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Resumo geral 

A macroecologia estuda padrões ecológicos em grandes escalas geográficas e temporais, 

em busca de quais processos moldam esses padrões. Nessas escalas de estudo, há 

raramente informações completas sobre as centenas ou até milhares de espécies 

estudadas.  Essa ausência de informações tem o potencial de enviesar as conclusões dos 

estudos sobre padrões e processos macroecológicos. Nessa tese, nós avaliamos métodos 

de imputação filogenética, a sua aplicação e consequências em estudos macroecológicos. 

Para avaliar potenciais vieses do uso de banco de dados imputados, no primeiro capítulo, 

nós aplicamos diferentes métodos utilizados para tratar dados faltantes, sob diferentes 

cenários de evolução dos atributos das espécies, porcentagem e padrão dos dados 

faltantes. Nós encontramos que a forma de tratar o dado faltante pode ser dependente dos 

objetivos e dos dados de cada estudo e, portanto, nós sugerimos cautela ao utilizarmos 

bancos de dados imputados. No segundo capítulo, nós testamos o efeito da regra de ilha 

na evolução da massa corpórea e do volume cerebral de primatas. A partir dos melhores 

modelos evolutivos ajustados a esses atributos, nós imputamos a massa corpórea e 

volume cerebral de Homo floresiensis. Nós concluímos que primatas não seguem regra 

de ilha e que apesar de nossos modelos superestimarem, em média, o tamanho do corpo 

e cérebro de Homo floresiensis, a sua evolução não se desvia do esperado pela evolução 

de primatas. Por fim, no terceiro capítulo testamos a regra de Bergmann em mamíferos, 

utilizando métodos de imputação múltipla e avaliamos as consequências de desconsiderar 

os dados faltantes na detecção da regra. Nós encontramos que testar a regra sem 

considerar os dados faltantes pode inverter o efeito da temperatura na massa do corpo, 

mas esse viés não tornou o efeito estatisticamente significante. Portanto, concluímos que 

mamíferos não seguem a regra de Bergmann, quando toda a classe é avaliada. Por fim, 

essa tese discutiu vantagens, desvantagens e futuras linhas de pesquisa para tornar a 

imputação filogenética uma ferramenta mais robusta para tratarmos dados faltantes em 

macroecologia. 

 

Palavras-chave: Imputação múltipla, imputação filogenética, macroecologia, dados 

faltantes, lacuna de conhecimento, regra de Bergmann, regra de ilha, Homo floresiensis 
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General abstract 

Macroecology studies ecological pattern at large geographical and temporal scales. At 

these scales, information about hundreds or even thousands of studied species. This lack 

of information may potentially bias studies’ conclusions related with macroecological 

processes and patterns. In this thesis, we evaluated phylogenetic imputation methods, 

their uses and effects in macroecological studies. The first chapter evaluated different 

methods used to deal with missing data, taking into account different scenarios of species 

trait evolution, as well as percentage and pattern of missing data. We found that dealing 

with missing data relies on the specific goals and data of the study. Therefore, we 

suggested caution while using imputed database. In the second chapter, we tested the 

island rule effect in body mass and brain volume of primates. To do so, we fitted 

evolutionary models to those traits and then imputed the body mass and brain volume for 

Homo floresiensis. We concluded that primates do not follow the island rule and even 

though our models overestimated, on average, brain and body size of Homo floresiensis, 

its evolution did not deviate from primates’ evolutionary expectation.  Lastly, in the third 

chapter, we tested existence of Bergmann’s rule in mammals using multiple imputation 

methods, in addition to considering the consequences of ignoring missing data while 

testing the rule. We found that ignoring missing data can invert (eg. changing from 

positive to negative effect) the effect of temperature on body mass, but this bias did not 

turn the effect statistically significant. Therefore, we concluded that mammals do not 

follow Bergmann’s rule, when evaluated at the class taxonomic level. Finally, this thesis 

discussed pros, cons and future research avenues in order to make phylogenetic 

imputation a more robust tool to deal with missing data in macroecology. 

 

Keywords: multiple imputation, phylogenetic imputation, macroecology, missing data, 

biodiversity knowledge shortfall, Bergmann’s rule, Island rule, Homo floresiensis, 

mammals 
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Introdução geral 

A macroecologia, como um programa de pesquisa, busca entender quais processos 

moldam os padrões bióticos que emergem em grandes escalas espaciais e temporais, bem 

como as suas relações com variáveis abióticas (Brown & Maurer, 1989; Brown, 1995; 

Smith et al., 2008). Dado esse foco em “grandes escalas”, a macroecologia 

frequentemente necessita de informações sobre centenas ou milhares de espécies, tais 

como onde elas ocorrem, quais as suas características morfológicas, fisiologia, nichos e 

abundâncias populacionais (Brown, 1995; Gaston & Blackburn, 2000; Diniz-Filho et al., 

2009; Fritz et al., 2009; Clarke et al., 2010; Jetz et al., 2012; Pyron & Wiens, 2013; Mazel 

et al., 2014; Oliveira et al., 2016a; Villalobos et al., 2016). No entanto, o esforço de 

pesquisa não é igualmente distribuído, ou aleatório, entre as espécies (Reddy and Dávalos 

2003; Cardoso et al. 2011; Costello et al. 2013; Oliveira et al. 2016). Consequentemente, 

a distribuição dessas informações é normalmente enviesada para algumas espécies e 

quanto mais aumentamos o número de espécies ou variáveis a serem estudadas, maior é 

a presença de dados faltantes (Gonzalez-Suarez et al., 2012). 

 À ausência de informações sobre as espécies tem sido atribuído o termo “lacuna 

de conhecimento” (Cardoso et al., 2011; Hortal et al., 2015) e há várias dessas lacunas 

descritas na literatura, comumente nomeadas em homenagem aos pesquisadores ilustres 

de uma determinada área de pesquisa. Assim, a ausência de conhecimento sobre as 

ocorrências das espécies foi nomeada como “Lacuna Wallaceana”, o desconhecimento 

em relação à existência de uma espécies é a “Lacuna Linneana” e ainda temos as lacunas 

“Darwiniana”, “Prestoniana”, “Raunkiaeriana”, “Hutchinsoniana” e “Eltoniana” (Hortal 

et al., 2015). Essas lacunas representam, respectivamente, a ignorância em relação a 

história evolutiva das espécies, seus dados populacionais, atributos funcionais, nicho 

climático e interações bióticas (Hortal et al., 2015). 

Todas essas lacunas possuem déficits de informação classificados em três 

categorias: (1) há conhecimento sobre a existência da informação, mas os dados ainda 

não foram coletados, (2) os dados já foram coletados, mas são de difícil acesso e (3) não 

há conhecimento sobre nem mesmo a existência da informação ou fenômeno (Jackson, 

2012; Hortal et al., 2015). Assim, as únicas formas de informações faltantes que podem 

ser tratadas são aquelas cuja existência é conhecida, ou seja, caso (1) e, em algumas 

situações, caso (2). Portanto, uma vez que há conhecimento sobre a existência das 

informações, elas podem ser tratadas como dados faltantes. 
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À medida que as lacunas de conhecimento são assumidas como dados faltantes, 

todo o arcabouço estatístico desenvolvidos desde os anos 70 para a análise de dados 

faltantes (Rubin, 1976; Little & Rubin, 2002; Enders, 2010; Molenberghs et al., eds, 

2014) torna-se aplicável. Para isso, assumimos que a ausência de dados é uma variável 

aleatória, ou em outras palavras, durante o processo de coleta de dados há uma 

probabilidade da informação ser coletada ou passar desapercebida. Essa probabilidade 

pode ser uniformemente distribuída entre os dados a serem coletados, ou determinada por 

alguma outra variável conhecida ou até mesmo por uma causa desconhecida. Ao 

modelarmos corretamente a ausência de dados, as inferências tornam-se menos 

enviesadas (Rubin, 1976). 

Sob esse arcabouço, diferentes abordagens estatísticas foram propostas, como 

métodos bayesianos e de máxima verossimilhança (Little & Rubin, 2002; Enders, 2010; 

Molenberghs et al., eds, 2014), mas, o mais flexível deles é a Imputação Múltipla (van 

Buuren, 2012; Nakagawa, 2015; Murray, 2018), uma vez que a geração dos valores 

imputados é separada das análises subsequentes (Rubin, 1996). Na Imputação Múltipla, 

simula-se uma distribuição de possíveis valores para os dados ausentes, garantindo as 

relações existentes entre as variáveis (Rubin, 1996; Schafer & Graham, 2002; van Buuren, 

2012), bem como a reprodução da sua distribuição de frequência, e assim ao analisarmos 

essa distribuição de valores geramos inferências não enviesadas (Rubin, 1987, 1996).  

 Ao longo da história, a macroecologia não tem incluído frequentemente os 

métodos desenvolvidos para tratar dados faltantes nas suas metodologias analíticas, assim 

como a ecologia e evolução como um todo (Nakagawa & Freckleton, 2008; Nakagawa, 

2015). Recentemente, Swenson (2014) propôs a “imputação filogenética”, uma 

ferramenta que utiliza métodos comparativos filogenéticos (Diniz-Filho et al., 1998; 

Garland, Jr., & Ives, 2000) para o preenchimento de informações faltantes em bancos de 

dados macroecológicos. Entretanto, a imputação filogenética tem tido como principal 

objetivo a capacidade de predizer acuradamente os valores faltantes (Guénard et al., 2013; 

Penone et al., 2014; Swenson, 2014; Diniz-Filho et al., 2015; Molina-Venegas et al., 

2018). Por outro lado, a imputação múltipla tem como objetivo recuperar as estruturas do 

dado de interesse do dado, como exemplo as relações entre as variáveis, suas distribuições 

de frequência (Rubin, 1996; Schafer & Graham, 2002; van Buuren, 2012) ou padrões 

macroecológicos. Assim, com o recente interesse no uso de imputações nos estudos 

ecológicos e evolutivos (Penone et al., 2014; Taugourdeau et al., 2014; Schrodt et al., 
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2015; Goolsby et al., 2016; Legendre et al., 2016; Molina-Venegas et al., 2018; Swenson 

et al., 2017), o nosso objetivo nessa tese foi avaliar e aplicar o uso de imputações 

filogenéticas na inferência de padrões macroecológicos. 

Portanto, no primeiro capítulo, nós simulamos diferentes cenários de dados 

faltantes, com diferentes graus de estruturação filogenética. Em seguida, avaliamos o 

impacto de diferentes técnicas de tratamento do dado faltante, incluindo imputações 

múltiplas e filogenéticas, na inferência de diferentes propriedades dos dados faltantes, 

como sua média, variância, relação com outra variável e sinal filogenético. Concluímos 

que o uso de dados imputados deve ser específico para os objetivos e dos dados 

disponíveis para o estudo. Portanto, o uso indiscriminado de bancos de dados imputados 

sem o conhecimento do processo de imputação e seus impactos no objetivo do estudo 

podem causar conclusões enviesadas.  

No segundo capítulo, nós aplicamos a imputação filogenética para testar a 

hipótese sobre o efeito de ilha no tamanho do corpo e cérebro de Homo floresiensis. Para 

isso, nós ajustamos diferentes modelos evolutivos sobre como tamanho do corpo e do 

cérebro evoluíram na ordem dos primatas e assim imputamos esses atributos em Homo 

floresiensis, testando se esse hominídeo desviou-se ou não do que seria esperado pela 

evolução dos primatas. Nós encontramos que primatas não seguem a regra de ilha e que 

o tamanho do corpo e cérebro de Homo floresiensis estão dentro do esperado pela 

evolução dos primatas. 

No terceiro capítulo, nós avaliamos como desconsiderar dados faltantes podem 

enviesar as inferências macroecológicas, e para isso, usamos como estudo de caso o teste 

da regra de Bergmann em mamíferos. Para a avaliação do efeito do dado faltante, nós 

contrastamos as análises que deletam espécies sem dados e com aquelas que realizam 

imputações múltiplas filogenéticas. Nós concluímos que a regra de Bergmann não se 

aplica aos mamíferos, quando avaliado ao nível de classe. Além disso, encontramos que 

a desconsideração dos dados faltantes pode enviesar o efeito da temperatura na massa 

corpórea de mamíferos, mas esse viés não mudou nossas conclusões sobre a ausência da 

regra. 
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Abstract 

Given the prevalence of missing data on species’ traits – Raunkiaeran shortfall-, several 

methods have been proposed to fill sparse databases. Analyses based on these imputed 

databases can introduce several biases. Here, we evaluated potential biases in descriptive 

statistics, regression parameters, and phylogenetic signal estimated from imputed 

databases under different missing and imputing scenarios. We found that percentage of 

missing data, missing mechanisms, Ornstein-Uhlenbeck strength and handling methods 

were important in determining errors of estimates. We also found that imputation errors 

are not linearly related to estimate errors. Although without biases, adding phylogenetic 

information provides better estimates of evaluated parameters. We advise researchers to 

share both their raw and imputed data and users to consider the pattern of missing data to 
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find methods that overcome this problem before running their analyses. In addition, new 

developments of phylogenetic methods should consider imputation uncertainty, 

phylogenetic autocorrelation and phylogenetic structure of the original data. 

 

Key-words: bias, Multiple Imputation, trait databases, Phylogenetic Eigenvector Maps, 

phylogenetic signal, Phylogenetic Comparative Methods.  

 

Introduction 

Missing data are a ubiquitous feature of real-world datasets (Nakagawa & Freckleton 

2008). Lack of information may limit the application of statistical analysis and can lead 

to biased estimates and conclusions on the phenomena of interest. In 1976, Donald B. 

Rubin proposed a missing-data theory to allow analysis of incomplete datasets (Rubin, 

1976), explaining how unbiased parameters could be estimated with missing data by 

considering the mechanisms causing missing data. These mechanisms were classified into 

three categories: missing completely at random (MCAR), missing at random (MAR) and 

missing not at random (MNAR). They mean, respectively, that missing values are equally 

probable across a dataset, probability of missing data is correlated with other variables 

rather than to the variable with missing data (target variable), and probability of missing 

data is itself correlated to the target variable and dependent on the missing data (Rubin, 

1976; Nakagawa & Freckleton, 2008; Enders, 2010; van Buuren, 2012) (Fig.1).  

When dealing with missing data, the above mechanisms need to be taken into 

account before analysis (Rubin 1976). This is because different methods that handle 

missing data assume different mechanisms, so using them indiscriminately may bias  
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Figure 1. Correlation structure among variables in each missing data mechanism. Circles 

represent model components and their intersection represents correlation among them.  

 

parameter estimates (Rubin, 1976; Enders, 2010; van Buuren, 2012). Multiple Imputation 

and Full Information Maximum Likelihood methods are currently regarded as the most 

appropriate methods to handle missing data, because they work under MAR and MCAR 

scenarios and provide unbiased estimates (Enders, 2010). In contrast, it is very difficult 

to model missing data under a MNAR scenario. This is so due to the need of considering 

a model that represents the probability of missing values to occur and because the shape 

of the probability density function is not known (Enders, 2010; van Buuren, 2012).  

Research in ecology and evolutionary biology usually requires data about species 

and their traits to answer different questions from community assembly and 

ecogeographical rules to correlated evolution, diversification rates and extinction 

probability, among others (Purvis et al., 2000; Webb et al., 2002; Gaston et al., 2008; 

Goldberg et al., 2010; Lukas & Clutton-Brock, 2013; Jetz & Freckleton, 2015). Thus, to 

facilitate research and make it reproducible and data more accessible (Reichman et al., 

2011), ecologists and evolutionary biologists usually create databases that include 

information on huge amounts of species and their traits (e.g., (Jones et al., 2009; Kattge 
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et al., 2011; Wilman et al., 2014). However, as databases become larger, the probability 

of having all the necessary data for all species rapidly decreases. This lack of knowledge 

about species’ traits and their ecological functions was recently defined as the 

Raunkiaeran shortfall (Hortal et al., 2015) or Eltonian shortfall (Rosado et al., 2015).  

Owing to the ubiquity of the Raunkiaeran shortfall, some researchers are 

interested in filling such gaps in their databases for their own analyses but also to make 

them available for other researchers (Swenson, 2014; Schrodt et al., 2015). To do so, 

recent studies suggest the use of phylogenetic information in the imputation process 

(Guénard et al., 2013; Swenson, 2014; Schrodt et al., 2015). Phylogenetic information is 

important in imputation because closely related species resemble, on average, each other 

more than distantly related species. This phenomenon is commonly known as 

phylogenetic signal (Blomberg et al., 2003). Consequently, knowing the phylogenetic 

position of species could, in principle, be used to perform a good estimation of missing 

trait values. However, the relationship between trait divergence and phylogenetic distance 

may be more complex (due to distinct evolutionary models) than usually assumed 

(Hansen & Martins, 1996; Münkemüller et al., 2012). For instance, under an Ornstein-

Uhlenbeck evolutionary model traits may evolve under selection restrictions where 

species track a trait optimum, causing phenotypic resemblance even among 

phylogenetically distant species (Hansen & Martins, 1996). Alternatively, under an Early-

burst model traits may show evolutionary rates early in species history and later the rates 

slow down, resulting in phylogenetically closely related species having different trait 

values (Blomberg et al., 2003; Harmon et al., 2010). Finally, trait evolution may behave 

like a drift process (e.g., Brownian motion) where species trait differences are directly 

correlated with time since divergence (Felsenstein, 1985; Hansen & Martins, 1996; 

Freckleton et al., 2002). Therefore, imputation methods should explicitly consider or 
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assume a trait evolutionary model determining the relationship between species 

resemblance and phylogenetic proximity (Guénard et al., 2013). 

Nowadays, large, imputed databases already exist that used taxonomic, ecological 

or allometric relationships to fill in missing values (Jones et al., 2009; Wilman et al., 

2014). This highlights the need to critically evaluate the use of imputed databases given 

that the reliability of statistical analysis under missing data is dependent on how many 

values were missing in the original data, what mechanism caused data to be missing and 

which methods were used in the imputation process (Schafer & Graham, 2002; Enders, 

2010; van Buuren, 2012). Moreover, other problems can also arise when testing for 

phylogenetic signal (Cavender-Bares et al., 2009; Münkemüller et al., 2012). In such 

cases, if analysis were to be conducted on phylogenetically imputed data, results could be 

misleading given that missing values would have been already filled based on their 

phylogenetic structure, thus potentially inflating the level of phylogenetic signal. This 

potential issue can have important consequences for studies evaluating, for example, 

niche conservatism, trait lability, community assembly and diversification (Blomberg et 

al., 2003; Wiens & Graham, 2005; Cavender-Bares et al., 2009; Goldberg et al., 2010). 

Considering the current need for complete databases and the use of imputation 

methods to accomplish this, we evaluate how the estimation of descriptive statistics, 

regression coefficients and phylogenetic signal can be misled by the percentage of 

missing data, the particular mechanism of missing data, the model of trait evolution and 

the choice of methods used to handle missing values. To accommodate these scenarios, 

we use simulated phylogenies and traits under different combinations of such conditions. 

In addition, to address imputation accuracy, we evaluated the relationship between error 

caused by imputation and estimate errors.  
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Methods 

Phylogeny simulation 

To evaluate the effect of imputing missing values into sparse databases (i.e. with 

missing data), we first simulated 100 birth-death phylogenies, with speciation and 

extinction rates respectively equal to 1 and 0. Each phylogeny had 200 species and were 

simulated using the function pbtree from the R package phytools (Revell, 2012). We 

focused on this phylogeny size because it has been considered appropriate to evaluate 

power and accuracy of phylogenetic analysis (Davis et al., 2013; Cooper et al., 2016), and 

it represents a conservative approximation to database size (e.g. several hundreds to 

thousands of species).  

 

Trait simulation 

For each phylogeny, we simulated two traits: a target trait and an auxiliary trait. 

The first trait represented the one that would be imputed (i.e. missing-value trait), whereas 

the second trait represented an auxiliary trait that would be used to impute values for the 

target trait. 

The target trait was simulated using the rTraitCont function from the ape package 

(Paradis et al., 2004). We modeled this trait under a Ornstein-Uhlenbeck evolutionary 

process (OU) (Gillespie, 1996), because it allowed us to simulate trait evolution within a 

continuum from evolutionary drift (i.e. Brownian motion) to weak and strong levels of 

selection strength on trait evolution (Hansen & Martins, 1996; Hansen, 1997). Thus, we 

could evaluate the performance of imputation methods under different levels of 

phylogenetic signal. We fixed the target trait’s optimum (ϴ) to zero and the trait 

interspecific variation (σ) equal to one. Also, we simulated different selection strengths 
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by varying α (selective strength) from 0 to 2, in 0.5 steps (0, 0.5, 1, 1.5 and 2). Such values 

covered evolutionary scenarios from Brownian motion (OU α = 0) to strong selective 

strength (OU α = 2). 

The auxiliary trait represented a variable used to impute values into the target trait. 

We simulated auxiliary traits in two ways: (i) correlated with the phylogeny and (ii) 

correlated with the target trait but uncorrelated with phylogeny. For (i), we simulated the 

trait following Liam Revell (pers. comm.):  

                                                    𝑥 =  𝑟𝑦 +  √1 − 𝑟² 𝑀𝑉𝑁(0, 𝜎2∑)                          eqn 1 

where y is the target trait, x the auxiliary trait, and r the correlation coefficient between 

both traits, which was set to r = 0.6. We also performed all analyses with r = 0.9 to explore 

the sensibility of our results to the strength of trait correlation, but showed in the main 

text only results for r = 0.6 (see results below). ∑ is the species covariance matrix 

(Felsenstein, 1985; Revell et al., 2008) and σ² the target trait variation rate calculated as 

the mean of squared phylogenetic independent contrasts (Freckleton & Jetz, 2009), which 

was estimated using the pic function from ape (Paradis et al., 2004). MVN means 

Multivariate Normal Distribution and it was simulated using the fastBM function from 

the phytools R package (Revell, 2012). This auxiliary trait was later used when simulating 

the MCAR (Missing Completely at Random) and MAR.PHYLO (Missing at Random 

correlated with phylogeny) (see below). 

For the (ii) scenario, where the auxiliary trait is correlated with the target trait but 

uncorrelated with phylogeny, the auxiliary trait was simulated using equation 1 with ∑ 

having off-diagonal entries equal to zero (i.e. no covariance among species) and diagonal 

entries representing, for each species, the sum of all branch lengths from the root to the 

tip. We simulated MVN using the mvrnorm function in the R package MASS (Venables 
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& Ripley, 2002). When using this auxiliary trait to impute target trait values, we expected 

that using the phylogeny into the imputation methods would not improve our analysis 

(i.e. provide no information on missing data) since the probability of missing values 

would only be correlated with the auxiliary trait and not with the phylogeny. 

 

Missing data scenarios  

To create missing data, we used the target trait simulated above and deleted 

different percentages of its values following three scenarios of missing data: Missing 

Completely at Random (MCAR), Missing at Random but phylogenetically structured 

(MAR.PHYLO), and Missing at Random but correlated with another phylogenetically 

unstructured trait (MAR.TRAIT). We created the MCAR scenario by randomly sampling 

a percentage (see below) of species along each phylogeny and replacing their trait values 

with missing values. For the MAR.PHYLO scenario, we sampled a species in each 

phylogeny and selected a percentage of its closest species to replace their trait values with 

missing values, allowing a strong missing data pattern that was phylogenetically 

structured. For the last scenario, MAR.TRAIT, we used the auxiliary trait (see above) to 

replace values in the target trait. We ordered the values of the auxiliary trait in ascending 

order and replaced the first percentage of values of the target trait with missing values. 

This represented a missing data pattern correlated with another trait, different to the target 

one. For each scenario, we simulated different percentages of missing values in the target 

trait: 5, 10, 20, 50, 70 and 90% of missing data. These percentages were chosen to 

represent common proportions of missing data present in highly used databases such as 

PanTHERIA (Jones et al., 2009) and EltonTraits (Wilman et al. 2014) (Fig. S1, Appendix 

S1). 
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Imputation methods 

We evaluated four methods often applied by researchers to handle missing data: 

imputation based on averaging values (MEAN), no imputation and simply deleting 

missing values (LISTWISE), phylogenetic eigenvector maps (PEM), and multiple 

imputation by chained equations (MICE). 

We used the MEAN method to impute missing values by filling them with the 

average of the observed values of the target trait. Under the LISTWISE method, we did 

not impute values but simply deleted those species with missing values in the phylogenies 

before the analyses. The PEM method uses both phylogenetic eigenvectors (Diniz-Filho 

et al. 1998) and traits to impute data considering different OU processes (Guénard et al. 

2013). We applied this method in two ways: first, using only the phylogenetic 

eigenvectors (PEM.notrait) and, second, using these eigenvectors and the auxiliary trait 

(PEM.trait). By applying the PEM method in these two ways allowed us to evaluate 

whether phylogenetic information alone could impute data well or auxiliary traits were 

necessary. Eigenvector selection and fitting of trait evolutionary models were performed 

using the MPSEM  R package (Guénard et al., 2013) using forward selection based on the 

second-order Akaike Information Criterion. The MICE method simulates several possible 

values for missing data from a posterior predictive distribution, then runs analysis and 

pools results over all simulated data (van Buuren et al., 2006). We chose this method 

because it is flexible and allows imputing categorical, continuous, and non-normally 

distributed data (van Buuren et al., 2006). We applied MICE by creating 10 datasets to 

run our analysis over them and pooled the results. The quantity of datasets created by 

MICE is dependent on the percentage of missing data and more datasets can provide 

higher accuracy and power in the analyses (Graham et al., 2007; Enders, 2010; van 

Buuren, 2012). However, because our objective was simply to estimate statistical bias 
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instead of inference power, 10 datasets can be considered appropriate (Graham et al., 

2007). As with the PEM method, we applied MICE in two ways: only considering the 

auxiliary trait (MICE) and using this trait plus the phylogenetic eigenvectors selected as 

in PEM (MICE.phylo). We imputed data with MICE using the mice R package (Buuren 

& Groothuis-Oudshoorn, 2011).  

We simulated 540 scenarios representing each combination of missing data 

percentage, mechanism, OU selection strength, and imputation methods. For each 

scenario, we simulated 100 replicates, thus producing 54000 independent results.  

 

Estimating phylogenetic signal 

We calculated the phylogenetic signal (PS) in our simulated phylogenies using 

two metrics: Blomberg’s K (Blomberg et al., 2003) calculated with the phylosig function 

of phytools (Revell, 2012) and Moran’s I correlograms (Moran’s Correlogram) 

(Gittleman & Kot, 1990; Diniz-Filho, 2001). For calculating these correlograms, we 

created a phylogenetic distance matrix per phylogeny using the cophenetic function of 

ape (Paradis et al., 2004) and built the correlograms with the lets.correl function of the 

letsR R package (Vilela & Villalobos, 2015). Then, we used the Moran’s I in the first 

distance class off the correlogram as indicative of PS, taking into account the non-

linearity of correlograms generated under OU processes (Diniz-Filho, 2001). 

 

Imputation effects on phylogenetic signal and descriptive statistics 

 Traditionally, performance evaluation of imputation methods have focused on 

common descriptive statistics such as (mean, variance, regression coefficient) (Collins et 
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al., 2001; van Buuren et al., 2006; Penone et al., 2014) instead of phylogenetic patterns. 

Therefore, we also evaluated the effect of imputed data on the estimation of such 

descriptive statistics. We calculated the mean and variance of the target trait as well as 

the regression coefficient (Ordinary Least Square) between the target trait and the 

auxiliary trait, before producing missing data and after imputing such data. Next, we 

measured the estimation error for these statistics as the squared error (SE), as below: 

         SEi = ( 𝜏1𝑖 - 𝜏0𝑖 )²                                                  eqn2 

where τ1 represents the statistics calculated over imputed traits, τ0 is the statistics 

calculated from original traits.  

Imputation error 

To measure the potential error introduced by imputation methods, that is the 

deviation between imputed and original data, we followed Penone et al. (2014) and used 

the normalized root mean squared error (NRMSE): 

                                             NRMSE =√𝑚𝑒𝑎𝑛((𝑦−𝑦𝑖𝑚𝑝𝑢𝑡𝑒𝑑)2)max(𝑦)−min (𝑦)                                      eqn 5 

where y is the original trait value, yimputed is the imputed value, max(y) and min(y) are the 

maximum and minimum values of the original trait, respectively. NRMSE varies between 

0, no estimation error, and 1, maximum error (Oba et al., 2003). 

Overall analyses 

We were also interested on evaluating the effects of percentage of data missing, 

missing data mechanism, OU selection strength, and imputation methods as factors 

influencing the abovementioned effects of imputation. To do so, we grew regression trees 

(Hastie et al., 2009) with these factors as predictors and estimation errors, separately, as 
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individual responses. Nonetheless, as every simulation were stochastic, we accounted for 

this variance in our analysis by using as predictor variable the statistics calculated over 

original data (𝜏0). We grew regression trees using the rpart R package and variable 

importance was calculated as sum of improvements on the sum of squares in each node 

split by that variable. In addition, given concerns on the accuracy of imputation methods 

(Guénard et al., 2013; Penone et al., 2014), we also plotted the relationship between 

imputation error (NRSME) and estimation errors (SE) caused by imputation. All 

simulations and analysis were run in R 3.4.0 (R Core Team, 2017).  

 

Results 

In our simulations, we found that differences in estimation errors were dependent 

on missingness mechanism, imputation method, evolutionary model, percentage of 

missing data and original statistics, despite some differences in variable importance 

among statistics (Table.1).  

 

Table.1. The importance of each variable to explain each estimated statistic errors. Variable 

importance were calculated as model improvement in each node split by the variable. 

 

 

Statistic errors Percentage Alpha Mechanisms Methods Original statistics

Blomberg's K 47.65 17.25 3.52 12.61 18.97

Moran's Correlogram 82.29 0 0 17.42 0.29

Mean 63.66 15.79 15.39 0 5.16

Variance 34.71 28.35 0 7.2 29.74

Regression coefficient 78.7 3.53 5.75 6.19 5.83
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Moreover, each statistic had different hierarchical relationship among variables 

explaining their estimate errors, including the original value of the variable in some cases 

(Fig. S2-S6, Appendix S1). Besides, imputation errors showed different results between 

trait correlations (target vs. auxiliary trait; r) of 0.6 and 0.9, but descriptive statistics and 

phylogenetic signal errors did not show different results concerning this correlation. 

Therefore, we present all results for r = 0.6. Full results for r = 0.9 can be found in the 

Appendix S2.  

Not surprisingly, our results showed a clear tendency of increasing error in 

estimating phylogenetic signal and descriptive statistics as the percentage of missing data 

gets larger (Fig. 2-4, Table.1). We did not identify a clear threshold in the amount of 

missing data that would guarantee lower statistical errors, but we identified two groups 

in the distribution of estimate errors split by a missing data percentage of 10 % (Fig.S2-

S6, Appendix S1). 

When data were missing completely at random (MCAR), most imputation 

methods showed good performance (Fig. 2-4; Fig. S7 and S8, in Appendix S1), except 

the MEAN method. Nevertheless, when estimating Blomberg’s K, only LISTWISE 

showed low estimation errors (Fig. 2). For mean and regression coefficient estimation, 

imputation methods worked better when data were missing at random but correlated with 

another trait (MAR.TRAIT) than when data were missing and phylogenetically structured 

(MAR.PHYLO) (Fig. 4; Fig. S7 and S8, Appendix S1). Nevertheless, the Moran’s 

Correlogram had low errors in all scenarios (Fig. 3).  
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Figure 2. Mean squared error of Blomberg’s K under different methods, OU selective 

strength, missing data percentage and mechanisms.  
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Figure 3. Mean squared error of Moran’s Correlogram under different methods, OU 

selective strength, missing data percentage and mechanisms.  
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Figure 4. Mean squared error of regression coefficient under different methods, OU 

selective strength, missing data percentage and mechanisms.  

 

The level of selection strength on trait evolution under the OU process was 

important just to explain SE and Blomberg’s K (Table.1). Nonetheless, we found a 

tendency to SE to decrease as the selection strength increased from pure evolutionary drift 
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(i.e. OU alpha = 0; Brownian motion) to strong selection (OU alpha = 2) (Fig. 2-4; Fig. 

S7 and S8, Appendix S1).  

The less sensitive methods were those that considered phylogenetic information 

in the imputation process (Fig. 2-5). PEM.trait, PEM.notrait, and MICE.phylo showed 

results less sensitive over different mechanisms of missing data (Fig. 2-4; Fig. S7 and S8, 

Appendix S1). The MEAN method was the most sensitive (Fig. 2-4; Fig. S7 and S8, 

Appendix S1).  
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Figure 5. Change percentage of Blomberg’s K under different methods, OU selective 

strength, missing data percentage and mechanisms. Change percentage was calculated as 

imputed Blomberg’s K minus original Blomberg’s K divided by original Blomberg’s K.  

 

Phylogenetic signal metrics (Blomberg’s K and Moran’s Correlogram) were 

lower than the original (before imputation) when using MEAN and MICE methods (Fig. 

5 and 6). All other methods estimated Moran’s Correlogram correctly under most 

simulated scenarios (Fig. 6), whereas the estimation of Blomberg’s K showed different 

patterns. Blomberg’s K was overestimated by PEM.trait and PEM.notrait and 

underestimated by MICE, even under the MCAR missing mechanism (Fig. 5). 

Nevertheless, Blomberg’s K estimation errors decreased when phylogenetic eigenvectors 

were used in MICE.phylo (Fig. 5).  

Descriptive statistics (mean and regression coefficient) were well estimated by all 

imputation methods (except MEAN) under MCAR. MAR.TRAIT and MAR-PHYLO 

generated biased estimations, but these biases were higher under MAR-PHYLO (Fig. 4, 

Fig. S7 and S8, Appendix S1). Nonetheless, variance had high estimations errors in all 

mechanisms, independent of the imputation methods (Fig. S8, Appendix S1)  

Finally, we found that imputation errors were correlated with estimate errors (SE) 

(Fig. 7). In addition, the imputation error and estimate error relationship evaluated here 

was asymptotic in log-scale, thus as imputation error increases the estimation error 

increases faster.  

Discussion 

 



 

34 

 

 

Figure 6. Change percentage of Moran’s Correlogram under different methods, OU 

selective strength, missing data percentage and mechanisms. Change percentage was 

calculated as imputed Moran’s Correlogram minus original Moran’s Correlogram divided 

by original Moran’s Correlogram.  

 

Ecologists and evolutionary biologists are increasingly creating, using, and 

sharing large trait databases that are inevitably sparse and often completed by imputing 

missing values (Guénard et al., 2013; Swenson, 2014; Schrodt et al., 2015). Here we argue  
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Figure 7. Scatterplot of imputation errors (average NRMSE) and statistical errors. (A) 

Logarithm of Blomberg’s K SE (squared error), (B) Logarithm of Moran’s Correlogram 

SE, (C) Logarithm of Mean SE , (D) Logarithm of Variance SE and (E) Logarithm of 

Regression coefficient SE. 

 

that we should be extremely careful when using imputed databases, even for the 

estimation of simple parameters (i.e. means, variances and regression coefficients). Our 

findings revealed that estimations based on imputed data depends on every aspect of data 
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property and strategy of analysis, as percentage of missing data, source/mechanism of 

absence, trait evolution, methods for gap filling, and statistics or parameters to be 

estimated (Fig.8). This has commonly been acknowledged in statistical research (Rubin, 

1976; Enders, 2010) and should begin to be so in the ecological and evolutionary research 

as claimed by Nakagawa & Freckleton (2008). Based on our results, we can infer that the 

large changes in the estimations, due to different analytical choices, may also be an 

important cause of irreproducibility in our field (Borregaard & Hart, 2016). 

The most pervasive obstacle for deriving conclusions from large datasets is simply 

the proportion of those species lacking data. Previous studies found that reliable 

estimations from imputed data can be made when up to 60% of the values were missing 

(Barzi, 2004; Penone et al., 2014). However, in our results, the effect of missing data 

percentage was not direct, but rather interacted with all of the other aspects evaluated 

here. Thus, there is no simple way of deriving a threshold on how much missing data 

would be allowed to be imputed and still make reliable estimations.  

Knowing the causes of data absence is the first issue to be sorted out before any 

analysis (van Buuren 2012). The most common assumption in ecological and 

evolutionary studies is that data is missing completely at random (MCAR). This is evident 

in the wide variety of functions of the most commonly used software (the R programming 

language) allowing deleting missing values indiscriminately. Indeed, if data were under 

MCAR, previous findings and ours showed that estimations based on deletions and 

imputations could safely be made (Nakagawa & Freckleton, 2010; Penone et al., 2014; 

Taugourdeau et al., 2014). However, biological data are rarely missing completely at 

random (Nakagawa & Freckleton, 2008; Enders, 2010). For instance, bias in ecological 

data absence can be related to the fact that some taxa are most studied than others 

(Gonzalez-Suarez et al. 2012). Moreover, such bias can stem from body mass differences 
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among species, where large species have a higher probability of being described first 

(Vilela et al., 2014) and have their data collected (Gonzalez-Suarez et al., 2012) compared 

to small species. Also, species present in easily accessible regions are better studied than 

those occurring in regions that are hard to access (Reddy & Dávalos, 2003). In our 

simulations, higher biased estimates were found when data were missing at random but 

correlated with other variable (MAR), especially phylogeny (MAR.PHYLO). Such 

results differ from those found by Penone et al. (2014), who did not find significant 

estimation differences among missing data mechanisms. This discrepancy could be 

related to our way of simulating MAR.PHYLO, creating a stronger phylogenetic structure 

than that simulated by them.  

Our simulations revealed that imputation methods considering phylogenetic 

structure (PEM.trait, PEM.notrait and MICE.phylo) performed better than methods not 

doing so (MEAN, LISTWISE, and MICE) under all missing data mechanisms (MCAR, 

MAR.PHYLO, and MAR.TRAIT). Such findings support previous claims favoring 

“phylogenetic imputation” as a powerful tool in predicting missing species values 

(Penone et al., 2014; Swenson 2014). More interestingly, our results showed that some 

phylogenetic imputation methods (PEM.notrait) perform better than non-phylogenetic 

ones, even when missing data was uncorrelated with phylogeny but to an auxiliary trait 

(MAR.TRAIT). This result was unexpected based on missing data theory, which suggests 

that under MAR.TRAIT some variable correlated with missing data probability is 

required to guarantee reliable estimations (Enders 2010).  

Overall, MICE.phy, PEM.notrait and PEM.trait performed best among all 

imputation methods tested. However, they committed high estimation error in MAR 

mechanisms, what we did not expected previously. We do not know if this performance 

is an effect of eigenvectors selections, what was performed over missing values and after 
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used to impute missing values. The selection of eigenvectors over traits with missing data 

could result in misrepresentation of phylogenetic structure.  

PEM.notrait and PEM.trait represented single imputation method, which imputes 

a single value for each missing datum, thus not accounting for uncertainty of the imputed 

value. Consequently, PEM methods may underestimate standard errors and bias 

subsequent hypothesis testing (i.e. increasing Type I error rates) (Enders 2010; van 

Buuren 2012). To avoid such biases, the statistical literature suggests using multiple 

imputation methods (Schafer & Graham, 2002; Enders, 2010; van Buuren, 2012), as we 

represented by MICE methods. However, our results did not show better performance of 

MICE, even when including phylogenetic information, in estimating descriptive statistics 

or phylogenetic signal compared to PEM. Despite multiple imputation being one of the 

most suggested methods for handling missing data (van Buuren 2012), additional research 

is necessary to evaluate its performance with phylogenetically structured data.  

Filling missing values by averaging the observed ones (MEAN) or simply deleting 

species with missing values (LISTWISE) generated poor estimates, which is related to 

the fact that both methods assume that data is MCAR. MEAN only worked satisfactorily 

for estimating the trait average. LISTWISE disrupts the distribution of trait values, thus 

results in biased estimates (Enders, 2010). However, this method performed well when 

estimating phylogenetic signal. This is encouraging, given that researchers interested in 

trait phylogenetic signal usually delete missing values (Blomberg & Garland, 2002; 

Kamilar & Cooper, 2013) thus guaranteeing potentially unbiased results. 

Phylogenetic imputation is based on the assumption of target traits being 

phylogenetically structured (i.e. showing phylogenetic signal; Swenson 2014). However, 

phylogenetic structure is dependent on how traits evolved (Diniz-Filho, 2001; Guénard et 

al., 2013). Accordingly, trait evolution was an important issue in our study. Across our 
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simulated scenarios, estimation errors were higher when target traits were simulated 

under Brownian motion (BM) than under OU processes, agreeing with previous study 

(Guénard et al., 2013). Better estimates under OU than BM processes may result from 

higher trait resemblance and lower variance among species generated when increasing 

selection strength under OU processes (Hansen, 1997; Butler & King, 2004). Thus, 

predicting missing values of target traits will benefit from knowing their particular 

evolutionary model and will be more accurate if such traits evolved under strong selection 

regimes. Again, this suggests that researchers need to find the appropriate evolutionary 

model for their target traits before judging the need to use phylogenetic imputation 

methods for handling missing data. It should be noted, however, that fitting evolutionary 

models over incomplete data could itself be biased owing to the use of observed values 

only and thus pruned phylogenies (Slater et al., 2012). 

Phylogenetic imputation methods may also produce bias when estimating 

phylogenetic signal. More specifically, our findings suggest that such methods can 

actually alter the original phylogenetic structure of the trait (i.e. the structure if data were 

complete). In fact, PS may be incorrectly estimated even under MCAR. Moreover, when 

using Blomberg’s K, imputation by PEM overestimated the original phylogenetic signal 

of the target trait (i.e. created when the trait was simulated) whereas MICE.phylo 

underestimated it.  

In addition, PS estimation errors were dependent on the evaluated metric. 

Regardless of the simulated scenario, estimation errors were lower for PS based on 

Moran’s I correlogram than Blomberg’s K. Similarly, Münkemüller et al. (2012) showed 

that Moran’s I is less sensible than Blomberg’s K to changes in trait phylogenetic 

structure even when random noise is added. Blomberg’s K measures a global pattern 

along a phylogeny, based on observed and expected total trait variance under Brownian 
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motion (Blomberg et al., 2003), whereas Moran’s I correlogram measures the correlation 

of trait values within different phylogenetic distance classes (Gittleman & Kot, 1990). 

Therefore, changes in total trait variance caused by imputation may not have strong 

impacts on within-first class correlations, rendering Blomberg’s K more sensitive than 

Moran’s Correlogram to such changes.  

 

Figure 8 Summary of the main results showing (A) the differences on estimation errors 

among missing data mechanisms and estimated statistics; (B) highlighting the best 

imputation methods; (C) the effect of missing data percentage in statistical estimation; 

(D) OU selection strength; and (E) the non-linear relationship between imputation error 

and statistical estimation error logarithm. 

 

New proposed methods to fill sparse databases currently concerns about their 

degree of imputation error, that is how much imputed values deviate from the original 

trait values (Guénard et al., 2013; Penone et al., 2014; Schrodt et al., 2015). We found 
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that single and multiple phylogenetic imputation methods can be highly accurate, 

resulting in small deviations between imputed and observed values, as suggested by other 

authors (Guénard et al., 2013; Penone et al., 2014; Diniz-Filho et al., 2015; Schrodt et al., 

2015). In addition, we found that imputation error was positively correlated with 

estimation errors but their relationship was not linear. That is, increasing imputation error 

causes estimation errors to increase much more rapidly. This is particularly relevant if 

researchers were to use imputed databases blindly –without correctly treating imputed 

values. Such practice could create spurious results. This is because even if imputation is 

accurate, imputed values simply represent one among several possibilities without 

providing information on imputation uncertainty. In fact, using an accurately imputed 

database does not necessarily mean that the original trait distribution and its relationship 

with other variables will be recovered (van Buuren 2012).  

Concluding remarks 

Instead of providing imputed trait databases, we should focus on treating missing 

values with appropriate methods. We have shown here that such methods should consider 

phylogenetic information. With the increase of computational literacy among ecologists 

and evolutionary biologists (Ram, 2013), we encourage researchers to use simulations of 

their data and methods to find the appropriate solution for their study goals. Furthermore, 

researchers need to develop phylogenetic methods that consider imputation uncertainty 

and preserve the original data’s phylogenetic signal. Missing data is one of the most 

pervasive features of trait databases and the only effective solution for this Raunkiaeran 

shortfall is collecting more data. Nevertheless, acknowledging such shortfall instead of 

ignoring it will effectively help guiding research towards solving it.  
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APPENDIX 1 

 

 

 

Figure S1. Density of missing values percentage in each database. Dotted lines 
represents missingness percentage simulated. Colored lines represent density of 
percentages through different traits in each database. Low percentage represents 
EltonTraits missing data percentage, high values represents Pantheria missing data 
percentage and intermediate represents possible values to be found in other database. 
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Fig S2. Regression tree analysis of the logarithm of Blomberg’s K squared error (SE). 
Each node contains the mean of the logarithm SE in each tree split. In the nodes, there 
are the criterion and the variables used in each split.  
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Fig S3. Regression tree analysis of the logarithm of Moran’s Correlogram squared error 
(SE). Each node contains the mean of the logarithm SE in each tree split. In the nodes, 
there are the criterion and the variables used in each split.  
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Fig S4. Regression tree analysis of the logarithm of squared error of mean (SE). Each 
node contains the mean of the logarithm SE in each tree split. In the nodes, there are the 
criterion and the variables used in each split.  
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Fig S5. Regression tree analysis of the logarithm of trait’s variance squared error (SE). 
Each node contains the mean of the logarithm SE in each tree split. In the nodes, there 
are the criterion and the variables used in each split.  
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Fig S6. Regression tree analysis of the logarithm of regression coefficient (Beta) 
squared error (SE). Each node contains the mean of the logarithm SE in each tree split. 
In the nodes, there are the criterion and the variables used in each split.  
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Figure S7. Mean squared error of trait’s mean under different methods, OU selective 
strength, missingness percentage and mechanisms.  
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Figure S8. Mean squared error of trait’s variance under different methods, OU selective 
strength, missingness percentage and mechanisms.  
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APPENDIX 2 

 

 

Figure S1. Mean squared error of Blomberg’s K under different methods, OU selective 
strength, missingness percentage and mechanisms. 
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Figure S2. Mean squared error of Moran’s Correlogram under different methods, OU 
selective strength, missing data percentage and mechanisms. 
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Figure S3. Mean squared error of trait’s mean under different methods, OU selective 
strength, missingness percentage and mechanisms. 
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Figure S4. Mean squared error of trait’s variance under different methods, OU selective 
strength, missingness percentage and mechanisms. 
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Figure S5. Mean squared error of regression coefficient under different methods, OU 
selective strength, missingness percentage and mechanisms. 
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Abstract 

 One of the most famous ecogeographical pattern is Island rule, which states that 

there is an inverse relationship between body sizes of a species inhabiting mainland and 

the body size of their relative living in islands. This pattern became more attractive after 

the discovery of Homo floresiensis, a small-bodied hominid from Flores Island, 

Indonesia. Despite being a probable example of Island rule acting on the genus Homo, 

Homo floresiensis has also a smaller brain size than expected by its allometric scaling. 

Consequently, there has been questions about the appliance of Island rule on Flores man, 

due to uncertainty about its ancestry and brain-body size relationship. Here we modeled 

body and brain sizes evolution in primates, including fossil hominids, as a stochastic 

process model. We included into the models shifts in evolutionary rates across body and 

brain size evolution detected by Phylogenetic Signal Curve representation (PSR). Yet, we 

modeled shifts in brain-body relationship and island effects on brain and body sizes and 
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their evolutionary rates. We selected the best models by Akaike Criterion Information 

and model adequacy to recover observed patterns. Then, we predicted body and brain 

sizes of Homo floresiensis and compared them to observed values, assuming different 

hypothesis about its ancestor. Our results showed that primates do not follow Island rule, 

but early in the Homo lineage there have been shifts in evolutionary rates and brain-body 

relationship. Our models predicted, on average, larger body and brain sizes of H. 

floresiensis than observed values. Thus, Flores man might have been selected toward 

smaller body and brain sizes in comparison to its mainland ancestor since it colonized 

Flores Island. Nonetheless, observed brain and body sizes were within predictive 

confidence intervals of our models, suggesting that Homo floresiensis was not an outcome 

of exceptional evolution. 

Keywords: Homo floresiensis, Phylogenetic Comparative Methods, Phylogenetic Signal 

Curve, evolutionary shifts, brain allometry, hominids 

 

Introduction 

Island Rule is one of the most famous biogeographical patterns, originally 

described in the middle 1960’s (Foster 1964; Van Valen 1973). According to this pattern, 

a shift in body size is expected after colonization of islands, eventually leading to the 

origination of new species better adapted to particular environmental conditions in 

islands. Lomolino (1985, 2005) proposed that the pattern is actually more continuous than 

discrete, so that a negative correlation between body size in the mainland and relative 

body size shift in the island exists. So, large-bodied species will tend to reduce their body 

size (dwarfing), whereas a small-bodied ancestor will evolve towards a larger new species 

(gigantism) in islands. The main explanation to dwarfing is that natural selection tends to 
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favor small-bodied individuals in islands with reduced availability of resources, and 

because of the high intraspecific competition there is a reduced population abundance and 

increasing fitness for lower growth rates and lower maturity age (Palkovacs 2003). 

 The Island Rule tends to be observed in several groups of organisms (Lomolino 

et al. 2013), but have been most consistently studied for mammals (see Faurby and 

Svenning (2016) for a recent analysis). The most spectacular evidences of dwarfism come 

from large mammals such as Proboscideans and several Artiodactyls, as well as from a 

few clear gigantism cases in Insectivores and Rodents (see van der Geer et al. 2011 for a 

review). Primates also tend to display Island Rule, with some cases of dwarfing in both 

body and brain sizes (Bromham and Cardillo 2007; Welch 2009; Montgomery et al. 2010)  

The discussions around Island Rule in primates have been amplified by the 

discovery of a new human species, called Homo floresiensis (Brown et al. 2004). This 

new species was described in 2004 based on a skull (LB-1) and some postcranial material 

found in a small island in Indonesia, the Flores Island. The skeletal remains, probably 

from a female, revealed initially a very small-bodied hominid (estimates of about 27 kg, 

with a brain size of 400 cc), probably derived from a population of H. erectus that suffered 

island dwarfism (Brown et al. 2004). Beyond the small size and the possibility that “island 

effect” applies to hominids, the discovery was also controversial due to the fact that fossils 

were considered relatively recent, ca. about 70-90 kya (see Sutikna et al. 2016). However, 

more recently van den Bergh et al. (2016) found new fragments of H. floresiensis that 

dated for 700 kya, which ended some previous discussion about the validity of the new 

species, which was attributed by some researchers to a pathological microcephalic form 

of Homo sapiens (Aiello 2010). 

Bromham and Cardillo (2007) pointed out that this shift in body size (and brain 

size as well) in H. floresiensis is within the range of reduction in island primates. Kubo 
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et al. (2013) and Montgomery (2013) showed that the brain size in H. floresiensis seems 

to be smaller than expected by the dwarfism from a H. erectus ancestor based on 

allometric scaling. Indeed, Martin et al. (2006a, 2006b) had already used this same 

reasoning to argue against H. floresiensis as a valid species. In addition, recent analyses 

using evolutionary quantitative genetics approach show that the intensity of directional 

selection driving observed dwarfing is plausible, even considering a wide range of 

population parameters and colonization scenarios (Diniz-Filho and Raia 2017). Hence, 

brain size reduction would not be due to allometric effects alone, and direct selective 

forces would drive brain size evolution towards smaller sizes, in addition to dwarfism 

driven by body size reduction as independent of body size (Grabowski 2016; Diniz-Filho 

and Raia 2017). Indeed, if the main explanation for dwarfism under Island Rule is 

reducing energetic budget, then a strong reduction in brain size is also expected by 

considering that cerebral tissues are quite demanding in this sense. This pattern in brain 

size reduction was also observed for other mammals (Weston and Lister 2009), so it is 

even possible to hypothesize that brain energetic requirement would be the main driver 

the overall reduction in body size (Herculano-Houzel and Kaas 2011; Grabowski 2016; 

Diniz-Filho and Raia 2017).  

However, new controversies around the species arose. Since first description in 

2004, some researchers have actually suggested that H. floresiensis is more anatomically 

related to older African hominids, including some forms of early Homo and H. habilis 

(Argue et al. 2009; Morwood and Jungers 2009; Trueman 2010). Recent cladistics 

analyses based on cranial characters provided conflicting results, either supporting that 

H. floresiensis belongs to the H. erectus clade (Zeitoun et al. 2016) or suggesting an older 

ancestry, closer to basal African early Homo (Dembo et al. 2015; Argue et al. 2017). If 

this last hypothesis proves correctly, the small body of H. floresiensis would not be due 
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to island ecological processes (Palkovacs 2003; Raia and Meiri 2011; Lomolino et al. 

2012) and only reflect deeper ancestry followed by stasis. On the other hand, it is 

important to highlight that supporting this last hypothesis would also have deep 

implications for the so called “Out of African I” hypothesis, in which H. erectus was the 

first hominin leaving Africa (see Carotenuto et al. (2016) for a recent analysis and 

review).  

Because of the discussions around the evolutionary relationships between H. 

floresiensis and the other hominids, as well as the issues related to brain size dwarfism 

independent of body size, it is still important to use different approaches to evaluate 

models of body and brain size evolution in an explicit phylogenetic context. If it is 

possible to successfully fit models of brain and body size evolution to primate clade, 

including hominids, it is possible to verify whether observed data from H. floresiensis 

falls within the expected patterns of primate evolution. In a more methodological context, 

it is possible to use the “phylogenetic imputation” approach (Garland, Jr., and Ives 2000; 

Guénard et al. 2013; Swenson 2014; Schrodt et al. 2015) to estimate the value for a given 

taxa of interest and then compare the observed and estimate values. This allows defining 

if this taxon significantly differs from the phylogenetic expectations for a given trait, so 

it requires “ad hoc” explanations based on particular selective forces in that lineage 

(Vining and Nunn 2016) 

 Thus, our goal here is to perform a comparative phylogenetic analysis of brain and 

body size evolution in primates (including some fossil hominids), in the context of island 

rule. We initially evaluated patterns of evolution in these traits by several nested models 

with increasing level of complexity, starting from a simple Brownian motion model for 

interspecific variation in body size up to a more complex model of brain size evolution 

driven by island rule and complex models of non-stationary brain size evolution. After 
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comparing these models, we used them to predict the expected values of brain and body 

size in H. floresiensis and to evaluate alternative scenarios and hypotheses for its 

evolution, and compared such values with the observed ones. 

 

Methods 

Insularity definition, body and brain size 

Primate insularity was defined, following previous studies, as those species 

currently living on islands ("classical definition"; Faurby and Svenning 2016). This 

criterion comprised 41 species including those inhabiting large islands, such as 

Madagascar and Java, which represent worth independent evolutionary lineages such as 

Strepsihrrini (e.g.: lemur, galagos) as well as insular Hominidea (Pongo.sp).  

We gathered body size data from PanTHERIA database (Jones et al. 2009) and 

from a more recent data compilation (Faurby and Svenning 2016). The species 

Chiropotes chiropotes, Callicebus discolor, Pongo abelii, Procolobus kirkii and 

Sciurocheirus gabonensis presented unreliable body size values, so we checked and 

supplemented the information by Smithsonian National Museum of Natural History 

(https://collections.nmnh.si.edu/search/mammals) and All the World’s Primates database 

(Rowe and Myers 2012). Extinct hominin brain and body sizes were gathered from 

Grabowski et al. (2015, 2016). 

Brain size data were gathered from Isler et al. (2008) and Gonzalez-Voyer et al. 

(2016). In Isler dataset, we excluded Brachyteles sp. and Pygathix sp. brain sizes because 

they were genera averages, although we included in our analysis the information about 

Pygathrix nigripes brain size present in their dataset. Gonzalez-Voyer dataset contained 

https://collections.nmnh.si.edu/search/mammals
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brain masses, so we transformed it to endocranial volume (cubic cylinder) by dividing 

1.036 from brain mass (the fresh brain tissue density) (Isler et al. 2008).  

Furthermore, we included in our analysis brain size of extinct hominin species to 

increase the representativeness of Homo floresiensis evolutionary pathway, gathered from 

(Grabowski 2016; Grabowski et al. 2016). 

 

Phylogenetic hypothesis 

Our phylogenetic hypothesis was an extant primate phylogeny combined to a 

fossil hominin phylogeny. The extant primate phylogeny was reconstructed by Springer 

et al. (2012) using a maximum likelihood inference and a molecular supermatrix for 367 

species. The hominin phylogeny was grafted from Dembo et al. (2015) consensus, which 

was based on craniodental characters for 20 fossil species. Then, we binded hominin 

phylogeny on the most recent common ancestor between Pan troglodytes and Homo 

sapiens on extant phylogeny, but as hominin phylogeny root was slightly younger than 

Pan-Homo node, we re-scaled hominin branch lengths to make node ages compatible.  

Dembo et al. (2015) and Argue et al. (2017) estimated the phylogenetic position 

of Homo floresiensis as a possible Homo ancestral lineage, nonetheless there is not yet in 

literature a consensus about Homo floresiensis phylogenetic position. Hence, we binded 

this species in three other hypothetical ancestral scenarios: (1) Homo habilis, (2) early 

Homo (Argue et al. 2017) and (3) Homo erectus/ergaster.   

 

Body and brain size evolutionary models 

We modeled primate body and brain size (log-scale) evolution as a stochastic 

process (Cavalli-Sforza and Edwards 1967; Felsenstein 1973; Martins and Hansen 1997) 
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that describes trait evolution as a random-walk through branches of a specified 

phylogeny. Then, trait evolution is drawn from a normal distribution with mean zero and 

variance σ²t, where t is the branch length in which trait evolved through. At the end of the 

process, species traits are expected to have the mean close to the initial value (root state) 

and the covariance between pairs of species is directly proportional to sum of the branch 

lengths shared by them. Therefore, this process is well represented by a multivariate-

normal distribution (MVN) that is compound by mean and covariance structures 

(Felsenstein 1973; Martins and Hansen 1997). If mean structure is an n × 1 matrix with 

equal α values representing n species, α is the trait state at phylogeny root. On the other 

hand, mean structure can be specified as an equation among trait and explanatory 

variables representing their global relationship (Martins and Hansen 1997). Moreover, 

covariance structures is expressed in an n × n matrix (V) whose off-diagonal elements are 

sum of the shared branch lengths between two species since the root until their most recent 

common ancestor (Felsenstein 1973; Martins and Hansen 1997). Species variances are 

described in V diagonal elements by sum of the branch lengths since the root until the 

phylogeny tips, therefore if phylogeny is ultrametric, diagonal is constant and all species 

have the same variance. However, V describes traits evolving with an evolutionary rate 

(σ²) equal to one, thus to change evolutionary rate, V needs to be multiplied by σ². 

Additionally, evolutionary rates can be different along phylogeny branches and these 

shifts can be modeled by multiplying different σ² by its respective branch length before 

constructing V (O’Meara et al. 2006). Furthermore, one can include a parameter λ to 

control phylogenetic signal by multiplying the off-diagonal elements of V  by λ (Pagel 

1999). 

Taking this framework, we started by modelling body size evolution. To do so, 

we specified a baseline evolutionary model (Model 1) with mean structure equals to root 
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state and a constant evolutionary rate along all phylogeny branches (i.e., a classical 

Brownian-motion model). Then, we evaluated the baseline evolutionary model adequacy 

(see below) and detected evolutionary rate shifts through primate body size evolution that 

were not captured by our model. Hence, we included those shifts in a new model (Model 

2), so adding them improved the evolutionary model adequacy. We selected best baseline 

model by second-order Akaike Information Criterion (AICc) and model evidence ratio 

(Burnham and Anderson 2002). 

 Once we selected the best baseline model that can describe appropriately the most 

general body size evolutionary pattern, we created other model (Model 3) adding the 

island effect on mean structure, so that 

log(Body size) = α + βX         eq.1 

whereas α is the root state and X is a dummy variable specifying if each primate species 

is insular or not.  Furthermore, we created another model in which island species evolve 

in a different rate than mainland primates (Model 4). Then, clades in which all species 

were insular had their insular colonization assumed to be occurred at the most recent 

common ancestor (MRCA) of the clade. Then, every descendant branch of that MRCA 

were assumed to be evolved at insular rate. If island colonization happened at terminal 

branches, that branches were also assigned island evolutionary rate. Thus, we ranked 

baseline models and these models with island effects by AICc, as abovementioned. 

Brain size evolution was also modelled as stochastic process, and we created two 

initial baseline models: (Model 1) a constant rate model and mean structure equal to root 

state, and; (Model 2) a model with constant rate and the mean structure equal to an 

allometric relationship between brain and body size: 

                                           log(Brain size) = log(α) + βlog(Body size)                         eq.2 
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where α is the intercept and β is the allometric coefficient.  Then, we selected the best 

model and checked its adequacy. As we detected evolutionary shifts that were not 

accounted by our best baseline model, we also included those shifts into the model (model 

3). However, brain-body size relationship showed a different slope for Hominin (here 

Australopithecus sp. and Homo sp.) and Pongids (Pan sp., Pongo sp. and Gorilla sp.), so 

we included those allometric changes in a model 4. We ranked these three models by 

AICc and the best model was used as our baseline model in which we included island 

effects on mean structure (model 5) and evolutionary rates (model 6), as previously done 

for body size evolution. 

We estimated all models by maximum likelihood using the function mle2 from 

package bbmle (Bolker and R Development Core Team 2017). The maximum likelihood 

searches were realized by L-BFGS-B (Byrd et al. 1995), which allowed us to constrain λ 

between 0 and 1, and σ² upper than 10-3, because variances close to zero took the searches 

to regions of very low likelihood where the models could not leave there. To explore 

possible global optimization problems, we ran the searches of each model from five 

random starting points and used the maximum likelihood search of each model in the 

subsequent analysis. All analyses used a phylogeny with its height scaled to one (Fuentes-

G. et al. 2016). 

 

Model adequacy 

While building the models described above we checked their adequacy to 

reproduce the observed phylogenetic pattern, because  model selection does not guarantee 

that the best model actually fits data properly (i.e., the best model is not necessarily a 

good model) (Pennell et al. 2015). To access the adequacy of our models, we followed 

the framework proposed by (Pennell et al. 2015). He proposed that if a phylogenetic 
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covariance matrix V is transformed properly to represent some trait evolution, we could 

expect a trait simulated by Brownian-motion with mean zero and σ² equal to 1 could 

recover, in average, diagnostic statistics calculated over the original trait. Here, we used 

squared mean (squared PIC mean) and coefficient of variation (PIC coefficient of 

variation) of Phylogenetic Independent Contrasts (PIC) (Felsenstein 1985), besides the 

linear relationship between PIC and their expected variances (PIC-Variance), as 

suggested by (Pennell et al. 2015). However, PIC is not straightforward to visualize where 

evolutionary shifts happened in trait evolution. Therefore, we applied the Phylogenetic 

Signal Representation (PSR) proposed by (Diniz-Filho et al. 2012) to detect where there 

were evolutionary shifts not represented by our models, what has been showed to be 

congruent with other more computationally intensive method (Diniz-Filho et al. 2015) 

(but see Mazel et al. (2016) for other alternative).  

PSR procedure extracts eigenvectors from a phylogenetic-distance matrix and 

applies regressions among a trait on cumulative eigenvectors, in a decreasing order of 

their eigenvalues, and calculate their determination coefficients (R²). Under a Brownian 

motion process, a linear and directly proportional relationship will appear between 

cumulative eigenvalues and regression R2. This procedure is repeated for each simulated 

and observed traits and absolute deviations between successive eigenvectors are 

calculated. If some observed deviations has less than 5% of probability to be recovered 

by simulated deviations, an evolutionary shift is detected (Diniz-Filho et al. 2015). 

Thus, we scaled the primate phylogeny to height equal to one, as we did while 

fitting the models, and transformed the phylogeny branch lengths using the estimated λ 

and σ². Then, we simulated 10000 traits by a Brownian-motion process with mean zero 

and σ² equal to one using rTraitCont function of the R package ape (Paradis et al. 2004). 

Thereafter, we calculated PIC and their variances by pic function of package ape (Paradis 
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et al. 2004) and the diagnostic statistics (see above) for the simulated values and the model 

residuals. We considered some model adequate if it could reproduce the observed 

statistics in 5% of a two-tailed test. If the models were inadequate in respect to variance 

coefficient or PIC-Variance, it represented non-stationarity of σ² along the phylogeny. 

Therefore, we created PSR curves to detect those shifts and then included them into the 

model.  

 

Predicting Homo floresiensis body and brain size  

To estimate how large Homo floresiensis body and brain sizes should be according 

to our models, we followed (Goldberger 1962; Garland, Jr., and Ives 2000) equation: 

        YHomo floresiensis = βXHomo floresiensis +  VT
Homo floresiensisV-1(Y-Yest)                 eq.3 

where β is the estimated model parameters, X is the design matrix that could be an n × 

vector of ones or a n × m matrix of m explanatory variables (eg. insularity and body size). 

VT is the transposed covariance matrix of transformed phylogeny for Homo floresiensis 

without its variance, V-1 is the inverse covariance matrix of the transformed phylogeny 

without Homo floresiensis, Y – Yest is the model residuals. To estimate prediction 

uncertainty we drawn 10000 values from a normal distribution with mean YHomo floresiensis  

and variance equal to the transformed terminal branch length of Homo floresiensis and 

calculated the 5% and 95% quantiles. These calculations were repeated for each Homo 

floresiensis ancestral hypotheses. Nonetheless, Homo erectus ancestral scenarios 

assumed a brain size of 600, 991 and 1054 cc to represent brain size variation since forms 

of Homo habilis and Dmanisi’s D2700 (early forms) up to late and large-brained 

Indonesian forms such as Sangiran 12 (Coqueugniot et al. 2004). Body size of Homo 
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erectus did not vary a lot between early and late forms according to (Grabowski et al. 

2015, 2016), so we assumed a mean body size of 51 kg for all analyses   

 

Results 

Body size evolutionary model 

Our baseline model (1) was not adequate to capture PIC coefficient of variation 

and PIC-Variance (Table 1, Fig. 1). Actually, we detected six evolutionary rate shifts in 

body size throughout the phylogeny that the model was not reproducing: the first shift 

occurred during Infraorder Lemuriformes diversification, comprising the genera 

Propithecus, Avahi, Indri, Cheirogaleus, Microcebus, Mirza, Lepilemur and Phaner. The 

second and third shifts occurred in New World primates, during the splitting of the 

families Atelidae and Cebidae, which also suffered further later shifts in genera Saguinus, 

Cebus and Callithrix.  

Then, we created models 3 and 4 based on model 2. Model selection showed that 

model 2 was the best model with an AICc weight of 0.67, meaning this model was 2.91 

more probable than the second-ranked model, which is the one that included island effects 

on mean structure (Table 2). Models 1 and 4 were less supported by our data (Table 2).  

We then predicted Homo floresiensis body size by the four models and the three 

ancestor scenarios. We did not found prediction differences among models within each 

ancestor hypotheses, and all models suggest that Homo floresiensis as an early Homo 

ancestor would be roundly a 40 kg primate, and as a Homo habilis descendent its size 

would be as large as 32 kg and as a Homo erectus descendent it would weight 50 kg. 

However, models differ regarding to confidence intervals and even a Homo erectus 
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Table 1. Model adequacy of body and brain size evolutionary models. Each value 

represents the probability of observed statistics be recovered by model simulations. 

Model with values higher than 0.05 were considered adequate to recover that statistic. 

Trait Model 
Squared PIC 

mean 
PIC coefficient of 

variation 
PIC-

Variance PSR 

Body 
size 

1 0.96 0 0 0.06 
2 0.93 0.02 0.18 0.08 

Brain 
size 

1 0.96 0 0 0.03 
2 0.96 0 0.86 0.2 
3 0.95 0.33 0.5 0.08 
4 0.97 0.08 0.73 0.49 

PIC: Phylogenetic Independent Contrasts    
PIC-Variance: Linear regression between PIC and its variance 
PSR: Phylogenetic Signal Curve representation   

 

ancestral scenario, in which H. floresiensis descend form an ancestor with 50 kg, could 

have a descendent lineage of 27 kg (i.e., the estimated body size for Homo floresiensis) 

in our two best models (Table 3). The other ancestors also included the observed Homo 

floresiensis size in their prediction quantile intervals.  

 

Brain size evolutionary model 

Our two baseline models for brain size (models 1 and 2) were not adequate to capture 

most evolutionary pattern of brain size evolution (Table 2), but the last model was better 

supported by our data (Table 4). Then, we used model 2 and diagnosed shifts in 

Platyhrrini evolution, in Gorilla, in the base of Hominin, in Homo and in Callithrix (Fig. 

2). 
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We included in our model 3 shifts in Gorilla, Australopithecus, Homo and 

Callithrix, which improved our model in respect to the two baseline models. Moreover, 

this model was adequate for all diagnostic statistics, even without including all detected 

Platyhrrini shifts.  

 

Table 3. Predictive quantiles of body size for each evolutionary model and ancestor 
scenarios. 

Models 
Ancestral scenarios 

Homo ancestor Homo habilis Homo erectus 

 5% 50% 95% 5% 50% 95% 5% 50% 95% 

2 15.98 40.56 103.05 14.85 32.32 70.87 26.90 50.29 93.69 

3 15.50 38.85 97.24 14.05 31.27 69.02 25.81 48.66 91.46 

4 24.12 40.66 68.01 20.42 32.37 51.56 37.21 50.37 68.19 

1 24.65 40.38 67.04 21.45 32.53 49.20 36.06 50.57 70.71 

 

Our best model was model 4 that did not considered island effects on mean 

structure neither in evolutionary rates. This model was 2.25 more probable to generate 

our observed data than the second-ranked model and 3.18 more probable than the third –

ranked model, which considered island effects respectively on mean structure and 

evolutionary rates (Table 4). Despite, the second and third ranked models were not far 

from the best model. 

Brain size evolutionary models predicted larger brain sizes than that observed for 

Homo floresiensis (Table 5), except for the three best models in a scenario in which the 

ancestor had a brain size of 600 cc (closer to H. habilis or early H. erectus, as Dmanisi). 

The first and third ranked models predicted similar brain size estimates, whereas the 

second-ranked model predicted, on average, 13 cc smaller brain sizes due to island effect 

on mean structure. Besides, the three worst models, which did not considered Hominin  
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and Pongids differences on allometric relationships, predicted larger brain sizes than 

observed. Therefore, if Homo floresiensis were ancestor of Homo its brain size would be 

expected roughly between 450 and 470 cc, for the three best models. Otherwise, 

considering Homo habilis as ancestor, the brain size would be actually larger (~ 480-490 

cc) than that predicted by Homo ancestor scenario. A scenario in which Homo erectus 

had 991 cc of brain size predicted brain sizes between 468 and 480 cc. On the other hand, 

if the Homo erectus ancestor had a smaller brain size (600 cc), the prediction would be 

between 349 and 360 cc. Finally, Homo erectus with a brain size of 1059 cc as ancestor 

predicted a brain size between 488 and 500 cc. In all cases, quantile intervals of brain size 

predictions were wide and actually encompassed the observed Homo floresiensis brain 

size, except for model 1.   

Discussion 

Body size evolution and Island Rule in primates 

Island rule has been argued as a general pattern acting on several mammal orders, 

as well as birds and reptiles (Lomolino 2005; Lomolino et al. 2013; Faurby and Svenning 

2016). Primates, in turn, has received little attention on this issue that mostly concluded 

for the rule appliance (Bromham and Cardillo 2007; Meiri et al. 2008; Nowak et al. 2008; 

Schillaci et al. 2009; Welch 2009; Montgomery et al. 2010, 2016; Lomolino et al. 2013; 

Montgomery 2013). However, our results showed it is more plausible that primates does 

not follow island rule in general, because neither their optimal body size nor evolutionary 

rates have changed on island systems.  

The main critics against island rule states that gigantism and dwarfism on islands 

are taxa specific, time-dependent and contingent on responses to environmental and biotic 

pressures instead a rule (Meiri et al. 2006, 2008, 2011; Raia et al. 2010; Raia and Meiri 

2011). For instance, Macaca fascicularis is a primate that does not follow island rule   
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even inhabiting island of different sizes in Sunda Shelf Islands archipelago, Southeast 

Asia (Schillaci et al. 2009). Procolobus kirkii, on the other hand,  had its size decreased 

and evolutionary rates accelerated in comparison to continental relatives  (Nowak et al. 

2008). Moreover, even though Madagascar primates have evolved from the same 
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common ancestor (Yoder and Yang 2004), they diversified into dwarf species in the 

Cheirogaleidae family (Masters et al. 2014), while Lemuridae and Indridae families 

evolved convergent giant species (Masters et al. 2014), which weighted more than 10 kg 

and achieved about 200 kg in Archaeoindris fontoynontii (Fleagle 2013). Therefore, body 

size evolution of primates on islands may be lineage dependent, likely reflecting 

differences of species biological characteristics such as diet, life history and trophic level 

(Lomolino et al. 2012) that are variable within Primates order. Then, antagonistic 

responses through primate lineages in respect to island pressures may result in an absence 

of general island tendency. 

However, we cannot actually discard an “island effect”, once our second-ranked 

model, instead less supported, was not so far from the first-ranked model and estimated 

an average trend to dwarfism in insular primates. Although, we should note that the 

second-ranked model captured only a directional tendency in island primates, not the 

centering trend proposed by “classical” island rule (Foster 1964; Lomolino 1985), in 

which large species decrease their sizes while small species get larger. Consequently, a 

small or absence of island effect could emerge from a centering tendency or could be 

guided by some extreme and rare dwarfisms of such as 80% of reduction described in 

(Bromham and Cardillo 2007). We consider our model was able to capture island rule, if 

it exists, once if primates follow island rule they would, on average, decrease their sizes 

(Bromham and Cardillo 2007; Lomolino et al. 2013), as detected by our model. However, 

size reduction on island was not better supported by our data, because its effect did not 

increased model likelihood in comparison to the model without island effect as much as 

it would be necessary to overcome its model complexity. 

In addition to body size displacement, island rule also suggests that species 

would evolve faster on islands (Millien 2006, 2011; Evans et al. 2012; Rozzi and 
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Lomolino 2017). An example in the primates is Procolobus kirkii, which had accelerated 

cranium features evolution after island colonization (Nowak et al. 2008). However, 

despite our model that described this hypothesis had indeed estimated a faster evolution 

on islands, this model received little support by our data. Concordantly, Raia and Meiri 

(2011) did not found support for acceleration of mammal body size evolution on islands. 

Nonetheless, body size evolution on island has been described as a process in which in 

early stage evolves fast and then its rate slows down and maintains constant since then 

(Millien 2006; Rozzi and Lomolino 2017). This accelerating-decelerating dynamic at 

terminal branches of a phylogeny may behave like a constant evolutionary rate at 

macroevolutionary scale that resembles mainland rate. Thus, our models may have 

captured this pattern. Further studies could model an accelerating-decelerating evolution 

(Blomberg et al. 2003; Harmon et al. 2010) on island species and see whether it is 

indistinguishable or better supported  when compared to a constant-rate model.  
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Figure 1. Evolutionary shifts of body size through primate phylogeny. Each line of points 

represents eigenvectors that increase R² of body more than expected by model 1. Red and 

blue colors mean respectively positive and negative scores. Thus, evolutionary shifts 

occurred within Infraorder Lemuriformes, family Atelidae, Cebidae and within Saguinus. 

After control for these shifts, there were also detected shifts within Cebus and Callithrix. 

 



 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Evolutionary shifts of relative brain size through primate phylogeny. Each line 

of points represents eigenvectors that increase R² of relative brain size more than expected 

by model 2. Red and blue colors mean respectively positive and negative scores. Thus, 

evolutionary shifts were detected for Platyrrini, Callithrix, Hominin, Gorilla and Homo.  

 

The most typical (or at least more polemic and widely discussed) example of 

island rule application on primates is Homo floresiensis (Brown et al. 2004; Bromham 

and Cardillo 2007; Diniz-Filho and Raia 2017) that had its body mass limits estimated 

ranging from 16 to about 40 kg (Brown et al. 2004; Kubo et al. 2013). Our models 

predicted masses closer to literature upper limit (~30-50 kg), but these estimates were 
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extremely dependent on which ancestor Homo floresiensis had evolved from, as our 

models assumed an expected body mass similar to the ancestor. Therefore, evolutionary 

scenarios whereby Homo floresiensis was ancestor of Homo or descendant from Homo 

habilis predicted masses within literature ranges, whereas Homo habilis ancestor scenario 

predicted the most accurate mass if Homo floresiensis weighted about 27 kg (Grabowski 

et al. 2015). On the other hand, if Homo floresiensis evolved from Homo erectus its size 

would be near to 50 kg, a much larger mass than the literature upper limit, and neither the 

island effect that we estimated could decrease body mass lesser than 40 kg. Consequently, 

these results could initially suggest that Homo floresiensis was not a dwarf hominin 

descent from Homo erectus, but actually a more ancient hominin as stated by (Dembo et 

al. 2015; Argue et al. 2017). Nonetheless, our models had predictive quantile intervals 

that covered literature limits of Homo floresiensis, even in scenarios whose ancestor was 

Homo erectus and islands had no effect on body mass evolution. Accordingly, a primate 

as large as Homo erectus are likely to speciate into a Homo floresiensis-kind primate 

without an exceptional, as termed by (Vining and Nunn 2016), body mass evolution. 

Other studies, that concluded for island rule, have also found that Homo floresiensis size 

could be achieved by a regular island rule dwarfism (Bromham and Cardillo 2007; 

Montgomery 2013; Diniz-Filho and Raia 2017). Indeed, it is not necessary a strong 

directional selection on large individuals to decrease Homo floresiesis to its estimated 

size, it is required only a small (or at least plausible) selection strength and time to evolve 

(Diniz-Filho and Raia 2017).  

Based on our models, it is difficult to propose an alternative explanation of how 

Homo floresiensis became smaller without claiming for island pressures. A possible 

explanation is that Flores pressures were not idiosyncratic in comparison to pressures 

suffered by primates through evolutionary history. Thus, body changes such as that seen 
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in Homo floresiensis may have already happened in other clades and time periods even 

in mainland environments (Montgomery et al. 2010). Alternatively, H. floresiensis could 

be exceptional examples of island rule in primates given its body size and diet, which 

mainly determines island rule effects ((Lomolino et al. 2012).  

 

Brain size evolution   

An unfinished debate about Homo floresiensis evolution concerns on its small 

brain size (~426 cc) (Aiello 2010; Kubo et al. 2013; Diniz-Filho and Raia 2017), more 

specifically on how large it should be under an allometric scaling with body mass. We 

found that brain-body relationship might not be constant through primate evolution, 

whereas shifts in Hominin and Pongid clades notoriously improved our model. Brain-

body size scaling has been theorized as an outcome of energy income and brain-body 

costs that are balanced by reducing high demanding organs such as brain and gut, as stated 

by expensive-tissue hypothesis (Herculano-Houzel and Kaas 2011). Therefore, 

expensive-tissue hypothesis posits Pongid had their bodies increased to support larger 

digestive system in order to metabolize more low-energetic food (Aiello and Wheeler 

1995; Herculano-Houzel and Kaas 2011). Hominin, on the other hand, had their energetic 

budget invested to increase brain size rather than gut. However, our results showed that 

instead investment on body size, shifts on brain size evolutionary rate have guided the 

allometric scaling shift. While body size had maintained constant evolutionary rates in 

Pongid and Hominin, brain size had faster evolution in Hominin compared to other 

Catahrrini, but Gorilla had its brain evolution deaccelerated to almost zero, suggesting a 

strong conservatism on brain size in this taxa. Therefore, Gorilla, Australopithecids and 

Homo differences on encephalization quotient resulted from relative brain size 

evolutionary shifts rather than being a by-product of body size evolution. This hypothesis 
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is in accordance to (Herculano-Houzel 2012; Grabowski 2016) that proposed that body 

size evolution was carried by brain size along hominin diversification. 

Given the ability to model, in a phylogenetic context, the complex patterns of 

brain-body correlation, our results about brain size were concordant to those from models 

in body size evolution. They suggested that primates do not seems to suffer selection to 

move their ancestral brain size to a new optimum on islands, then island rule would not 

be applicable to brain size. Our second and third ranked models were close to the first 

one, but their AICc distances were merely consequence of their small island rule effects, 

what made them resemble the model without island effect. Furthermore, Montgomery 

(2013) also found that island rule could not be applicable to brain size in primates (and 

this is the only study that we have knowledge on island rule effects on primate brain size).  

Brain size shrinking in island species has been detected in hippos that suffered 

intense dwarfism (Weston and Lister 2009), thus due to their diet based on low-energetic 

income, selection acted to decrease brain size. Diet has been considered a worth factor to 

determine primates brain size (DeCasien et al. 2017), as primates has a more diversified 

diet than ungulate, the island effect could not arise as a general trend. Although, it is 

plausible that some folivorous/frugivorous primates reduce their brains when inhabiting 

an environment with scarce food, but this does not apply to all primates, whose diet ranges 

from insectivorous to carnivorous. Nonetheless, one question remains, why the most 

emblematic and well-studied example of brain reduction in primates is a generalist 

species (Morwood et al. 2004; Brown and Maeda 2009), Homo floresiensis?  

Our models predicted larger brain sizes to Homo floresiensis than literature upper 

limit (~426 cc) (Kubo et al. 2013), but a possible ancestrally from 600 cc  Homo erectus 

(Dmanisi) predicted a small brain size than the lower limit (~380 cc)(Brown et al. 2004). 

Previous studies argued that LB1 Homo floresiensis brain size was much smaller than 
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predicted by brain-body allometric scaling of modern humans, ungulates, proboscides  

(Martin et al. 2006b). Kubo et al. (2013), on the other hand, found that it is possible a 

brain size as large as 426 cc given Homo floresiensis body size, in accordance to other 

studies (Montgomery et al. 2010; Montgomery 2013; Diniz-Filho and Raia 2017). 

However, this discussion concerns on uncertainty about brain-body scaling and from 

which ancestor Homo floresiensis had diversified. We found that Homo clade had a 

stepper brain-body scaling than primates in general, as abovementioned, thus when size 

is reduced, brain size indeed decrease more than expected by other primates or mammals. 

Furthermore, as we found for body size, predictive quantile intervals for brain size, 

independently of the ancestral or island effect, covered the observed estimates of LB1. 

Therefore, a 27 kg primate with a brain size as large as 426 cc is within a plausible 

macroevolutionary scenario derived from brain-body scaling of primates, taking into 

account evolutionary singularities within Hominin and Homo evolution.  

 

Conclusion 

Island rule applies for several taxa, mainly mammal species (Lomolino 2005). 

Also, body size reduction is correlated to brain size dwarfism (Weston and Lister 2009). 

Here, we showed that, in general, primate body and brain sizes did not follow Island Rule, 

and that only evolutionary shifts, independent of insularity, are enough to explain the 

observed distribution of body and brain size in this group. These conclusions have direct 

impact on the most famous example of primate Island Rule, Homo floresiensis. Our 

models predicted larger body and brain sizes, on average, than observed values, what 

could indicate Flores man suffered directional evolutionary pressures in Flores Island, a 

plausible hypothesis as island pressures are more prone to act on larger species (Lomolino 

2005; Lomolino et al. 2012), such as Homo species. However, Homo floresiensis body 
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and brain sizes are within predictive confidence intervals of our evolutionary models, so 

even if Flores man suffered Island Rule, it did not have an exceptional, or extremely 

different evolution than expected by its Homo relatives.     

 Further studies could test evolutionary rate acceleration and deceleration within 

primate macroevolution in island and evaluate island effect continuously rather than using 

a discrete form. Furthermore, studies could look for evolutionary shift within Homo 

floresiensis own lineage and compare it with quantitative genetic model already 

published, such as Diniz-Filho and Raia (2017). Therefore, we did not solve the mystery 

about whether Homo floresiensis follows Island Rule, but we shed more light on the 

complex primate evolution and how it can explain in the future the idiosyncrasy of Flores 

man.  
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ABSTRACT 

 Climate forces species to adapt their niches to climatic changes. Karl Bergmann 

propose that larger species would be selected in cold temperature regions, while small 

species would be selected in warmer climates, a pattern latter named Bergmann’s rule. 

Here we tested Karl Bergmann hypothesis using phylogenetic generalized linear squares, 

taking into account the possible consequences of ignoring missing values. We considered 

missing values using Multiple Imputation by Chained Equations, which predicted missing 

values using life-history traits and phylogenetic eigenvectors as predictors. Our results 

did not support Bergmann’ rule, independent of regarding missing values. However, 

missing values uncertainty affected about 50 % of temperature effect on body size. 

Furthermore, we found ignoring missing values might bias temperature-body size 

relationship. Therefore, macroecological and macroevolutionary researches would be 
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improved by regarding missing values, thus methodological and theoretical  researches 

on phylogenetic multiple imputation are a fruitful research field to advance.   

Keywords: Bergmann’s rule, mammals, body size evolution, Multiple Imputation by 

Chained Equation, Phylogenetic Comparative Methods, Phylogenetic Generalized Least 

Squares, Phylogenetic Eigenvectors 

 

 INTRODUCTION 

 Climate imposes selective pressures on species ecological niches through time 

(Cooper et al., 2011; Araújo et al., 2013), which may force species’ physiology, behavior 

and morphology (Porter & Kearney, 2009; Huey et al., 2012) to adapt to climatic change 

or, as stated by “Court Jester hypothesis” (Barnosky, 2001; Benton, 2009), they become 

extinct. Following the reasoning of the climate pressure, Karl Bergmann proposed that 

cold temperatures should favor the existence of large species, once their area-volume 

ratio allows them to conserve more heat than small species. As a consequence, a 

latitudinal cline of body sizes should emerge, a pattern latter named Bergmann’s rule 

(Ashton et al., 2000; Gaston et al., 2008; Rodríguez et al., 2008; Clauss et al., 2013). 

Since the proposition of this rule, the pattern has been evaluated for a wide range of taxa, 

including endothermic and ectothermic organisms (Arnett & Gotelli, 1999; Drezner, 

2003; Brehm & Fiedler, 2004; Olalla-Tárraga et al., 2010; Clauss et al., 2013).  

 In the macroecological literature, mammals are, like birds, an iconic example of 

Bergmann’s rule (Blackburn et al., 1999; Gaston et al., 2008).  Accordingly, body size 

latitudinal gradient has been confirmed by some authors studying intra-specific, cross-

species and assemblage-based approaches (Ashton et al., 2000; Meiri & Dayan, 2003; 

Diniz-Filho et al., 2007; Clauss et al., 2013; Santini et al., 2017). However, meta-analytic 
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studies have not always concluded the existence of the rule (Ashton et al., 2000; 

Freckleton et al., 2003; Meiri & Dayan, 2003; Adams, 2008). In fact, these studies found 

a general application, but several taxa “broke the rule” (Ashton et al., 2000; Freckleton 

et al., 2003; Meiri & Dayan, 2003). Furthermore, the most recent and data-rich analysis 

at the intra-specific scale did not find evidence for a temperature-body size relationship 

(Riemer et al., 2018). Conversely, recent comparative studies using cross-species 

approaches comprising almost all known mammal species concluded that mammals get 

larger at higher latitudes where cold temperatures dominate (Clauss et al., 2013; Faurby 

& Araújo, 2016). Therefore, there is yet doubt about the existence of Bergmann’s rule, 

even in the highly studied taxa such as mammals.  

Commonly, studies use latitude, instead of temperature, as a surrogate variable to 

test Bergmann’s rule. However, other environmental conditions such as productivity, 

climate stability, evapotranspiration and habitat availability, all have strong latitudinal 

gradients so they could explain body size variation (Geist, 1987; Blackburn et al., 1999; 

Diniz-Filho et al., 2007; Rodríguez et al., 2008; Meiri, 2011). Indeed, studies evaluating 

body size variation within assemblage-based approaches found temperature might not be 

the only driver of body size cline (Diniz-Filho et al., 2007, 2009; Rodríguez et al., 2008). 

Nonetheless, until now, no comparative analyses using a cross-species approach have 

directly tested the relationship between body size and temperature in a mammalian class 

scale.  

Testing Bergmann’s rule, alongside all inferences about causal effects in 

macroecological and macroevolutionary studies, is a challenging endeavor as it makes 

use of observational data, whereas we cannot “reset the mammalian evolutionary tape” 

as thought by Stephen J. Gould (Gould, 1990). Therefore, Bergmann’s rule researches are 

plagued by taphonomic process, research bias, species detectability, which results in 
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biased information toward some taxa and geographic regions (Nakagawa & Freckleton, 

2008; Garamszegi & Moller, 2011; Gonzalez-Suarez et al., 2012; Clavel et al., 2014; 

Penone et al., 2014). This biased information are translated into missing information, or 

knowledge shortfalls, about species ecology, trait, geographic occurrence and even about 

their own existence (Hortal et al., 2015). Hence, the implication of biodiversity 

knowledge shortfall on evolutionary and ecological inferences are an ongoing research 

program (Diniz-Filho et al., 2013; Hortal et al., 2015; Oliveira et al., 2016). 

On the purpose to infer unbiased inferences from datasets with missing values, 

statistical literature has been publishing methods to deal missing data since 30’s (Allan 

and Wishart 1930; Anderson 1957; Rubin 1976; see more in Little and Rubin 2002). 

Then, in 1976, Donald Rubin proposed a theory to analyze missing data based on 

assumptions about how data became missing through gathering procedure (Rubin, 1976). 

In his theory, if data were missing randomly, he named missing data mechanism as 

Missing Completely at Random (MCAR). On the other hand, if missing data is not 

random, but some variable within researcher database describes missing data probability, 

this mechanism is Missing at Random (MAR). Otherwise, when there is no variable 

explaining missing probability, the mechanism is Not Missing at Random (NMAR). 

Those missing data mechanism have practical implications, since researchers should 

choose methods proposed to deal with each mechanism, ensuring so, unbiased analyses 

(Rubin, 1976; Little & Rubin, 2002; Enders, 2010; van Buuren, 2012).  

The use of appropriate methods regarding missing data has been advised in 

ecological literature (Fisher et al., 2003; Nakagawa & Freckleton, 2008; Nakagawa, 

2015), but few studies have implemented those methods into their research (Fisher et al., 

2003; Nakagawa & Freckleton, 2010; Fitzjohn et al., 2014; Jetz & Freckleton, 2015; 

Bokma et al., 2016; Uyeda et al., 2017). Therefore, our goal here is to evaluate 
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Bergmann’s rule hypothesis that temperature drives body size variation within the 

mammalian clade using a large and well-known database of mammalian traits, evaluating, 

in addition, the impact of ignoring missing data mechanisms in our inferences and 

parameter estimates. 

 

MATERIAL AND METHODS 

Database and phylogenies 

To evaluate Bergmann’s rule over a missing data perspective, we used 

PanTHERIA database (Jones et al., 2009) as it is the most complete database about life 

history, ecology and geography of mammals, covering about 5400 extant and recently 

extinct mammal species. Moreover, PanTHERIA mirrors taxonomic and geographical 

biases of mammalian research, such as large, widely distributed mammals, inhabiting 

temperate regions are more prone to have data (Gonzalez-Suarez et al., 2012). Thus, 

PanTHERIA is valuable to investigate how ignoring missing data influences 

macroecological researches.  

To summarize environmental temperature along mammalian geographic range, 

we created a presence-absence matrix (PAM) of terrestrial mammals using International 

Union for Conservation of Nature (IUCN) polygons (International Union for 

Conservation of Nature, 2016) through lets.presab function of letsR package (Vilela & 

Villalobos, 2015). For each species, we extracted from WorldClim (Hijmans et al., 2005) 

annual mean temperature (Bio1) in each inhabited grid cell and calculated the median 

temperature of those cells. Both Bio1 raster and PAM were previously transformed into 

equal area Mollweide projection with a resolution equivalent to 1º x 1º at the equator.  
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Evolutionary history was accounted by 101 phylogenies generated by Kuhn et al. 

(2011), which represents uncertainty on resolving polytomies throughout the mammalian 

species-level phylogeny published by Fritz et al. (2009). However, 397 species with 

geographic range or present in PanTHERIA were missing from phylogenies. We solved 

this by imputing missing species on phylogenies, allocating them at the most inclusive 

clade proposed by prior taxonomic and phylogenetic knowledge (Thomas et al., 2013; 

Rangel et al., 2015). Species were allocated within a monophyletic clade defined by their 

genus using function add.species.to.genus of phytools package (Revell, 2012). When 

species had no relatives on phylogenies, we searched on Open Tree of Life (Hinchliff et 

al., 2015) for their most accepted locations. If one species was a sister lineage of a clade, 

we attached it at the stem branch of that clade. This imputation procedure used functions 

from phytools and ape (Paradis et al., 2004; Revell, 2012) packages.  

To allow compatibility of species among distribution range polygons, 

PanTHERIA and phylogenies, we checked and standardized synonymies to enhance 

species coverage (4309 species) in our subsequent analyses. We used search_col function 

in taxize package (Chamberlain & Szöcs, 2013) to search synonymies in PanTHERIA, 

phylogenies and IUCN polygons present on Catalog of Life database (Roskov et al., 

2017). Species missing on Catalog of Life had their synonymies accepted in accordance 

to the IUCN database.  

 

Multiple imputation 

To take missing data into account in our analyses,  we applied Multiple Imputation 

by Chained Equation (MICE) (Buuren & Groothuis-Oudshoorn, 2011). We chose MICE 

to impute missing values, because of its simplicity and flexibility  to deal with Missing at 
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Random (MAR) and Not Missing at Random (NMAR) mechanisms of missing values 

(van Buuren, 2012). MICE simulates iteratively posterior predictive distributions of 

missing values for each variable conditioned on observed data of other variables (van 

Buuren et al., 2006; Buuren & Groothuis-Oudshoorn, 2011; van Buuren, 2012). MICE 

usually assumes MAR mechanism while imputing values, but to access the sensibility of 

MAR assumption in our analyses, we also used Response Indicator model (Jolani, 2012), 

as it assumes NMAR mechanism and estimates missing data probability.  

 To impute missing values, we used life-history traits and phylogenetic information 

as regression predictors. To do so, we selected life-history traits with less than 80% of 

missing values (Table 1). Phylogenetic information was included in our model as 

phylogenetic eigenvectors (Diniz-Filho et al., 1998). To obtain these eigenvectors, we 

decomposed a phylogenetic distance matrix of one of our phylogenies and extracted its 

eigenvectors, selecting for each life-history trait, the eigenvectors that eliminated their 

residual autocorrelation (Diniz-Filho et al., 2012; Bauman et al., 2018). All eigenvectors 

selected for all variables were included into imputation model. However, some variables 

were not well imputed by all eigenvectors and were excluded from analyses, since they 

did not have also much information to provide to the other variables (Table 1). Therefore, 

we chose litter size, neonate mass, body mass and temperature, besides those selected 

eigenvectors in our imputation model. Furthermore, we imputed missing values using 

Predictive Mean Matching (PMM), except for body mass. This algorithm predicts 

missing values based on a regression model, then selects, within observed values, the five 

closest values to that predicted one. Subsequently, the algorithm samples one value from 

 

Table 1: Variables with less than 80% of missing values with their influx and outflux 

coefficients. Influx is the capacity of some variable to receive information from other 
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database variables. Outflux is the capacity of some variable to provide information to 

other database variables. 

Variables influx outflux missingness (%) 
X5.1_AdultBodyMass_g 0.11 0.51 0.33 

X13.1_AdultHeadBodyLen_mm 0.46 0.16 0.68 
X9.1_GestationLen_d 0.46 0.07 0.73 

X15.1_LitterSize 0.23 0.28 0.52 
X5.3_NeonateBodyMass_g 0.55 0.05 0.78 

X23.1_SexualMaturityAge_d 0.56 0.04 0.79 
X25.1_WeaningAge_d 0.53 0.05 0.77 

Temperature 0.02 0.94 0.04 
 

Influx and outflux coefficients were proposed by (van Buuren, 2012).  

 

that selected set of  values (van Buuren, 2012). Therefore, PMM avoids unrealistic 

imputed values, but it is prone to eliminating phylogenetic signal. Thus, we imputed body 

mass by normal distribution, but constrained their values to minimum and maximum 

observed values. 

We created 50 imputed datasets, for all imputation scenarios (MAR and NMAR), 

following van Buuren (2012) recommendation to generate as much imputations as 

average percentage of missing values in database variables. This is also in accordance 

with Graham et al. (2007) and von Hippel (2018) advices of imputation amount. MICE 

runs Monte Carlo Markov Chains (MCMC) to simulate imputations, then we run 30 

iterates for MAR scenario and 50 iterates for NMAR (Response Indicator method), 

because Response Indicator method requires more iterations to estimate the probability 

of species misses values. We checked chains stabilization tracking mean and standard 

deviation traces of each variable (Fig.1, Supplementary Material). All imputations were 

run by mice package (Buuren & Groothuis-Oudshoorn, 2011).  

Statistical analyses 
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We evaluated missing data effects on body mass and temperature relationship 

running separate analyses on the multiple imputed datasets described above. More 

specifically, we regressed a PGLS (Phylogenetic Generalized Linear Squares), with 

lambda transformation (Pagel, 1999; Freckleton et al., 2002), between body mass and 

temperature in each of  50 created datasets using phylolm function in phylolm package 

(Tung Ho & Ané, 2014). Then, we pooled parameter estimates using Rubin’s rule 

(Enders, 2010; van Buuren, 2012; Barnard & Rubin, 2018) to estimate unbiased 

parameters and 95 % confidence intervals.  

To compare multiple imputation results to complete case analyses (i.e. excluding 

missing values), we ran PGLS, like abovementioned, over 101 phylogenies and pooled 

their results by Rubin’s rule as it has been suggested by Nakagawa & de Villemereuil, 

(2015). Therefore, we could include both imputation and phylogenetic uncertainties into 

the same framework. All variables were log-transformed before both imputation and 

analyses, except temperature that was normalized by subtracting the mean values from its 

values and dividing it by its standard deviation. All analyses were run in R software 3.4 

(R Core Team, 2017). 

 

RESULTS 

Our results did not support Bergmann’s rule acting on mammalian clade, 

independently of the method used to deal with missing data, once the effect of temperature 

on body mass had 95% of probability to include absence of effect within their confidence 

intervals (Table 2). However, despite being not significant, we found opposite effects of 

temperature on body mass if analyses were run on complete case (negative effect) instead 



 

106 

 

of imputed datasets (positive effect). Furthermore, intercepts were lower for complete-

case analyses in comparison with imputed analyses. 

We also found body size residuals had high phylogenetic signal, but imputed 

datasets estimated lower phylogenetic signal (λ = 0.89) than complete case analyses (λ = 

0.97). In addition, phylogenetic uncertainty (here a mixture of polytomies resolution and 

missing species imputation) influenced about 28% of temperature effect on complete-

case analyses, but it had no effect on intercept estimates. Conversely, imputation 

uncertainty generated about 50% of temperature effect error and 20% of intercept error 

for both imputation scenarios (MAR and NMAR). It is worth noting that Response 

Indicator method (NMAR) results did not differentiate from MAR. 

 

DISCUSSION 

Bergmann’s rule has been tested since it was first proposed about 170 years ago. 

Yet, it still raises questions about its existence in different major taxa, such as mammals. 

Here we did not find support for Bergmann’s rule, an unexpected conclusion since it has 

been cited as hallmark of ecogeographic rules for a long time (Blackburn et al., 1999; 

Gaston et al., 2008). However, we did not obtain an uncommon result. Indeed, previous 

studies have already found evidences against Bergmann’s rule while studying the whole 

mammalian clade (Clauss et al., 2013; Faurby & Araújo, 2016). But, surprisingly, those 

studies concluded for the rule existence. For example, Clauss et al. (2013) concluded for 

appliance of the rule, but they found a latitude effect on body size of 0.002 g in log scale, 

in other words, the difference between a species at the latitude 90º and other species at 

latitude 0º would be 1.51 g, a difference comparable to measurement error. Thus, in fact, 

their results showed evidence against Bergmann’s rule, not the opposite, as they 
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concluded. Faurby & Araújo (2016) also found that extant mammalian species do not 

follow the rule, but they argued that the absence of this pattern was a consequence of 

range contraction due to human activity and large mammal extinctions in temperate 

regions since the Pleistocene. Nevertheless, latitudinal effect in their study using 

historical ranges was comparable to Clauss et al. (2013) results. Therefore, studying the 

entire mammalian clade by cross-species approach seems to give no support for 

Bergmann’ rule, probably a consequence of considering it as a homogeneous clade, with 

stationary body size evolution and constant effect of temperature on body size (Freckleton 

et al., 2003; Meiri & Dayan, 2003) 

Researches about tempo and mode of mammalian body size evolution have shown 

that mammalian evolution is not stationary, with changes in evolutionary rates through 

time, lineages and geography (Diniz-Filho et al., 2007; Cooper & Purvis, 2010; Baker et 

al., 2015; Clavel & Morlon, 2017). At the temporal scale, evolutionary rates increased in 

cold periods and decreased in warm times (Clavel & Morlon, 2017). Evolutionary rates 

also changed throughout the mammalian phylogeny (Cooper et al., 2011; Venditti et al., 

2011; Baker et al., 2015), increasing their rates in lineages becoming larger, so imprinting 

a directional evolution of body size toward larger values (Baker et al., 2015), a pattern 

known as Depéret or Cope’s rule (Alroy, 1998; Bokma et al., 2016).  Therefore, average 

evolutionary rates through time were a net outcome of lineages evolving at different 

speeds. In addition, similar patterns can be detected in geographical space, where 

evolutionary rates accelerated in cold regions and decreased in warmer regions (Cooper 

& Purvis, 2010). Taking all of these together, temperature seems to have influenced body 

size evolution, but as exemplified by Artiodactyla body size evolution (Carotenuto et al., 

2015), both space and time should be taken together to detect a clear effect of temperature, 

or latitude, on body size variation.  
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During the Quaternary period, global temperature decreased causing mammal 

migrations toward lower latitudes by tracking tropical climate reduction (Rolland et al., 

2018). Hence, most species conserved their “tropical niches” and accumulated at lower 

latitudes (Rolland et al., 2018). It is plausible to suppose, given Bergmann’s rule, that 

they also conserved their body sizes while migrating. Therefore, species inhabiting 

temperate regions might have evolved their niches to occupy colder temperatures, 

consequently increasing their body sizes. For instance, Freckleton et al. (2003) found that 

Bergmann’s rule is detectable only for species larger than 160 g, then smaller species 

might have responded to climate changes by tracking their adequate temperature, or using 

other strategies such as increasing their fur insulation or burring behavior (Millien et al., 

2006; Porter & Kearney, 2009). Accordingly, temperature may indeed drive body size 

variation within the mammalian clade, but detecting that effect, we need to look at body 

size evolution as a complex and non-stationary process in which some species increase 

their sizes, while others decrease and most species conserve their ancestral body sizes in 

response to temperature changes. Therefore, we need to look for biological differences 

through a “biodiversity time” lens (Maddison & Fitzjohn, 2015), modelling their changes 

through time. If we consider the temperature effect on body size as a constant effect 

through all lineages, such as we did, the pattern becomes smoothed, so that the effect of 

temperature on body size becomes undetectable.  

Although we have not found statistical support for temperature effect on body 

size, it is worth to note that different methods used to deal missing data generated inverse 

slope estimates. Complete-case analyses estimated a negative effect of temperature, 

which supports the Bergmann’s rule statement. Conversely, imputation methods 

estimated a positive effect of temperature, which can be interpreted against the existence 

of Bergmann’ rule. If species are not equally probable to have missing data, the MCAR 
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assumption underlying exclusion of missing data species before analyses is broken and, 

consequently  parameter estimates become prone to be biased (Rubin, 1976; Nakagawa 

& Freckleton, 2008; Enders, 2010; van Buuren, 2012). Missing data pattern in 

PanTHERIA database has been mainly explained by species body size and distribution, 

thus missing data probability is not random, but inversely correlated to body size 

(Gonzalez-Suarez et al., 2012). In fact, we found that species missing body sizes were at 

the left tail of the body size frequency, but they were, on average, larger than average 

sizes of species with data (Fig.2, Supplementary Material). Therefore, excluding missing 

species biased regression estimates toward lower intercepts and negative slopes than 

imputation analyses, potentially causing erroneous confirmation of Bergmann’s rule.   

As mentioned above, for imputation methods we estimated positive relationships 

between temperature and body size. This pattern might be an outcome of current largest 

species inhabiting only high temperature places (Fig.1) combined with imputed body size 

values that did not bias average body size estimates. Therefore, the detection of the small 

positive effect of temperature on body size at mammalian clade was possible due to  

imputation methods that guaranteed unbiased parameter estimates (Little & Rubin, 2002; 

Enders, 2010; van Buuren, 2012; Nakagawa, 2015; Murray, 2018). Hence, the recently 

increased interest about multiple imputation on ecological and evolutionary literature  

enhance the need of changing the practice of data exclusion for the use of proper methods 

to deal missing values (Nakagawa & Freckleton, 2010; Gonzalez-Suarez et al., 2012; 

Penone et al., 2014; Taugourdeau et al., 2014).  
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Figure 1: Scatter plot of temperature and body size. Blue boxes show variable 

distributions where both variables have observed values. Red boxes show variable 

distributions where the other variables has missing values. Red points indicates observed 

values of some variables in which other variable is missing values.   

We applied two imputation methods, one assuming the MAR mechanism and the 

other the NMAR mechanism. Both methods estimated almost identical parameters. Thus, 

MAR assumption was plausible to describe how our data were missing (Jolani, 2012; van 

Buuren, 2012). These conclusions are not surprising, given that body size has high 

phylogenetic signal and well-established allometric relationship to several biological 
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features (Peters, 1983; Penone et al., 2014). For instance, litter size and neonate mass 

were good variables to impute missing body sizes. Nonetheless, both traits had also 

missing values and then required imputations. Therefore, phylogenetic eigenvectors were 

indispensable as they were the only complete variables within the imputation process. 

Phylogenetic information has been for a long time suggested to predict missing values 

(Garland, Jr., & Ives, 2000; Bruggeman et al., 2009; Guénard et al., 2013; Swenson, 2014; 

Swenson et al., 2016), because it carries out information about trait resemblance by 

shared ancestry as well as missing variables that makes species to evolve correlated.  

However, to use phylogenetic eigenvectors, more studies should look for 

strategies to select eigenvectors, once through each imputation step, variable missing data 

are supposed to be correlated with different eigenvectors. We used a subset of 

eigenvectors that were selected for all variables, but it was not the optimal strategy once 

variables with a lot of missing data or with little phylogenetic signal generated values far 

from biological expectations, such as a litter size of 10-5, unless we used PMM to impute. 

(Penone et al., 2014) also found that eigenvectors could increase error sometimes using 

MICE, we suppose it was also due to eigenvector selection. Body mass, in turn, were 

modeled as Brownian motion, which has no constrain of possible values. Thus, body size 

could have imputed values out of known minimal and maximum mammalian sizes. We 

restricted imputation values to make the values realistic, but there is controversy about 

how to deal with outliers in multiple imputation literature (von Hippel, 2009; Rodwell et 

al., 2014). Evolutionary models with bounds on trait evolution such as bounded Brownian 

Motion proposed by Boucher & Démery (2016) could improve phylogenetic imputation 

and this is probably a fruitful field to increase research.  

Throughout our analyses, phylogenetic uncertainty showed little effect on 

parameter estimates, confirming that about 100 phylogenies, may be sufficient on 
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regression analyses that takes phylogenetic uncertainty into account (Nakagawa & de 

Villemereuil, 2015). Phylogenetic uncertainty was a mixture of polytomies resolution and 

missing species added on phylogenies. Therefore, species imputation seems to cause little 

impact on “phylogenetic regressions”, which is in contrast to Rabosky (2015) results that 

proposed imputing species biased inferences. Probably, imputing species on phylogenies 

are dependent on the number of species being imputed (Rabosky, 2015), their 

phylogenetic depth and their phylogenetic relatedness, all of which can have large effects 

on analyses (Rangel et al., 2015). Further studies could shed more light on how different 

methods impute species on phylogenies related to each other and their impacts on 

subsequent analyses. A possible strategy to add species on phylogenies could be to jointly 

estimate their phylogenetic positions, missing traits and model parameters (Slater et al., 

2012; Bokma et al., 2016), then species would be located at phylogenetic positions that 

increase the fit of model parameters and probability of observing imputed  data. 

Multiple imputation had significant impact on our analyses, with almost 50 % of 

temperature effect error on body size was assigned to missing values uncertainty. To 

improve our inferences, we could decrease imputation variability by increasing the 

amount of imputations. However, we imputed the theoretical amount of imputations 

expected given our percentage of missing data (Graham et al., 2007; van Buuren, 2012; 

von Hippel, 2018). Other alternative would be to include more variables into the 

imputation model, but the most complete mammalian database has most variables missing 

information for most species, despite the arduous effort expended by their developers 

(Gonzalez-Suarez et al., 2012), so only litter size had some potential to provide 

information for imputation (Table 1). Our results, therefore, shows that ignoring missing 

values uncertainty, such as excluding missing values species or imputing values without 
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considering imputation uncertainty, may decrease parameter estimate errors, inflating 

type 1 errors.  

Multiple imputation is a continuously developing statistical field (Murray, 2018), 

and has recently been commonly used in ecological and evolutionary studies (Fisher et 

al., 2003; Nakagawa & Freckleton, 2010; Penone et al., 2014; Taugourdeau et al., 2014; 

Nakagawa & de Villemereuil, 2015). However, we have used methods developed in other 

scientific fields, such as medicine and psychology, which has different methodological 

demands in comparison to ecological and evolutionary studies. For example, 

Phylogenetic Comparatives methods (PCM) have been developed to deal with species 

non-independence and evolutionary model assumptions (Felsenstein, 1985; Hansen & 

Martins, 1996). Thus, incentives to develop PCM methods such as FitzJohn et al. (2009), 

Hadfield (2010) and Slater et al. (2012), which takes missing data into account could 

improve our research inference and  design (Nakagawa, 2015), as values can be 

intentionally missing to balance data through phylogeny and geography, improving 

budget expenses and research bias (Nakagawa, 2015).  

 

CONCLUSION 

 Macroecological literature has debated Bergmann’ rule in mammals for a long 

time with controversial conclusions. Here we did not found support for that rule and 

suggest for testing the rule looking for shifts in body size evolution across time following 

temperature variation through lineages. Furthermore, missing values could bias parameter 

estimation and may affect inferences more than phylogenetic uncertainty. Thus, it is time 

for increasing research on phylogenetic imputation methods, both evaluating and 

proposing methods (Clavel et al., 2014; Penone et al., 2014; Paterno et al., 2018) in order 
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to fulfill evolutionary and ecological demands, for example, methods regarding different 

evolutionary models, eigenvectors selection and phylogenetic clustering of missing 

values. Phylogenetic multiple imputation methods will enhance macroecological and 

macroevolutionary inferences as missing data constantly plague our researches.  
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Supplementary Material 

 

 

Figure 1: Trace line plots of mean and standard deviation (sd) for each independent 
Monte Carlo Markov Chain (MCMC). Line colors differentiate each 50 MCMC, 
convergence was achieved as statistical values (mean and sd) mixed through iteration and 
there was no tendency.   
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Figure 2: Histogram of imputed (magenta) and observed values (blue). 
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Conclusão geral 

 Nessa tese foi avaliada a imputação filogenética como técnica de preenchimento 

de dados, a sua aplicação e impactos em estudos macroecológicos. Nós apresentamos 

vantagens de sua aplicação, bem como suas limitações e ainda questões que necessitam 

de maior pesquisa.  

No primeiro capítulo mostramos que a proporção e estrutura dos dados faltantes, 

conjuntamente com os modelos evolutivos dos atributos das espécies e os métodos 

utilizados para lidar com os dados faltantes, podem enviesar estudos macroecológicos. 

Por exemplo, ao estudarmos a estrutura filogenética dos atributos das espécies, o sinal 

filogenético pode ser estimado enviezadamente. Esse viés é, no entanto, dependente da 

metodologia utilizada para a sua estimação. Consequentemente, análises em bancos de 

dados imputados deveriam desconsiderar os valores imputados e modelar adequadamente 

os dados faltantes, por exemplo utilizando imputação múltipla, sempre em acordo com os 

objetivos e especificidades de cada estudo. 

No segundo capítulo mostramos que primatas não seguem regra de ilha e ao 

predizermos o cérebro e massa do corpo de Homo floresiensis, constatamos que esses 

atributos não se desviam do que seria esperado pela história evolutiva de primatas. No 

entanto, nós não conseguimos descartar a possibilidade de ter havido efeito de ilha na 

evolução de Homo floresiensis, uma vez que nossos modelos superestimaram, em média, 

tanto a sua massa corpórea quanto o seu volume cerebral. 

No terceiro capítulo encontramos que ao testar a regra de Bergmann em 

mamíferos, a desconsideração de dados faltantes pode enviesar a estimativa do efeito da 

temperatura na massa corpórea. No entanto, os dados faltantes não influenciaram a nossa 

conclusão de que a regra de Bergmann não se aplica aos mamíferos, quando as análises 

são realizadas para toda a classe. 

 Por fim, dados faltantes são uma regra em macroecologia. Portanto, a inclusão de 

métodos que consigam tratá-los adequadamente, no cotidiano dos macroecólogos, 

reduzirá os possíveis vieses sobre os processos que moldam os padrões de biodiversidade, 

assim como métodos espaciais e filogenéticos fizeram no passado. Essa tese, portanto, 

pode inspirar futuros estudos que busquem a melhor integração entre as teorias 

desenvolvidas para a lidar com dados faltantes, a imputação filogenética e a interpretação 

dos padrões macroecológicos.   


