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Resumo

Silva, Ana Maria Alves da. Limit Cycles in Planar Piecewise Smooth Systems
having Non-regular Switches, Time Scales or Rotated Properties. Goiânia,
2022. 108p. Tese de Doutorado Relatório de Graduação. Instituto de Matemática
e Estatística, Universidade Federal de Goiás.

Nesta tese, estudamos trajetórias periódicas em sistemas lineares planares suaves por

partes com uma variedade de descontinuidade não-regular. Fornecemos cotas superiores

para ciclos limites para uma classe do modelo considerado, a cota é de um ou dois cic-

los dependendo das condições consideradas. Estabelecemos a estabilidade e hiperbolici-

dade desses ciclos limites fornecemos exemplos que atingem a cota de um e dois ciclos

limite para as classes consideradas. Realizamos uma análise global de um modelo rep-

resentativo através da teoria da bifurcação para analisar o nascimento de ciclos limites,

trajetórias periódicas deslizantes e tangenciais. Fornecemos alguns resultados abordando

a coexistência de trajetórias periódicas. Estudamos sistemas Fast-Slow com a variedade

de descontinuidade não-regular com uma nova abordagem. Este estudo permite provar

que uma trajetória periódica de deslize específica é na verdade uma trajetória periódica

homoclínica que surge a partir da bifurcação de ciclos limites deslizantes que não são

topologicamente equivalentes. Propomos a teoria de campos de vetores rodados por partes

com o objetivo de entender como as trajetórias de duas famílias de campos de vetores ro-

dados se comportam quando um mesmo parâmetro é variado. Neste contexto, provamos

o teorema de não interseção para os campos considerados.

Palavras–chave

Campos de Vetores Suves por Partes, Trajetórias Periódicas, Sistemas Rápido-

lento, Campos de Vetores Rodados por Partes, Teoria de Bifurcação



Abstract

Silva, Ana Maria Alves da. Limit Cycles in Planar Piecewise Smooth Systems
having Non-regular Switches, Time Scales or Rotated Properties. Goiânia,
2022. 108p. PhD. Thesis Instituto de Matemática e Estatística, Universidade
Federal de Goiás.

In this thesis, periodic trajectories in planar discontinuous piecewise linear systems with

a nonregular switching line are studied. We provide sharp upper bounds of one or two

limit cycles for certain classes of the model considered. We also establish the stability and

hyperbolicity of these limit cycles. In addition, we provide examples reaching one and two

limit cycles for these classes. We perform the global analysis of a representative model

through bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories,

and tangential ones. We also provide some results addressing the coexistence of periodic

trajectories. We studied Fast-Slow systems with nonregular switching line with a new

approach. This study allows proving that a specific sliding periodic trajectory is in fact

a homoclinic trajectory. This homoclinic trajectory arises from a bifurcation of sliding

limit cycles that are not topologically equivalents. We propose the theory of piecewise

rotated vector fields with the goal of understanding how the trajectories of two families

of rotated vector fields behave as the same parameter is varied. In this context, we prove

the non-intersection theorem for closed periodic trajectories for piecewise rotated vector

fields.

Keywords

Piecewise Smooth Vector Fields, Periodic Trajectories, Fast-Slow Systems,

Piecewise Rotated Vector Fields, Bifurcation Theory
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Introduction

The beginning of the studies on Dynamical Systems was due to the theory of

Differential and Integral Calculus developed by Newton and Leibniz. Differential and

Integral Calculus aims to solve questions motivated by many applications on physical and

geometrical real problems. It allows relating the position and velocity of moving objects

with mathematical expressions known as differential equations. With time, Differential

Equations became a new mathematical area in mathematics and one of the most important

areas due to the effective methods of scientific research. Many mathematicians, such as

Euler, Lagrange, Laplace, and Poincaré among others notably contributed and expanded

this area with calculus of variations, celestial mechanics, and fluid dynamics. In some of

these areas, many complicated phenomena can be modeled by differential equations.

Dynamical Systems are systems characterized by states that change with time.

They emerged from science to model and make prevision (for instance, in physics, biology

mechanics, financial, and engineering) and are usually described by ordinary differential

equations in finite or infinite dimensions and sometimes by partial differential equations

in infinite dimension. The goal of Dynamical Systems is to explain the asymptotic and

qualitative behavior of a system by flow of a differential equation. Formally, it is an action

of a 1-parameter group of maps into a set to perform a qualitative analysis instead of a

quantitative one.

There are many dynamical systems explored and studied by mathematicians.

Some of these dynamical systems are inspired by real life problems, others have appli-

cations in physics, engineering, biology, robotics, statistics, etc. In this thesis, we are

interested in studying those who are non-smooth (discontinuous). Discontinuities occur,
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for example, when neurons or electronic switches are activated. In other words, disconti-

nuities happen when processes enact a change of regime or rule. These changes in rules

are an inspiration for building dynamical models, however, there is a violation in a central

requirement of Differential and Integral Calculus.

Aleksel Fedorovidh Filippov was one of the most important researchers in an

attempt of formalizing the mathematical theory for non-smooth dynamical systems. The

theory developed by him is one of the most used to study these systems and is known as

Filippov’s theory. Another knowing theory is due to Barbashin, Caratheodory, and Utikin.

In this thesis, we are using the Filippov’s Convention. We explain it in more details in

Chapter 1. Also in Chapter 1 we briefly present all the preliminary concepts and results

used in this thesis.

In Chapter 2 periodic trajectories of dynamical systems presenting discontinu-

ities are studied. The considered model consists of two distinct linear differential systems

which are defined on disjoint regions of the plane, the separation line being a union of

two half straight lines contained on the coordinate axes. The obtained differential system

is therefore non-smooth and so we apply Filippov’s theory to study the transitions from

one dynamical system to another. The combination of the two linear plus the Filippov’s

system acting on the separation line generates a nonlinear regime observed by the pres-

ence of limit cycles, sliding, and tangential periodic trajectories as well as the coexistence

of such objects. In Theorems 25 and 26 we, respectively, provide sharp upper bounds

of one or two limit cycles for certain classes of the considered model. We also establish

the stability and hyperbolicity of these limit cycles. Moreover, we provide examples of

reaching theses sharp upper bounds of one or two limit cycles.

In Chapter 3 we present a particular example of two distinct linear differential

systems which are defined on disjoint regions of the plane, the separation line being the

union of two half straight lines contained on the coordinate axes. The main result of

this chapter, Theorem 29, presents a description of one-parameter family of piecewise

vector fields. As we shall see the examples of systems reaching the bounds in Theorems

25 and 26 can be captured by that referred one-parameter family. The result exhibit
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some very interesting bifurcation phenomena as the bifurcation of a sliding periodic

trajectory into a limit cycle and a boundary equilibrium bifurcation - BEB. A BEB

occurs when an equilibrium or pseudo-equilibrium point moves under some parameter

variation and collides with the switching manifold Σ. We also perform a global analysis

of a representative model through bifurcation theory to analyze the birth of limit cycles,

sliding periodic trajectories, and tangential ones.

The main techniques employed to obtain the results of Chapters 2 and 3 are

first integrals, Poincaré half return maps, and elements of bifurcation theory. The main

difference between our work and the work of several researchers in this line of study is that

in addition to providing the upper bounds using first integrals, we study the displacement

function as well as the conic equations associated with the problem and were able to

say exactly the point that corresponds to limit cycle, information about hyperbolicity and

stability. In this way, we provide a novel and useful incrementation to other results on the

maximum number of possible limit cycles for the case that we studied.

In Chapter 4 we consider the same system present in Chapters 2 and 3 and we use

Fenichel theory to better understand the dynamics of a point belonging to a nonregular

region of the separation line. This approach allowed us to prove Theorem 36 which shows

that the sliding periodic trajectory studied in Chapter 3 is, in fact, a homoclinic trajectory.

Also, we establish and prove a result, Theorem 34 about the dynamic at the origin point

for the discontinuous fast-slow generated by applied one blow-up of each vector field of

Z = (X ,Y ).

In Chapter 5 we propose the theory of Rotated Piecewise Smooth Vector Fields

and we provide some results analogous to the results of classical smooth rotated vector

fields. The goals of this chapter concern the comprehension of how the trajectories of two

families of rotated vector fields behave as the same parameter is varied. The extension of

the results from the classical theory of dynamical systems to the discontinuous framework

is not clear since the last one involves the existence of tangency points, sliding and

escaping points besides the fact that the vector fields can be rotated in different ways

even in the case they depend on the same parameter which is the case considered in this
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chapter. The first goal of the chapter is to present some general results on rotated vector

fields. First, we state sufficient conditions for which the regularization of rotated piecewise

smooth vector fields is still rotated, see Theorem 42. After, we study how the rotation of

a family of rotated vector fields affects the contact of fold points with a co-dimension

one manifold, see Theorem 44. We also study the robustness of certain closed trajectories

when the small parameter defining the rotation of the vector fields varies, see Theorem

45. Moreover, we establish some results similar to classical ones, such as the Classical

non-intersection Theorem. In this way, we state Theorems 46, 47 and 48. As far we know,

this is the first time that such a framework is considered in the literature.

Lastly, we introduce some sections on Appendix A whose purpose is to present

and propose some problems and questions to be explored in the future. Those questions

emerged during the studies and research developed in the Chapters presented in this thesis.



CHAPTER 1

Preliminaries

This chapter is divided into four sections. Each section is important to a good

reading of this thesis because the theory introduced is used in the following chapters. In

Section 1.1, Piecewise Smooth Vector Fields and Filippov Convection are introduced. In

Section 1.2, smooth rotated vector fields are presented. In Section 1.3, we present regu-

larization process. In Section 1.4, slow-fast systems and Classical Singular Perturbation

theory are presented.

1.1 Piecewise Smooth Vector Fields and Filippov’s Con-

vention

In Piecewise Smooth Vector Fields there is a positive co-dimension manifold that

divides the space into regions where vector fields are defined. Although in many works

this division generated two regions, see [30, 46, 51, 52], we also can find works with more

than two regions, see [48]. In this thesis, the focus is to study the case of two regions. We

notice that this positive co-dimension manifold could be non-smooth as we can find in [2]

and also is studied in Chapters 2, 3, and 4.

This division generates an interaction between smooth vector fields and the

discontinuity set. A consequence of those interactions is the dynamic which presents

some aspects non-existent in the smooth case like sliding and escaping regions. Roughly

speaking, the sliding region can be defined as discontinuity’s subset where each vector
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field of each region has a direction pointed for this subset in the sense of trajectories

are moving for this subset while in the escaping region both vector fields have opposite

directions in the sense of trajectories are moving away of the subset. Also, the notion of

trajectories needs to be studied carefully. One of the most important convection used in

piecewise smooth vector fields is due to Filippov [28] but there are others conventions like

Barbashin, Caratheodory, and Utikin, see [22]. Due to the nondeterminism, probabilistic

approaches can also take place, see for instance [64]. The choice to work with Filippov’s

convention is due to several applications on real problems in physics, control systems,

electrical engineering, and problems involving impact, friction, among others, see [3, 18,

22, 40, 43, 50, 65, 66]. In this section, some basic results and definitions of Piecewise

Smooth Vector Fields are introduced. We begin defining the discontinuity set as follows.

Let V = R2 be an open set of Rn and let be Σ a manifold of co-dimension one

of Rn given by Σ = f−1(0), where f : V → R is C1 function and 0 is a regular value

of f , i.e., ∇ f (p) ̸= 0 for all p ∈ f−1(0). We call Σ the discontinuity set (or switching

manifold), that is the separating boundary of the regions Σ+ = {p ∈ V ; f (p) ≥ 0} and

Σ− = {p ∈ V ; f (p)≥ 0}. We remark that f can be any function, if is necessary f will be

specified.

Designate by X the space of Cr-vector fields defined on R2, endowed with the

Cr-topology, with r ≥ 1. Call Ωr the space of vector fields Z : U ⊆R2 →R2, with U being

an open subset of R2, such that

Z(x,y) =


X(x,y), if (x,y) ∈ Σ+;

Y (x,y), if (x,y) ∈ Σ−,

(1-1)

where X = (X1,X2), Y = (Y1,Y2) ∈ X . Notice that an analogous definition can be done for

Z being a vector field on Rn but since in this thesis the focus is two dimensional space

we directly defined for vector fields on R2. We can represent the piecewise smooth vector

field Z by using the notation Z = (X ,Y, f ).

Definition 1 Consider the Lie derivatives, X f (p) = ⟨∇ f (p),X(p)⟩ and X i f (p) =
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⟨∇X i−1 f (p),X(p)⟩, i ≥ 2, where ⟨,⟩ is the usual inner product in Rn. If ⟨∇ f (p),X(p)⟩ ≠

0 classify the points on Σ according to one of the following types:

1. sewing (or crossing) region is the set Σc = {p ∈ Σ; (X f (p))(Y f (p))> 0} ; see

Figure 1.1.

2. escaping region is the set Σe = {p ∈ Σ; (X f (p))> 0 and (Y f (p))< 0} ; see Figure

1.2.

3. sliding region is the set Σs = {p ∈ Σ; (X f (p))< 0 and (Y f (p))> 0} ; see Figure

1.2.

Figure 1.1: Sewing Region according Filippov’s Convention.

Figure 1.2: On let: escaping region. On right: sliding region.

When p ∈ Σe ∪Σs following Filippov’s convention presented in [28], we can define the

sliding vector field associated to Z ∈ Ωr it is defined as follows.

Definition 2 Let be p in Σs then Zs(p) denotes the vector which is given by the convex

combination of X and Y . Zs(p) can be denoted as:

Zs(p) = λX(p)+(1−λ)Y (p). (1-2)
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By assumption that Zs(p) is tangent to Σ at p, we obtain:

⟨∇ f (p),Zs(p)⟩= 0 ⇒ ⟨∇ f (p),λX(p)+(1−λ)Y (p)⟩= 0

⇒ (λX(p)+(1−λ)Y (p)) f (p) = 0

⇒ λ(X(p) f (p)−Y (p) f (p))+Y (p) f (p) = 0

⇒ λ =
Y (p) f (p)

X(p) f (p)−Y (p) f (p)
. (1-3)

Finally, replacing equation (1-3) on equation (1-2) we obtain the expression of the sliding

vector field as:

Zs(p) =
(Y f (p))X(p)− (X f (p))Y (p)

Y f (p)−X f (p)
.

The Figure 1.3 show geometrically the sliding vector field.

Notice the escaping region Σe is the sliding region for the vector field −Z.

Therefore, the vector field for the escaping region can be defined as −(−Z)s. For both

cases, the notation Zs will be used.

Figure 1.3: Sliding vector field

Definition 3 We say that q ∈ Σ is a Σ-regular if:

(i) (X f (q))(Y f (q))> 0 or

(ii) (X f (q))(Y f (q))< 0 and Zs(q) ̸= 0, i.e., q ∈ Σs ∪Σe and it is a regular point of Zs.

The points of Σ which are not Σ-regular are called Σ-singular. We distinguish two

subsets in the set of Σ-singular, namely, Σt and Σp. Any point q ∈ Σp is called a
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pseudo equilibrium of Z and it is characterized by Zs (q) = 0. Any point q ∈ Σt is

called a tangential singularity or a tangency point of Z and it is characterized by

(X f (q))(Y f (q)) = 0 (q is a tangent contact point between the trajectories of X and/or

Y with Σ at point q).

For W ∈X we say that k is the contact order of the trajectory ΓW passing through

point p with p ∈ Σ if W r( f (p)) = 0, for all r = 0, 1, . . . k−1 e W k( f (p)) ̸= 0. If W = X

(respect. Y ) we say that p ∈ Σ is an invisible tangency if the contact order of ΓX (respect.

ΓY ) passing through p is even and Xk( f (p)) < 0 (respect. Y k( f (p)) > 0). On the other

hand, we say that p ∈ Σ is a visible tangency if the contact order of ΓX (respect. ΓY )

passing through p is odd or if it is even and Xk( f (p)) > 0 (respect. Y k( f (p)) < 0). A

tangential singularity p ∈ Σt is singular if p is an invisible tangency for both X and Y . On

the other hand, p ∈ Σt is regular if it is not singular.

We say that p is a critical element of the vector field X (respect. Y ) if p is an

equilibrium point of X (respect. Y ) or a pseudo equilibrium of X (respect. Y ) or a tangency

point of X (respect. Y ). Let p be an equilibrium point of X (respect. Y ). We say that p is

real if p ∈ Σ+ (respect. if p ∈ Σ−) otherwise we say that p is virtual.

Normally, Σ is defined Σ = f−1(0) as defined before. However, Σ can be defined

as the union of f−1
i , . . . n with f−1

i being at least a C1 function and 0 being a regular

value for each i. In this case, could exist points of Σ that those points are not regular. In

this situations, we say that p is a Σ−non-regular point if Σ is non-regular at p. Thus, it

is not possible to use Lie derivatives to classify such points. Nevertheless, we say it is

(i) of crossing type if trajectories cross it from one side of Σ to another; (ii) of sliding

or escaping type if they are the boundary of sliding and escaping regions of Σs or Σe,

respectively, (iii) of regular tangential type if either X or Y have a tangential contact to it

or (iv) of singular tangential type if no trajectories can reach it but itself.

Consider W ∈ X and denote its solution of the differential equation by φW (t, p),
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that is, 
d
dt φW (t, p) =W (φW (t, p)),

φW (0, p) = p,

where t ∈ I = I(p,W ) ⊂ R is an interval depending on p ∈ I and W . The next two

definitions state the concepts of the local and global trajectory of the non-smooth systems

and they are slight modifications of those presented in [28]. The following can be found

in [33] except by bullet (vi) that we have added due to the possibility of a non-regular

shape of Σ.

Definition 4 The local trajectory φZ(t, p) of a piecewise smooth vector field given by

(1-1) is defined as follows:

(i) For p ∈ Σ+ \Σ− and q ∈ Σ− \Σ+ the trajectory is given by φZ(t, p) = φX(t, p) and

φZ(t,q) = φY (t,q), respectively, where t ∈ I.

(ii) For p ∈ Σc such that X f (p) > 0 and Y f (p) > 0, and taking the origin of the

time at p, the trajectory is defined as φZ(t, p) = φX(t, p) for t ∈ I ∩ {t ≥ 0} and

φZ(t, p) = φY (t, p) for t ∈ I ∩{t ≤ 0}. For the case X f (p) < 0 and Y f (p) < 0 the

definition is the same reversing the time.

(iii) Taking the origin of the time at p, for p ∈ Σe the trajectory is defined as φZ(t, p) =

φZs(t, p) for t ∈ I ∩ {t ≤ 0} and it is either φZ(t, p) = φX(t, p)or φY (t, p) or

φZ(t, p) = φZs(t, p) for t ∈ I ∩ {t ≥ 0}. For the case p ∈ Σs the definition is the

same but reversing time.

(iv) For p ∈ Sigma a regular tangency point and taking the origin of the time at p, the

trajectory is defined as φZ(t, p) = φ1(t, p) for t ∈ I∩{t ≤ 0} and φZ(t, p) = φ2(t, p)

for t ∈ I ∩{t ≥ 0}, where each φ1 and φ2 is either φX or φY or φZS .

(v) For p a singular tangency point we have φZ(t, p) = p, ∀t ∈ I.

(vi) For p being a non-regular point of Σ, the trajectory is defined according to (ii),

(iii), (iv) or (v) if p is a Σ−non-regular points of crossing, escaping/sliding, regular

tangential or singular tangential type, respectively.

The following definition is presented in [4].
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Definition 5 A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ωr passing through p0 is the

union:

ΓZ(t, p0) =
⋃
i∈Z

{σ(t, pi); ti ≤ t ≤ ti+1} ,

of preserving-orientation local trajectories σ(t, pi) satisfying σ(ti+1, pi) =

σ(ti+1, pi+1) = pi+1 and ti →±∞ as i →±∞. A global trajectory is positive (respectively,

negative) if i ∈ N (respectively, −i ∈ N ) and t0 = 0.

Definition 6 Let ΓZ(t,q) be a global trajectory of system (1-1). We say that ΓZ is periodic

if ΓZ is periodic in the variable t, i.e., if there exist Tn > 0 such that ΓZ(t+Tn,q) =ΓZ(t,q)

for all t.

The next definition introduces the different types of periodic trajectories that we consider

in this thesis, see Figure 1.4.

Definition 7 Consider the piecewise smooth vector field (1-1). A closed global trajectory

∆ of Z is a

(i) crossing periodic trajectory if it is isolated and does not contains points or segments

in Σs ∪Σe,

(ii) sliding periodic trajectory if it is isolated and contain points or segments in Σs∪Σe,

(iii) tangential periodic trajectory if it is isolated and contain points in Σt ,

(iv) internally center type periodic trajectory if it is tangent to Σ, there is an arbitrary

small inner neighborhood of ∆ filled with periodic trajectories and for all arbitrary

outer neighborhood of ∆, it is isolated.

Notice that a closed global trajectory is isolated if in a small neighborhood N of ∆ there

is any other closed global trajectory ∆1 of Z.

Remark 8 Due to the similarity between the concepts of limit cycle for smooth dynamical

systems theory and of crossing periodic trajectory, from now on we also call the last one

as limit cycle. We emphasize, nonetheless, that it refers to an object in the non-smooth

context and not a classical limit cycle.
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Figure 1.4: Periodic trajectories, from left to right: crossing, slid-
ing, tangential and internally center type.

Concerning to bullet (iv), we also remark that in the literature an internally center

type periodic trajectory does not need to be tangent a specific region but we will still

use this nomenclature in this thesis for simplicity. We also notice that, because we are

dealing with discontinuities, two types of internally center types periodic trajectories take

place. On one hand, we have those whose outer small neighborhoods attract or repel

trajectories asymptotically without reaching the periodic trajectory. On the other hand, it

can be reached in finite time through trajectories sliding on Σ, which is the generic case.

In this thesis, we do not explicitly distinguish these two situations.

An important tool to study hyperbolicity and stability of periodic trajectories is

the displacement function, we define it in what follows. Consider P0 = (x0,y0) an initial

condition. Denote the solutions associated with the vector fields X and Y in (1-1), respec-

tively, by the maps (t0,P0) 7→ (x1(t0,P0),x2(t0,P0)) and (t0,P0) 7→ (y1(t0,P0),y2(t0,P0)).

Let P = (r,0) ∈ Σ be a point such that P /∈ Σe,s, and let t+ > 0 be the smallest time such

that X(t+,P)∩Σ ̸= /0. The first half return map associated with the vector field X in (1-1)

is giving implicitly by the transition function ρ1(P) = x1 (t+,P). Similarly, the first half

return map associated with the vector field Y in (1-1) is giving by ρ2(P) = y1 (−t−,P).

Therefore, the first return map associated with system (1-1) is

ρ : Ω ⊂ Σ −→ Σ, ρ(P) = (ρ1 ◦ρ
−1
2 )(P),

where Σ is a suitable set formed by crossing points of Σ. Of course, if P∗ is such that
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ρ(P∗) = P∗, then the trajectory passing through P∗ is periodic which is isolated (that is, a

limit cycle) provided that |ρ′(P)| ̸= 1.

Equivalently, one can also define the displacement function given by P 7→

d(P) = ρ(P)− P, that is, periodic trajectories correspond to zeroes of such a map.

Moreover, if d(P∗) = 0 satisfies d′(P∗) ̸= 0, then the limit cycle passing through P∗

is hyperbolic. In this case, if d(P∗) > 0 (respect. d(P∗) < 0) the limit cycle unstable

(respect. stable). We notice that a limit cycle Γ can be neither stable nor unstable, in this

case, we say that Γ is a semi-stable limit cycle. That happens if Γ is the α−limit set for all

trajectories contained on one side of Γ and close to it but the ω−limit set for all trajectories

that are close to Γ on the opposite side.

The next two definitions are extracted from [5] and they present the concept of

closed poly-trajectory. Closed poly-trajectories are important objects studied in Chapter 5

which we discuss piecewise rotated vector fields.

Definition 9 Consider Z ∈ Ωr. We say that the curve Γ is a closed poly-trajectory of Z if

the following conditions are satisfied:

(i) either Γ contains arcs of at least two of the vector fields X|Σ+, Y|Σ− or Zs or it is

composed by a simple arc of Zs;

(ii) the transition between the arcs of X an Y happens only in sewing points (and vice

versa);

(iii) the transition between the arcs of X or Y and the arcs of Zs happening in Σ−fold

points or regular points in the escape or sliding arc, respecting the orientation.

Besides that, if Γ ̸= Σ then there is at least one visible Σ−fold point on each

connected component of Γ∩Σ.

Definition 10 Consider Z ∈ Ωr. We say that the curve Γ is a closed poly-trajectory of:

(i) kind 1 if Γ meets Σ only in sewing points, i.e., only in Σc;

(ii) kind 2 if Γ = Σ;

(iii) kind 3 if Γ contains at least one visible Σ−fold point of Z.
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Moreover, we say that Γ is hyperbolic if it is satisfied:

(i) Γ is of the kind 1 and ρ
′
(p) ̸= 01, where ρ is the first return map defined on a

segment T with p ∈ T ⋔ Γ. Besides, if ρ
′
(p) < 1 (respect. ρ

′
(p) > 1) then Γ is

stable (respect. unstable).

(ii) Γ is of kind 2.

(iii) Γ is of kind 3, Σe ∩ Σs ∩ Γ = ∅ and either Γ ∩ Σ ⊆ Σc ∪ Σe ∪ Σp or Γ ∩ Σ ⊆

Σc ∪Σs ∪Σp.

Remark 11 We notice that a closed poly-trajectory of kind 1 is a crossing periodic

trajectory as defined in Definition 7. In the same way, a closed poly-trajectory of kind

3 is a particular case of sliding periodic trajectory as defined in Definition 7. We do this

differentiation because it will be important in the proofs of results in Chapter 5.

In what follows we introduce the notion of topological equivalence in Ωr. This

concept is necessary to prove some results in Chapter 3. We say that two piecewise smooth

vector fields Z = (X+,X−, f ) and Z = (X+
,X−

, f ) are Σ− topologically equivalent if

there exist an orientation-preserving homeomorphism h that sends f−1(0) to f−1
(0),

the trajectories of X+ (respect. X−) restricted to Σ+ (respect. Σ−) to the trajectories of

X+ (respect. X−) restricted to Σ+ (respect.Σ−) preserving orientation, critical elements

(equilibrium point, tangency point...) of Z to critical elements of Z and sliding (respect.

escaping) regions of Z to sliding (respect. escaping) regions of Z.

The notion of equivalence considered above is a strong one but it suits the

problem addressed on Chapter 3.

1.2 Smooth Rotated Vector Fields

The classical theory of rotated vector fields started with Duff [23]. He developed

this theory motivated by finding the solution for the general problem of limit cycles in

the plane formulated by Poincaré [60]. Duff showed that a rotated vector field expands

or contracts monotonically with a parameter until it intersects a critical point on the
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Poincaré sphere. He also showed that the only possible type of bifurcation that occurs

in one parameter family of limit cycles generated by a family of rotated vector fields is

a saddle-node bifurcation at a semistable limit cycle of that family. Chen [14, 15, 16]

and Perko [58, 59] extend this theory. Perko presented conditions for families of rotated

vector fields having applications in the study of the precession of saddle separatrices under

a rotation of the vector field. He also studied the existence and global behavior of limit

cycles for certain classes of quadratic systems. Han [34] provided a general definition for

rotated vector fields and established certain new theorems for the global behavior of limit

cycles for a family of rotated vector fields which generalize, improve or correct some

results in [14, 15, 16, 23, 58, 59].

In this section we briefly summarize the classical theory of rotated vector fields

to familiarize the reader with some concepts that will be used in Chapter 5. First, we

define a family of rotated vector fields as follows:

Definition 12 We say that X = (P(x,y,µ),Q(x,y,µ)), with X ∈C1(R2×R) define an one-

parameter family of rotated vector fields if the equilibrium points of X are isolated and in

all regular points of X we have:

detX =

∣∣∣∣∣∣∣
P Q

Pµ Qµ

∣∣∣∣∣∣∣ ̸= 0. (1-4)

If detX > 0 (respec. detX < 0) we say that the vector fields X is positively oriented

(respec. negatively oriented).

We notice that if X does not have equilibrium points but in all regular points the condition

(1-4) is satisfied, X is also one-parameter family of rotated vector fields.

Two of the most important results and properties of the rotated vector field are

given in the Non-intersection Theorem and the Expansion and Contraction Theorem. The

Non-intersection Theorem 13 establishes that limit cycles of different parameter values of

an one-parameter family of rotated vector fields does not intersect each other. Theorem 14

provides properties about stable and unstable limit cycles. The Expansion and Contraction
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Theorem 15 is an immediate consequence of Theorems 13 and 14 and it provides the

behavior of stable and unstable limit cycles. We have summarized them as follows and

we notice that their proofs can be found, for instance, in [56].

Theorem 13 (Non-Intersection Theorem) Let be X an one-parameter family of rotated

vector fields. Suppose that there are values µ = µ0 and µ = µ1, with µ0 ̸= µ1, for which

the systems associated to X and X admits limit cycles Γµ0 and Γµ1 , respectively. Then, Γµ0

does not intersect Γµ1 .

Theorem 14 Let X be an one-parameter family of rotated vector fields. Then, there

exists an outer neighborhood U of any externally stable limit cycle Γµ0 of f (X ,µ) such

that through every point of U there passes a cycle Γµ of X where µ < µ0 if Γµ0 is

positively oriented and µ > µ0 if Γµ0 is negatively oriented. Corresponding statements

hold regarding unstable limit cycles and inner neighborhoods.

Theorem 15 (Expansion and Contraction Theorem) Let X be an one-parameter fam-

ily of rotated vector fields. Stable and unstable limit cycles of X expand or contract mono-

tonically as the parameter µ varies in a fixed sense and the motion covers an annular

neighborhood of the initial position.

1.3 Sotomayor-Teixeira Regularization

In this section we present some results and examples addressing approximations

of piecewise smooth vector fields. We start introducing a central tool used in Chapter

5, the so-called Sotomayor-Teixeira regularization, see [63]. The regularization process

of a piecewise smooth vector field consists in approximate a piecewise vector field by a

Cr one-parameter family of vector fields. Shortly, given a piecewise smooth vector field

Z = (X ,Y ) the regularization processes consist in considering an X and Y in a suitable

way, to recover information on the dynamical behavior of Z. Accordingly, let ϕ : R−→R

be a Cr−function satisfying that ϕ(x) = −1 for x ≤ 1, ϕ(x) = 1 for x ≥ 1 and ϕ′(x) > 0
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for x ∈ (−1,1). As defined, ϕ is usually called a transition function. The ϕ-regularization

of Z is the two-parameter family Zδ
µ given by

Zδ
µ(x,y) =

X +Y
2

+ϕδ( f (x,y))
(

X −Y
2

)

where ϕδ(x) = ϕ(x/δ) and h is such that Σ = h−1(0). Clearly Zδ
µ coincides with X and Y

according to |h(x,y)| ≥ δ.

We cite two important results that will support in the prove of some results of

Chapter 5. These results can be found, respectively, in [62] and [5].

Proposition 16 (see [62]) Let Γ0 be a closed hyperbolic poly-trajectory of (1-1). Then,

given a transition function ϕ there is a neighborhood V of Γ0 and ε0 > 0 such that for

0 < ε ≤ ε0, Zε has only one hyperbolic periodic trajectory in V.

Theorem 17 (see [5]) Let Γ0 be a closed hyperbolic poly-trajectory of (1-1). Then, for

any ε > 0 the regularized vector field Zε has only one hyperbolic limit cycle Γε such that

Γε → Γ0 when ε → 0.

1.4 Slow-Fast Systems

In this section, we briefly summarize the Classical Singular Perturbation theory

developed by Fenichel [27]. Which provides many asymptotic techniques. This section

will be a very useful tool in Chapter 4.

Let W ⊂ Rn+1 be an open set whose elements are represented by (x,y). Let

f : W × [0,1] → Rm and g : W × [0,1] → Rn be vector fields of class Cr, with r ≤ 1.

Given 0 < ε ≪ 1 consider the following system of differential equations


ẋ = f (x, y, ε),

ẏ = εg(x, y,ε),
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where □̇ =
d□
dτ

, x = x(τ) and y(τ). Applying at system (1-5) a time rescaling given by

τ = εt we obtain the following new system


εx′ = f (x, y, ε),

y′ = g(x, y,ε),

where □′ =
d□
dt

, x = x(t) and y(t).

Notice that since 0 < ε ≪ 1, (1-5) and (1-5) have exactly the same phase portrait

except for the trajectories speed. The trajectories speed is faster for (1-5) than for (1-5).

Therefore the following definition makes sense.

Definition 18 We say that equations (1-5) and (1-5) defines a slow-fast system where

(1-5) is the fast system and (1-5) is the slow system.

We can refer to τ as the fast time scale or only fast time and to t as the slow time scale or

only slow time. The parameter ε is called the time-scale parameter. In several situations,

we can have that f and g are independent of ε.

One of the reasons why slow-fast systems are studied is that they regularly appear

in mathematical models in many areas of science. Another reason is that they present a

very complex structure due to the parameter ε.

The first natural attempt to study a fast-slow system is to consider the case when

ε = 0. We have the following definitions:

Definition 19 Consider the equation (1-5).

(i) The differential-algebraic equation obtained from (1-5) by setting ε = 0 is called slow

subsystem or reduced problem and it is given by equations:


0 = f (x,y,0),

y′ = g(x,y,0).

The flow generated by (1-5) is called the slow flow.
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(ii) The parameterized system of differential equations obtained from equation (1-5) by

setting ε = 0 is called fast subsystem or layer problem and it is given by equations:


ẋ = f (x,y,0),

ẏ = 0.

The flow generated by (1-5) is called the fast flow.

(iii) The cases ε = 0 are called singular limit.

The natural strategy to study a fast-slow system is to decompose the solution curves of a

fast-slow systems into singular limit segments. The idea is that depending on the region

in phase space, we should use either the layer or the reduced problems. The trajectory

described by the algebraic equation f (x,y,0)= 0 should be approximately by the solutions

of the slow problem. Sufficiently far away from { f (x,y,0) = 0}, we expect the slow

motion of the variables y to be irrelevant and hope to approximate trajectories by the fast

flow. So, the following definition establishes the critical manifold for fast-slow systems.

Definition 20 The set

C0 = {(x,y) ∈ Rm ×Rn : f (x,y,0) = 0} (1-5)

is called the critical set. If C0 is a submanifold of Rm×Rn then we say that C0 is a critical

manifold.

A relation between the equilibrium points of the fast flow and the critical manifold C0 is

given by the following proposition.

Proposition 21 There is an one-to-one correspondence between the equilibrium points

of the fast flow and the points of the critical manifold C0.

The main idea of Classical Singular Perturbation theory developed by Fenichel consists

into combining the dynamics of the layer and reduced problems to recover the dynamics
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of the slow-fast system 18 with ε > 0 small enough. We enunciate the Fenichel theorem

in what follows, this version can be found in [44].

Theorem 22 (Fenichel) Suppose S = S0 is a compact normally hyperbolic submanifold

(possibly with boundary) of the critical manifold C0 of (1-5) and that f ,g ∈ Cr(r < ∞).

Then, for ε > 0 sufficiently small, the following hold:

(i) There exists a locally invariant manifold Sε diffeomorphic to S0. Local invariance

means that trajectories can enter or leave Sε only through its boundaries.

(ii) Sε has Hausdorff distance of order O(ε) (as ε → 0) from S0.

(iii) The flow on Sε converges to the slow flow as ε → 0.

(iv) Sε is Cr-smooth.

(v) Sε is normally hyperbolic and has the same stability properties with respect to the

fast variables as S0 (attracting, repelling, or of saddle type).

(vi) Sε is usually not unique. In regions that remain at a fixed distance from ∂Sε, all

manifolds satisfying items (i) to (v) lie at a Hausdorff distance O(e
−K

ε ) from each

other for some K > 0, K = O(1).

Note that all asymptotic notation refers to ε → 0. The same conclusions as for S0 hold

locally for its stable and unstable manifolds.



CHAPTER 2

Periodic Trajectories in Planar Discontinuous

Piecewise Linear Systems with only Centers and

a Nonregular Switching Line

A widely studied object in dynamical systems is the limit cycles which are the

central problem of the famous Hilbert’s 16th problem. Nevertheless, a crucial problem in

dynamics refers to studying the existence, number, and distribution of limit cycles, and in

particular the birth and robustness of such objects. We recall that a limit cycle is a periodic

trajectory of a differential system that is isolated in the set of all periodic trajectories of

the system. In the piecewise smooth context, the Hilbert question becomes even more

complicated because beyond limit cycles there exist other types of distinguished periodic

trajectories like the sliding ones, related to the so-called sliding motion. In this chapter,

we address the above questions and study several types of periodic trajectories.

The simplest type of piecewise smooth vector field consists of a continuous

piecewise linear system separated with a straight line and it is known that such systems

have at most one limit cycle, see [30, 46, 51, 52]. On the other hand, if the piecewise

smooth linear system is discontinuous and separated with a straight line there exist no

result providing an upper bound for the number of limit cycles, although several papers

indicated that such an upper bound maybe three, see [2, 6, 31, 35, 38, 47, 61].

In [42], the authors studied the maximum number of crossing limit cycles of

piecewise snooth linear systems formed by centers separated by a conic. A particular
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kind of piecewise smooth linear system is considered by Llibre and Teixeira [48]. In that

paper, authors prove that, when both linear systems are of center type, the continuous

or discontinuous non-smooth linear system has no limit cycles. It is also proved that

a continuous piecewise smooth linear system separated with two parallel straight lines

formed by three linear centers has no limit cycles. However, by considering two straight

lines but discontinuous systems, it is proved that the system has at most one limit cycle and

there are systems in this class having a limit cycle. Therefore the results in [48] suggest

the switching manifold plays an important role in the existence of limit cycles.

In this chapter, the considered switching manifold is non-regular at a point that

we assume to be the origin. Other papers considering a non-regular switching manifold

can be found in the literature. For instance, Llibre and Zhang [49] prove that non-smooth

linear systems formed by three linear centers and separated by the set Σ = {(x, y) : y = 0

or x = 0 and y ≥ 0} can have at most three limit cycles. The same bound is obtained in

[70] by fixing the former set Σ and considering saddles and centers but five limit cycles

are obtained in such context for a focus-focus type system. When the separation line is

formed by two semi-straight lines that coincide at the origin forming an angle θ, where

θ ∈ (0,π), Cardin and Torregrosa [10] proved that the system with a perturbation of the

linear center has five limit cycles. With the same separation line but fixing θ = π

2 , Huan

and Yang [39] provided an example of a focus-focus type system with five limit cycles

as well. We remark that the authors in [39] also proved that it is enough to study the

case when the angle is θ = π

2 by showing that there is an invertible linear transformation

transforming the system with θ ∈ (0,π) in the system with θ = π

2 . This is the reason why

we set the discontinuity as we describe at the beginning of this chapter.

Starting by fixing a particular discontinuity set that will be used over this

chapter. We set Σ = Σ1 ∪ Σ2 where Σ1 = { f−1
1 (0); x ≥ 0} and Σ2 = { f−1

2 (0); y ≥ 0}

being f1(x,y) = y and f2(x,y) = x. Furthermore, we define the sets Σ+ = Q1 ∪ Σ and

Σ− = Q2 ∪Q3 ∪Q4 ∪Σ, where Qn, n = 1, 2, 3, 4, is the n−th quadrant of the plane R2.

Let Z = (X ,Y ) be a piecewise vector field as defined in equation (1-1). In this
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chapter we assume that X and Y are linear vector fields given by

X(x,y) = (αx+βy+ γ, ax+by+ c) and

Y (x,y) =
(

α̃x+ β̃y+ γ̃, ãx+ b̃y+ c̃
)
, (2-1)

where αb− aβ, and α̃b̃− ãβ̃ are positive values, α = −b, and α̃ = −b̃, these conditions

are set to both X and Y possesses a single equilibrium point of center type. We stress that

neither X nor Y can have limit cycles since they are linear but every trajectory is closed

and have the same period except by the equilibrium points.

In this chapter, we perform a global analysis of the piecewise smooth vector field

(2-1) focusing on its periodic trajectories, more specifically, the upper bound, stability and

hyperbolicity of its limit cycles. Under some hypotheses, we prove that system (2-1) has

at most one or two hyperbolic limit cycles and we provide explicit systems for which

these upper bound are reached.

The novelty of our approach consists, differently from the methodology adopted

in the works mentioned above, in employing qualitative techniques to quantitative ones to

guarantee that the kind of periodic trajectories we obtain are well oriented, isolated, and

feasible. The geometric approach consists of the use of the Hamiltonian structure of the

considered system to detect potential periodic trajectories. Once detected these candidates

periodic trajectories, we switch our approach to an analytical one in order to verify they

are indeed fixed points of the associated first return map. Having obtained the Poincaré

map, we are able to establish the stability and hyperbolicity of the obtained limit cycles.

2.1 Statement of the Main Results of the Chapter

In this section, we state the main results of the chapter. The following lemma

simplifies the calculations and can be found in [48].
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Lemma 23 System (2-1) can be written as Z = (X ,Y ) with

X(x,y) =

(
−bx− 4b2 +w2

4a
y+d, ax+by+ c

)
,

Y (x,y) =

(
−Bx− 4B2 +W 2

4A
y+D, Ax+By+C

)
, (2-2)

and a, A, b, B, w, W > 0.

Proof : The proof of Lemma 23 is quite simple so we outline it in what follows. Consider

the piecewise vector field given in (2-1) where X and Y are replaced by X̃ and Ỹ ,

respectively, to avoid confusion on the notation. By hypotheses X̃ is linear and it has

an isolated equilibrium point of center type. The conditions for the existence of a center

are straightforward and given by α+b = 0 and 4aβ+(α−b)2 < 0 so α =−b. Moreover,

by introducing the new parameter w > 0 satisfying −w2 = 4aβ+(α−b)2 < 0 we obtain

β = −4b2+w2

4a with a > 0. By replacing the obtained conditions for X̃ in the system (2-1)

we obtain X of the system (2-2). Similarly, we obtain Y from Ỹ, so the result is proven. □

Remark 24 We briefly explain the meaning of the conditions a, A, b, B, w, W > 0.

Conditions a > 0 and A > 0 guarantee the escaping and sliding regions are bounded,

this is explained in more detail in Lemma 27. Conditions w > 0 and W > 0 guarantee

the equilibrium points of X and Y are indeed of center type. Finally, conditions b > 0

and B > 0 guarantee that both centers rotate counter-clockwise. The analogous results

can be obtained by assuming b < 0 and B < 0, in this case, we only have a switch on the

orientation of the trajectories.

From now on in this chapter we consider the following parameters

δ = 4b2 +w2, ∆ = 4B2 +W 2, K = 4(ad∆−ADδ)

Aδ−a
√

δ
√

∆
, Q = 4(ad∆−ADδ)

A
√

δ
√

∆−a∆
,

M =A
√

∆

[
16(ADδ−ad∆)2

δ(A
√

δ−a
√

∆)
2 +4D(K +D)

]
,
1/2

and N = a
√

δ

[
16(ADδ−ad∆)2

∆(A
√

δ−a
√

∆)
2 +4d (Q+d)

]1/2

.

Theorem 25 Consider system (2-2) and assume that c = 2a|d|√
δ

and C = 2A|D|√
∆

. The

following statements hold.
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(i) If ad∆−ADδ > 0 and A
√

δ− a
√

∆ > 0, then system (2-2) has at most one limit

cycle Γ̃ satisfying

Γ̃∩Σ1 = (r,0) =
(

4(ad∆−ADδ)√
δ
√

∆(A
√

δ−a
√

∆)
,0
)

and Γ̃∩Σ2 =

(
0,

8aA
(

D− d
√

∆√
δ

)
a∆−A

√
δ
√

∆

)
,

where r > max
{
− c

a ,−
2C
A ,− c

a +

√
δ(δc2−4a2d2)

aδ

}
.

(ii) The hyperbolicity of Γ̃ is classified as follows.

• Γ̃ is a hyperbolic stable limit cycle if −A2 (K +2D)M−1 > a2 (2d +Q)N−1,

• Γ̃ is a hyperbolic unstable limit cycle if −A2 (K +2D)M−1 < a2 (2d +Q)N−1

and

• Γ̃ is a non-hyperbolic limit cycle if −A2 (K +2D)M−1 = a2 (2d +Q)N−1.

(iii) There are values of parameters for which system (2-2) has exactly one hyperbolic

limit cycle.

As can be observed in Theorem 25, the limit cycles that we detect in this chapter have two

intersections with Σ, one of them in Σ1 and the other one in Σ2. Notice that due to Remark

24 those limit cycles must surround escaping and sliding regions if they exist at all.

Theorem 26 Consider system (2-2) and assume that it satisfies either c = 2a|d|√
δ

or

C = 2A|D|√
∆

. Then, system (2-2) has at most two limit cycles. Moreover, there are values

of parameters for which there exist one or two hyperbolic limit cycles.

2.2 Proof of the Main Results

This section is divided in three subsections. In the first one, we prove some

preliminary results that are useful in the proof of Theorems 25 and 26. The other ones

consist in the proofs of Theorems 25 and 26. One of the preliminary results concerns

the displacement function and integrability associated with the vector fields of the system

(2-2). We start proving Lemma 27 which characterizes the tangency points. We first notice

that for the system (2-2) we get Σt = {T1, T2, T3, T4}, with

T1 =
(
−c

a
,0
)
, T2 =

(
−C

A
,0
)
, T3 =

(
0,

4ad
δ

)
and T4 =

(
0,

4AD
∆

)
, (2-3)
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where T1 and T3 are tangency points of the vector field X while T2 and T4 are tangency

points of the vector field Y.

Lemma 27 The following statements hold for system (2-2):

(i) the segments T1T3 ⊂ Σ1 and T2T4 ⊂ Σ2 are formed by escaping or sliding points.

(ii) The tangency points T1 and T3 are visible if −ad
b < c < −4adb

δ
and invisible if

−4adb
δ

< c <−ad
b .

(iii) The tangency points T2 and T4 are visible if −4ADB
∆

< C < −AD
B and invisible if

−AD
B <C <−4ADB

∆
.

Proof : In order to prove statement (a), consider the segment T1T3 and notice the product

of the Lie derivatives is a quadratic function on x given by aAx2 + aCx+Acx+Cc with

discriminant (Ac−aC)2, so aAx2+aCx+Acx+Cc is negative for x ∈ Σ1 between T1 and

T3. The conclusion for the segment T2T4 is analogous. The proof of statements (b) and (c)

are straightforward. □

As a consequence of the previous Lemma, we have the region outside the bounded interval

defined by the tangency points formed by crossing points. This lemma is important

because it ensures how to take crossing points at Σ to obtain crossing limit cycles.

A central fact used in this chapter is that the vector fields X and Y of the system

Z = (X ,Y ) defined in (2-2) have first integrals

H1(x,y) = 4(ax+by)2 +8a(cx−dy)+ y2w2 and

H2(x,y) = 4(Ax+By)2 +8A(Cx−Dy)+ y2W 2, (2-4)

respectively, since

∂H1

∂x

(
−bx− 4b2 +w2

4a
y+d

)
+

∂H1

∂y
(ax+by+ c) = 0 and

∂H2

∂x

(
−Bx− 4B2 +W 2

4A
y+D

)
+

∂H2

∂y
(Ax+By+C) = 0.
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These first integrals will be used to establish the upper bound for the number of periodic

trajectories.

Next, we define the displacement function associated with the system (2-2),

which allows us to determine the hyperbolicity of the limit cycles given by Theorems

25 and 26, as well as the stability of the limit cycles present in examples we provide

throughout the chapter. Indeed let P = (r, 0) ∈ Σ1 be an arbitrary point in Σ1. The goal

is to obtain conditions on r, in terms of the parameters of system Z = (X ,Y ) defined in

(2-2), such that the trajectory through P is periodic.

The first step in that direction is to determine the values of r for which trajectories

of X and Y passing through (r,0) meet Σ2 in two points that can be coincident or not. In

such case, we associate to each r the distance between those points. Of course, if the

intersection points coincide, the distance is zero and we obtain a periodic trajectory. In

other words, zeroes of such a correspondence between r ∈ Σ1 and the referred distance

will provide the limit cycles we are looking for. That correspondence is what we call the

displacement function in this chapter.

The second step is to guarantee the displacement function is well defined. As

commented before we are interested in limit cycles crossing Σ1 and Σ2 at most one point

each. Therefore P = (r,0) should be a point external to the sliding (or escaping) segment

on Σ1, that is, it must be located the tangency point in Σ1 = {(x,y);x ≥ 0,y = 0} with

has the biggest distance from origin point. The following result defines the displacement

function.

Lemma 28 Consider P = (r, 0) ∈ Σ1 and let Z = (X ,Y ) be a non-smooth vector field

as defined in (2-2). Call ϕX(P) and ϕY (P) the trajectories of X and Y starting at P,

respectively. The following statements hold:

(i) if r > max{− c
a ,−

C
A} then P is a crossing point and, for some positive time, ϕX(P)

intersects the y−axis at two points (0,y+1,2) given by

y+1,2 = 2

([
a
(
4ab2r2 +4ad2 +ar2w2 +8b2cr+2crw2)]1/2 ±2ad

)
δ

.
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Moreover,

(i.1) if δc2 −4a2d2 ≤ 0, then the intersections occur for all r > max{− c
a ,−

C
A};

(i.2) if δc2 − 4a2d2 > 0, then the intersections occur for all r > max{− c
a ,−

C
A}

where r ̸∈ [r−,r+], being

r± =−c
a
±
√

δ(δc2 −4a2d2)

aδ
.

(ii) If r > max{− c
a ,−

2C
A } then P is a crossing point and, for some negative time, ϕY (P)

intersects Σ2 at a single point (0,y−2 ) with

y+2 = 2

[
A
(
4AB2r2 +4AD2 +Ar2W 2 +8B2r+2CrW 2)]1/2 ±2AD

∆
.

(iii) If y+2 > 0, then a displacement function d : Ir −→ R associated to system (2-2) is

given by

d(r) = 2
(
[a(4ab2r2+4ad2+ar2w2+8b2cr+2crw2)]

1/2
+2ad

δ

− [A(4AB2r2+4AD2+Ar2W 2+8B2Cr+2CrW 2)]
1/2

+2AD
∆

)
, (2-5)

where Ir is the open interval
(
max

{
− c

a ,−
2C
A ,r+

}
,∞
)
.

Before we start the proof we notice that in order to define the displacement function at

least one of the intersection points (0,y+1,2) must occur in Σ2, the weaker condition being

y+1 < 0 and y+2 > 0. The condition y+2 > 0 is sufficient to reach the maximal cyclicity, but

we remark that other configurations of the limit cycle may be obtained by replacing y+2

with y+1 in the previous result.

Proof : We start proving item (i). Consider P = (r,0) ∈ Σ1 and let n1 be the level of

H1 associated to ϕX(P) which writes n1(P) = 4a2r2 + 8acr. By the expressions of the

tangency points provided in (2-3), clearly, P is a crossing point and every tangency point

is located on the left of P in Σ1. From the expression of H1, the trajectory ϕX(P) intersects
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the y−axis if, and only if, y is a zero of h1(y) where h1(y) is given by

h1(y) = (w2 +4b2)y2 −8ady−8acr−4a2r2.

Notice that h1(y) = H1(0,y)−n1(P). Denote by y+1 and y+2 the zeroes of h1 which writes

as

y+1,2 =±2

([
a
(
4ab2r2 +4ad2 +ar2w2 +8b2cr+2crw2)]1/2 ±2ad

)
δ

.

Clearly y+1,2 depend on the discriminant of h1 which writes disch1 = 16a(4ad2 +8b2cr+

2cw2r +(4ab2 + aw2)r2). Notice that disch1 is positive for every r > max{− c
a ,−

C
A} if

δc2 − 4a2d2 < 0, where disch1 is the discriminant of h1 respect to r. If δc2 − 4a2d2 = 0

then the only zero of disch1 is r =− c
a which is a contradiction with the hypotheses. Thus

we have the statement (a.1) of item (i). A similar analysis leads to statements (i.2). To

prove item (ii) we now consider n2 the level of H2 associated with ϕY (P) which writes

n2(P) = 4A2r2 + 8ACr. Again P is a crossing point because r > max{− c
a ,−

2C
A } so, in

particular, r > max{− c
a ,−

C
A}. In this case, we claim that the trajectory ϕY (P) always

intersects the y−axis in two points y−1 and y−2 being y−1 < 0 < y−2 where

y−1,2 =±2

([
A
(
4AB2r2 +4AD2 +Ar2W 2 +8B2r+2CrW 2)]1/2 ±2AD

)
∆

.

Indeed, the claim is proved by noticing that the trajectory ϕY (P) associated to level n2(P)

of H2 intersects the x−axis at the points P and
(−2C−Ar

A ,0
)
. Since the trajectory of P

by ϕY (P) is closed (in particular, an ellipse), a sufficient condition to obtain y−1,2 with

y−1 < 0 < y−2 is to set −2C−Ar
A < 0. But this condition is fulfilled when r >−2C

A and from

hypotheses the proof its done.

In order to finish the proof now we prove item (iii). When y+2 > 0 the expression

(2-5) is well defined provided that r is a crossing point and the trajectories ϕX(P) and

ϕY (P) intercept Σ2 ta crossing point, that is, provided that r > max
{
− c

a ,−
2C
A ,r+

}
so this

concludes the proof. □
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2.2.1 Proof of Theorem 25

To prove Theorem 25 we have four cases to analyze depending on the signals of

d and D. We start considering the case d, D > 0, that is, assuming c = 2ad√
δ

and C = 2AD√
∆

.

To prove item i), notice that the expressions of the first integrals (2-4) assuming c and C

as above are

Hc1(x,y) = 8a
(

x(2ad)√
δ

−dy
)
+4(ax+by)2 +w2y2,

Hc2(x,y) = 8A
(

x(2AD)√
∆

−Dy
)
+4(Ax+By)2 +W 2y2.

Clearly if system (2-2) has a candidate trajectory to be a limit cycle intersecting Σ at two

points (x,0) ∈ Σ1 and (0,y) ∈ Σ2 with x,y > 0, then they satisfy

Hc1(x,0)−Hc1(0,y) = 0,

Hc2(0,y)−Hc2(x,0) = 0.

Thus we obtain 

16a2dx√
δ

+4a2x2 +8ady−4b2y2 −w2y2 = 0,

−16A2Dx√
∆

−4A2x2 −8ADy+4B2y2 +W 2y2 = 0.

(2-6)

From Bézout’s Theorem (see, for instance, [54]), the polynomial system (2-6) has at

most 4 isolated real solutions (xi,yi), i = 1,2,3,4, so system (2-2) has at most 4 limit

cycles. On the other hand, the trivial solution (0,0) of (2-6) does not correspond to limit

cycles, therefore system (2-6) can have at most 3 solutions. We shall prove that, under the

hypotheses of Theorem 25, there exists at most one real isolated solution so the system

(2-2) has at most one limit cycle.

Note that the equations of system (2-6) correspond to conics. Moreover, because

x,y > 0, we are interested in the intersections of two conics occurring at the first quadrant.

As long as they are isolated, we shall obtain a limit cycle. Accordingly, it is not difficult
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to see that both equations in (2-6) correspond to a pair of concurrent straight lines r1,r2

and s2,s2 where

r1 : x =−
√

δ

2a
y, r2 : x =

δ

2a
y− 4d√

δ

and

s1 : x =−
√

∆

2A
y, s2 : x =

∆

2A
y− 4D√

∆
,

see Figure 2.1. The intersection between r1,2 and s1,2 occurs at the following points

s2

r2

s1

Σ

r1

P2

Figure 2.1: The intersections between r1, r2, s1, and s2. P2 is the
point that is a candidate to be limit cycle.

P1 = (0, 0) ,

P2 =

 4(ad∆−ADδ)
√

δ
√

∆

(
A
√

δ−a
√

∆

) , 8aA
(

D− d
√

∆√
δ

)
a∆−A

√
δ
√

∆

 ,

P3 =
1

a
√

δ
√

∆+Aδ

(
−4ad

√
∆, 8aAd

)
and

P4 =
1

√
∆

(
a
√

∆+A
√

δ

) (−4AD
√

δ, 8aAD
)
.

Notice that P1, P3, and P4 do not correspond to zeroes of equations (2-6) because they do

not belong to the first quadrant and we obtain at most one zero if the coordinates of P2 are
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both positive. That is the case if the conditions ad∆−ADδ > 0 and A
√

δ−a
√

∆ > 0 are

fulfilled. Therefore, we obtain at most one limit cycle of Γ̃.

We also notice that, since Γ̃ corresponds to the solution P2 = (x,y) of the

equations (2-6) and by construction we have (x,0) ∈ Σ1 and (0,y) ∈ Σ2, then it satisfies

r = x and s = y. In particular, there exist at most one limit cycle Γ̃ satisfying the above

conditions and such that r > max{− c
a ,−

2C
A ,− c

a +

√
δ(δc2−4a2d2)

aδ
}, thus item i) is proved.

To prove item ii) assume that system (2-6) has a limit cycle Γ̃ according to item

i). Since r = x = 4(ad∆−ADδ)√
δ∆(A

√
δ−a

√
∆)

and r > max{− c
a ,−

2C
A ,r± =− c

a +

√
δ(δc2−4a2d2)

aδ
}, then

from Lemma 28 there exist a displacement function associated to system (2-6), that is,

associated to Γ̃. Therefore, using equation (2-5) we obtain

d(r)=
2
(

a2
(

4dr
√

δ+δr2 +4d2
))1/2

+4ad

δ
−

2
(

A2
(

4Dr
√

∆+∆r2 +4D2
))1/2

+4AD

∆
,

where c and C in equation (2-5) have been replaced by the respective values provided in

the hypotheses of the theorem setting d, D > 0.

It is not difficult to calculate the derivative of d(r) and by replacing the values

corresponding to r at the point P2 above we obtain

d′
s(rP2) = 2

(
−A2 (K +2D)

M
+

a2 (2d +Q)

N

)
.

Therefore, if −A2(K+2D)
M ̸= a2(2d+Q)

N then d′
s(rP2) ̸= 0 and P2 corresponds to a hyperbolic

limit cycle, being stable if d′
s(rP2)< 0 and unstable if d′

s(rP2)> 0. If −A2(K+2D)
M = a2(2d+Q)

N

then Γ̃ is clearly non-hyperbolic. The previous arguments apply similarly for the cases

where D and d are both negative or have opposite signs.

To complete the proof of Theorem 25 we exhibit an example of a system having

one hyperbolic limit cycle so item (iii) is proved. Indeed, consider the piecewise linear

vector field (2-2) with a = 2, b = 1, c = −4
√

2, d = −4, w = 2, A = 1, B = 2, C = −2
5 ,
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D =−1 and W = 3. We obtain

X(x,y) =
(
−x− y−4, 2x+ y−4

√
2
)

and

Y (x,y) =
(
−2x− 25

4 y−1, x+2y− 2
5

)
, (2-7)

which have one equilibrium for each of center type and they are oriented counterclock-

wise. It is straightforward that the points T1 = (2
5 ,0), T2 = (2

√
2,0) are, respectively,

visible and invisible tangency points. The segment (2
5 ,2

√
2) ∈ Σ1 is a sliding region, so

we have an internally center type periodic trajectory passing through T1.

The first integrals of the two linear differential systems (2-7) are, respectively,

H1(x,y) = 4(2x+ y)2 +16
(

4y−4
√

2x
)
+4y2 and

H2(x,y) = 4(x+2y)2 +8
(

y− 2x
5

)
+9y2,

then system (2-4) for the non-smooth vector field (2-7) becomes

−2x2 +8
√

2x+ y(y+8) = 0 and

−20x2 +16x+5y(25y+8) = 0.

Taking into account that x, y > 0, the suitable solution of the previous system is

(x,y) =
(

9
6

115
(

5
√

2+2
)
,

8
115

(
24
√

2+5
))

.

The solution (x1(t), y1(t)) of the first linear differential system (2-7) such that

(x1(0),y1(0)) = (x,0) is

x1(t) = 4
115

((
−120

√
2−163

)
sin(t)+

(
5
√

2−67
)

cos(t)+115
(

1+
√

2
))

and

y1(t) =− 4
115

((
−125

√
2−96

)
sin(t)+

(
−115

√
2−230

)
cos(t)+115

√
2+230

)
.

and the solution (x2(t), y2(t)) of the second linear differential system (2-7) such that
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(x2(0),y2(0)) = (x,0) is

x2(t) = 2
69

((
−240

√
2−73

)
sin
(3t

2

)
−69cos

(3t
2

)
+69

)
and

y2(t) =− 4
345

((
−192

√
2−17

)
sin
(3t

2

)
−
(

144
√

2+99
)

cos
(3t

2

)
+69

)
.

Since there is no sliding or escaping region in Σ2 and x > 2
√

2, the trajectories of

(x1(t), y1(t)) and (x2(t), y2(t)) for t ∈ [−π,π] correspond to a limit cycle Γu, see Figure

2.2. The displacement function of system (2-7) is given by

Figure 2.2: In blue line limit cycle of the system (2-7) with a = 2,
b = 1, c = −4

√
2, d = −4, w = 2, A = 1, B = 2,

C = −2
5 , D = −1 and W = 3. In addition, we notice

the green line is an internally center type periodic
trajectory.

d(r) =
√

2

√(
r−2

√
2
)2

− 2
25

√
(5r−2)2 − 96

25
,

and the zeroes are p1 = 0 and p2 =
96

115

(
5
√

2+2
)
. Notice that x = p2, then we can study

the hyperbolicity of the limit cycle, in fact we have

d′(r) =

√
2
(

r−2
√

2
)

√(
r−2

√
2
)2

− 2(5r−2)

5
√

(5r−2)2
=⇒ d′(x) =

√
2− 2

5
> 0.
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Therefore, Γu is a hyperbolic unstable limit cycle so Theorem 25 is proved.

2.2.2 Proof of Theorem 26

To prove Theorem 26 we have consider four cases, the case when d < 0 or d > 0

or D < 0 or D > 0. We start proving the case D > 0, and the other cases are proved

similarly. Indeed, since D > 0 we obtain C = 2AD√
∆

. Replacing this condition into the first

integrals (2-4) and proceeding analogously to the proof of Theorem 25 we obtain two

conics whose equations are given

H1(x,y) : (2ax−2c)2 −
(

y
√

δ− 4ad√
δ

)2

− 16a2d2

δ
−4c2 = 0,

H2(x,y) :

(
x+

y
√

∆

2A

)(
x− y∆−8AD

2A
√

∆

)
= 0.

The equation H2(x,y) corresponds to a pair of concurrent straight lines s1 and s2 being

s1 : x =−y
√

∆

2A
, s2 : x =

y∆−8AD
2A

√
∆

,

and the analysis is the same as done in the proof of Theorem 25. The equation H1(x,y) = 0

corresponds to a hyperbole H . It can be checked that H crosses the coordinates axes at

the points

P0 = (0,0), Py =

(
0,

8ad
δ

)
, Px =

(
−2c

a
,0
)
.

The position of H with respect to the axes depends on the signs of c and d, so we have

four cases to be considered. More precisely, the center of H belongs either to the first

quadrant if c < 0 < d or to the second if c, d > 0 or to the third if d < 0 < c or to the

fourth one if c, d < 0, see Figures 2.3, 2.4 and 2.5, respectively.

Now we study the intersection of H , s1, and s2. Since we are looking for limit

cycles the only interest we have is on the intersections occurring in the first quadrant.

Without loss of generality, we shall study the case c < 0 < d, the other cases being
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Figure 2.3: The left and central figures correspond to the possibil-
ities for H with c, d > 0. The right figure corresponds
to H with c, d < 0.
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Figure 2.4: In figure on left we have one possibility for the hy-
perbole H with c, d < 0 and in figure on center and
right we have possibilities for the hyperbole H with
d < 0 < c.

analogous. Indeed H , s1, and s2 have four intersections points, namely

P1 =

(
−2A

(
−2aD

√
γ+Cγ

)
,4aA

(
2aD−C

√
γ
))

T
, P2,3 = (X2,3,Y2,3), P4 = (0, 0) ,

where

X2,3 =
4a3d∆−2a2ADδ−aACδ3/2

R
± δ

R

(
a2A

(
4aAδD

(√
δC−4Ad

)
+Aδ

2C2
))1/2

± δ

R

a2A
(

4a2
(

4A∆d2 +AδD2 −2∆
√

δdC
))

δ

1/2

,

Y2,3 =
−4a2AD+8aA2d −2aAC

√
δ

T
± 1

2T

(
a2A

(
A
(

8aD−16Ad +4
√

δC
)2
))1/2

± 1
2T

a2A
128d

(
a2∆−A2δ

)(
2Ad −

√
δC
)

δ

1/2

.

with R = a
√

δ
(
A2δ−a2∆

)
and T =

(
A2δ−a2∆

)
.
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Figure 2.5: Possibilities for the hyperbole H with c < 0 < d.

Notice that we cannot determine which of these points belong to the first

quadrant, however, we know the position of these conics relative to coordinated axes and

one of these points is the origin, so we have at most two intersections between the conics

H , s1, and s2 occurring at the first quadrant, see Figure 2.6. Therefore we can obtain at

most two limit cycles. To complete the proof of Theorem 26 we exhibit examples with
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Figure 2.6: Example with two, one and zero intersection between
the conics H , s1 and s2 occurring at the first quadrant.

one and two hyperbolic limit cycles. Indeed, consider the piecewise linear vector field

(2-2) with a = 9, b = 4, c =−4, d = 4, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2

we get

X(x,y) =
(
−4x− 17y

9
+4,9x+4y−4

)
,

Y (x,y) =
(
−x− y+2,2x+ y+2

√
2
)
. (2-8)

We show that system (2-8) has one hyperbolic limit cycle. We have two systems

with a linear center, indeed the eigenvalues of the matrices of the two linear differential

systems (2-8) are both ±i. Besides that, the linear centers are counterclockwise oriented.
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It is not difficult to see that T1 =
(4

9 ,0
)

and T4 = (0,2) are a real visible tangency

point and T3 =
(
0, 36

17

)
is a real invisible tangency point. Furthermore, the segment(

0, 4
9

)
∈ Σ1 is a sliding region while the segment

(
2, 36

17

)
∈ Σ2 is an escaping region. The

displacement function associated with (2-8) is

d(r) =
√

2
((

r+
√

2
)2
)1/2

− 3
17

(17r(9r−8)+144)1/2 − 2
17

.

Similarly to the proof of Theorem 25 the zeros of d(r) coincide with the x-

coordinate of the points Pi, i = 1, 2, 3 provided above. The particular zero of d(r)

satisfying the hypotheses of Lemma 28 is

X2 =
4

47

(
8
√

2+
(

2
(

72
√

2+81
))1/2

+9
)
.

One can see that X2 corresponds to the x-coordinate of the point P2. Notice also that

X2 /∈
(
0, 4

9

)
∈ Σ1 so the limit cycle passing through X2 corresponds is a crossing one.

Moreover, because

d′(X2) =
47

17
√

2+3
(

256
√

2−135
)1/2

is positive, the limit cycle passing through X2 is hyperbolic and unstable. The unstable

limit cycle is shown in Figure 2.7.

Now, consider the non-smooth linear system (2-2) with a = 9, b = 4, c = −4,

d = 5, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2. We get

X(x,y) =
(
−4x− 17y

9
+5, 9x+4y−4

)
,

Y (x,y) =
(
−x− y+2, 2x+ y+2

√
2
)
. (2-9)

We now show that system (2-9) has two limit cycles. Again we obtain two systems with a

linear center counterclockwise oriented.

It is straightforward to determine the tangency points and to see that the segments(
0, 4

9

)
∈ Σ1 and

(
2, 45

17

)
∈ Σ2 are formed by sliding and escaping points, respectively. The
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displacement function associated with (2-9) is now

d(r) =−
√

2
(

r+
√

2
)
+

3
17

(17r(9r−8)+225)1/2 +
11
17

, (2-10)

and the zeros satisfying the hypotheses of Lemma 28 associated with the x-coordinate of

Pi, i = 1, 2, 3 are

X2 =
1

47

(
23

√
2−
(

1656
√

2−1782
)1/2

+36
)
,

X3 =
1

47

(
23

√
2+
(

1656
√

2−1782
)1/2

+36
)
, (2-11)

where X2 is associated to P2 and X3 is associated to P3. Notice that X2, X3 /∈
(
0, 4

9

)
∈ Σ1

so they correspond to limit cycles.

As done previously, it is straightforward to see that d′(X2)< 0 so the limit cycle

associated with X2 is hyperbolic and stable. Also, d′(X3)> 0 so the limit cycle associated

with X3 is hyperbolic and unstable, see Figure 2.8. This concludes the proof.
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Figure 2.7: In bold line the limit cycle of system (2-8) with a = 9,
b = 4, c = −4, d = 4, w = 2, A = 2, B = 1, C = 2

√
2,

D = 2 and W = 2. In addition, the dashed line is a
sliding periodic trajectory.
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Figure 2.8: The bold lines are the two limit cycles of system (2-9)
with a = 9, b = 4, c =−4, d = 5, w = 2, A = 2, B = 1,
C = 2

√
2, D = 2 and W = 2. It presents an unstable

limit cycle (external) and a stable limit cycle (internal).
In addition, the dashed line is the internally center type
periodic trajectory.



CHAPTER 3

Bifurcation of Periodic Trajectories in Planar

Discontinuous Piecewise Linear Systems with

only Centers and with a Nonregular Switching

Line

In this chapter we perform the global analysis of a representative model through

bifurcation theory to analyze the birth of limit cycles, sliding periodic trajectories, and

tangential ones. We also provide some results addressing the coexistence of periodic

trajectories and a physical interpretation of the model considered in the chapter. The main

techniques employed to obtain the results are first integrals, first return maps, and elements

of bifurcation theory.

3.1 Statement of the Main Results of the Chapter

In this chapter, we study a particular one-parametric model coming from the

system (2-1), for which we analyze the birth of several kinds of periodic trajectories. We

also detected some interesting bifurcation phenomena involving equilibrium, tangential

and periodic trajectories. We highlight that we have detected every bifurcation value

for the mentioned one-parametric model since we are able to prove the topologically

conjugation of systems (2-1) for non-bifurcation values. In particular, we study the entire
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finite portion of the phase portrait of such model, classifying the trajectories for every real

value of the parameters defining the model.

We fix a particular discontinuity set that will be used over this chapter. The

discontinuity set is the same discontinuity set of chapter 2. We set Σ = Σ1 ∪Σ2 where

Σ1 = { f−1
1 (0); x ≥ 0} and Σ2 = { f−1

2 (0); y ≥ 0} being f1(x,y) = y and f2(x,y) = x.

Furthermore, we define the sets Σ+ = Q1 ∪Σ and Σ− = Q2 ∪Q3 ∪Q4 ∪Σ, where Qn, n =

1, 2, 3, 4, is the n−th quadrant of the plane R2.

The main result of this chapter presents a description of one-parameter family of

piecewise vector fields. As we shall see the examples of systems reaching the bounds

in Theorems 25 and 26 can be captured by that referred one-parameter family. The

results exhibit some very interesting bifurcation phenomena as the bifurcation of a sliding

periodic trajectory into a limit cycle and a boundary equilibrium bifurcation - BEB.

A BEB occurs when an equilibrium or pseudo-equilibrium point moves under some

parameter variation and collides with the switching manifold Σ. We start fixing a = 9,

b = 4, c = −4, d = µ ∈ R, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2, so system

(2-2) becomes

Xµ(x,y) =

 X(x,y) =
(
−4x− 17

9 y+µ,9x+4y−4
)
, (x,y) ∈ Σ+,

Y (x,y) =
(
−x− y+2,2x+ y+2

√
2
)
, (x,y) ∈ Σ−.

(3-1)

The following theorem addresses some elements of the phase portrait of Xµ as sliding and

escaping regions, tangency points, etc, and also addresses the bifurcation of limit cycles,

sliding, tangential and center type periodic trajectories.

Theorem 29 There exists seventeen distinct phase portraits for the vector field Xµ ac-

cording to Table 3.1. In particular, eight bifurcations take place corresponding to the

following bifurcation values

(i) at µ1 = −2
√

2 a boundary saddle-node bifurcation occurs at the origin with the

birth of two coincident pseudo-equilibrium points;
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(ii) at µ2 = 0 a bifurcation occurs at the origin with the birth of the visible tangency

point T2;

(iii) at µ3 = 16
9 a border equilibrium bifurcation occurs at the point

(4
9 ,0
)
∈ Σ1. At

this point a triple collision involving an equilibrium, a pseudo equilibrium and two

tangency points takes place;

(iv) at µ4 =
17
9 a border equilibrium bifurcation occurs at the point (0,1) ∈ Σ2. At this

point a triple collision involving an equilibrium, a pseudo equilibrium and two

tangency points takes place;

(v) at µ5 =
34
9 a bifurcation occurs at the point (0,2) with the collision of two tangency

points; There is a birth of a sliding periodic trajectory Γρ1 and an stable center type

periodic trajectory Γts becomes an unstable center type periodic trajectory Γtu;

(vi) at µ6 = 4 a "corner" bifurcation takes place with the appearance of a sliding

periodic trajectory Γρ2 passing through the origin;

(vii) at µ7 =
4(631

√
2+6408)

6399 a bifurcation of a tangential periodic trajectory Γρ4 occurs;

(viii) at µ8 = 2(
√

2 + 9)− 2
3

√
47(2

√
2+9) a semi-stable limit cycle Γsu bifurcates

through the collision of two limit cycles.

Moreover, for every µi < µ, µ̃ < µi+1, i = 1, . . . ,7, Xµ and Xµ̃ are Σ−topologically equiva-

lent.

3.2 Proof of Theorem 29

To prove Theorem 29 we study each feature of the system (3-1) to fully describe

its phase portrait as summarized in Table 3.1. We start studying the equilibria.

Part 1 - Equilibrium points: Notice that the equilibrium point of the vector field Y in

(3-1) is E2 =
(
−2
(√

2+1
)
,2
(√

2+2
))

which belongs to the second quadrant and it

is of real type. Also, it does not depend on µ. The equilibrium point of the vector field

X in (3-1) is the point E1 =
(68

9 −4µ,9µ−16
)
, which depends on µ. In fact, if µ < 16

9

the equilibrium point is located on the fourth quadrant and it is virtual. For µ = 16
9 , E1

is located at (4
9 ,0), i.e., it moves until colliding to the switching manifold so a boundary
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µ Σ1 Σ2 e− e+ pe1 pe2 T1 T2 T4 P.T.

1 µ < µ1 s s 1 0 0 0 i 0 v Γts, Γu

2 µ = µ1 s s 1 0 1 1 i 0 v Γts, Γu

3 µ1 < µ < µ2 s s 1 0 1 1 i 0 v Γts, Γu

4 µ = µ2 s s 1 0 1 1 i v v Γts, Γu

5 µ2 < µ < µ3 s s 1 0 1 1 i v v Γts, Γu

6 µ = µ3 s s 1 Σ1 0 1 ∞ v v Γts, Γu

7 µ3 < µ < µ4 s s 1 1 0 1 v v v Γts, Γu

8 µ = µ4 s s 1 Σ2 0 0 v v ∞ Γts, Γu

9 µ4 < µ < µ5 s s 1 0 0 0 v i v Γts, Γu

10 µ = µ5 s 0 1 0 0 0 v i v Γtu, Γu, Γρ1

11 µ5 < µ < µ6 s u 1 0 0 0 v i v Γtu, Γu, Γρ1

12 µ = µ6 s u 1 0 0 0 v i v Γtu, Γu, Γρ2

13 µ6 < µ < µ7 s u 1 0 0 0 v i v Γtu, Γu, Γρ3

14 µ = µ7 s u 1 0 0 0 v i v Γtu, Γu, Γρ4

15 µ7 < µ < µ8 s u 1 0 0 0 v i v Γtu, Γu, Γs

16 µ=µ8 s u 1 0 0 0 v i v Γtu, Γsu

17 µ > µ8 s u 1 0 0 0 v i v Γtu

Table 3.1: Description of the phase portrait of Xµ for all µ ∈ R.
Here ”1” stands by the presence of that object and “0”
for the absence of it. Γs and Γu stand by stable and
unstable limit cycles, e+ and e− stand by the equilibrium
point of X+ and X−, respectively. Ti denote the tangency
points for i = 2, 3, 4, being ”v” and ”i” the notation
for visible and invisible, respectively; ∞ stands by a
tangency vanishing every Lie derivative (degenerate).
Also, Γts and Γtu stand by stable or unstable center type
periodic trajectory, respectively. Finally, Γsu stands by
semi-stable limit cycle and Γρi stands by sliding periodic
trajectories of type ρi, i = 1, . . . ,4.

equilibrium bifurcation takes place at Σ1. If 16
9 < µ < 17

9 , then E1 is located on the first

quadrant and it is real. For µ = 17
9 , E1 is located at (0,1), that is, another boundary equilib-

rium bifurcation occurs at Σ2. If µ > 17
9 , then E1 is on the second quadrant and it is virtual.

Part 2 - Tangency points and sliding regions: The tangency point T1 =
(4

9 ,0
)

does not
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depends on µ. However, it is visible if µ > 16
9 and invisible if µ ≤ 16

9 . For µ = 16
9 , T1

coincides with the equilibrium point E1. Moreover, the segment
[
0, 4

9

)
⊂ Σ1 is a sliding

region.

The tangency point T4 = (0,2) is also fixed and it is a visible one. On the other

hand, the tangency point T2 =
(

0, 9µ
17

)
only exist for µ ≥ 0. Moreover, it is visible if

0 ≤ µ < 17
9 and invisible if µ > 17

9 . When µ = 17
9 , T2 collides with the equilibrium point

E1. Now, the segment T2T4 is formed either by sliding points if µ < 34
9 , or escaping ones

for µ > 34
9 . At µ = 34

9 we get T2 = T4.

Part 3 - Pseudo-equilibrium points: To find pseudo equilibria on Σ1, it is sufficient to

find a value x such that X(x,0) and Y (x,0) in (3-1) are linearly dependent, that is, x must

satisfy

det

 2− x 2x+2
√

2

µ−4x 9x−4

= 0.

From the last equation we obtain

x± = 4
√

2+11−µ±
(

µ
(

µ−10
√

2−22
)
+88

√
2+145

)1/2
,

so one get that x+ ∈ [0, 4
9 ], the escaping region on Σ1, provided that −2

√
2 ≤ µ < 16

9 .

Moreover, x− does not belongs to the domain of the Filippov vector field regardless of µ.

Similarly, a pseudo equilibrium point takes place in Σ2 for −2
√

2 < µ < 17
9 .

Notice that up to this moment we have exhibited the configurations of the phase

portrait of all lines in Table 3.1 except by the last column. Figures 3.1, 3.2, 3.3, and 3.4

illustrate the phase portrait which are Σ−topological equivalent to the phase portrait of all

lines in Table 3.1 except by the last column.

Part 4 - Periodic trajectories: This part is split into 4 sub-parts. In the Sub-part 4.1 we

argue about internally center type periodic trajectories. In the Sub-part 4.2 we address the

limit cycles. In the Sub-part 4.3 we study the sliding and tangential periodic trajectories
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Figure 3.1: Ti, i = 1, 2, 4 is tangency point and pe1,2 is pseudo-
equilibrium points.
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Figure 3.2: Ti, i = 1, 2, 4 is tangency points, pe1,2 is pseudo-
equilibrium points, e+ is equilibrium point.

and how the sliding periodic trajectories bifurcate into a limit cycle. Finally, in Sub-part

4.4 we argue about the semi-stable limit cycle and how the limit cycles disappear after a

saddle-node bifurcation of limit cycles. Once these four parts are proven, the analysis of

the phase portrait corresponding to the last column of Table 3.1 is also completed.

Sub-part 4.1 - Internally center type periodic trajectory: From the previous parts, T4 is

a visible tangency and the vector fields we are considering have centers equilibria, so an

internally center type periodic trajectory takes place Γt when a center is real. Now we

have three situations.

When µ < 34
9 there exists a sliding region connecting with the internally center

type periodic trajectory. Let V be a small external neighborhood of Γt . If there exists

no pseudo-equilibrium point in the sliding region, all trajectories in V reach Γt through

the sliding, so Γt is an attractor. On the other hand, if a pseudo-equilibrium point does

exist in this sliding region, then Γt is still attracting all trajectories in V . Moreover, it is

enough to take V sufficiently small such that this pseudo-equilibrium is not in V, thus the
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Figure 3.3: Ti, i = 1, 2, 4 is tangency point and e+ is equilibrium
point.
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Figure 3.4: Ti, i = 1, 2, 4 is tangency points and green line is the
escaping region.

trajectories in V also reach Γt . In both cases, Γt attracts trajectories externally, i.e., we

have the existence of a stable internally center type periodic trajectory.

When µ = 34
9 there exists neither a sliding nor an escaping region and T2 = (0,2)

is an invisible tangency point for X(x,y). Then, for some external neighborhood of Γt the

trajectories move outward Γt , so Γt is an unstable internally center type periodic trajectory.

Finally, when µ > 34
9 there exists an escaping region connected with Γt . More-

over, all trajectories in a neighborhood move outward Γt . In fact, since the escaping region

is connected with Γt the only possibility for trajectories near to Γt is cross Σ2 at a point

bigger that the point limit of this sliding region. Therefore Γt is also an unstable external

internally center type periodic trajectory. The previous analysis describes all the internally

center type periodic trajectories of Xµ.
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Sub-part 4.2 - Limit cycles: Proceeding as in the proof of Theorems 25 and 26, we obtain

the following pair of conics associated with Xµ

2x
(

x+2
√

2
)
= (y−4)y,

18µy+9x(9x−8) = 17y2.

The first equation corresponds to two concurrent straight lines and the second one to a

hyperbola. They intersect each other at the point P1 = (0,0) and the points

P2 =
(

18
47

(√
2µ+4,−36

47

(
µ+2

√
2
)))

,

P3 =
(

1
47

(
−9

√
2µ+68

√
2+36−3

√
M
)
, 6

47

(
−3µ+6

√
2+54−

√
N
))

and

P4 =
(

1
47

(
−9

√
2µ+68

√
2+36+3

√
M
)
, 6

47

(
−3µ+6

√
2+54+

√
N
))

,

where M = 18µ
(

µ−4
(√

2+9
))

+32
(

17
√

2+81
)

and N = 9µ
(

µ−4
(√

2+9
))

+

16
(

17
√

2+81
)

. As before, we are only interested in the intersections occurring on the

first quadrant, i.e., we need to study under which conditions the coordinates x and y of

Pi, i = 2,3,4 are both positive. Assuming that this happens, we obtain the following

conditions in relation to the parameter µ :

[C1] For µ ≤ µ8 = 2
(√

2+9
)
− 2

3

(
94
√

2+423
)1/2

we have one intersection

in the first quadrant corresponding to point P4. Notice that µ8 is obtained doing the

coordinates x and y of P4 positive.

[C2] For 34
9 = µ5 < µ ≤ µ8 we have two intersections in the first quadrant

corresponding to points P3 and P4. This interval of µ is obtained by setting positive

coordinates x and y of both P3 and P4.

Point P2 cannot be in the first quadrant because the x−coordinate is positive if

µ > −2
√

2 and the y−coordinate is positive if µ < −2
√

2, which cannot simultaneously

happen. Besides that, for µ > µ8 there is no value of µ such that Pi is located on the first

quadrant, so no limit cycles take place for µ > µ8. Therefore, up to now, we can obtain at

most two limit cycles that may exist or not because those intersections of the first quadrant
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are necessary but not sufficient conditions for the existence of limit cycles.

In order to determine which of these intersections on the first quadrant actually

correspond to limit cycles, we employ the displacement function defined in Lemma 28.

Indeed, the displacement function considering Xµ is obtained through the replacements

a = 9, b = 4, c = −4, d = µ ∈ R, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2 in

(2-5), leading to

dµ(r) = − 3
17
(
9µ2 +17r(9r−8)

)1/2 − 9µ
17

+
√

2
(

r+
√

2
)
+2. (3-2)

The roots of dµ are r3,4 = 1
47

√
2
(
−9µ+18

√
2+68∓3

√
N
)

, r1 = 0, and r2 =

18
47

(√
2µ+4

)
being N as defined before. Notice that ri, i = 1, . . . ,4 corresponds to the

x−coordinates of the intersections of the considered conics.

In order to have a limit cycle, we must assume r > 4
9 to get crossing intersections

to Σ1. Moreover, the trajectory starting at (r,0) through the vector field X must find the

positive y−axis also at a crossing point. From that point, the trajectory should find the

initial condition (r,0) again.

The y−coordinate of that intersection for both vector fields is provided by the

equations of y+1,2 and y−1,2 in Lemma 28, so we replace again the values a = 9, b = 4,

c = −4, d = µ ∈ R, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2. Now, to obtain

crossing intersections with Σ1,2 one of the following conditions should occur.

[C3]
4
9 < r < 8

9 and µ ≥ 1
3

√
17
√

8r−9r2

or

[C4] r > 8
9 .

From [Ci], i = 1, . . . ,4 we conclude that there is a limit cycle for µ ≤ µ8

corresponding to the zero r4 of the displacement function dµ. Moreover, one can verify

that the derivative of dµ with respects to µ at r4 is positive so the corresponding limit cycle

is unstable.

Now, a second limit cycle can take place, according to [C2], for µ5 < µ < µ8 and

if this is the case, the second limit cycle corresponds to the zero r3 of the displacement
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function dµ. Nevertheless, next, we prove that condition [C3] cannot occur because

assuming 4
9 < r < 8

9 the intersection point P3 associated with r3 corresponds to a trajectory

reaching the sliding region on Σ1 for µ5 < µ < µ7. The conclusion is, as we will see, that

a second limit cycle associated with r3 only takes place for µ7 < µ < µ8 and it emerges

from a sliding periodic trajectory bifurcating at a tangency point. Moreover, in this case,

it can be seen that the limit cycle is stable.

Sub-part 4.3 - Sliding and tangential periodic trajectories: Let us set again a = 9, b = 4,

c = −4, d = µ ∈ R, w = 2, A = 2, B = 1, C = 2
√

2, D = 2 and W = 2. We obtain from

Lemma 28 the following:

y+1,2 =
1

34

(
18µ±3

(
36µ2 +612r2 −544r

)1/2
)
,

y−1,2 =
1
4

(
8±

√
2
(

16r2 +32
√

2r+32
)1/2

)
.

We start noticing that for µ = µ5 there is neither sliding nor escaping points on Σ2 and

the internally center type periodic trajectory Γt is unstable. On the other hand, for this

value of µ there exist an unstable limit cycle Γu containing Γt on its interior. Then from

Theorem 1 in [25] there must exist some attracting set contained between Γu and Γt . We

will show that this set is a sliding periodic trajectory.

(1) Consider µ5 ≤ µ < µ6. In this case, the trajectory from T1 reaches Σ2 at a crossing

point y1 then reaches Σ again at a crossing point y2 with y2 < y1 and finally, it

goes towards Σ1 arriving at a sliding point. From these points, because there exists

no pseudo-equilibrium point the trajectory slides to T1 forming a sliding periodic

trajectory that we refer to be of type 1 and denote Γρ1 .

(2) Consider µ = µ6. In this case, the second return to Σ2 occurs at the corner (0,0) =

Σ1 ∩Σ2 and then it slides to T1 forming a sliding periodic trajectory that we refer to

be of type 2 and denote Γρ2 .

(3) Consider µ6 < µ < µ7. In this case, the trajectory from T1 crosses Σ1 at a crossing

point and then meets Σ again in the interior of Σ1 at a sliding point. Then, as before
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the trajectory slides to T1 forming a sliding periodic trajectory that we refer to be of

type 3 and denote Γρ3 .

(4) Consider µ = µ7. In this case, the trajectory behaves like in Case 3 before but the

arriving point on Σ1 occurs at T1 forming a tangential periodic trajectory that we

refer to be of type 4 and denote Γρ4 .

(5) For µ7 < µ < µ8 we have unstable periodic trajectories Γu and Γt , where Γt is

contained on the interior of the limited region delimited by Γu. Therefore the

intersection between the exterior of Γt and the interior of Γs contains and positive

invariant compact region K. This region contains neither equilibria nor sliding nor

tangential points so we can apply Poincaré-Bendixson theorem for crossing regions

(see [4]) to assure the existence of at least one crossing periodic trajectory contained

on K. However, from condition [C2] we can guarantee that at most one periodic

trajectory Γs takes place, corresponding to the root r3 of dµ. From the construction

of K (or equivalently, from verifying that d′
µ(r3)< 0), Γs is stable.

Therefore, for µ5 ≤ µ ≤ µ7 we have a sliding periodic trajectory and for

µ7 < µ < µ8 we have two limit cycles.

Sub-part 4.4 - Semistable limit cycles: Setting µ = µ8 we have a non-hyperbolic

limit cycle Γsu. It corresponds to a multiplicity two root of dµ which writes r1 =

6
(

2
47

(
2
√

2+9
))1/2

−2
√

2 and it satisfies d′
µ(r1) = 0, so Γus is a semi-stable limit cycle

because for µ = µ8 there exists at most one intersection point P3 = P4 occurring on the

first quadrant. For µ > µ8 there are no such intersections so limit cycles cannot take place.

The proof is finished by noticing that every phase portrait of (3-1) for u ̸= µi,

i = 1, . . . ,8 is topologically equivalent because they are simple translations depending on

µ for which neither changes of stability of critical elements nor collisions take place. This

finishes the proof of Theorem 29.

Figure on left of 3.5 exhibit one phase portraits that are Σ−topologically equiv-

alent to the periodic trajectories happening for µ < µ5, while the figure on right of 3.5
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exhibit the phase portraits for µ = µ5. Figure 3.6 exhibit one phase portraits that are

Σ−topologically equivalent to the periodic trajectories happening for µ5 < µ < µ6. Figure

on left of 3.7 exhibit the phase portraits for µ = µ6, while the figure on right of 3.7 exhibit

one phase portraits that are Σ−topologically equivalent to the periodic trajectories hap-

pening for µ6 < µ < µ7. Figure on left of 3.8 exhibit the phase portraits for µ = µ7, while

the figure on right of 3.8 exhibit one phase portraits that are Σ−topologically equivalent

to the periodic trajectories happening for µ7 < µ < µ8. Figure on left of 3.9 exhibit the

phase portraits for µ = µ8, while the figure on right of 3.9 exhibit one phase portraits that

are Σ−topologically equivalent to the periodic trajectories happening for µ > µ8.
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Figure 3.5: On left, periodic trajectories of system (3-1) for µ < µ5
and, on right, periodic trajectories of system (3-1) for
µ = µ5.

Remark 30 The realization provided in Theorem 25 is included in the bifurcation analy-

sis of Theorem 26. More precisely, they occur, respectively, in the cases presented in lines

12 and 15 of Table 3.1.

3.3 Coexistence of Periodic Trajectories

Through the statements of the main results of the chapter and their proofs of

Theorems 25, 26, and 29 we have obtained several situations presenting the coexistence
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Figure 3.6: Periodic trajectories of system (3-1) for µ5 < µ < µ6.

of periodic trajectories of a different types. Next, we present some straightforward results

in this direction.

Corollary 31 Under the hypotheses of Theorem 25 there exist at least two closed isolated

periodic trajectories for system (2-2), being at most one of them a limit cycle.

It is enough to consider the example provided in the proof of Theorem 25. Indeed, by

taking a point p ∈ Int (Γu), there is a time t∗ such that the flow ϕ(p, t∗)
⋂

Σs ̸= ∅, let q

be the first point for which that happens. Since there exists no pseudo equilibrium, the

trajectory passing through q slides to the visible tangency point T1, i.e., to the internally

center type periodic trajectory Γi passing through T1. Therefore, the ω−limit set of any

trajectory starting in a point inside Γu is Γi, see Figure 2.2. Therefore, system (2-2) has

one limit cycle Γu and an internally center type periodic trajectory Γi. It could have more

periodic trajectories but we have obtained a lower bound for the number of such objects.

Corollary 32 Under the hypotheses of Theorem 26 there exist at least three closed

isolated periodic trajectories for system (2-2), being at most two of them limit cycles.

Now we consider the examples provided in the proof of Theorem 26 and the many

examples provided in Theorem 29. For instance, in the second example of Theorem 26 we
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Figure 3.7: On left, Periodic trajectories of system (3-1) for µ = µ6
and, on right, Periodic trajectories of system (3-1) for
µ6 < µ < µ7.

have two limit cycles and one internally center type periodic trajectory. In fact, let Γs the

stable limit cycle, Γu the unstable limit cycle, and Γi the internally center type periodic

trajectory. Since Γu is an unstable limit cycle, for all trajectory Γ ⊂ Int (Γu) , the ω− limit

set of Γ is Γi. For all trajectory Γ outer Γu and Γ ⊂ Int (Γs) , the ω−limit set of Γ is Γs.

Thus, Γu is the α−limit of all trajectories Γ ⊂ Int (Γs), see Figure 2.8.

Besides, Theorem 29 gives us several examples of having three periodic tra-

jectories simultaneously. For instance, one can have two limit cycles and one tangential

limit cycle for µ = µ7 or even three distinct periodic trajectories, namely, one limit cy-

cle, one sliding periodic trajectory, and one internally center type periodic trajectory for

µ5 ≤ µ < µ7.

We can also have a coexistence of tangential periodic trajectories, see the next

result.

Proposition 33 The non-smooth vector field Z(X ,Y ) defined in equation (2-2) has at

most two internally center type limit cycles if, and only if, Z(X ,Y ) has two real centers

equilibrium.

Notice that if Z(X ,Y ) has real equilibria (of center type) then Z(X ,Y ) has two tangency
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Figure 3.8: On left, Periodic trajectories of system (3-1) for µ = µ7
and, on right, Periodic trajectories of system (3-1) for
µ7 < µ < µ8.

points T1 and T2, call ΓT1 and ΓT2 the tangential trajectories corresponding to T1 and

T2, respectively. Since the equilibrium point is of center type, ΓT1 and ΓT2 are filled by

periodic trajectories, then an internally center type periodic trajectory occurs for each

equilibria. The contra-positive is straightforward. This concludes the proof.
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Figure 3.9: On left, Periodic trajectories of system (3-1) for µ = µ8
and, on right, Periodic trajectories of system (3-1) for
µ > µ8.



CHAPTER 4

Fast-Slow Systems with Nonregular

Discontinuity

Cardin at all [9], extended the Fenichel theory developed by Fenichel [27] for sin-

gularly perturbed Filippov systems. Roughly speaking, they proved that any phenomenon

that persists under regular perturbations also persists under singular perturbations.

On Cardin at all [8] are studied the effects of singular perturbation when the

phase portrait of the reduced problem has periodic orbits with sliding or sewing points.

For this, the authors applied the Sotomayor-Teixeira regularization and Slow-Fast sys-

tems to allow the study of singular perturbations. This approach transforms a singular

point into a regular one and provides a connection between discontinuous systems and

singularly perturbed smooth systems. The authors also provide conditions that guarantee

the persistence of periodic orbits with sliding or sewing by singular perturbation. Also

in this context in [45] the authors describe some qualitative and geometric aspects of

non-smooth dynamical systems theory around typical singularities and also establish an

interaction between non-smooth systems and geometric singular perturbation theory. Still

in this context in [20] the authors, by using transition functions without imposing the

monotonicity condition, study minimal sets of regularized systems. They also analyzed

the persistence of the sliding region of piecewise smooth slow-fast systems by singular

perturbations.

In this chapter, we proposed something different. We did not apply the
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Sotomayor-Teixeira regularization on our discontinuous piecewise linear systems. In-

stead, we propose to apply two blow-ups – see more about blow-ups in [24] –, one for

each vector field of the discontinuous piecewise linear systems. Thereafter we obtain dis-

continuous piecewise smooth linear systems where each vector field is a slow-fast vector

field.

The goal of this chapter is to study the non-regular point of a discontinuity set

to understand better what happens at this point. For that, we will be fixing the same

discontinuity set and the same piecewise vector fields of Chapter 2, i.e, Σ is given by

Σ = Σ1 ∪Σ2 where Σ1 = { f−1
1 (0);x ≥ 0} being f1(x,y) = y and Σ2 = { f−1

2 (0);y ≥ 0}

being f2(x,y) = x. We define the sets Σ+ = Q1 ∪Σ and Σ− = Q2 ∪Q3 ∪Q4 ∪Σ, where

Qn, n = 1, 2, 3, 4 is the n−th quadrant of the plane R2.

Z(X ,Y ) =


X(x,y),(x,y) ∈ Σ+;

Y (x,y),(x,y) ∈ Σ−,

(4-1)

where X = (X1,X2), Y = (Y1,Y2) ∈ X . Throughout this chapter we assume that X and Y

have linear centers as equilibrium points oriented counter-clockwise on the normal form

given on Lemma 23, i.e., X(x,y) and Y (x,y) are given by:

X(x,y) =

(
−bx− 4b2 +w2

4a
y+d, ax+by+ c

)
,

Y (x,y) =

(
−Bx− 4B2 +W 2

4A
y+D, Ax+By+C

)
, (4-2)

with a, A, b, B, w, W > 0.

4.1 Discontinuous Systems and Fast-Slow Systems

In this section, we explain the approach used in this chapter. The first step is to

perform a polar blow-up in booth vector fields of the system (4-1), in other words we

apply two blow-ups, one for each vector field of Z. After doing the blow-ups we obtain
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a discontinuous system where each vector field is a fast-slow system. The next step is

studying the case r = 0 and applying Fenichel’s theory for each fast-slow system and

verifying which property is preserved at the non-regular point of Σ. Besides, we used

Filippov’s Convention to understand better the dynamics of the non-regular point of Σ.

4.2 General Case

The goal of this section, is to establish and prove a result about the origin

point for the discontinuous fast-slow generated by applied two blow-ups, one for each

vector field of Z(X ,Y ) given in equation (4-2). By doing the blow-ups we obtain two

independently fast-slow system of a discontinuous system Z(X ,Y ).

We start applying the following blow-up φ : S1 ×R→ R2 given by:

φ(r,θ) = (r cos(θ),r sin(θ))

in X(x,y) defined in (4-2). We obtain:

ṙ(r,θ) =

(
cos(θ)

(
r sin(θ)

(
4a2 −4b2 −w2)+4ad

)
4a

+
−4abr cos(2θ)+4acsin(θ)

4a

)
,

rθ̇(r,θ) = ar cos(θ)+ cos(θ)(c−2br sin(θ))+
sin(θ)

(
−4ad + r(4b2 +w2)sin(θ)

)
4a

.

The reduce and layer problem associated with the system above are, respectively:

ṙ1(0,θ) = csin(θ1)+d cos(θ1) and

ccos(θ1)−d sin(θ1) = 0. (4-3)

ṙ1(0,θ1) = 0,

θ̇1(0,θ1) = ccos(θ1)−d sin(θ1). (4-4)
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Analogously, we obtain the reduced and layer problems associated with the vector field

Y (x,y) defined in (4-2) is given by:

ṙ2(0,θ2) =C sin(θ2)+Dcos(θ2) and

C cos(θ2)−Dsin(θ2) = 0. (4-5)

ṙ2(0,θ2) = 0 and

θ̇2(0,θ2) =C cos(θ2)−Dsin(θ2). (4-6)

We remark that in the blow-ups above we replace θ,r by θ1,r1 for the vector field X(x,y)

and θ,r by θ2,r2 for the vector field Y (x,y).

Theorem 34 Consider the discontinuous fast-slow system Z(r1,θ1)= (X(r1,θ1),Y (r1,θ1)).

Also, consider d,D,c,C ̸= 0. The following statements hold.

i) If d, D > 0 then the origin is a sliding point for the discontinuous fast-slow

system Z(r1,θ1).

ii) If d > 0,D < 0 or d < 0,D > 0 then the origin is a crossing point for the

discontinuous fast-slow system Z(r1,θ1).

iii) If d, D< 0 then the origin is an escaping point for the discontinuous fast-slow

system Z(r1,θ1).

Proof : The proof of Theorem 34 is carried out by doing the study of the discontinuous

fast-slow system Z(r1,θ1). Since the calculation is similar for both vector fields X(r1,θ1)

and Y (r2,θ2) we study the reduce problem of X(r1,θ1) and let the calculation for Y (r1,θ1)

in charge of the reader. The reduced problem of X(r1,θ1) is given by equation (4-3). The

critical set is given by:

C0 = {(θ1) ∈ R : ccos(θ1)−d sin(θ1) = 0.} (4-7)
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The equilibrium points of the critical set C0 is the set E0 of the points θ1 such that

θ1 = arctan
( c

d

)
; d ̸= 0 with 0 < θ1 <

π

2
or π < θ1 <

3π

2
.

We notice that since the system is defined in R2, the critical set is a straight

line with projections points on the θ1 axis of the plane (r1,θ1), in other words, we have

to project the trajectories within the critical set because the critical parameter is also a

variable of the slow-fast system produced after employing the blow-up.

Replacing θ1 = arctan
( c

d

)
on ṙ1(0,θ1) = csin(θ1)+d cos(θ1) of equation (4-3)

we get

ṙ1(0,θ1) = d

√
c2

d2 +1.

Studying the Jacobian Matrix associated to X(0,θ1) we obtain:

Mθ1 =

 0 0

0 −csin(θ1)−d cos(θ1)

 , (4-8)

and replacing θ1 = arctan
( c

d

)
we get that Jacobian Determinant is:

JMθ1
=−d

√
c2

d2 +1, (4-9)

which implies that ṙ1(0,θ1) is the attractor if d < 0 and repelling if d > 0 if, and only if,

c is not null. In other words, the critical manifold is given in (4-7) is normally hyperbolic

if d ̸= 0.

Figure 4.1 exhibit the critical plane for d > 0 on the left and the blow-up of the

origin on right for d, D > 0. To prove item i) of Theorem 34, based on the calculation

above it is enough to see the critical manifold is an attractor for booth vector fields

X(r1,θ1) and Y (r2,θ2) if d and D are both positive.

To prove item ii) of Theorem 34, based on the calculation above it is enough to

see the critical manifold associated with X(r1,θ1) is an attractor if d is positive and the

critical manifold associated with Y (r2,θ2) is repelling if D is negative and vice-versa.
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Figure 4.1: The critical plane for d > 0 on left and the blow-up of
the origin on right for d,D > 0.

To prove item iii) of Theorem 34, it is enough to see the critical manifold is

repelling for both vector fields X(r1,θ1) and Y (r2,θ2) if d and D are booth positive. □

Corollary 35 Consider the same hypotheses of Theorem 34. If d = 0 or D = 0 then

nothing can be said about the dynamic of the origin point with this approach.

Proof : To prove Corollary 35 is enough to see that if d = 0 or D = 0 the equilibria point

of the critical set belongs to the discontinuity set Σ2. □

4.3 A Particular Case Studied

In this section, we present a particular case to study the trajectories through the

origin for fixed parameter values. This particular case is the same as presented in Chapter

3. The reason why we choose to study the system for these particular values of parameters

is due to the many kinds of periodic trajectories this system has. There are also many

situations involving the non-regular point of Σ. Accordingly, fixing a = 9, b = 4, c =

−4, d = µ ∈ R2, w = 2, A = 2.B = 1,C = 2
√

2, D = 2 and W = 2 we obtain the system:

X(x,y) =

(
−4x− 17

9
y+µ, 9x+4y−4

)
and

Y (x,y) =
(
−x− y+2, 2x+ y+2

√
2
)
. (4-10)

The goal of this section is to prove the following theorem.
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Theorem 36 Consider the system (4-10) and fix µ = 4. Then, there is a bifurcation of

a homoclinic orbit into two sliding limit cycles for µ < 4 and µ > 4 with the homoclic

periodic orbit passing through to the origin point for µ = 4. Besides that, the sliding limit

cycles are not topological equivalent.

Proof : The first step to prove Theorem 36 is to prove the following lemma. The Lemma

gives us statements about the origin point for all values of µ ̸= 0.

Lemma 37 Consider the system (4-10) and µ ̸= 0. The following statements hold.

i) If µ > 0 then the origin is an equilibria point of the system (4-10). Besides, it

is a sliding one.

ii) If µ < 0 then the origin is an equilibria point of the system (4-10). Besides, it

is a crossing one.

Proof : Notice that in the system (4-10) the value of D is fixed as D = 2 and both c and C

are not null. Also note that we are assuming the same hypotheses of Theorem 34 proved

in the previous section, so the statements of Theorem 34 are held in this case. To prove

the statement i) of Lemma 37 it is enough to see that if µ > 0 the statement i) of Theorem

34 holds. Similarly, if µ < 0 statement ii) of Theorem 34 held. This concludes the proof.

□

Corollary 38 Consider the system (4-10). For µ < 0 there exist a sliding connection

passing by the origin point, i.e., there is a sliding region on Σ2 arriving at the origin

and following the sliding region through the Filippov vector field on Σ1.

The proof of Corollary follows from item ii) of Lemma 37 above and from the analysis

of the phase portrait of the system (4-10) provided in the proof of Theorem 29, with for

µ < 0 having two sliding regions passing through the origin point.

To conclude the proof of Theorem 36 remember that in Theorem 29 we describe

all the possible phase portraits of the system (4-10). in this description, we showed that for

µ = 4 there is a sliding periodic trajectory passing by the origin point and the tangential
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point T2 = (4
9 ,0). Since in Lemma 37 we proved that the origin is a sliding equilibria then

we have a homoclinic orbit passing through the origin. Besides, as shown, this homoclinic

orbit bifurcates into two sliding periodic trajectories for 34
9 < µ <

4(631
√

2+6408)
6399 with µ

small enough and these trajectories are not topological equivalents because they contain

different trajectories of vector fields X(x,y) and Y (x,y). Figures 4.2, 4.3, and 4.4 exhibit

the phase portraits of the periodic trajectories happening for µ = 34
9 , µ = 4 and 4 < µ <

4(631
√

2+6408)
6399 , which explicit that the sliding limit cycles are not topologically equivalent.

□
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Figure 4.2: The position 1 of the sliding limit cycle happening for
µ = 34

9 .

The theory presented in this chapter allowed us to study the system (4-10) from

a different perspective in the sense the we carried a more specific study of the origin and

consequently the sliding periodic trajectory passing by the origin and the tangential point

T2 = (4
9 ,0).

We remark that some aspects of the theory present in this chapter are in devel-

opment although it does not compromise the results presented in this chapter. The results

present provides some important conclusions about a non-regular point of a non-regular
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Figure 4.3: The homoclinic orbit happening for µ = 4.

-15 -10 -5 5
x

-5

5

10

15
y

Figure 4.4: The position 2 of the sliding limit cycle happening for

4 < µ <
4(631

√
2+6408)

6399 .

discontinuity set.



CHAPTER 5

Piecewise Smooth Rotated Vector Fields

This chapter is addresses rotated piecewise smooth vector fields in order to

understand the effects that discontinuities imply in the rotation of distinct vector fields.

As far as we know this is the first time that such a framework is considered, so we

present a preliminary theory to understand this class of piecewise smooth vector fields.

Rotated vector fields proved to be an immensely useful tool in research and bifurcation

of limit cycles as also provide important insights into studying the global behavior of

one-parameter families of limit cycles. Perko [57] show that any global family of limit

cycles of a planar analytic family of vector fields is the union of a finite number of

one-parameter families of limit cycles that are either cyclic or satisfy the same type of

termination principle as Duff’s families. He also showed how a one-parameter family of

limit cycles can be continued through a complex bifurcation in a unique way. In what

follows we present some particular applications of classical rotated vector fields.

Zhang [68] studied limit cycle bifurcations either from homoclinic loops or

from families of periodic orbits in slow-fast systems being the theory of rotated vector

fields the main tool for proving the results. In [69] the authors applied this theory to

establish conditions for the existence of limit cycles and homoclinic bifurcations in a

plant-herbivore model with the toxin-determined functional response. The authors of [17]

studied a general Kolmogorov system where they use the rotated vector fields theory

to provide sufficient conditions for the existence and uniqueness of limit cycles for that

system. The same is done in [19] where the authors studied a general predator-prey model
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and prove the existence of heteroclinic cycles and positive periodic solutions of order

1. Caubergh [13] used properties of uniqueness associated to rotated vector fields to

study some problems related to the bifurcation of polycycles and limit cycles in an one-

parameter family of planar vector fields. In [55], it was proved using the non-intersection

theorem that a specific system has no limit cycle by proving that the system is one-

parameter family of rotated vector fields.

Concerning rotated piecewise smooth vector fields, in [36] the authors present a

family of scalar periodic equations with a parameter and establish the theory of rotated

equations and as application, they studied a piecewise smooth population model verifying

the existence of saddle-node bifurcation. The case that we present in this chapter is more

general that the case presented by Han at al in [36] because they studied rotated vector

fields with time discontinuity and we studied piecewise vector fields such that each of the

vector fields is rotated. We show in Section 5.1 that the rotated vector fields with time

discontinuity is a particular case of our problem.

The goals of this chapter concern the comprehension of how the trajectories of

two families of rotated vector fields behave as the same parameter is varied. The extension

of the results from the classical theory of dynamical systems to the discontinuous

framework is not clear since the last one involves the existence of tangency points, sliding

and escaping points besides the fact that the vector fields can be rotated in different ways

even in the case they depend on the same parameter which is the case considered in

this chapter. The first goal of the chapter is to present some general results on rotated

vector fields. First, we state sufficient conditions for which the regularization of a rotated

piecewise smooth vector fields is still rotated, see Theorem 42. After, we study how the

rotation of a family of rotated vector fields affects the contact of fold points with a co-

dimension one manifold, see Theorem 44. We also study the robustness of certain closed

trajectories when the small parameter defining the rotation of the vector fields varies, see

Theorem 45.

Another goal of the chapter is concentrated on stating results related to non-

intersections of closed trajectories of rotated piecewise smooth vector fields. We recall
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that a central result concerning classical rotated vector fields is the Non-intersection

Theorem which states that limit cycles associated with distinct parameter values of

one-parameter family of rotated vector fields does not intersect each other, see for

instance [56]. Under suitable results, we are able to generalize that important result to

the discontinuous scenario, although we can not avoid intersections occurring on sliding

or escaping segments of periodic trajectories, although we are able to control how those

intersections occur, see Theorems 46, 47 and 48.

Notice that over this chapter, we do not fix a discontinuity set, i.e., for this chapter

Σ could be any fixed smooth function. When is the case, we make it explicit the change

of the discontinuity set. This chapter is organized as follows. In Section 39 we introduce

rotated piecewise smooth vector fields along with some examples. In section 5.2 we state

some general results on rotated piecewise smooth vector fields and in section 5.3 we

present some non-intersection theorems for different types of closed trajectories of those

vector fields.

5.1 Rotated Piecewise Smooth Vector Fields

We start defining a rotated piecewise smooth vector fields as follows.

Definition 39 We say that a piecewise smooth vector fields Z = (X ,Y ) ∈ Ωr defines a

family of rotated vector fields if X and Y are one-parameter families of rotated vector

fields. We say that Z defines a family of positively (respec. negatively) oriented rotated

vector fields if X and Y are a positively (respect. negatively) rotated vector fields.

Let Zµ = (Xµ,Yµ) be a family of oriented rotated vector fields where Xµ = (pµ,qµ) and

Yµ = (Pµ,Qµ). We fix the notation for the determinant (1-4) associated to Xµ and Yµ as ∆X

and ∆Y , respectively.

In what follows we present two examples. In the first one, we show how to relay

systems can be rotated with respect to one of the parameters present in these systems. In

the second one, we analyze the model present in Han et al [36] and how we can transform
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this model into an autonomous system. This autonomous system is rotated in a classical

way. We also present the definition of rotated vector fields introduced by them.

Example 40 An important class of piecewise vector fields are the so called relay systems

which are systems of the form ẋ = Ax+Bu with y =CT x and u =−sgn(y). Relay systems

are widely used in applications as control systems, see [21]. A particular class of relay

systems in Rn is presented in [65], which in R2 have the form

Ẋ = AX + k sgn(z) (5-1)

where z = (x,y), A ∈ M2(R), k = (k1,k2), and sgn(z) is 1 if x ≥ 0 and −1 otherwise. Let

us call

A =

 a b

c d

 ,

so the relay system writes as

 ẋ = ax+by+ k1,

ẏ = cx+dy+ k2,
if x ≥ 0 and

 ẋ = ax+by− k1,

ẏ = cx+dy− k2,
if x ≤ 0.

If we take c = k2 = 0 and b ̸= 0 so the relay systems of the form (5-1) is rotated with

respect to the parameter a. In fact, the equilibrium points are e+ =
(

0, −k1
b

)
for x ≤ 0

and e− =
(

0, k1
b

)
for x ≥ 0. Also, in both cases, the determinant (1-4) associated with

these systems is equal to −dx2 which is always positive for d < 0 and negative for d > 0.

Example 41 In Han et all [36], it is presented a not autonomous system defined by the

differential equation:

ẋ = f (t,x,λ), (5-2)

where t ∈ R, x ∈ I ⊂ R, λ ∈ J ⊂ R with I and J intervals. They suppose that f (t,x,λ)

satisfies the following hypotheses:

• H1: The function f (t,x,λ) is T−periodic in t ∈ R, where t is a constant.
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• H2: There are n+ 1 constants such that t0, t1, · · · tn−1, tn satisfying t0 = 0 < t1 <

· · ·< tn−1 < tn = T independent of x and λ and C1 functions f1(t,x,λ), · · · , fn(t,x,λ)

defined on R× I × J such that f (t,x,λ) = f j(t,x,λ) for (t,x,λ) ∈ I j × I × J, where

I j =
[
t j1, t j

)
, j = 1, · · · ,n.

Notice the function f is piecewise smooth on R× I × J and the partial derivatives ∂ f
∂x

and ∂ f
∂λ

exists for all (t,x,λ) ∈ R× I × J and are piecewise continuous on R× I × J and

T−periodic in t. Thus, they defined rotated vector fields as follows: if

∂ f
∂λ

(x, t,λ)≥ 0 (resp. ≤ 0) for (t,x,λ) ∈ [0,T ]× I × J (5-3)

and
∂ f
∂λ

̸= 0 on [0,T ]

along any solution x(t,λ) of (5-2) for each λ ∈ J, we say that the system (5-2) defines a

family of rotated equations with respect to λ.

Notice that we can transform the non-autonomous equation (5-2) in an au-

tonomous system doing the changing of variables t = y. Therefore, it follows:

 ẋ = f (x,y,λ),

ẏ = 1.
(5-4)

In this way, the system (5-4) has a discontinuity in the variable y. Now, suppose the

system (5-2) is rotated as defined in (5-3), then the autonomous system (5-4) is rotated

with respect to the parameter λ according to Definition 12. In fact, the determinant (1-4)

equals ∂ f
∂λ

which is nonzero by hypothesis.
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5.2 General Aspects of Rotated Piecewise Smooth Vector

Fields

In this section, the goal is to prove that with some hypotheses, families of rotated

piecewise smooth vector fields can be preserved under regularizations. The local aspect of

the regularization is not a problem here, because, outside the strip where the regularization

does not act, the piecewise smooth vector fields are already rotated, so we concentrate in

proving this property inside the strip. This result will be a tool for the proof of the main

results of this chapter. We also present some auxiliary results that will be used throughout

this chapter. In what follows, we fix Zδ
µ as a regularization of a piecewise smooth rotated

vector fields Zµ. Before we enunciate and demonstrate these results, we will fix some

notation.

Consider S(x,y,µ) = X(x,y,µ)+Y (x,y,µ) and M(x,y,µ) = X(x,y,µ)−Y (x,y,µ).

Although the vector fields S and M are not necessarily rotated with respect to the

parameter µ we can prove that they preserve orientation, in the way that if X and Y are

positively (negatively) oriented then S and M also are positively (negatively) oriented.

To prove this fact it is enough to consider the parallelogram law. That means that the

determinants (1-4) associated with S and M are not null, consequently, S and M are always

positively (respect. negatively) oriented if X and Y are positively (respect. negatively)

oriented. We will fix the notation for these determinants as ∆S and ∆M, respectively.

Theorem 42 Let Zµ be a rotated piecewise smooth vector fields and Zδ
µ its corresponding

regularization. Assume that Zδ
µ has no equilibrium point depending on µ, ie, the equilib-

rium points of Zδ
µ do not change when µ changes. The following statements hold:

i) If Zµ is positively oriented and ∆S < ∆M then Zδ
µ is one-parameter positively

orientated family of rotated vector fields with respect to the parameter µ.

ii) If Zµ is negatively oriented and ∆S > ∆M then Zδ
µ is one-parameter negatively

orientated family of rotated vector fields with respect to the parameter µ.
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We remark that, if either Zµ is positively oriented with ∆S > ∆M or negatively oriented

with ∆S < ∆M then nothing can be established about the orientation of Zµ without extra

hypotheses, these cases will not be studied in this thesis.

Proof : Notice that the equilibrium points of Zδ
µ are isolated. Thus we have to prove that

the equation (1-4) associated with the vector fields Zδ
µ is satisfied. Since we have two cases

to prove and the proof is similar we present only the proof of bullet (i).

We know by the hypothesis that ∆X and ∆Y are positive because Zµ = (Xµ,Yµ)

is positively oriented. We also notice that the vector fields S(x,y,µ) and M(x,y,µ)

write S(x,y,µ) =
(

pµ(x,y,µ)+Pµ(x,y,µ),qµ(x,y,µ)+Qµ(x,y,µ)
)

and M(x,y,µ) =(
pµ(x,y,µ)−Pµ(x,y,µ),qµ(x,y,µ)−Qµ(x,y,µ)

)
. Consequently, the determinant ∆S as-

sociated with S is given by

−(q(x,y,µ)+Q(x,y,µ))
∂(p+P)

∂µ
(x,y,µ)+(p(x,y,µ)+P(x,y,µ))

∂(q+Q)

∂µ
(x,y,µ),

the determinant ∆M associated with M is

(−q(x,y,µ)+Q(x,y,µ))
∂(p−P)

∂µ
(x,y,µ)+(p(x,y,µ)−P(x,y,µ))

∂(q−Q)

∂µ
(x,y,µ).

From hypotheses ∆S < ∆M. We are going to use that fact for the regularization Zδ
µ .

Nevertheless, the expression of Zδ
µ according to the previous discussion is

Zδ
µ(x,y,µ,δ) =

(
1
2

(
p+P+(p−P) ϕ

(
h(x,y)

δ

))
,
1
2

(
q+Q+(q−Q) ϕ

(
h(x,y)

δ

)))

where we avoid the point (x,y,µ) for simplicity. The expression of the determinant (1-4)

associated with the vector fields Zδ
µ(x,y,µ,δ) is given by

det
(

Zδ
µ

)
= 1

4ϕ

(
h(x,y)

δ

)2
((qµ −Qµ)(p−P)− (pµ −Pµ)(q−Q))+

1
2ϕ

(
h(x,y)

δ

)
(−pµq+PµQ+qµ p−QµP)+

1
4((qµ +Qµ)(p+P)− (pµ +Pµ)(q+Q)).
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which can be rewritten as

det
(

Zδ
µ

)
=

1
8

(
∆S

(
ϕ

(
h(x,y)

δ

)2

−1

)
+∆M

(
1−ϕ

(
h(x,y)

δ

)2
)

+2

(
∆X

(
ϕ

(
h(x,y)

δ

)
+1
)2

+∆Y

(
ϕ

(
h(x,y)

δ

)
−1
)2
))

.

Therefore, equation above can be rewrite as:

det
(

Zδ
µ

)
=

1
8
(
∆S
(
z2 −1

)
+∆M(1− z2)+2

(
∆X(z+1)2 +∆Y (z−1)2)) ,

where z = ϕ

(
h(x,y)

δ

)
. We notice that ∆X > 0 and ∆Y > 0, so ∆X(z+1)2 +∆Y (z−1)2 > 0

since (z+1)2,(z−1)2 > 0.

Now, because |ϕ(t)|< 1 inside the strip for all t ∈R we have |z|< 1 since ϕ is a

transition function. Moreover, the expression ∆S
(
z2 −1

)
+∆M(1−z2) is positive because:

∆S
(
z2 −1

)
+∆M(1− z2) = ∆S

(
z2 −1

)
−∆M(z2 +1)

= (∆S −∆M)(z2 +1).

The factor ∆S −∆M is negative since, by hypothesis, ∆S < ∆M. Moreover, as −1 < z < 1,

we have z2 −1 < 0, so indeed (∆S −∆M)(z2 +1) is positive.

We have proved that (5-5) is a sum of two positive factors, so the expression (5-5)

is positive. In particular, we notice that detZδ
µ(x,y,µ,δ) does not depend on ϕ. Therefore,

Zµδ is a one-parameter positively orientated family of rotated vector fields with respect to

the parameter µ. □

The following example shows that the set of rotated piecewise smooth vector fields

satisfying the hypotheses of Theorem 42 are not empty.

Example 43 Consider the piecewise smooth vector fields Z(x,y,µ) = (Xµ(x,y),Yµ(x,y))

with X(x,y,µ) = (µx+y+1,2x), Y (x,y,µ) = (µx−1,2x) and Σ an arbitrary discontinuity

set. We claim that Z(x,y) is a family of one-parameter rotated vector fields with respect

to the parameter µ. In fact is straightforward that the equilibrium point of the vector
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fields X(x,y,µ) and Y (x,y,µ) does not depend on µ, besides that, for both vector fields, the

determinant (1-4) is equal to −2x2 for all regular points. The regularization is given by

Zδ
µ(x,y) =

(
1
2
(2µx+(y+2)ϕδ(x)+ y) ,2x

)
.

The equilibrium points of Zµ
δ

is the point
(

0,− 2ϕδ(x)
ϕδ(x)+1

)
which does not depends on µ. The

determinant detZδ
µ is equal to −2x2. Therefore, Zδ

µ is one-parameter negatively orientated

family of rotated vector fields with respect to the parameter µ.

The following propositions provide some properties about fold points for piecewise

smooth vector fields and hyperbolic poly-trajectory of kind 3.

Theorem 44 Assume that Zµ is a family of rotated vector fields and Σ do not depend on

µ. If p = pµ0 ∈ Σ is a fold point for some µ = µ0, then there exists δ > 0 such that the

following statements hold:

(i) pµ is a fold point for every pµ ∈ N 1
δ
(µ0)∩Σ where N 1

δ
(µ0) is a small neighborhood

of pµ0;

(ii) the map µ 7→ pµ from Nµ0 a small neighborhood of pµ0 to Σ is a strictly monotone

function. In other words, when µ varies on Nµ0 , the tangency point pµ moves on

some open subset of Σ containing pµ0 in such way that pµ1 ̸= pµ2 for every µ1 ̸= µ2

of Nµ0 .

Proof : From Theorem 3.5 in [33] there exists δ1 > 0 such that bullet (i) holds for every

µ ∈ (µ0 −δ1,µ0 +δ1), so it is enough to set δ = δ1 and N1
δ1
(µ0) = N1

δ
(µ0).

To prove bullet (ii) let us consider Zµ = (Xµ,Yµ) and assume without loss of

generality that pµ is a tangency point for Xµ with Xµ = (Pµ,Qµ). Since Σ = h−1(0) does

not depend on µ, we get ∇hµ(x,y)≡ 0 and then

∂Zµh
∂µ

(pµ) =

〈
∇h(pµ),

(
∂Pµ

∂µ
,
∂Qµ

∂µ

)〉
.

The vector ∇h(pµ0) ̸= 0 because pµ0 ∈ h−1(0) is a regular value of h. Moreover, Xµ(pµ0) ̸=

0 because otherwise the second line in (1-4) is zero so Zµ is not rotated, which is absurd.
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Finally, because the determinant of Zµ is nonzero the lines of it are linearly independent

and then the vectors ∇h(pµ0) and
(

∂Pµ
∂µ (pµ0),

∂Qµ
∂µ (pµ0)

)
are not orthogonal because we

are considering it in the fold point pµ0 with pµ0 ∈ Nµ0 . Thus by Thom ’s Transversality

Theorem present in [32] there is a δ2 such that all folds points pµ in the neighborhood

N 2
δ2
(µ0)∩Σ,

(
∂Pµ
∂µ (pµ0),

∂Qµ
∂µ (pµ0)

)
is transversal to Σ and ∂Zµh

∂µ (pµ) has the same signal of
∂Zµh

∂µ (pµ0). Therefore, the map µ 7→ pµ from Nµ0 to Σ is a strictly monotone function. To

complete the proof of Theorem 44, it is enough to take δ = min{δ1,δ2}. □

Theorem 45 Let Zµ = (Xµ,Yµ) be a rotated piecewise smooth vector fields having a

hyperbolic poly-trajectory Γµ0 of kind 3 for µ = µ0 and Vr a small neighborhood of Γµ0 . If

|µ1−µ0| is small enough, then Zµ1 has a hyperbolic poly-trajectory of kind 3 Γµ1 contained

in ⊂Vr.

Proof : We prove the result for poly-trajectories of kind 3 having only one tangency point

and one sliding segment. The proof assuming more than one tangency point is completely

analogous. Figure 5.1 illustrated the construction that we do in what follows on the proof.

Let P0
1 be the regular fold point of Γµ0 and Vr1 a neighborhood of P0

1 of diameter

r1 > 0. Then, from Theorem 44 if µ1 satisfies that |µ0 − µ1| is small enough, there is a

regular fold point P1
1 for Zµ1 in Vr1 . Moreover, Theorem 44 assures that tangency points

do not intercept each other for different values of µ in Vr1 . Let P0
2 be the sewing point

corresponding to the first intersection between the trajectory arc Γµ0 starting at P0
1 and Σc.

Consider the trajectory arc γ1
µ1
(t) of Zµ1 starting at P1

1 . There exists a time τ1 > 0 such that

γ1
µ1
(τ1)∩Σ = P1

2 . By continuous dependence on initial conditions outside Σ, there exists a

neighborhood Vr2 , r2 > 0 of P0
2 such that P1

2 ∈Vr2 and it is a sewing point.

Let P0
3 be the sliding point corresponding to the first intersection between Γµ0

starting at P0
2 and Σs. Consider the arc of trajectory γ2

µ1
(t) of Zµ1 starting at P1

2 , then there

exists a time τ2 such that γ2
µ1
(τ2)∩Σs = P1

3 . Moreover, shrinking r2 > 0 if necessary and

employing again continuous dependence on initial conditions, there exists r3 > 0 small

and a neighborhood Vr3 of P0
3 such that P1

3 ∈Vr3 . Now, shrinking r1 and r2 if necessary, we
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can assume that the segment [P1
3 ,P

1
1 ] is formed by sliding points having the sliding vector

fields the same direction as the one defined on [P0
3 ,P

0
1 ]. Accordingly, take now the arc of

trajectory γ3
µ1
(t) of Zµ1 starting at P1

3 . Again, there exists a time τ3 such that γ3
µ1
(τ3) = P1

1 .

Finally, set the trajectory Γµ1 as the concatenation γ1
µ1
∪γ2

µ1
∪γ3

µ1
which is a closed

positive trajectory of Z1, and repeat this concatenation in such a way that Γµ1 is well

defined all t ∈ R. By the construction, Γµ1 is a poly-trajectory of kind 3. It is contained

in Vr since we can make r1 as small as necessary and so employ continuous dependence

on initial conditions. We notice that the previous constructions hold on compact arcs of

trajectories for Γµ0 . The hyperbolicity follows from the fact that for every µ1 in Vr1 , Γµ1

satisfies the condition of Definition 9. □

Figure 5.1: Illustration of Poly-trajectories of kind 3 in a small
neighborhood of Γµ0 .
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5.3 Non-intersection of Poly-trajectories

One of the main results of rotated C1 vector fields is the so called Non-

intersection Theorem. Roughly speaking, it states that limit cycles with different values

parameters does not intersect with each other and this is the problem we address in this

chapter.

Theorem 46 (The Non-intersection Theorem for piecewise smooth rotated vector fields

for poly-trajectories of kind1.) Let Zµ be a piecewise smooth rotated vector fields and

assume that Zµ satisfies the hypotheses of Theorem 42. Then distinct hyperbolic poly-

trajectories of kind 1 do not intersect each other.

Proof : Let Zµ = (X ,Y ) be a piecewise smooth rotated vector fields and assume that Zµ1

has a hyperbolic poly-trajectory Γµ1 of kind 1 for some µ = µ1. Without loss of generality

we assume that Zµ is positively oriented. Let V ⊂ R2 be a small neighborhood of Γµ1

and µ2 sufficiently close to µ1. Because Γµ1 is a hyperbolic poly-trajectory of kind 1 it

is locally structurally stable so employing the continuity respect to the parameters on Σ+

and Σ− one can assure the existence of Γµ2 poly-trajectory of kind 1 in V for |µ1 − µ2|

sufficiently small. That Γµ1 is locally structural stable follows from the hyperbolicity of

the fixed point associated to the first return map of Γµ1 which is a Cr diffeomorphism.

We are going to prove that Γ1,Γ2 ⊂ V do not intercept each other. For that,

set δ0 > 0 small and let Zδ
µ1

and Zδ
µ2

be the regularizations of Zµ1 and Zµ2 , respectively.

By Proposition 16, choosing δ1 < δ0 sufficiently small there exists periodic orbits Γδ
µ1

of Zδ
µ1

and Γδ
µ2

of Zδ
µ2

entirely contained in V for δ < δ1 (shrinking V if necessary).

Consider V δ
1 and V δ

2 tubular neighborhoods of Γδ
µ1

and Γδ
µ2

, respectively, having radius

δ < δ2 with δ2 < δ1. We claim that there exists δ∗ < δ2 sufficiently small such that, for all

0 < δ < δ∗, V δ
1 ∩V δ

2 = /0. The proof of the claim goes as follows: if for all δ > 0, δ < δ2,

we have V δ
1 ∩V δ

2 ̸= /0, then we can take p ∈ V δ
1 ∩V δ

2 . Now, since V δ
1 and V δ

2 are tubular

neighborhoods containing p, then taking δ → 0 we get p ∈ Γδ
µ1
∩Γδ

µ2
because V δ

i = {Γδ
µi
}

when δ → 0, i = 1,2. Making |µ1 − µ2| smaller if necessary, by hypothesis Zδ
µ is a one-
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parameter positively orientated family of rotated vector fields and therefore Γδ
µ1

and Γδ
µ2

cannot intercept in a point p. Therefore the claim is proved.

From Theorem 17, we get that Γδ
µi
→ Γµi when δ → 0 for i = 1,2. Thus, from the

claim above, V δ
1 ∩V δ

2 = /0 and consequently Γµ1 ∩Γµ2 = /0. □

Let Γµ be a hyperbolic poly-trajectory of kind 3. Assume that Γµ contains k sliding

segments I1
µ , . . . , I

k
µ writing I j

µ = [s j
µ,P

j
µ ], where s j

µ are sliding points and P j
µ are fold points,

j = 1, . . . ,k. Following that notation, we have the following result.

Theorem 47 (The Non-intersection Theorem for piecewise smooth rotated vector fields

for poly-trajectories of kind3.) Let Zµ be a piecewise smooth rotated vector fields and

assume that Zµ satisfies the hypotheses of Theorem 42. Then the following statements

hold:

(i) distinct hyperbolic poly-trajectories of kind 3 do not intersect each other either in

crossing points or outside Σ.

(ii) If |µ1 −µ2| is sufficiently small and Γµ1,Γµ2 are two hyperbolic poly-trajectories of

kind 3 then they intercept each other on I j
µ1 ∩ I j

µ2 in the following way: if for some j,

P j
µ1 > P j

µ2 (respect. “<”) then s j
µ1 > s j

µ2 (respect. “<”).

Bullet (ii) states that tangency and sliding points of distinct hyperbolic poly-

trajectories of kind 3 move in the same direction when µ is varied, in either positive or

negative sense.

Proof : Let Zµ = (X ,Y ) be a piecewise smooth rotated vector fields and assume that Zµ1

has a hyperbolic poly-trajectory Γµ1 of kind 3 for some µ = µ1. Again we assume that

Zµ is positively oriented and we take V ⊂ R2 a small neighborhood of Γµ1 . Let µ2 be

sufficiently close to µ1 so that Zµ1 has a hyperbolic poly-trajectory Γµ2 of kind 3 in V ,

from Theorem 45. As in the proof of Theorem 46, we can take regularizations of Zµ1 and

Zµ2 and suitable tubular neighborhoods (as in [5]) such that Γµ1 and Γµ2 intercept each

other neither in crossing points nor outside Σ so we prove bullet (i).

In order to prove bullet (ii), we first notice that, from Theorem 44, distinct fold

points of Zµ1 do not intercept the respective fold points of Zµ2 for distinct (but close
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enough) µ1 and µ2. Let us assume that Zµ1 has k tangency points P1
µ1
, . . . ,Pk

µ1
and let

s1
µ1
, . . . ,sk

µ1
the sliding points of Γµ1 such that every point of the segment I j

µ1 = [s j
µ1,P

j
µ1 ]

is formed by regular points of the sliding vector fields. From Theorem 45, as |µ1 − µ2|

is sufficiently small, Zµ2 has the same number k of fold and respective sliding points as

intervals bounded by those points. We call those objects P j
µ2 , s j

µ2 and I j
µ2 , j = 1, . . . ,k.

Now let us assume that, for some j, say j∗, we have I j∗
µ1 ⊂ I j∗

µ2 , the opposite

inclusion can be considered in an analogous way. Assume also that s j∗
µi < P j∗

µi , i = 1,2.

Since Σ is co-dimension one manifold of class Cr, we can assume that the portion of Σ

for which Γµ1,2 ∩ Σ ̸= /0 is diffeomorphic to an open interval of R so we can naturally

order Σ. Once Σ has a natural order and because I j∗
µ1 ⊂ I j∗

µ2 , we get s j∗
µ2 < s j∗

µ1 < P j∗
µ1 < P j∗

µ2 .

Now, choosing δ > 0 sufficiently small, we can proceed as in the Proof of Theorem 46 to

assure that the regularizations Zδ
µ1

of Zµ1 and Zδ
µ2

of Zµ2 have periodic orbits Γδ
µi

completely

contained in V in such way that any tubular neighborhood of those periodic orbits tends

to the sets {Γµi} when δ → 0, i = 1,2. Therefore, by Theorem 17, the periodic orbits

associated to the Cr−vector fields Zδ
µ1

satisfy the following:

• there exist two sequences of points of Γδ
µ2

, say {us
i}i and {uP

i }i with i → ∞ when

δ → 0 such that us
i converges to s j∗

µ2 and uP
i converges to P j∗

µ2 .

• Analogously, there exist two sequences of points of Γδ
µ1

, say {vs
ℓ}ℓ and {vP

ℓ }ℓ with

ℓ→ ∞ when δ → 0 such that vs
ℓ converges to s j∗

µ1 and uP
ℓ converges to P j∗

µ1 .

Then, s j∗
µ2 < s j∗

µ1 < P j∗
µ1 < P j∗

µ2 , there exists some δ∗ > 0 small such that, for every

δ < δ∗, there exists an arc of the trajectory of Γδ
µ2

entirely contained in the interior of the

Jordan curve Γδ
µ1

. That is a contradiction to the fact that Zδ
µ1

is a one-parameter positively

orientated family of rotated vector fields by hypothesis so Γδ
µ1

cannot intercept Γδ
µ2

. The

conclusion is that, for every j ∈ {1, . . . ,k} the interval I j
µ2 cannot contain I j

µ1 . Analogous

statements can be proved either assuming that I j∗
µ2 ⊂ I j∗

µ1 or considering P j∗
µi < s j∗

µi , so the

bullet (ii) of Theorem 47 is proved. □

Theorem 48 (The Non-intersection Theorem for piecewise smooth rotated vector fields
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for poly-trajectories of kind 2.) Let Zµ be a piecewise smooth rotated vector fields and

assume that Zµ satisfies the hypotheses of Theorem 42. If Σ depends on µ then distinct

hyperbolic poly-trajectories of kind 2 do not intersect each other.

Proof : If Zµ1 has hyperbolic poly-trajectories of kind 2 for a certain µ1 then for every µ2

satisfying that |µ1 − µ2| is sufficiently small, Zµ2 also has hyperbolic poly-trajectories of

kind 2. That is true because of the transversality theorem which assures that sliding and

escaping points are maintained under small perturbations of the vector fields. The proof

is done after applying the same approach as Theorem 46 using regularizations, tubular

neighborhoods, and Proposition 16 and Theorem 17. □



Conclusion

In the first part of this thesis, we contribute to the theory of piecewise linear

systems with a complete study of periodic trajectories in planar piecewise linear systems

with a nonregular switching line for a proposed model. In each linear zone, a vector field

having an equilibrium point of center type is defined. Under certain conditions, we state

that at most one or two hyperbolic limit cycles can exist. Within the proof of these results

we provide a novel and useful incrementation to other results on the maximum number of

possible limit cycles for certain planar piecewise linear differential systems. We also show

the importance of the discontinuity set in the existence and number of limit cycles. It is

known that a discontinuous piecewise linear differential system separated by one straight

line formed by two linear centers has no limit cycles, and if the switching set is formed

by two parallel straight lines, a discontinuous piecewise linear differential system formed

by three linear centers can have at most one limit cycle. Wherefore with the nonregular

switching line studied in this thesis, we obtain two more limit cycles.

In the second part of this thesis, we studied Fast-Slow Systems with nonregular

discontinuity with a new approach and we identify a bifurcation of a homoclinic orbit

passing through the nonregular point of the discontinuity set. Finally, we propose a theory

of piecewise rotated vector fields. As far as we know this is the first time that such a

framework is considered.



APPENDIX A

Future Works

In this appendix, we present some problems to be studied in the future. We

start propose to study the existence of periodic orbits associated with the two differential

systems in (A-5) as we did in the chapter for the particular case of centers. If those periodic

orbits exist, they could be associated to the existence of a canard point at the origin

of the system (A-3). The attempt of considering the discontinuity region as normally

hyperbolic manifolds has not been developed yet. Still, that potential relation has been

already noticed before in papers dealing with climate discontinuous models, we mention

the papers [1] and [67].

Problem 1: Further Discussions and Generalizations of the

Model Studied in Chapter 2

Nonlinear Oscillations

We briefly discuss some aspects of the considered vector fields X and Y related

to nonlinear oscillations. In practical terms, we shall verify that those vector fields are

mathematical models of a pair of undamped, undriven harmonic oscillators. Separately,

each vector field X and Y can be modeled by a second order ODE with discontinuous

coefficients of the form

ẍ+m(x, ẋ)ẋ+n(x, ẋ)x = 0, (A-1)
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where m and n are bi-valuated constants depending on x and ẋ. It can be seen by

performing the change of variables for X setting (x,y) = ϕ(u,v) = ((−b+ βc
γ
)u+ v,(a−

αc
γ
)u+ c

γ
v) and then the translation (u,v)=ψ(ũ, ṽ)= (ũ− γ

βa−αb , ṽ) which yields X̃(ũ, ṽ)=

(ṽ,(βa−αb)ũ+(α+b)ṽ). This vector field corresponds to the planar system of first order

differential equations ẋ = y, ẏ = (βa−αb)x+(α+ b)y) or, equivalently, to the second

order differential equation

ẍ+(−α−b)ẋ+(βa−αb)x = 0.

Imposing the condition α =−b from equation (2-2) we obtain

ẍ+δx = 0, (A-2)

where δ = βa−αb is a negative value corresponding to the determinant of the homoge-

neous part of vector field X . Proceeding analogously we get that the vector field Y can

be associated to the equation ẍ+ δ̃x = 0, that is, X and Y indeed correspond to the clas-

sical equations of the undamped undriven harmonic oscillator. Hence, coming back to

equation (A-1), m(x, ẋ) vanishes while n(x, ẋ) writes either δ or δ̃ depending on the signs

of x and y = ẋ. Each one of the second order differential equations models a harmonic

oscillator. However, when they are put together by means of the piecewise linear system

Z = (X ,Y ), the switching manifold Σ previously defined induces a nonlinear behavior.

Indeed, Z can have not one but two limit cycles as we stated in Theorem 26 in Section

2.1. Thus, the combination of the two models should be better investigated for a precise

physical meaning in a future work because the previous change of variables does not pre-

serves the switching manifold. A preliminary analysis shows that a nontrivial transition

between the two harmonic oscillator takes place generating not only periodic trajectories

but also the so called sliding motion.

We exemplify the last comments considering system (3-1) with µ = 4 for which

it presents a sliding periodic trajectory, see Figures A.1 and A.2. In Figure A.1 we observe



Appendix A 94

Figure A.1: A sliding periodic trajectory for system (3-1) with
µ = 4 and initial condition (x0,y0) = ( 1

100 ,0).

the sliding motion for which the trajectory slides during a finite time maintaining y = 0

while x increases. In some sense it corresponding to a indecision of the model that

could switch to y < 0 or y > 0 eventually. This situation can be observed in Figure A.2

corresponding to the graphics of x(t) and y(t) between the dashed lines. These indecisions

are frequently associated to impacts or friction experienced by the system, see [22]. We

also notice that the model also experiences an abrupt motion when reaching the switching

manifold, see in Figure A.1 and the doted lines in Figure A.2. This abrupt changes are

related to jumps or discontinuities associated to instantaneous changes in the velocity of

acceleration of the system, we also refer to [22] for more details.

Slow fast models for membrane potential of neurons

Several dynamical systems associated to the behavior of neurons are modeled in

terms of two or more time scales, we mention for instance the Hodgkin-Huxley [37] and

Fitzhugh-Nagumo [29, 53] models. Although those models can be natively non-smooth
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Figure A.2: Periodic solutions of system (3-1) with µ = 4 and
initial condition (x0,y0) = ( 1

100 ,0). The trace of x(t)
and y(t) between the dashed lines corresponds to the
sliding motion. The doted lines correspond to crossing
points on the switching manifold.

[26], the existence of normally hyperbolic manifolds in smooth systems can bring together

nonlinear behavior as complex as those observed in non-smooth dynamics; we mention

the relation between the slow manifold associated to slow-fast systems and the sliding

motion, see [7]. A nice reference for slow-fast systems can be found in [44].

According to the previous discussion it is expected that some discontinuous

system may approximate the dynamics of some slow-fast systems. Next we show that

some planar neuron models can be studied through equations (2-1) for general values of

parameters, that is, piecewise linear discontinuous systems having centers or not.

Following [41], consider the class of slow-fast models of neurons of the form

εẋ = y− x2,

ẏ = h(x,y).
(A-3)

where ε ̸= 0 is an arbitrarily small parameter and h is some arbitrary linear function. The

dot “·” denotes derivative with respect to time t which we call slow time. By performing

an time rescaling of the form τ = t
ε

we obtain the equivalent differential system

x′ = y− x2,

y′ = εh(x,y).
(A-4)

where now “ ′ ” denotes the derivative with respect to the time τ, the fast time. There
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are some ways the approximate a discontinuous differential system by a smooth one as

the so-called pinching, see [41]. Nevertheless, due to the symmetric critical manifold

y = x2 associated to the slow system (A-3) (setting ε = 0), a more crude way consists in

replacing the x2−term of the fast system (A-4) by |x|. That have been done, for instance,

in the Michelson three-dimensional system in [11] and [12]. The obtained slow and fast

discontinuous systems are then given by

εẋ = y−|x|,

ẏ = h(x,y),
and

x′ = y−|x|,

y′ = εh(x,y),
(A-5)

respectively, where we assume that h writes h(x,y) = mx+ny+ p.

There is no general theory so far addressing discontinuous slow-fast systems.

However, here we can adapt the linear systems considered in the paper to study the

full discontinuous system (fast and slow) on compact regions as does Fenichel, see for

instance [44]. To see that, we notice that the critical manifold of the previous slow

system coincides with the discontinuity region Σ considered in the paper. Indeed, that

critical manifold writes y = |x| which has a corner at the origin and coincides with Σ

after a suitable rotation of it (and the respective vector fields X and Y ). Moreover, the

fast system of equation (A-5) is a discontinuous linear system that can be modeled by

considering suitable parameters a, b, c, α, β, γ, ã, b̃, c̃, α̃, β̃, γ̃ associated to equation

(2-1). Nevertheless, the choice of parameters to reproduce the fast discontinuous system

resembling that considered in this paper is α =−1, β = α̃ = β̃ = 1 and all other constant

vanishing.

Next, we propose some problems to be studied in other contexts.
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Problem 2: What Happens to the Trajectories of the Sys-

tem Studied in Chapter 3 at Infinity?

Consider the one-parameter family of piecewise vector fields studied on Chapter

3, i.e., the family given by:

Xµ(x,y) =


X(x,y) =

(
−4x− 17

9 y+µ,9x+4y−4
)
, (x,y) ∈ Σ+,

Y (x,y) =
(
−x− y+2,2x+ y+2

√
2
)
, (x,y) ∈ Σ−.

, (A-6)

whit Σ= Σ1∪Σ2 where Σ1 = { f−1
1 (0); x≥ 0} and Σ2 = { f−1

2 (0); y≥ 0} being f1(x,y) = y

and f2(x,y) = x. Furthermore, we define the sets Σ+ = Q1∪Σ and Σ− = Q2∪Q3∪Q4∪Σ,

where Qn, n = 1, 2, 3, 4, is the n−th quadrant of the plane R2.

In Chapter 3 we studied the phase portrait of Xµ for all values of µ. A natural

question to do is what happens to the trajectories of system (A-6) at infinity? An attempt to

answer this question is to apply the Poincaré Compactification, see [24] for more details.

Accordingly, the expression of Y (x,y) =
(
−x− y+2,2x+ y+2

√
2
)

on the local chart

U1 is given by:

u̇(u,v) = 2+u(2+u−2v)+2
√

2v,

v̇(u,v) = (1+u−2v)v,

which implies that at the point P = (u,0) we get:

u̇(u,0) = 2+u(2+u),

v̇ = 0. (A-7)

The equilibrium points of u̇(u,0) are u1,2 =−1± i, which are not real. The expression of
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Y (x,y) =
(
−x− y+2,2x+ y+2

√
2
)

on the local chart U2 is given by:

u̇(u,v) = −1+2u(1+u+
√

2v),

v̇(u,v) = −v(1+2u+2
√

2v).

At the point P = (u,0) we get:

u̇(u,0) = −1−2u(1+u),

v̇ = 0, (A-8)

whose equilibrium points are u1,2 =−1
2 ±

i
2 , again not real.

Analogously we obtain what follows for the vector field X(x,y) of the system

Xµ(x,y) for the local charts U1 and U2 on the point P = (u,0):

u̇(u,0) = 9+8u+
17u2

9
,

v̇ = 0, (A-9)

and

u̇(u,0) = −17
9
−u(8+9u),

v̇ = 0, (A-10)

respectively. Notice that both equations do not have real equilibrium points. Therefore we

can enunciate the following result:

Proposition 49 The infinity is an attractor periodic trajectory for the system Xµ(x,y).

Proof : Notice that by the previous equations there is no equilibrium points for the vector

fields X(x,y) and Y (x,y) in the local charts U1 and U2. This means that there is no

equilibrium points on infinity for the vector fields X(x,y) and Y (x,y). Therefore, infinity

is a periodic trajectory for the system Xµ(x,y).
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Remember that on Theorem 29 we prove that for µ < µ8 =
4(631

√
2+6408)

6399 always

there is a repelling periodic trajectory for Xµ(x,y). For µ = µ8 we have a semi-stable

periodic trajectory that is externally repelling. For µ > µ8 we do not have a periodic

trajectory but we have a tangential repelling trajectory. In all cases, the infinity is an

attractor for the trajectories if Xµ(x,y). □

We remark that this is a previous discussion that needs to be studied in more detail.

Problem 3: What can State Linear Rotated Piecewise Vec-

tor Field?

A way of trying to better understand Piecewise Rotated Vector Fields is to study

the linear case. How would be the case where booth vector fields of Zµ = (Xµ,Yµ) are

linear? In the next Proposition, we establish conditions for a piecewise linear vector field

to be to one-parameter family of rotated vector fields.

Proposition 50 Consider a linear vector field L(x,y) = (ax+ by+ c,dx+ ey+ f ). Then

L defines one-parameter family of rotated vector fields according to the following cases:

(i) L is rotated respect to the parameter a if e= f = 0 and d ̸= 0. More specifically, two

families can occur, L1
a(x,y) = (ax+by+ c,dx) if b ̸= 0 and L2

a(x,y) = (ax+ c,dx)

if b = 0 and c ̸= 0;

(ii) L is rotated respect to the parameter b if, and only if, d = f = 0 and e ̸= 0.

More specifically, two families can occur, L1
b(x,y) = (ax+ by+ c,ey) if a ̸= 0 and

L2
b(x,y) = (by+ c,ey) if a = 0 and c ̸= 0;

(iii) L is rotated respect to the parameter c if, and only if, d = e = 0 and f ̸= 0. More

specifically, one family can occur, Lc(x,y) = (ax+by+ c, f );

(iv) L is rotated respect to the parameter d if, and only if, b = c = 0 and a ̸= 0.

More specifically, two families can occur, L1
d(x,y) = (ax,dx+ ey+ f ) if e ̸= 0 and

L2
d(x,y) = (ax,dx+ f ) if e = 0 and f ̸= 0;
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(v) L is rotated respect to the parameter e if, and only if, a = c = 0 and b ̸= 0.

More specifically, two families can occur, L2
e(x,y) = (by,dx+ ey+ f ) if d ̸= 0 and

L2
e(x,y) = (by,ey+ f ) if d = 0 and f ̸= 0;

(vi) L is rotated respect to the parameter f if, and only if, a = b = 0 and c ̸= 0. More

specifically, one family can occur, L f (x,y) = (c,dx+ ey+ f );

The proof of the last result is direct but we insert it here for completeness.

Proof : We prove bullets (i) and (iii) of Proposition 50, the proof of other bullets are

similar. To prove bullet (i) notice that L is rotated with respect to the parameter a if

∣∣∣∣∣∣∣
ax+by+ c de+ ey+ f

x 0

∣∣∣∣∣∣∣=−dx2 − exy− f x

is positive or negative. Since the last inequality must hold for every regular point of L we

prove the first part of the proof. Assuming e = f = 0 and d ̸= 0, the linear vector field L

has a equilibrium point (x0,y0) if b ̸= 0 which is located at (x0,y0) =
(
0,− c

b

)
, so we get

the family L1
a. If b = 0 and c ̸= 0 then L has no equilibria and in this case, we obtain the

family L2
a. Notice that when b = c = 0 there exists a continuum of equilibria so L cannot

be rotated in this case.

The proof of bullet (iii) follows noticing that L is rotated if −dx − ey − f is

always positive or negative, which occurs when d = e = 0 and f ̸= 0, obtaining the

one-parameter linear vector field Lc given in (iii). □

A direct consequence of Proposition 50 is the vector field Z(X ,Y ) studied in

Chapters 2 and 4 given by:

X(x,y) =

(
−bx− 4b2 +w2

4a
y+d, ax+by+ c

)
,

Y (x,y) =

(
−Bx− 4B2 +W 2

4A
y+D, Ax+By+C

)
, (A-11)

can not be one-parameter family of rotated vector fields. The same is true for the
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one-parameter family of rotated piecewise vector fields Xµ(X ,Y ) studied in Chapter 5.

Moreover, Proposition 50 allowed the building a variety examples of Piecewise Rotated

Vector Fields.

To improve this discussion it would be necessary a more careful study in order

to get more results about the properties of the Linear Rotated Piecewise Vector Field.

Problem 4: Is it Possible to Generalize the Classical Expan-

sion and Contraction Theorem of Rotated Vector Fields

for Piecewise Rotated Vector Fields?

A natural question to do about piecewise rotated vector field would be to try

to generalize the Classical Expansion and Contraction Theorem of Rotated Vector Field

for Piecewise Rotated Vector Fields, i.e., would be to prove something like the following

result:

Result 51 Let Zµ be a piecewise rotated vector field. Assume that Zµ satisfies the hypothe-

ses of Fundamental Lemma 42. Then, stable and unstable poly-trajectories of kind 1 of

Zµ = (Xµ,Yµ) expand or contract monotonically as the parameter µ varies in a fixed sense

and the motion covers an annular neighborhood of the initial position.

So far as we studied this problem, we cannot get enough tools to prove this result.

We leave this study open for the future.
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