +10
ERC probability at creating nodes 0.2

The dynamics of GP solutions are characterized by generalization ability, providing
both accurate and robust solutions in training and for other datasets. On the other hand,
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ANN is highly influenced by overfitting, which is usually controlled by a validation step
named early stopping, while GP does not require a validation step during the SR model
training stage. Figure 3.14 presents the performance of the best individuals which evolved
over generations for GP forecasts. It is possible to observe the robustness of solutions
repeating from training to validation datasets. MGGP models were implemented on GPtips
2—an open-source GP platform for Matlab® (SEARSON; LEAHY; WILLIS, 2010) (PAIVA
et al., 2020).

Figure 3.14 – Fitness of best GP solution s∗ measured by k∗
t RMSE for training and

validation datasets (PAIVA et al., 2020).
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3.5 Multilayer perceptron (MLP) Artificial Neural Networks
A feed-forward multilayer perceptron neural network (MLP) architecture was

applied to this analysis, containing one hidden layer of 10 neurons using the hyperbolic
tangent sigmoid transfer function. The neural networks were trained with the Levenberg–
Marquadt algorithm including early stopping implemented in Matlab® using the neural
networks toolbox. The employed ANN set of attributes was previously validated for
intraday solar forecasting (PEDRO; COIMBRA, 2015b) (PAIVA et al., 2020).

3.6 Ensemble Forecasts
Ensemble forecast models are convenient to build with multiple ML simulations

and tend to improve forecast accuracy (LEVA et al., 2017). The ensemble forecast in this
research is given by Equation 3.10, where Ntrial is the number of trials by the given ML
method. In this analysis, the internal parameters of GP and ANN do not vary in each
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trial, and 10 trials were performed to produce each ensemble according to the methodology
described in Leva et al. (2017) (PAIVA et al., 2020).

Ĝens =
∑Ntrial
i=1 Ĝi

Ntrial

(3.10)

3.7 Iterative Forecasts
Rana et al. (RANA; KOPRINSKA; AGELIDIS, 2016) evaluated a forecast method

where predictions of instant t+1 are iteratively added as inputs to predictions of instant t+2.
As a conclusion, the iterative method did not improve forecasts in their study on PV power
forecasting using ANN ensemble and SVM; however, the iterative GP method was tested in
this work and yielded improvements on forecasting results. Results comparable to (RANA;
KOPRINSKA; AGELIDIS, 2016) were obtained, and no significant improvement was
achieved by using iteration for ANNs. Therefore, the results reported here were obtained
using iterative predictions for MGGP (PAIVA et al., 2020). Figure 3.15 presents data
relations in iterative predictions.

Figure 3.15 – Data relations in iterative forecasts.

3.8 Persistence
The smart persistence was also implemented as benchmark technique. Persistence

forecasting was computed by Equation 3.11, where Ĝ(t+ ∆T ) is the persistence forecast
and ∆T is the forecast horizon, which varies from 15 to 120 min; k∗

t (t) is the present
clear sky index; and Gclr(t+ ∆T ) is the clear sky irradiance at the horizon of the forecast
(PAIVA et al., 2020).

Ĝ(t+ ∆T ) = k∗
t (t) ·Gclr(t+ ∆T ) (3.11)
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3.9 Summary
This chapter presented the datasets analyzed, the MGGP algorithm, and the

methods to improve forecast models. Data quality control, choice of data structure, ML
algorithm development, and tuning need special attention to optimize forecasting models.

The next chapter reports the first-case study results of intraday solar irradiance
forecasting evaluated at 6 locations in Brazil, Italy, and the USA.
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4 Case study I: Comparison of MGGP and
MLP Neural Networks for intraday irradi-
ance forecasting at multiple sites
The first case results are presented in this chapter, addressing intraday solar
irradiance forecasting based on data from six meteorological stations situated in
Brazil, Italy, and the USA.

4.1 MGGP tuning
Initial simulations were intended to analyze the influence of GP parameters in

forecast accuracy and robustness. The analysis of parametric influence is known as the
parameter tuning of evolutionary algorithms (EAs), as described in (EIBEN; SMIT,
2011). Parameter tuning is by nature an optimization task comprising multiple variables
(parameters). In current analyses of multiple horizon forecasts, each forecast horizon at
each location consists of a different problem to be tuned. In order to reduce the number of
simulations to assess GP parameters, this study considered prior knowledge from other
studies to seek good parameter choices to perform a lower number of simulations. Therefore,
parameter assessment was carried out only for one forecast horizon using the dataset from
Goiania station. Thus, parameter settings from Goiania were used in forecasting models
for other sites (PAIVA et al., 2020).

Lima et al. (de Lima et al., 2010) performed a systematic analysis of GP that
indicated the population size, number of generations and tree size as the main parameters
which influence fitness, while genetic operators have a lower influence. Increases in the
size limit of regression functions tend to improve fitness; however, when the size limit
is excessively large, this leads to a bloat (function size growth without fitness improve-
ment) (POLI; LANGDON; MCPHEE, 2008). Bloat can be relieved by using realistic
elitism rates (POLI; MCPHEE; VANNESCHI, 2008). In summary, lower tournament sizes
and lower elitism rates lead to a higher diversity of solutions (PAIVA et al., 2020).

According to the literature review and some former analyses of irradiance forecasting,
the maximum number of genes was set at 5, the tree depth at 4, the number of generations
at 150 and population size at 300. These parameters presented a good trade-off between
complexity and fitness improvement. Figure 4.1 presents the improvement of solution
fitness in the validation dataset from Goiania station versus the increase in complexity
(increasing the maximum number of genes) (PAIVA et al., 2020).

Genetic operators were analyzed by multiple simulations for a forecast horizon
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Figure 4.1 – Influence of maximum number of genes on the fitness of best solutions,
evaluated for the Goiania validation dataset (PAIVA et al., 2020).

of 90 min ahead, as this is a demanding time window for prediction and consequently
presents high variability in the different algorithm simulations. The results for accuracy
and robustness are given in Figure 4.2. The number of generations was lowered to 50
during tests in order to obtain a higher variability of results. It is possible to conclude that
the best accuracy and robustness (standard deviation for multiple simulations) were those
accomplished using higher mutation rates, lower tournament sizes and lower elitism rates.
Therefore, we selected the setting with lowest RMSE: κ = 6, pm = 0.12 and elit = 0.30
(PAIVA et al., 2020).

Figure 4.2 – Influence of tournament size (κ), mutation rate (pm) and elitism rate (elit)
on the accuracy and robustness (RMSE standard deviation) of the validation
dataset from the Goiania site (PAIVA et al., 2020).
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4.2 Assessment of exogenous input variables
ANN and GP were executed for all formerly defined locations and forecast horizons

both considering and neglecting weather variables Hr, Ta, Ws and pa. The error improve-
ment index, Improverror, was defined in Equation 4.1 in order to assess the improvement
yielded by the addition of weather variables at a given error metric, where erroruniv is the
forecast error obtained based on past values of k∗

t with the sole addition of deterministic
variables, and errormultiv is the forecast error obtained by including weather variables.
It is worth highlighting that deterministic variables are able to improve forecasts based
merely on past values of k∗

t (PAIVA et al., 2020).

Improverror = (erroruniv − errormultiv)
erroruniv

· 100% (4.1)

Improvements were calculated both in terms of MAE and RMSE, as described
in Figure 4.3. The graphs represent typical behaviors, where weather variables generally
improve forecastability for all locations by up to 5.68% in terms of MAE and 3.41%
in terms of RMSE; in some locations, negative improvements were obtained for shorter
forecast horizons from 15 to 60 min. Mostly, the addition of weather variables tends to
improve forecastability for all locations; thus, the results obtained by the multivariate
forecasts are reported (PAIVA et al., 2020).
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Figure 4.3 – Improvements (%) of multivariate forecasting using GP according to mean
absolute error (MAE) (dark red bars) and according to RMSE (dark blue
bars), and improvements (%) of multivariate forecasting using an artificial
neural network (ANN) according to MAE (orange bars) and according to
RMSE (light blue bars) (PAIVA et al., 2020).
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4.3 Specific Results
Complete results for each forecast horizon and location are presented in the

Appendix. The most accurate results are in bold characters for both single and ensemble
forecast comparisons. Model accuracy dominance depends on the location, forecast horizon
and error metric, as summarized in Figure 4.4. The accomplished results point toward ANN
as the most accurate for short horizons and GP as the most accurate for longer horizons,
which also predominantly improves robustness. Furthermore, location attributes have been
proven to affect model dominance. Figure 4.5 presents forecast accuracies for both methods
applied to the Goiania station, where the most accurate results were obtained by ANN,
and Figure 4.6 displays the results for the Desert Rock station, where the most accurate
results were obtained by GP (PAIVA et al., 2020).

Figure 4.4 – Model accuracy dominance by location and forecast horizon in single forecasts.
GP/ANN indicates cases in which accuracy dominance differs from the error
metric evaluated (PAIVA et al., 2020).

Both GP and ANN methods were consistently improved considering both error
metrics by employing an ensemble strategy for each forecast horizon and location. ANN
presented more significant improvement and superior accuracy using the ensemble strategy
in most cases, as summarized for model accuracy dominance in Figure 4.7 using ensemble
forecasting. GPens led to the most accurate results in eight cases out of 48, while ANNens

yielded the most accurate results in 23 cases out of 48. GPens achieved the most accurate
results for the Milan station for horizons from 15 to 45 min and from 105 to 120 min using
MAE as a reference metric. At Desert Rock station, GPens attained the lowest RMSE for
horizons from 30 to 120 min. At Bondville station, GPens accomplished the lowest RMSE
for horizons from 90 to 120 min and the lowest MAE for horizons from 75 to 120 min. At
PSU station, GPens led to the lowest MAE and RMSE for horizons from 105 to 120 min.
At Sioux Falls station, GPens yielded the lowest RMSE for horizons from 105 to 120 min
and the lowest MAE for horizons of 45 min and from 90 to 120 min (PAIVA et al., 2020).
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Figure 4.5 – Accuracy of persistence, GP and ANN according to RMSE (left) and MAE
(right) for Goiania, showing the dominance of ANN (PAIVA et al., 2020).
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Figure 4.6 – Accuracy of persistence, GP and ANN according to RMSE (left) and MAE
(right) for Desert Rock, showing the dominance of GP (PAIVA et al., 2020).

ANNens has proved to be consistently effective in the forecasts carried out for
Goiania weather station, as expected, because the lower variations in sunshine duration
along the year lead to a less biased dataset in terms of overfitting, as night period points
are excluded from the dataset during the processing stage (PAIVA et al., 2020).

From a comparison of the results obtained by Haurwitz and Ineichen for clear sky
index forecasts, it is possible to conclude that Ineichen k∗

t persistence produces lower errors
than results obtained by Haurwitz for most of the locations and horizons of prediction.
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Figure 4.7 – Model accuracy dominance by location and forecast horizon in ensemble
forecasts. GP/ANN indicates cases in which accuracy dominance differs from
the error metric evaluated (PAIVA et al., 2020).

Nevertheless, as the AI methods used here are improved by employing exogenous inputs,
a trend of clear sky model dominance over results from GP and ANN techniques was not
achieved (PAIVA et al., 2020).

4.4 Generic Results
The computation of averages based on multiple results is widely employed as

a procedure to achieve reliable generalized results according to Rana et al. (RANA;
KOPRINSKA; AGELIDIS, 2016), although the use of averages does not disregard the
importance of specific results. MAE and RMSE averages of all forecast horizons and
locations were calculated in order to carry out a generic evaluation of accuracy for GP
and ANN, and the results are presented in Figure 4.8. The average robustness of MAE
and RMSE were similarly determined, and results are presented in Figure 4.9. From the
generalized results, it is possible to assume that GP presents more accurate and robust
forecast results in comparison to ANN for single forecasts; the ensemble strategy improves
ANN forecasts more significantly than GP; the ANN ensemble generally presents the most
accurate results; and both models produce similar forecastability, with little difference
in terms of accuracy, indicating that GP can provide faster, more reliable and accurate
predictions with lower computing complexity, while ANN can provide more accurate
predictions using higher complexity and a time-demanding strategy (PAIVA et al., 2020).

A general comparison of clear sky indexes from multiple sites is exhibited in Table
4.1. From the analysis of results, it is possible to observe that the difference between
Haurwitz k∗

t and Ineichen k∗
t forecast results is negligible, showing the low influence of the

clear sky model on the accuracy of multivariate forecast results (PAIVA et al., 2020).
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Figure 4.8 – General accuracies of GP, ANN, GP ensemble and ANN ensemble for all sites
according to RMSE values (left-hand graphs) and MAE values (right-hand
graphs) (PAIVA et al., 2020).

  MAE                                             RMSE

M
A

E
R

M
S

E
 (

W
/m

²)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
GP

ANN

Figure 4.9 – Comparison of general robustness of GP and ANN single forecasts according
to MAE and RMSE (PAIVA et al., 2020).

Table 4.1 – Generalized accuracies for Haurwitz k∗
t and Ineichen k∗

t forecasts (PAIVA et
al., 2020).

RMSE σRMSE MAE σMAE

Haurwitz 111.87 0.44 70.22 0.54
Ineichen 111.93 0.47 70.33 0.55

4.5 Regression Functions
The following Equation presents an example of a regression function developed to

forecast k̂∗
t (15), comprising a combination of the deterministic variable ωs with previous
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values of k∗
t and the weather variables Ta and Hr. The algorithm has been proven to

be efficient in selecting suitable variables to achieve accurate and robust models with
generalization ability. Selected variables to develop regressions for Goiania station are
expressed in Table 4.2 (PAIVA et al., 2020).

k̂∗
t (15) = 0.535 + 0.98 tanh k∗

t (−5)− 0.0049[Ta(−45) + ωs · k∗
t (−20)]

−0.142[e−k∗
t (−35)·k∗

t (−50) + cos k∗
t (−20)]− 0.00141Hr(−5) + 0.0244[e−ωs

−k∗
t (−5)k∗

t (−35)] + 0.00249ωsk∗
t (−20)ee−ωs

Table 4.2 – Variables selected by GP regression models according to the forecast horizon
for Goiania (PAIVA et al., 2020).

Forecast Selected Variables
Horizon
15 min ωs, k∗

t (−5,−20,−35,−50), Hr(−5), Ta(−40)
30 min ts, ωs, k̂∗

t (15), k∗
t (−5), pa(−25), Hr(−40)

45 min ωs, k̂∗
t (30), Hr(−5,−35,−40), Ta(−20), pa(−60)

60 min ts, h, k̂∗
t (15, 45), Hr(−15), Ta(−40), k∗

t (−45)
75 min ωs, h, k̂∗

t (60), pa(−5,−10,−20), Ta(−10,−55), Hr(−10,−15), Ws(−60)
90 min ωs, k̂∗

t (30, 45, 75)
105 min ωs, k̂∗

t (45, 60, 90)
120 min Month, k̂∗

t (105), k∗
t (−25), Hr(−30,−35), Ta(−40)

4.6 Comparison with the State-of-the-Art
A recent analysis of intraday solar irradiance forecasting at the SURFRAD weather

stations has been carried out using regression and frequency domain models (REIKARD;
HANSEN, 2019). A direct comparison of the results obtained by regression, frequency
domain and MGGP is presented in Table 4.3. Reikard et al. (REIKARD; HANSEN, 2019)
analyzed forecasts for the same years, based on the same historical data and datasets used
here. Although pieces of datasets used in each analysis are not guaranteed to be the same,
a direct comparison of the results is able to ensure the suitability of the results of GP
prediction (PAIVA et al., 2020).

4.7 Machine Learning Algorithm Training Speed
Training machine learning algorithms to optimize results and accuracy is normally

a time-consuming task. Table 4.4 presents a comparison of the average training times (in
minutes) assessed for Goiania station according to each forecast horizon. Similar results
were obtained for the other previously mentioned stations. Although MGGP has been
demonstrated to be more robust for single forecasts, the training speed of this method is
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Table 4.3 – Comparison of state-of-the-art methods applied to intraday solar irradiance
forecasting for Surface Radiation Network (SURFRAD) weather stations (best
values in bold) (PAIVA et al., 2020).

F.H. Method Desert Rock Pennsylv. SU Bondville Sioux Falls
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Regression 84.4 51.4 89.1 55.3 81.1 49.3 70.9 44.9
15 Freq. Domain 84.2 51.0 91.0 56.1 82.5 50.1 73.9 46.5

GPens 68.3 31.6 81.7 46.9 72.0 40.8 67.6 37.7

Regression 105.6 66.6 112.6 74.1 102.3 67.6 91.5 59.7
30 Freq. Domain 108.1 63.0 112.0 73.2 102.2 66.9 92.1 60.3

GPens 89.0 44.7 105.4 65.8 90.6 56.2 86.5 52.8

Regression 119.9 76.5 127.3 87.1 116.9 80.3 106.3 71.3
45 Freq. Domain 119.1 71.7 125.1 86.1 114.5 78.8 106.6 69.4

GPens 97.4 50.5 115.2 74.0 100.9 64.2 96.5 60.5

lower than that for ANN. Improvements of MGGP parameter tuning strategies should be
considered in future studies in order to increase the speed of MGGP training (PAIVA et
al., 2020).

Table 4.4 – Comparison of training time required for each machine learning (ML) method,
evaluated for the Goiania dataset (best values in bold) (PAIVA et al., 2020).

ML Method F.H.
15 30 45 60 75 90 105 120

GP 3.62 3.36 3.24 3.40 3.50 3.71 3.43 3.42
ANN 0.89 0.47 0.44 0.34 0.35 0.45 0.39 0.35

4.8 Analysis of individual and monthly errors
Analysis of individual and monthly errors and understanding site specific climate

behavior may be useful for forecasting improvement. That is the case of analysis of Goiania
forecasts. As discussed before, Goiania region is characterized by a dry winter season and
a rainy summer (with higher solar variability). This aspect can be observed in individual
errors and monthly errors plots.

Figure 4.10 presents plots of absolute individual errors for Goiania test dataset for
forecast horizons of 15-min (top), 60-min (mid) and 120-min (bottom). It is possible to
observe that errors are lower in the dry season (May–August)and higher in the rest of the
year.

If the monthly RMSE value is calculated, it is observed that MGGP ensemble
presents lower RMSE in May, June and July, even presenting an overall RMSE higher
than ANN ensemble, as shows Figure 4.11. This may be explained by the fact that the
algorithm minimizes the errors in the higher variability season and ends up with a worse
performance in the dry season. This is an indicator for a possible successful hybridization
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strategy between the methods. In fact, literature has shown that combination of methods
tends to improve overall accuracy.

Figure 4.10 – Individual errors plot from MGGP forecasts for Goiania test dataset for
forecast horizons of 15-min (top), 60-min (mid) and 120-min (bottom).
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Figure 4.11 – Monthly RMSE plots from MGGPens (blue bars) and ANNens (red bars)
forecasts for Goiania test dataset for forecast horizons of 90-min (top),
105-min (mid) and 120-min (bottom).
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4.9 Summary
In this chapter, the results of MGGP tuning and forecasting have been presented

and discussed. MGGP is a white-box method where derived regression functions have
shown to build accurate and robust forecast models in a multivariate approach. It has
shown competitive results in comparison with state-of-the-art MLP neural networks,
particularly improving them for specific forecast horizons at some locations.

In the next chapter, the second case study is presented and its results are discussed:
development of improved intraday PV power forecasting from a building integrated PV
system installed at EMC–UFG based on MLP neural networks ensembles.
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5 Case study II: Implementation and valida-
tion of multivariate intraday PV output
power forecasting
This chapter presents results from tests of the second case covering intraday
forecasting of PV output power from the EMC–UFG grid-connected PV system.

5.1 Combining meteorological station and PV power measurements
1As a second case study, this work evaluated applying of a physical hybrid artificial

neural network model for intraday PV output power forecasting used to forecasting horizons
of 15–120 minutes.

The forecast model combines weather variables measurements from the EMC–UFG
meteorological station with PV output power measurements from a PV inverter of the
EMC–UFG grid-connected PV system.

The complete PV system consists of a 34 kWp plant connected to the local grid
with six single-phase inverters of 4.4 kW rated power and two single-phase inverters of
2.9 kW rated power. The rooftop presents a tilt angle of β = 10◦. The azimuth angle γs
of three 4.4 kW subsystems and two 2.9 kW face 15◦ West, and the other three 4.4 kW
subsystems face 165◦ East. The analysis was carried out based on data of a subsystem
facing 15◦ West. Figure 5.1 presents a google earth view of the EMC–UFG grid connected
PV system, showing PV modules with 15◦ West azimuth and 165◦ East azimuth angles.

PV power measurements were obtained at inverter DC side, within the period from
April 5th, 2017 to November 11th, 2017 from a 4.4 kW inverter manufactured by Eltek®,
which is connected to 20 polycrystalline PV panels of 235 Wp manufactured by SunEarth®,
and The Weather data were obtained for the same period as the PV values. DC PV power
data were used instead of AC PV power because it is not influenced by inverter efficiency.

5.2 Data processing
The proposed methodology shown in Figure 3.1 was adapted to PV output power

forecasting. After data quality control and removal of PV measurements below h = 5◦, the
PV output power (DC) was first normalized by the PV system capacity, Pnom = 4700
Wp, creating a virtual 1 kWp PV generator. After that, a new definition of clear sky index
1 Some texts from this session onwards have been extracted from this research publication version at

IEEE Powertech 2019 conference (Paiva et al., 2019).
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Figure 5.1 – Google earth view of the EMC–UFG grid connected PV system.

Reference: authors.

was developed, following the kPV index concept from Engerer e Mills (2014). The kPV is
obtained by the following Equation:

kPV = Po
Gclr,T

(5.1)

Where Po is the PV output power in a 15-min time window andGclr,T is a transposed
clear sky irradiance for a PV module tilt angle β and azimuth angle γs. Gclr,T was obtained
by the Reindl model as it yielded good results under clear days (ENGERER; MILLS,
2014). Equation 5.2 presents formulation to Gclr,T .

Gclr,T = (Gb +GdAi)Rb +Gd(1− Ai)(
1 + cos β

2 )[1 + f sin3 β

2 ] +Gρg(
1− cos β

2 ) (5.2)

Where G is the Ineichen clear sky model, given by Equation 3.4. Diffuse Gd and
beam Gb components of the clear sky irradiance and other parameters in Equation 5.2
were obtained following algorithms described by Duffie e Beckman (2013).

Figure 5.2 shows the normalized index distributed over some days of the dataset. It
is possible to observe that the kPV index successfully reduces the seasonality in PV output
power measurements.
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5.3 Input-output scheme
The input-output scheme for the PV power forecast is presented in Figure 5.3. In

this case, each forecast horizon forecast used a total of 77 inputs.

Figure 5.2 – Virtual 1 kWp PV plant output power (top) and kPV distribution (bottom).
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Figure 5.3 – Data relations of input and output vectors for the case of PV output power
forecast model developed.
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5.4 Forecasting results
In this case, 20 neural networks were trained to build MLP Neural Networks

ensembles. The PV output power forecasting results from the MLP Neural Networks were
validated by comparing with the Persistence of the kPV index. The results are presented
in Figure 5.4.

Figure 5.4 – Table of comparison of the forecast results from ANN ensemble versus a kPV
persistence from Paiva et al. (2019) (best results presented in bold) .

The results show that forecast skills range from 9.79% to 23.75%. It stands for
ANN ensemble consistently improves the smart persistence model for the PV output power
forecast.

5.5 Summary
This chapter described the MGGP results and discussions for tuning and solar

forecasting. MGGP is a white-box method whose derived regression functions built accurate
and robust forecast models in a multivariate approach. It has presented competitive results
compared to state-of-the-art MLP neural networks, mainly improving forecast horizons at
some locations.

The next chapter regards the second case study, presenting and discussing improved
intraday PV power forecasting results from a building-integrated PV system installed at
EMC–UFG based on MLP neural network ensembles.
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6 Conclusions

Machine learning algorithms are extensively adopted techniques for solar forecasting.
This research proposed and evaluated multigene genetic programming (MGGP) as a novel
machine learning algorithm classified as a white box to perform intraday solar irradiance
forecasting. MGGP derives analytical regression functions that can be implemented without
a specific software environment in any modern programming language using basic hardware.
MGGP proved to consistently possess data generalization ability, providing robust and
reliable solutions. The MGGP algorithm and another state-of-the-art MLP artificial neural
network (ANN) algorithm were applied to datasets from six locations from three countries
to compare results for forecast horizons from 15 to 120 minutes.

Data processing strategies were carefully analyzed in terms of input and output
alternatives. Initial simulations were carried out for solar irradiance forecasting, using
fifteen-minute time-windows as input data. Five-minute time-window data, Haurwitz and
Ineichen clear sky indexes were considered and combined with solar deterministic variables
and weather variables to improve forecast accuracy in terms of the data processing strategy.

The computation of MAE and RMSE as error metrics showed that the location,
forecast horizon and error of evaluation influence the selection of the dominant model in
terms of accuracy. MGGP and ANN typically yielded similar and consistent results. MGGP
utilization for single forecasts led to more accurate and robust results as opposed to ANN.
Predictions were significantly improved for MGGP and ANN by adopting ensemble forecast,
while the ensemble strategy improved ANN more extensively than MGGP. Regarding
ensemble forecasts, MGGP was more accurate for a lower number of locations and evaluated
forecast horizons than ANN, presenting the best forecast skills for Desert Rock station.
MGGP predominantly accomplished more accurate prediction results for longer forecast
horizons from 90 to 120 minutes ahead for different localities.

Based on a direct comparison with other state-of-the-art forecasting methods
applied to the same locations in the USA, MGGP presented a relevant reduction in error
and proved to be a reliable and accurate approach for the analyzed localities. Besides,
locality attributes demonstrated to affect model dominance, indicating that both MGGP
and ANN are suitable to diverse locations.

As a suggestion, future studies may address hybridization strategies, ML algorithm
enhancements, advanced data processing strategies applied to MGGP forecasting, and
improvements in parameter tuning to enhance MGGP’s training speed. Moreover, the
inclusion of other solar parameters may be studied to improve solar forecasting techniques’
accuracy and performance.
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A PV output power forecasting model based on MLP neural network ensemble
yielded promising results. Future works may compare the proposed methodology with
forecasting models based only on a reference meteorological station. Other statistical
methods and hybridization strategies may be investigated for PV output power forecasting.



84

Bibliography

AGGARWAL, S.; SAINI, L. Solar energy prediction using linear and non-linear
regularization models: A study on ams (american meteorological society) 2013–14 solar
energy prediction contest. Energy, v. 78, p. 247 – 256, 2014. ISSN 0360-5442. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S036054421401161X>. Citado
na página 44.

AGUIAR, L. M. et al. Combining solar irradiance measurements, satellite-derived
data and a numerical weather prediction model to improve intra-day solar forecasting.
Renewable Energy, v. 97, p. 599 – 610, 2016. ISSN 0960-1481. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0960148116305390>. Citado na
página 24.

ALMEIDA, M. P. et al. Comparative study of pv power forecast using parametric and
nonparametric pv models. Solar Energy, v. 155, p. 854 – 866, 2017. ISSN 0038-092X.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X17306175>.
Citado 2 vezes nas páginas 34 and 44.

Alobaidi, M. H. et al. Mapping of the solar irradiance in the uae using advanced artificial
neural network ensemble. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, v. 7, n. 8, p. 3668–3680, Aug 2014. ISSN 2151-1535. Citado na
página 44.

Bakirtzis, E. A.; Biskas, P. N. Multiple time resolution stochastic scheduling for systems
with high renewable penetration. IEEE Transactions on Power Systems, v. 32, n. 2, p.
1030–1040, 2017. Citado na página 23.

Barcelo, W. R.; Rastgoufard, P. Dynamic economic dispatch using the extended security
constrained economic dispatch algorithm. IEEE Transactions on Power Systems, v. 12,
n. 2, p. 961–967, 1997. Citado na página 23.

Ben Taieb, S. et al. A review and comparison of strategies for multi-step ahead
time series forecasting based on the nn5 forecasting competition. Expert Systems
with Applications, v. 39, n. 8, p. 7067 – 7083, 2012. ISSN 0957-4174. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0957417412000528>. Citado na
página 44.

BENALI, L. et al. Solar radiation forecasting using artificial neural network and
random forest methods: Application to normal beam, horizontal diffuse and global
components. Renewable Energy, v. 132, p. 871 – 884, 2019. ISSN 0960-1481. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S0960148118309947>. Citado na
página 42.

Bessa, R. J.; Trindade, A.; Miranda, V. Spatial-temporal solar power forecasting for smart
grids. IEEE Transactions on Industrial Informatics, v. 11, n. 1, p. 232–241, 2015. Citado
na página 38.

http://www.sciencedirect.com/science/article/pii/S036054421401161X
http://www.sciencedirect.com/science/article/pii/S0960148116305390
http://www.sciencedirect.com/science/article/pii/S0038092X17306175
http://www.sciencedirect.com/science/article/pii/S0957417412000528
http://www.sciencedirect.com/science/article/pii/S0960148118309947


Bibliography 85

BILIONIS, I.; CONSTANTINESCU, E. M.; ANITESCU, M. Data-driven model for
solar irradiation based on satellite observations. Solar Energy, v. 110, p. 22 – 38, 2014.
ISSN 0038-092X. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0038092X14004393>. Citado na página 44.

BOUZERDOUM, M.; MELLIT, A.; Massi Pavan, A. A hybrid model (sarima–svm)
for short-term power forecasting of a small-scale grid-connected photovoltaic
plant. Solar Energy, v. 98, p. 226 – 235, 2013. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X13004039>. Citado na
página 44.

BOX, G. E. et al. Time series analysis: forecasting and control. [S.l.]: John Wiley & Sons,
2015. Citado na página 38.

BREIMAN, L. Bagging predictors. Machine learning, Springer, v. 24, n. 2, p. 123–140,
1996. Citado na página 42.

BROWNLEE, J. Clever Algorithms: Nature-Inspired Programming Recipes. 1st. ed. [S.l.]:
Lulu.com, 2011. ISBN 1446785068, 9781446785065. Citado na página 61.

BURROWS, W. R. Cart regression models for predicting uv radiation at the ground in
the presence of cloud and other environmental factors. Journal of Applied Meteorology,
American Meteorological Society, Boston MA, USA, v. 36, n. 5, p. 531 – 544, 1997.
Disponível em: <https://journals.ametsoc.org/view/journals/apme/36/5/1520-0450_
1997_036_0531_crmfpu_2.0.co_2.xml>. Citado na página 44.

CAO, J.; LIN, X. Study of hourly and daily solar irradiation forecast using
diagonal recurrent wavelet neural networks. Energy Conversion and Management,
v. 49, n. 6, p. 1396 – 1406, 2008. ISSN 0196-8904. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0196890408000125>. Citado na página 44.

CHAKRABORTY, P. et al. Fine-grained photovoltaic output prediction using a bayesian
ensemble. In: Proceedings of the AAAI Conference on Artificial Intelligence. [S.l.: s.n.],
2012. v. 26, n. 1. Citado na página 44.

CHU, Y.; PEDRO, H. T.; COIMBRA, C. F. Hybrid intra-hour dni forecasts with sky
image processing enhanced by stochastic learning. Solar Energy, v. 98, p. 592 – 603, 2013.
ISSN 0038-092X. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0038092X13004325>. Citado na página 44.

CHU, Y. et al. Real-time forecasting of solar irradiance ramps with smart image
processing. Solar Energy, v. 114, p. 91 – 104, 2015. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X15000389>. Citado na
página 44.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20,
n. 3, p. 273–297, 1995. Citado 2 vezes nas páginas 9 and 41.

De Felice, M.; PETITTA, M.; RUTI, P. M. Short-term predictability of photovoltaic
production over italy. Renewable Energy, v. 80, p. 197 – 204, 2015. ISSN 0960-1481.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148115001007>.
Citado na página 44.

http://www.sciencedirect.com/science/article/pii/S0038092X14004393
http://www.sciencedirect.com/science/article/pii/S0038092X14004393
http://www.sciencedirect.com/science/article/pii/S0038092X13004039
https://journals.ametsoc.org/view/journals/apme/36/5/1520-0450_1997_036_0531_crmfpu_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/apme/36/5/1520-0450_1997_036_0531_crmfpu_2.0.co_2.xml
http://www.sciencedirect.com/science/article/pii/S0196890408000125
http://www.sciencedirect.com/science/article/pii/S0196890408000125
http://www.sciencedirect.com/science/article/pii/S0038092X13004325
http://www.sciencedirect.com/science/article/pii/S0038092X13004325
http://www.sciencedirect.com/science/article/pii/S0038092X15000389
http://www.sciencedirect.com/science/article/pii/S0960148115001007


Bibliography 86

de Lima, E. B. et al. Tuning genetic programming parameters with factorial designs. In:
IEEE Congress on Evolutionary Computation. [S.l.: s.n.], 2010. p. 1–8. ISSN 1089-778X.
Citado na página 67.

de Paiva, G. M. et al. Assessment of exogenous variables on intra-day solar irradiance
forecasting models. In: 2018 IEEE International Conference on Environment and
Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe
(EEEIC / I CPS Europe). [S.l.: s.n.], 2018. p. 1–6. Citado na página 19.

de Paiva, G. M. et al. Intelligent approach to improve genetic programming based
intra-day solar forecasting models. In: 2018 IEEE Congress on Evolutionary Computation
(CEC). [S.l.: s.n.], 2018. p. 1–8. Citado 2 vezes nas páginas 19 and 54.

Demirtas, M. et al. Prediction of solar radiation using meteorological data. In: 2012
International Conference on Renewable Energy Research and Applications (ICRERA).
[S.l.: s.n.], 2012. p. 1–4. Citado na página 44.

DIAGNE, M. et al. Review of solar irradiance forecasting methods and a
proposition for small-scale insular grids. Renewable and Sustainable Energy
Reviews, v. 27, p. 65 – 76, 2013. ISSN 1364-0321. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S1364032113004334>. Citado 5 vezes nas
páginas 9, 28, 29, 30, and 31.

DOLARA, A.; LEVA, S.; MANZOLINI, G. Comparison of different physical models for
pv power output prediction. Solar Energy, v. 119, p. 83 – 99, 2015. ISSN 0038-092X.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X15003254>.
Citado na página 34.

DONG, Z. et al. A novel hybrid approach based on self-organizing maps,
support vector regression and particle swarm optimization to forecast solar
irradiance. Energy, v. 82, p. 570 – 577, 2015. ISSN 0360-5442. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0360544215000900>. Citado na
página 44.

DUFFIE, J. A.; BECKMAN, W. A. Solar Engineering of Thermal Processes. [S.l.]: John
Wiley & Sons, Inc., Hoboken, New Jersey, 2013. Citado 3 vezes nas páginas 26, 55,
and 79.

EEA. Electricity production by fuel. 2012. Website. European Environment
Agency. Disponível em: <https://www.eea.europa.eu/data-and-maps/indicators/
electricity-production-by-fuel-1/electricity-production-by-fuel-assessment-3>. Citado na
página 23.

EIA. Electricity in the United States. 2020. Website. U.S. Energy Information
Administration. Disponível em: <https://www.eia.gov/energyexplained/electricity/
electricity-in-the-us.php>. Citado na página 23.

EIBEN, A.; SMIT, S. Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm and Evolutionary Computation, v. 1, n. 1, p. 19 – 31, 2011.
ISSN 2210-6502. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S2210650211000022>. Citado na página 67.

http://www.sciencedirect.com/science/article/pii/S1364032113004334
http://www.sciencedirect.com/science/article/pii/S1364032113004334
http://www.sciencedirect.com/science/article/pii/S0038092X15003254
http://www.sciencedirect.com/science/article/pii/S0360544215000900
https://www.eea.europa.eu/data-and-maps/indicators/electricity-production-by-fuel-1/electricity-production-by-fuel-assessment-3
https://www.eea.europa.eu/data-and-maps/indicators/electricity-production-by-fuel-1/electricity-production-by-fuel-assessment-3
https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php
https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php
http://www.sciencedirect.com/science/article/pii/S2210650211000022
http://www.sciencedirect.com/science/article/pii/S2210650211000022


Bibliography 87

Ela, E.; O’Malley, M. Studying the variability and uncertainty impacts of variable
generation at multiple timescales. IEEE Transactions on Power Systems, v. 27, n. 3, p.
1324–1333, 2012. Citado na página 23.

ELMAN, J. L. Finding structure in time. Cognitive science, Wiley Online Library, v. 14,
n. 2, p. 179–211, 1990. Citado na página 39.

ENGERER, N.; MILLS, F. Kpv: A clear-sky index for photovoltaics. Solar
Energy, v. 105, p. 679 – 693, 2014. ISSN 0038-092X. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0038092X14002151>. Citado 3 vezes nas
páginas 37, 56, and 79.

EPE. Brazilian Energy Balance Year 2008. [S.l.], 2009. Disponível em: <www.epe.gov.br>.
Citado na página 23.

EPE. Balanço Energético Nacional 2019. [S.l.], 2019. Ano Base 2018. Disponível em:
<www.epe.gov.br>. Citado na página 23.

EUROSTAT. What is the source of electricity we consume? 2020. Website. Disponível em:
<https://ec.europa.eu/eurostat>. Citado na página 23.

FERNÁNDEZ, Á.; GALA, Y.; DORRONSORO, J. R. Machine learning prediction of
large area photovoltaic energy production. In: WOON, W. L.; AUNG, Z.; MADNICK, S.
(Ed.). Data Analytics for Renewable Energy Integration. Cham: Springer International
Publishing, 2014. p. 38–53. ISBN 978-3-319-13290-7. Citado na página 44.

Ferrari, S. et al. Illuminance prediction through extreme learning machines. In: 2012
IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS).
[S.l.: s.n.], 2012. p. 97–103. Citado na página 44.

GARG, A.; SRIRAM, S.; TAI, K. Empirical analysis of model selection criteria for
genetic programming in modeling of time series system. In: 2013 IEEE Conference on
Computational Intelligence for Financial Engineering Economics (CIFEr). [S.l.: s.n.],
2013. p. 90–94. ISSN 2380-8454. Citado na página 61.

GASTÓN, M. et al. A new Adaptive methodology of Global-to-Direct irradiance
based on clustering and kernel machines techniques. In: 15th SolarPACES
Conference. Berlin, Germany: [s.n.], 2010. p. 11693. Disponível em: <https:
//hal.archives-ouvertes.fr/hal-00919064>. Citado na página 44.

GHIMIRE, S. et al. Global solar radiation prediction by ann integrated with european
centre for medium range weather forecast fields in solar rich cities of queensland australia.
Journal of Cleaner Production, v. 216, p. 288 – 310, 2019. ISSN 0959-6526. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0959652619301775>. Citado na
página 61.

GHORBANI, M. A. et al. Chaos-based multigene genetic programming: A new hybrid
strategy for river flow forecasting. Journal of Hydrology, v. 562, p. 455 – 467, 2018.
ISSN 0022-1694. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S002216941830307X>. Citado na página 61.

GUIDE, M. U. Neural network toolbox. The MathWorks, 2002. Citado na página 40.

http://www.sciencedirect.com/science/article/pii/S0038092X14002151
http://www.sciencedirect.com/science/article/pii/S0038092X14002151
www.epe.gov.br
www.epe.gov.br
https://ec.europa.eu/eurostat
https://hal.archives-ouvertes.fr/hal-00919064
https://hal.archives-ouvertes.fr/hal-00919064
http://www.sciencedirect.com/science/article/pii/S0959652619301775
http://www.sciencedirect.com/science/article/pii/S002216941830307X
http://www.sciencedirect.com/science/article/pii/S002216941830307X


Bibliography 88

GUTIERREZ-COREA, F.-V. et al. Forecasting short-term solar irradiance based on
artificial neural networks and data from neighboring meteorological stations. Solar Energy,
v. 134, p. 119 – 131, 2016. ISSN 0038-092X. Citado 2 vezes nas páginas 32 and 33.

INEICHEN, P. Comparison of eight clear sky broadband models against 16 independent
data banks. Solar Energy, v. 80, n. 4, p. 468 – 478, 2006. ISSN 0038-092X. Urban Ventilation.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X05001635>.
Citado na página 56.

INEICHEN, P.; PEREZ, R. A new airmass independent formulation for the linke turbidity
coefficient. Solar Energy, v. 73, n. 3, p. 151 – 157, 2002. ISSN 0038-092X. Citado na
página 55.

INMAN, R. H.; PEDRO, H. T.; COIMBRA, C. F. Solar forecasting methods for renewable
energy integration. Progress in Energy and Combustion Science, v. 39, n. 6, p. 535 – 576,
2013. ISSN 0360-1285. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0360128513000294>. Citado 3 vezes nas páginas 9, 28, and 29.

JACOBSON, M. Z. Short-term effects of controlling fossil-fuel soot, biofuel soot
and gases, and methane on climate, arctic ice, and air pollution health. Journal
of Geophysical Research: Atmospheres, v. 115, n. D14, 2010. Disponível em:
<https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JD013795>. Citado na
página 23.

KALLIO-MYERS, V. et al. Global horizontal irradiance forecast for finland based on
geostationary weather satellite data. Solar Energy, v. 198, p. 68 – 80, 2020. ISSN 0038-092X.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X20300141>.
Citado na página 24.

KLEISSL, J. Solar energy forecasting and resource assessment. [S.l.]: Academic Press,
2013. Citado na página 31.

KOZA, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press, 1992. ISBN 0-262-11170-5. Citado
na página 61.

Kundur, P. et al. Definition and classification of power system stability ieee/cigre joint
task force on stability terms and definitions. IEEE Transactions on Power Systems, v. 19,
n. 3, p. 1387–1401, 2004. Citado na página 23.

LAURET, P. et al. A benchmarking of machine learning techniques for solar radiation
forecasting in an insular context. Solar Energy, v. 112, p. 446 – 457, 2015. ISSN 0038-092X.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X14006057>.
Citado na página 44.

LAZZARONI, M. et al. Models for solar radiation prediction based on different
measurement sites. Measurement, v. 63, p. 346 – 363, 2015. ISSN 0263-2241. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S0263224114006162>. Citado na
página 44.

LEE, Y.-S.; TONG, L.-I. Forecasting time series using a methodology based on
autoregressive integrated moving average and genetic programming. Knowledge-
Based Systems, v. 24, n. 1, p. 66 – 72, 2011. ISSN 0950-7051. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0038092X05001635
http://www.sciencedirect.com/science/article/pii/S0360128513000294
http://www.sciencedirect.com/science/article/pii/S0360128513000294
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JD013795
http://www.sciencedirect.com/science/article/pii/S0038092X20300141
http://www.sciencedirect.com/science/article/pii/S0038092X14006057
http://www.sciencedirect.com/science/article/pii/S0263224114006162


Bibliography 89

<http://www.sciencedirect.com/science/article/pii/S0950705110001127>. Citado na
página 61.

LEVA, S. et al. Analysis and validation of 24 hours ahead neural network forecasting
of photovoltaic output power. Mathematics and Computers in Simulation, v. 131,
p. 88 – 100, 2017. ISSN 0378-4754. 11th International Conference on Modeling
and Simulation of Electric Machines, Converters and Systems. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0378475415001238>. Citado 5 vezes
nas páginas 9, 45, 46, 64, and 65.

Leva, S. et al. Pv plant power nowcasting: A real case comparative study with an open
access dataset. IEEE Access, v. 8, p. 194428–194440, 2020. Citado na página 47.

LI, Y.; SU, Y.; SHU, L. An armax model for forecasting the power output of a grid
connected photovoltaic system. Renewable Energy, v. 66, p. 78 – 89, 2014. ISSN 0960-1481.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148113006551>.
Citado na página 39.

LIMA, F. J. et al. Forecast for surface solar irradiance at the brazilian northeastern region
using nwp model and artificial neural networks. Renewable Energy, v. 87, p. 807 – 818,
2016. ISSN 0960-1481. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0960148115304249>. Citado na página 33.

Lorenz, E. et al. Irradiance forecasting for the power prediction of grid-connected
photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, v. 2, n. 1, p. 2–10, 2009. Citado na página 33.

MARQUEZ, R.; COIMBRA, C. F. Forecasting of global and direct solar irradiance
using stochastic learning methods, ground experiments and the nws database.
Solar Energy, v. 85, n. 5, p. 746 – 756, 2011. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X11000193>. Citado na
página 44.

MARQUEZ, R.; PEDRO, H. T.; COIMBRA, C. F. Hybrid solar forecasting
method uses satellite imaging and ground telemetry as inputs to anns. Solar
Energy, v. 92, p. 176 – 188, 2013. ISSN 0038-092X. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0038092X13000881>. Citado 2 vezes nas
páginas 34 and 35.

MCGOVERN, A. et al. Solar energy prediction: An international contest
to initiate interdisciplinary research on compelling meteorological problems.
Bulletin of the American Meteorological Society, American Meteorological
Society, Boston MA, USA, v. 96, n. 8, p. 1388 – 1395, 2015. Disponível em:
<https://journals.ametsoc.org/view/journals/bams/96/8/bams-d-14-00006.1.xml>.
Citado na página 44.

MEHR, A. D.; JABARNEJAD, M.; NOURANI, V. Pareto-optimal mpsa-
mggp: A new gene-annealing model for monthly rainfall forecasting. Journal
of Hydrology, v. 571, p. 406 – 415, 2019. ISSN 0022-1694. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0022169419301362>. Citado na
página 61.

http://www.sciencedirect.com/science/article/pii/S0950705110001127
http://www.sciencedirect.com/science/article/pii/S0378475415001238
http://www.sciencedirect.com/science/article/pii/S0960148113006551
http://www.sciencedirect.com/science/article/pii/S0960148115304249
http://www.sciencedirect.com/science/article/pii/S0960148115304249
http://www.sciencedirect.com/science/article/pii/S0038092X11000193
http://www.sciencedirect.com/science/article/pii/S0038092X13000881
http://www.sciencedirect.com/science/article/pii/S0038092X13000881
https://journals.ametsoc.org/view/journals/bams/96/8/bams-d-14-00006.1.xml
http://www.sciencedirect.com/science/article/pii/S0022169419301362


Bibliography 90

MEHR, A. D.; KAHYA, E.; OLYAIE, E. Streamflow prediction using linear
genetic programming in comparison with a neuro-wavelet technique. Journal
of Hydrology, v. 505, p. 240 – 249, 2013. ISSN 0022-1694. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0022169413007105>. Citado na
página 61.

MESSAGIE, M. et al. The hourly life cycle carbon footprint of electricity
generation in belgium, bringing a temporal resolution in life cycle assessment.
Applied Energy, v. 134, p. 469 – 476, 2014. ISSN 0306-2619. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0306261914008824>. Citado na
página 23.

MIHALAKAKOU, G.; SANTAMOURIS, M.; ASIMAKOPOULOS, D. The total solar
radiation time series simulation in athens, using neural networks. Theoretical and
Applied Climatology, v. 66, n. 3-4, p. 185–197, 2000. Cited By 65. Disponível em:
<https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033861306&doi=10.1007%
2fs007040070024&partnerID=40&md5=2c02e05f56cc0181f3fb900c09896fe6>. Citado na
página 44.

MILLER, S. D. et al. Short-term solar irradiance forecasting via satellite/model coupling.
Solar Energy, v. 168, p. 102 – 117, 2018. ISSN 0038-092X. Advances in Solar Resource
Assessment and Forecasting. Disponível em: <http://www.sciencedirect.com/science/
article/pii/S0038092X17310435>. Citado na página 35.

MORENO, A.; GILABERT, M.; MARTíNEZ, B. Mapping daily global solar
irradiation over spain: A comparative study of selected approaches. Solar
Energy, v. 85, n. 9, p. 2072 – 2084, 2011. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X11001976>. Citado na
página 44.

Mori, H.; Kosemura, N. Optimal regression tree based rule discovery for short-term
load forecasting. In: 2001 IEEE Power Engineering Society Winter Meeting. Conference
Proceedings (Cat. No.01CH37194). [S.l.: s.n.], 2001. v. 2, p. 421–426 vol.2. Citado na
página 44.

Mori, H.; Takahashi, A. A data mining method for selecting input variables for forecasting
model of global solar radiation. In: PES T D 2012. [S.l.: s.n.], 2012. p. 1–6. ISSN
2160-8563. Citado na página 44.

NOBRE, A. M. et al. Pv power conversion and short-term forecasting in a tropical,
densely-built environment in singapore. Renewable Energy, v. 94, p. 496 – 509, 2016. ISSN
0960-1481. Citado 4 vezes nas páginas 12, 31, 32, and 39.

OGLIARI, E. et al. Physical and hybrid methods comparison for the day ahead pv output
power forecast. Renewable Energy, v. 113, p. 11 – 21, 2017. ISSN 0960-1481. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S096014811730455X>. Citado 3
vezes nas páginas 9, 33, and 34.

OLAIYA, F.; ADEYEMO, A. B. Application of data mining techniques in weather
prediction and climate change studies. International Journal of Information Engineering
and Electronic Business, Modern Education and Computer Science Press, v. 4, n. 1, p. 51,
2012. Citado na página 44.

http://www.sciencedirect.com/science/article/pii/S0022169413007105
http://www.sciencedirect.com/science/article/pii/S0306261914008824
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033861306&doi=10.1007%2fs007040070024&partnerID=40&md5=2c02e05f56cc0181f3fb900c09896fe6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033861306&doi=10.1007%2fs007040070024&partnerID=40&md5=2c02e05f56cc0181f3fb900c09896fe6
http://www.sciencedirect.com/science/article/pii/S0038092X17310435
http://www.sciencedirect.com/science/article/pii/S0038092X17310435
http://www.sciencedirect.com/science/article/pii/S0038092X11001976
http://www.sciencedirect.com/science/article/pii/S096014811730455X


Bibliography 91

PAIVA, G. M. et al. Analysis of inverter sizing ratio for pv systems considering local
climate data in central brazil. IET Renewable Power Generation, v. 11, n. 11, p.
1364–1370, 2017. ISSN 1752-1416. Citado na página 34.

Paiva, G. M. d. et al. Intra-day forecasting of building-integrated pv systems for power
systems operation using ann ensemble. In: 2019 IEEE Milan PowerTech. [S.l.: s.n.], 2019.
p. 1–5. Citado 6 vezes nas páginas 11, 19, 47, 78, 80, and 81.

PAIVA, G. Mendonça de et al. Multiple site intraday solar irradiance forecasting by
machine learning algorithms: Mggp and mlp neural networks. Energies, v. 13, n. 11, 2020.
ISSN 1996-1073. Disponível em: <https://www.mdpi.com/1996-1073/13/11/3005>.
Citado 24 vezes nas páginas 10, 11, 12, 19, 49, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 67, 68,
69, 70, 71, 72, 73, 74, and 75.

PAIVA SéRGIO PIRES PIMENTEL, B. P. d. A. E. G. M. Gabriel Mendonça de.
RegressÃo simbÓlica aplicada na previsÃo de irradiÂncia solar intra-diÁria na cidade
de goiÂnia (brasil). Revista Brasileira de Energia Solar, v. 9, n. 2, p. 9, 2018. ISSN
2526-2831. Disponível em: <https://rbens.emnuvens.com.br/rbens/article/view/247>.
Citado na página 19.

PAN, I.; PANDEY, D. S.; DAS, S. Global solar irradiation prediction using a multi-gene
genetic programming approach. Journal of Renewable and Sustainable Energy, v. 5, n. 6,
p. 063129, 2013. Disponível em: <https://doi.org/10.1063/1.4850495>. Citado na página
61.

PAOLI, C. et al. Forecasting of preprocessed daily solar radiation time series using neural
networks. Solar Energy, v. 84, n. 12, p. 2146 – 2160, 2010. ISSN 0038-092X. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S0038092X10002793>. Citado
na página 44.

PEDRO, H. T.; COIMBRA, C. F. Assessment of forecasting techniques for solar power
production with no exogenous inputs. Solar Energy, v. 86, n. 7, p. 2017 – 2028, 2012.
ISSN 0038-092X. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0038092X12001429>. Citado na página 42.

PEDRO, H. T.; COIMBRA, C. F. Nearest-neighbor methodology for prediction of
intra-hour global horizontal and direct normal irradiances. Renewable Energy, v. 80, p.
770 – 782, 2015. ISSN 0960-1481. Disponível em: <http://www.sciencedirect.com/science/
article/pii/S0960148115001792>. Citado na página 44.

PEDRO, H. T.; COIMBRA, C. F. Short-term irradiance forecastability for various solar
micro-climates. Solar Energy, v. 122, p. 587 – 602, 2015. ISSN 0038-092X. Citado 5 vezes
nas páginas 12, 31, 32, 37, and 64.

PEDRO, H. T. et al. Assessment of machine learning techniques for deterministic and
probabilistic intra-hour solar forecasts. Renewable Energy, v. 123, p. 191 – 203, 2018.
ISSN 0960-1481. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0960148118301423>. Citado 3 vezes nas páginas 9, 35, and 36.

PELLAND, S. et al. Photovoltaic and Solar Forecasting: State of the Art. [S.l.], 2013.
Citado na página 24.

https://www.mdpi.com/1996-1073/13/11/3005
https://rbens.emnuvens.com.br/rbens/article/view/247
https://doi.org/10.1063/1.4850495
http://www.sciencedirect.com/science/article/pii/S0038092X10002793
http://www.sciencedirect.com/science/article/pii/S0038092X12001429
http://www.sciencedirect.com/science/article/pii/S0038092X12001429
http://www.sciencedirect.com/science/article/pii/S0960148115001792
http://www.sciencedirect.com/science/article/pii/S0960148115001792
http://www.sciencedirect.com/science/article/pii/S0960148118301423
http://www.sciencedirect.com/science/article/pii/S0960148118301423


Bibliography 92

PERSSON, C. et al. Multi-site solar power forecasting using gradient boosted regression
trees. Solar Energy, v. 150, p. 423 – 436, 2017. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X17303717>. Citado na
página 43.

PODESTá, G. P. et al. Estimating daily solar radiation in the argentine pampas.
Agricultural and Forest Meteorology, v. 123, n. 1, p. 41 – 53, 2004. ISSN 0168-1923.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0168192303002740>.
Citado na página 44.

POLI, R.; LANGDON, W. B.; MCPHEE, N. F. A field guide to genetic
programming. [S.l.]: Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza). Citado
na página 67.

POLI, R.; MCPHEE, N. F.; VANNESCHI, L. Elitism reduces bloat in genetic
programming. In: Proceedings of the 10th annual conference on Genetic and evolutionary
computation. [S.l.: s.n.], 2008. Citado na página 67.

PROKOP, L. et al. Supervised learning of photovoltaic power plant output prediction
models. Neural Network World, v. 23, n. 4, p. 321–338, 2013. Cited By 16. Disponível em:
<https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885672403&doi=10.14311%
2fNNW.2013.23.020&partnerID=40&md5=accbeab4c3475b4d2a7897458ef27590>. Citado
na página 44.

RANA, M.; KOPRINSKA, I.; AGELIDIS, V. G. Univariate and multivariate methods for
very short-term solar photovoltaic power forecasting. Energy Conversion and Management,
v. 121, p. 380 – 390, 2016. ISSN 0196-8904. Citado 6 vezes nas páginas 12, 31, 32, 59, 65,
and 72.

REIKARD, G. Predicting solar radiation at high resolutions: A comparison of time series
forecasts. Solar Energy, v. 83, n. 3, p. 342 – 349, 2009. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X08002107>. Citado na
página 44.

REIKARD, G.; HANSEN, C. Forecasting solar irradiance at short horizons: Frequency
and time domain models. Renewable Energy, v. 135, p. 1270 – 1290, 2019. ISSN 0960-1481.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148118310310>.
Citado 2 vezes nas páginas 39 and 74.

RENO, M. J.; HANSEN, C. W.; STEIN, J. S. Global Horizontal Irradiance Clear Sky
Models: Implementation and Analysis. [S.l.], 2012. Citado na página 55.

RUSSO, M. et al. Genetic programming for photovoltaic plant output forecasting. Solar
Energy, v. 105, p. 264 – 273, 2014. ISSN 0038-092X. Citado na página 61.

SAMANTA, M.; SRIKANTH, B. K.; YERRAPRAGADA, J. B. Short-Term Power
Forecasting of Solar PV Systems Using Machine Learning Techniques. 2015. Citado na
página 44.

SEARSON, D. P.; LEAHY, D. E.; WILLIS, M. J. Gptips: an open source genetic
programming toolbox for multigene symbolic regression. In: CITESEER. Proceedings of

http://www.sciencedirect.com/science/article/pii/S0038092X17303717
http://www.sciencedirect.com/science/article/pii/S0168192303002740
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885672403&doi=10.14311%2fNNW.2013.23.020&partnerID=40&md5=accbeab4c3475b4d2a7897458ef27590
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885672403&doi=10.14311%2fNNW.2013.23.020&partnerID=40&md5=accbeab4c3475b4d2a7897458ef27590
http://www.sciencedirect.com/science/article/pii/S0038092X08002107
http://www.sciencedirect.com/science/article/pii/S0960148118310310


Bibliography 93

the International multiconference of engineers and computer scientists. [S.l.], 2010. v. 1, p.
77–80. Citado na página 64.

SODA. Solar Energy Services for Professionals. 2017. Disponível em: <http:
//www.soda-pro.com/home;jsessionid=B032D33B0AD3460B741E14E41CC46BE2>.
Citado na página 56.

SOLAR Lab UFG. Disponível em: <https://sites.google.com/site/sfvemcufg/>. Citado
na página 49.

SOLAR Tech Lab. Disponível em: <http://www.solartech.polimi.it/>. Citado na página
50.

SPERATI, S. et al. The “weather intelligence for renewable energies” benchmarking
exercise on short-term forecasting of wind and solar power generation. Energies, v. 8, n. 9,
p. 9594–9619, 2015. ISSN 1996-1073. Disponível em: <https://www.mdpi.com/1996-1073/
8/9/9594>. Citado na página 24.

TSO, G. K.; YAU, K. K. Predicting electricity energy consumption: A comparison of
regression analysis, decision tree and neural networks. Energy, v. 32, n. 9, p. 1761 – 1768,
2007. ISSN 0360-5442. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0360544206003288>. Citado na página 44.

VOYANT, C. et al. Machine learning methods for solar radiation forecasting: A
review. Renewable Energy, v. 105, p. 569 – 582, 2017. ISSN 0960-1481. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0960148116311648>. Citado 7 vezes
nas páginas 12, 24, 28, 30, 39, 43, and 44.

WANG, N. et al. Life cycle carbon emission modelling of coal-fired power:
Chinese case. Energy, v. 162, p. 841 – 852, 2018. ISSN 0360-5442. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0360544218315743>. Citado na
página 23.

WOLFF, B.; LORENZ, E.; KRAMER, O. Statistical learning for short-term photovoltaic
power predictions. In: Computational sustainability. [S.l.]: Springer, 2016. p. 31–45.
Citado na página 44.

WU, J. et al. Prediction of solar radiation with genetic approach combing multi-model
framework. Renewable Energy, v. 66, p. 132 – 139, 2014. ISSN 0960-1481. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0960148113006526>. Citado na
página 44.

WU, Y.-K.; CHEN, C.-R.; RAHMAN, H. A. A novel hybrid model for short-term
forecasting in pv power generation. International Journal of Photoenergy, Hindawi,
v. 2014, 2014. Citado na página 44.

YAKOWITZ, S. Nearest-neighbour methods for time series analysis. Journal
of Time Series Analysis, v. 8, n. 2, p. 235–247, 1987. Disponível em: <https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1987.tb00435.x>. Citado na
página 42.

http://www.soda-pro.com/home;jsessionid=B032D33B0AD3460B741E14E41CC46BE2
http://www.soda-pro.com/home;jsessionid=B032D33B0AD3460B741E14E41CC46BE2
https://sites.google.com/site/sfvemcufg/
http://www.solartech.polimi.it/
https://www.mdpi.com/1996-1073/8/9/9594
https://www.mdpi.com/1996-1073/8/9/9594
http://www.sciencedirect.com/science/article/pii/S0360544206003288
http://www.sciencedirect.com/science/article/pii/S0360544206003288
http://www.sciencedirect.com/science/article/pii/S0960148116311648
http://www.sciencedirect.com/science/article/pii/S0360544218315743
http://www.sciencedirect.com/science/article/pii/S0960148113006526
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1987.tb00435.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1987.tb00435.x


Bibliography 94

YANG, D. et al. History and trends in solar irradiance and pv power forecasting: A
preliminary assessment and review using text mining. Solar Energy, v. 168, p. 60 –
101, 2018. ISSN 0038-092X. Advances in Solar Resource Assessment and Forecasting.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X17310022>.
Citado 8 vezes nas páginas 24, 28, 30, 31, 33, 38, 41, and 45.

Yang, H. et al. A weather-based hybrid method for 1-day ahead hourly forecasting of pv
power output. IEEE Transactions on Sustainable Energy, v. 5, n. 3, p. 917–926, July 2014.
ISSN 1949-3037. Citado na página 44.

ZAMO, M. et al. A benchmark of statistical regression methods for short-term
forecasting of photovoltaic electricity production, part i: Deterministic forecast of hourly
production. Solar Energy, v. 105, p. 792 – 803, 2014. ISSN 0038-092X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0038092X13005239>. Citado na
página 44.

ZENDEHBOUDI, A.; BASEER, M.; SAIDUR, R. Application of support vector
machine models for forecasting solar and wind energy resources: A review. Journal
of Cleaner Production, v. 199, p. 272 – 285, 2018. ISSN 0959-6526. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S095965261832153X>. Citado na
página 41.

http://www.sciencedirect.com/science/article/pii/S0038092X17310022
http://www.sciencedirect.com/science/article/pii/S0038092X13005239
http://www.sciencedirect.com/science/article/pii/S095965261832153X


Appendix



Bibliography 96

Table .1 – Forecast errors for Goiania (best values in bold). Persist: persistence.

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 120.67 64.13 120.64 63.85
GP 14.51 103.16 0.28 60.32 0.29 14.29 103.40 0.37 60.09 0.62

15 ANN 15.46 102.02 0.27 59.97 0.44 15.08 102.45 0.37 60.19 0.45
GPens 14.90 102.68 59.89 14.53 103.12 59.83
ANNens 16.05 101.30 59.09 15.87 101.50 59.16

Persist 151.11 85.42 150.81 84.59
GP 13.75 130.34 0.52 82.36 0.61 13.56 130.36 0.29 82.31 0.37

30 ANN 14.87 128.64 0.59 80.49 0.72 14.49 128.95 0.39 81.02 0.90
GPens 14.11 129.79 81.84 13.94 129.78 81.81
ANNens 15.52 127.65 79.34 15.28 127.76 79.54

Persist 163.39 96.35 162.72 94.92
GP 15.46 138.13 0.31 90.12 0.36 14.93 138.43 0.44 90.94 0.28

45 ANN 15.65 137.82 0.37 89.29 0.40 15.03 138.26 0.50 89.86 0.65
GPens 15.56 137.96 89.67 15.06 138.21 90.56
ANNens 16.40 136.60 87.99 16.03 136.64 88.43

Persist 170.94 103.64 169.82 101.44
GP 16.13 143.36 0.40 96.00 0.42 15.92 142.78 0.26 95.69 0.46

60 ANN 16.21 143.22 0.75 93.98 1.21 15.77 143.04 0.50 94.52 0.69
GPens 16.45 142.82 95.61 16.07 142.53 95.44
ANNens 17.03 141.83 92.46 16.36 142.04 93.90

Persist 178.00 110.33 176.44 107.51
GP 17.36 147.11 0.45 99.50 0.41 16.70 146.98 0.25 99.56 0.41

75 ANN 17.34 147.15 0.66 98.45 0.79 16.42 147.47 0.52 98.81 0.50
GPens 17.62 146.65 98.97 16.80 146.79 99.35
ANNens 18.14 145.71 96.98 17.25 146.00 97.42

Persist 185.30 117.29 183.28 113.91
GP 18.86 150.35 0.40 102.47 0.45 18.18 149.96 0.40 102.16 0.63

90 ANN 19.08 149.95 0.43 101.11 0.68 18.03 150.23 0.28 101.49 0.88
GPens 19.09 149.91 102.13 18.35 149.65 101.73
ANNens 19.88 148.46 99.57 18.84 148.76 99.91

Persist 192.48 123.01 190.04 119.03
GP 20.71 152.61 0.35 104.21 0.53 19.91 152.21 0.36 104.13 0.35

105 ANN 20.79 152.45 0.50 102.52 0.56 19.45 153.09 0.81 103.82 1.30
GPens 20.94 152.16 103.84 20.07 151.91 103.82
ANNens 21.46 151.18 101.29 20.20 151.65 102.47

Persist 199.62 128.73 196.80 124.08
GP 22.65 154.40 0.27 106.04 0.32 21.58 154.33 0.37 105.85 0.49

120 ANN 22.27 155.17 0.92 105.71 1.01 21.12 155.24 0.77 106.49 1.00
GPens 22.80 154.10 105.79 21.77 153.96 105.50
ANNens 23.09 153.52 104.23 21.73 154.03 105.26
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Table .2 – Forecast errors for Milan (best values in bold).

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 76.02 37.43 75.97 37.33
GP 11.63 67.18 0.63 34.22 0.38 11.35 67.34 0.63 34.06 0.30

15 ANN 12.54 66.48 1.09 35.11 0.31 12.06 66.80 1.04 36.11 0.25
GPens 12.23 66.72 33.84 11.95 66.89 33.69
ANNens 14.81 64.76 34.11 14.01 65.32 34.18

Persist 99.41 51.12 99.29 50.80
GP 10.80 88.67 0.32 48.95 0.44 9.62 89.74 0.35 50.18 0.38

30 ANN 10.86 88.61 0.71 50.23 0.51 9.24 90.12 1.80 51.49 1.09
GPens 11.12 88.36 48.65 10.12 89.24 49.73
ANNens 12.62 86.87 48.90 11.82 87.55 48.92

Persist 110.31 59.34 110.12 58.76
GP 10.70 98.50 0.20 56.46 0.42 9.18 100.01 0.38 56.92 0.52

45 ANN 10.40 98.83 0.64 58.27 0.64 8.51 100.75 0.81 59.04 0.65
GPens 10.87 98.32 56.25 9.46 99.70 56.63
ANNens 12.01 97.06 56.94 11.02 97.99 57.17

Persist 120.03 66.08 119.82 65.28
GP 11.58 106.12 0.22 62.04 0.49 11.09 106.52 0.35 62.78 0.39

60 ANN 11.55 106.16 0.61 63.80 0.79 10.48 107.27 0.78 63.56 0.47
GPens 11.83 105.83 61.75 11.52 106.02 62.70
ANNens 12.87 104.58 62.50 11.91 105.54 61.69

Persist 128.66 72.05 128.54 71.04
GP 12.80 112.18 0.34 67.43 0.32 12.36 112.66 0.65 67.20 0.50

75 ANN 12.67 112.36 0.90 67.97 0.72 11.76 113.42 1.48 69.28 1.15
GPens 12.44 112.65 67.22 12.50 112.47 67.03
ANNens 13.94 110.72 66.63 13.35 111.38 67.63

Persist 136.10 77.66 136.15 76.32
GP 13.60 117.59 0.40 70.97 0.29 13.93 117.18 0.66 71.16 0.49

90 ANN 13.52 117.69 0.53 72.62 1.02 13.39 117.91 0.85 72.66 1.37
GPens 13.87 117.22 70.78 14.35 116.61 70.86
ANNens 14.79 115.97 71.25 15.08 115.62 70.74

Persist 142.26 82.92 142.50 81.48
GP 14.60 121.49 0.52 74.05 0.35 14.60 121.69 0.44 74.92 0.45

105 ANN 13.64 122.85 2.41 76.34 1.21 14.16 122.33 0.89 76.22 0.70
GPens 14.77 121.26 73.85 14.77 121.46 74.71
ANNens 15.45 120.29 74.41 15.71 120.11 74.56

Persist 147.60 87.74 148.21 86.14
GP 15.70 124.43 0.36 76.90 0.28 15.95 124.58 0.36 78.46 1.07

120 ANN 15.03 125.42 1.21 79.81 1.64 15.57 125.14 1.01 79.72 1.26
GPens 15.83 124.24 76.73 16.13 124.30 78.28
ANNens 16.25 123.61 78.47 16.97 123.06 78.15
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Table .3 – Forecast errors for Desert Rock (best values in bold).

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 78.00 34.46 77.90 33.59
GP 11.96 68.68 0.14 31.64 0.18 11.94 68.60 0.23 31.81 0.23

15 ANN 11.98 68.66 0.25 31.85 0.56 11.98 68.57 0.29 31.84 0.51
GPens 12.26 68.44 31.29 12.28 68.34 31.58
ANNens 13.24 67.68 31.02 12.96 67.81 31.27

Persist 101.32 47.74 101.05 45.88
GP 11.45 89.72 0.57 45.24 0.41 11.80 89.12 0.09 44.82 0.45

30 ANN 10.74 90.44 0.71 44.93 0.43 10.78 90.16 0.53 44.83 0.37
GPens 11.77 89.39 44.73 11.91 89.01 44.68
ANNens 11.60 89.57 44.15 11.62 89.31 44.33

Persist 111.75 55.36 111.24 52.51
GP 12.09 98.24 0.28 50.87 0.35 11.89 98.02 1.41 50.91 1.08

45 ANN 10.98 99.49 0.46 50.94 1.00 10.95 99.06 0.22 51.10 0.67
GPens 12.21 98.11 50.72 12.47 97.37 50.47
ANNens 11.85 98.51 50.00 11.53 98.41 50.51

Persist 118.32 61.63 117.51 57.80
GP 13.05 102.88 0.32 55.24 0.38 13.13 102.09 0.15 54.46 0.16

60 ANN 11.81 104.34 1.21 56.51 1.01 11.28 104.26 0.29 54.99 0.47
GPens 13.17 102.74 55.11 13.19 102.02 54.41
ANNens 12.77 103.20 55.35 11.90 103.53 54.47

Persist 124.48 67.03 123.35 62.16
GP 14.46 106.48 0.11 59.12 0.10 14.25 105.77 0.11 58.47 0.34

75 ANN 13.34 107.88 0.33 59.70 1.50 12.74 107.63 0.47 58.80 0.60
GPens 14.56 106.36 58.42 14.32 105.69 57.81
ANNens 14.06 106.98 58.31 13.41 106.81 57.42

Persist 129.33 71.66 127.87 65.93
GP 15.18 109.70 0.20 61.55 0.36 14.77 108.98 0.15 60.57 0.24

90 ANN 13.87 111.40 0.76 61.60 0.91 12.81 111.50 0.80 61.12 0.65
GPens 15.25 109.60 61.47 14.84 108.90 60.44
ANNens 14.72 110.30 60.67 13.55 110.55 59.99

Persist 133.39 75.55 131.57 68.98
GP 16.06 111.97 0.14 63.15 0.22 15.36 111.36 0.15 63.13 0.27

105 ANN 14.22 114.42 0.70 63.20 0.89 13.68 113.57 0.39 63.42 0.60
GPens 16.11 111.91 63.49 15.45 111.24 62.52
ANNens 14.99 113.40 62.11 14.34 112.70 62.02

Persist 137.62 79.56 135.42 72.19
GP 16.83 114.46 0.20 66.09 0.25 15.85 113.96 0.15 65.14 0.29

120 ANN 15.60 116.15 0.56 65.59 0.52 14.36 115.98 0.42 65.54 1.16
GPens 16.91 114.35 65.98 15.91 113.88 65.07
ANNens 16.24 115.27 64.86 15.07 115.01 64.83
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Table .4 – Forecast errors for Pennsylvania State University (best values in bold).

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 94.43 51.76 94.37 51.49
GP 12.78 82.36 0.44 47.47 0.34 12.99 82.11 0.28 47.23 0.14

15 ANN 14.42 80.82 0.29 47.49 0.45 13.86 81.29 0.29 48.17 0.53
GPens 13.31 81.86 47.10 13.39 81.73 46.92
ANNens 14.98 80.28 47.00 14.49 80.69 47.57

Persist 118.31 68.46 118.13 67.85
GP 10.71 105.64 0.26 66.56 0.28 10.46 105.78 0.26 66.02 0.28

30 ANN 11.70 104.47 0.17 65.93 0.61 11.54 104.49 0.36 66.47 0.37
GPens 11.05 105.23 66.23 10.77 105.40 65.78
ANNens 12.34 103.72 65.28 12.29 103.62 65.66

Persist 131.38 78.48 131.05 77.51
GP 12.32 115.19 0.23 74.60 0.40 11.85 115.52 0.21 74.30 0.29

45 ANN 13.07 114.21 0.28 74.80 0.63 12.71 114.39 0.23 74.52 0.45
GPens 12.61 114.82 74.26 12.06 115.24 74.01
ANNens 13.76 113.30 74.07 13.44 113.44 73.69

Persist 138.63 84.75 138.19 83.45
GP 12.54 121.25 0.06 79.96 0.17 12.17 121.37 0.29 80.29 0.31

60 ANN 13.11 120.45 0.36 79.94 0.87 12.67 120.69 0.41 80.03 0.72
GPens 12.68 121.06 79.78 12.39 121.06 80.00
ANNens 13.68 119.66 79.28 13.42 119.64 79.17

Persist 144.19 90.43 143.68 88.84
GP 12.65 125.95 0.11 84.92 0.21 12.40 125.86 0.86 84.80 0.97

75 ANN 12.88 125.62 0.48 84.87 0.98 12.57 125.63 0.42 84.71 0.40
GPens 12.86 125.65 84.71 12.77 125.33 84.45
ANNens 13.57 124.63 84.10 13.27 124.61 83.81

Persist 150.58 96.09 150.03 94.27
GP 13.34 130.50 0.36 89.32 0.20 13.63 129.59 0.29 89.07 0.37

90 ANN 13.27 130.59 0.61 89.37 0.98 13.06 130.43 0.50 89.50 0.68
GPens 13.52 130.23 89.09 13.77 129.37 88.89
ANNens 14.13 129.30 88.42 13.89 129.19 88.57

Persist 156.99 101.08 156.42 99.04
GP 14.97 133.48 0.13 92.24 0.21 14.69 133.44 0.38 92.10 0.43

105 ANN 14.38 134.42 0.23 92.99 0.94 13.85 134.75 0.45 93.37 0.53
GPens 15.14 133.22 92.13 14.90 133.11 91.71
ANNens 15.08 133.31 92.23 14.67 133.46 92.44

Persist 164.37 106.50 163.82 104.31
GP 16.23 137.70 0.21 95.99 0.15 16.21 137.27 0.22 95.95 0.22

120 ANN 15.50 138.90 0.82 97.39 0.93 15.08 139.12 0.74 97.70 1.02
GPens 16.36 137.48 95.85 16.37 137.00 95.73
ANNens 16.25 137.66 96.57 15.91 137.75 96.73
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Table .5 – Forecast errors for Bondville (best values in bold).

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 81.28 43.45 81.20 43.01
GP 10.43 72.81 0.77 41.51 0.35 10.85 72.39 0.41 41.05 0.15

15 ANN 11.74 71.74 0.49 40.87 0.59 11.10 72.18 0.41 41.26 0.34
GPens 11.31 72.09 41.05 11.30 72.02 40.84
ANNens 12.71 70.95 40.22 11.92 71.52 40.71

Persist 101.49 57.67 101.25 56.79
GP 9.97 91.37 0.47 56.08 0.56 10.23 90.89 0.28 56.38 0.29

30 ANN 10.16 91.18 0.48 55.92 0.73 9.57 91.56 0.29 56.50 0.21
GPens 10.35 90.98 55.75 10.52 90.61 56.15
ANNens 10.94 90.38 55.32 10.41 90.71 55.78

Persist 113.22 66.80 112.82 65.39
GP 9.83 102.09 0.52 64.38 0.48 10.28 101.22 0.42 64.37 0.53

45 ANN 10.61 101.20 0.32 63.27 0.68 9.82 101.74 0.89 64.49 1.34
GPens 10.26 101.60 63.92 10.56 100.91 64.15
ANNens 11.37 100.35 62.57 10.74 100.71 63.72

Persist 121.55 73.53 120.99 71.70
GP 11.65 107.39 0.35 69.37 0.42 11.16 107.48 0.46 69.76 0.79

60 ANN 11.38 107.73 0.33 69.37 0.48 10.72 108.02 0.37 69.98 0.54
GPens 12.06 106.90 68.94 11.58 106.97 69.30
ANNens 12.15 106.79 68.64 11.53 107.04 69.15

Persist 127.95 79.19 127.21 77.04
GP 12.01 112.58 0.11 73.78 0.20 11.19 112.97 0.30 73.98 0.32

75 ANN 11.52 113.21 0.49 74.30 0.83 10.62 113.71 1.01 74.83 1.01
GPens 12.22 112.31 73.47 11.43 112.67 73.70
ANNens 12.29 112.23 73.56 11.62 112.43 73.77

Persist 134.49 84.73 133.56 82.22
GP 13.22 116.71 0.19 77.69 0.21 12.15 117.33 0.22 78.67 0.28

90 ANN 12.24 118.03 0.51 78.32 0.74 11.40 118.33 0.71 78.93 0.48
GPens 13.37 116.51 77.49 12.29 117.14 78.49
ANNens 12.99 117.02 77.53 12.44 116.94 77.77

Persist 140.34 89.83 139.23 86.79
GP 13.52 121.37 0.32 81.88 0.39 12.21 122.23 0.22 82.32 0.45

105 ANN 12.56 122.71 0.69 82.06 0.52 11.90 122.66 0.55 82.70 0.45
GPens 13.87 120.87 81.01 12.43 121.93 82.10
ANNens 13.40 121.53 81.18 12.96 121.19 81.49

Persist 145.88 95.01 144.58 91.41
GP 14.42 124.84 0.35 85.95 0.31 12.96 125.85 0.72 86.30 0.55

120 ANN 13.31 126.46 0.77 86.47 1.35 12.54 126.46 0.55 86.82 0.76
GPens 14.59 124.59 85.07 13.25 125.42 85.79
ANNens 14.45 124.80 85.30 13.59 124.93 85.66
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Table .6 – Forecast errors for Sioux Falls (best values in bold).

Haur. k∗
t Inei. k∗

t

FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 75.47 40.51 75.40 40.06
GP 10.09 67.85 0.30 38.17 0.24 10.13 67.76 0.23 37.82 0.19

15 ANN 12.25 66.23 0.20 38.02 0.18 11.70 66.58 1.04 38.41 0.25
GPens 10.46 67.58 37.91 10.32 67.61 37.70
ANNens 13.04 65.63 37.55 12.76 65.78 37.78

Persist 95.39 54.00 95.22 53.11
GP 9.22 86.60 0.10 52.86 0.17 8.71 86.93 0.28 52.97 0.25

30 ANN 9.51 86.32 0.45 53.15 0.51 9.17 86.49 0.26 52.82 0.42
GPens 9.31 86.51 52.77 9.20 86.46 52.77
ANNens 10.38 85.49 52.56 9.95 85.75 52.27

Persist 107.46 62.87 107.17 61.44
GP 9.56 97.18 0.21 60.86 0.42 9.72 96.75 0.09 60.69 0.42

45 ANN 9.84 96.89 0.51 61.69 0.69 9.57 96.91 0.30 61.03 0.48
GPens 9.79 96.94 60.61 10.00 96.45 60.46
ANNens 10.62 96.05 61.13 10.23 96.20 60.52

Persist 116.51 69.81 116.12 67.95
GP 10.59 104.17 0.11 66.92 0.23 10.42 104.03 0.17 67.09 0.30

60 ANN 10.16 104.68 0.38 67.47 0.33 10.20 104.27 0.45 67.05 0.46
GPens 10.72 104.02 66.80 10.52 103.90 66.96
ANNens 10.98 103.72 66.74 10.98 103.37 66.39

Persist 123.64 75.45 123.21 73.35
GP 11.18 109.82 0.20 71.76 0.33 11.01 109.64 0.14 71.93 0.39

75 ANN 10.92 110.14 0.58 72.21 0.86 10.76 109.95 0.33 71.58 0.67
GPens 11.37 109.58 71.56 11.18 109.43 71.73
ANNens 11.75 109.11 71.49 11.51 109.03 70.92

Persist 130.98 81.05 130.57 78.71
GP 12.47 114.65 0.19 75.83 0.15 12.31 114.49 0.11 75.46 0.35

90 ANN 11.84 115.48 0.42 76.45 1.00 11.60 115.42 0.27 76.37 0.76
GPens 12.65 114.42 75.62 12.42 114.35 75.33
ANNens 12.71 114.34 75.66 12.43 114.34 75.59

Persist 138.49 86.65 138.10 83.89
GP 13.92 119.20 0.15 79.62 0.34 13.70 119.18 0.25 79.31 0.21

105 ANN 12.90 120.62 0.20 80.50 0.59 12.99 120.17 0.50 80.39 0.79
GPens 14.12 118.94 79.41 13.94 118.85 79.10
ANNens 13.81 119.36 79.65 13.88 118.94 79.52

Persist 143.72 91.37 143.38 88.30
GP 14.59 122.75 0.32 82.76 0.20 13.98 123.34 0.92 83.06 1.03

120 ANN 13.71 124.02 0.63 84.05 0.48 13.34 124.26 0.60 83.99 0.81
GPens 14.76 122.50 82.52 14.34 122.82 82.70
ANNens 14.52 122.85 83.29 14.23 122.97 83.11


