
UNIVERSIDADE FEDERAL DE GOIÁS

INSTITUTO DE INFORMÁTICA

LUCAS DA SILVA ASSIS

CGPlan: A Scalable Constructive Path
Planning for Mobile Agents based on

the Compact Genetic Algorithm.
CGPlan: Um planejamento de rotas construtivo e

escalável para agentes móveis baseado no algoritmo
genético compacto.

Goiânia
2017

LUCAS DA SILVA ASSIS

CGPlan: A Scalable Constructive Path
Planning for Mobile Agents based on

the Compact Genetic Algorithm.
CGPlan: Um planejamento de rotas construtivo e

escalável para agentes móveis baseado no algoritmo
genético compacto.

Dissertação apresentada ao Programa de Pós–Graduação do
Instituto de Informática da Universidade Federal de Goiás,
como requisito parcial para obtenção do título de Mestre em
Programa de Pós-Graduação em Ciência da Computação.

Área de concentração: Ciência da Computação.

Orientador: Prof. Dr. Anderson da Silva Soares

Co-Orientador: Prof. Dr. Gustavo Teodoro Laureano

Goiânia
2017

Ficha de identificação da obra elaborada pelo autor, através do
Programa de Geração Automática do Sistema de Bibliotecas da UFG.

CDU 004

da Silva Assis, Lucas
 CGPlan : A Scalable Constructive Path Planning for Mobile Agents
based on the Compact Genetic Algorithm [manuscrito] : CGPlan: Um
planejamento de rotas construtivo e escalável para agentes móveis
baseado no algoritimo genético compacto. / Lucas da Silva Assis. -
2017.
 74 f.: il.

 Orientador: Prof. Dr. Anderson da Silva Soares; co-orientador Dr.
Gustavo Teodoro Laureano.
 Dissertação (Mestrado) - Universidade Federal de Goiás, Instituto
de Informática (INF), Programa de Pós-Graduação em Ciência da
Computação, Goiânia, 2017.
 Bibliografia. Apêndice.
 Inclui tabelas, algoritmos, lista de figuras, lista de tabelas.

 1. Robótica Móvel. 2. Planejamento de Rotas. 3. Computação
Evolutiva. 4. Algorítimo Genético Compacto. I. da Silva Soares,
Anderson, orient. II. Título.

Todos os direitos reservados. É proibida a reprodução total ou parcial do
trabalho sem autorização da universidade, do autor e do orientador(a).

Lucas da Silva Assis

Engenheiro Eletricista pela EMC - Universidade Federal de Goiás. Durante a
graduação co-fundou o Núcleo de Robótica Pequi Mecânico - UFG e tornou-
se coordenador da equipe de futebol de robôs (categoria IEEE Very Small
Size Soccer). Durante o Mestrado foi bolsista CAPES e continuou a pesquisa
com a temática de futebol de robôs, com o foco na movimentação e geração
de trajetórias para agentes móveis.

Este trabalho é dedicado às várias crianças adultas que, quando pequenas,
sonharam em se tornar cientistas.

Agradecimentos

Agradeço primeiramente a Deus pela minha vida, pelas oportunidades e por
permitir que meus sonhos se concretizassem.

Agradeço também ao meu orientador Dr. Anderson Soares e ao meu coorientador
Dr. Gustavo Teodoro pela confiança, pelo conhecimento compartilhado e pela indispen-
sável orientação no desenvolvimento deste trabalho. Agradeço também à CAPES, pela
bolsa de mestrado concedida que permitiu a execução desta pesquisa.

Agradeço a toda a minha família, especialmente a meus pais, Orlando Dionízio
e Sávia Cristina pela educação, amor e incentivo durante toda a minha vida, o seu apoio e
a ajuda tornaram possível a realização desse trabalho.

Agradeço minha namorada Ludmille, melhor amiga e companheira de todas as
horas, pelo carinho e confiança, pela compreensão nos momentos de dificuldade, pelos
momentos felizes que vivemos juntos e por ter sempre me apoiado e motivado a atingir
meus objetivos.

E por último, mas não menos importante, agradeço à todos os amigos e colegas
de trabalho do Núcleo de Robótica Pequi Mecânico da UFG pela inspiração e constante
incentivo para desempenhar o meu melhor nesse trabalho. Agradeço especialmente aos
amigos Vinícius Oliveira e Vinícius Araújo pelo companheirismo e ajuda nos diversos
desafios durante esta jornada no mestrado.

“We can only see a short distance ahead, but we can see plenty there that
needs to be done.”

Alan Turing,
Computing machinery and intelligence.

Resumo

ASSIS, LUCAS DA SILVA. CGPlan: A Scalable Constructive Path Planning
for Mobile Agents based on the Compact Genetic Algorithm.. Goiânia, 2017.
74p. Dissertação de Mestrado. Instituto de Informática, Universidade Federal de
Goiás.

O planejamento de rotas é um recurso importante para agentes móveis, permitindo-lhes
encontrar caminhos ideais entre os pontos desejados. Neste contexto, caminhos ideais
podem ser entendidos como trajetórias que melhor atingem um objetivo, minimizando
a distância percorrida ou o tempo gasto, por exemplo. As técnicas tradicionais tendem
a considerar um modelo global do ambiente, no entanto, os problemas reais de planeja-
mento de rotas usualmente estão no âmbito de ambientes desconhecidos ou parcialmente
desconhecidos. Portanto, aplicações como essas geralmente são restritas a abordagens
subótimas que planejam um caminho inicial baseado em informações conhecidas e, em
seguida, modificam o caminho localmente ou até planejando novamente todo o caminho
à medida que o agente descobre novos obstáculos ou características do ambiente. Sendo
assim, mesmo as estratégias tradicionais de planejamento de caminhos sendo amplamente
utilizadas em ambientes parcialmente conhecidos, suas soluções subótimas se tornam
ainda piores quando o tamanho ou a resolução da representação do ambiente aumentam.
Por isso, neste trabalho apresentamos o CGPlan (Constructive Genetic Planning), uma
nova abordagem evolutiva baseada no Algoritmo Genético Compacto (cGA) que almeja
um planejamento eficiente de caminho em ambientes conhecidos e desconhecidos. O
CGPlan foi avaliado em ambientes simulados com crescente complexidade e comparado
a técnicas comuns utilizadas para o planejamento do caminho, como o A*, o algoritmo
BUG2, o RRT (Rapidly-Exploring Random Tree) e o planejamento evolutivo do caminho
usando clássico Algoritmo Genético. Os resultados mostraram uma grande eficiência
da proposta e indicam uma nova abordagem confiável para o planejamento de rotas
de agentes móveis com poder computacional limitado e restrições em tempo real no
hardware.

Palavras–chave
Planejamento de Rotas Local, Algoritmo Genético Compacto, Agentes Móveis.

Abstract

ASSIS, LUCAS DA SILVA. CGPlan: A Scalable Constructive Path Planning
for Mobile Agents based on the Compact Genetic Algorithm.. Goiânia, 2017.
74p. MSc. Dissertation. Instituto de Informática, Universidade Federal de Goiás.

Path Planning is an important feature for autonomous mobile agents, allowing them
to find optimal paths between desired points. These optimal paths can be understood
as trajectories that best achieves an objective, e.g. minimizing the distance travelled
or the time spent. Most of usual path planning techniques assumes a complete and
accurate environment model to generate optimal paths. But many of the real world
problems are in the scope of Local Path Planning, i.e. working with partially known or
unknown environments. Therefore, these applications are usually restricted to sub-optimal
approaches which plan an initial path based on known information and then modifying
the path locally or re-planning the entire path as the agent discovers new obstacles or
environment features. Even though traditional path planning strategies have been widely
used in partially known environments, their sub-optimal solutions becomes even worse
when the size or resolution of the environment’s representation scale up.
Thus, in this work we present the CGPlan (Constructive Genetic Planning), a new
evolutionary approach based on the Compact Genetic Algorithm (cGA) that pursue
efficient path planning in known and unknown environments. The CGPlan was evaluated
in simulated environments with increasing complexity and compared with common
techniques used for path planning, such as the A∗, the BUG2 algorithm, the RRT (Rapidly-
Exploring Random Tree) and the evolutionary path planning based on classic Genetic
Algorithm. The results shown a great efficient of the proposal and thus indicate a new
reliable approach for path planning of mobile agents with limited computational power
and real-time constraints on on-board hardware.

Keywords
Local Path Planning, Compact Genetic Algorithm, Mobile Agents.

Contents

List of Figures 13

List of Tables 15

List of Algorithms 16

1 Introduction 17
1.1 Contextualization 17
1.2 Motivation 18

1.2.1 Path planning efficiency. 18
1.2.2 Planning and reacting behaviours. 19
1.2.3 Planning with limited knowledge. 19
1.2.4 The Constructive Genetic Planning - CGPlan. 19

1.3 The organization of this work. 20

2 Path Planning 21
2.1 The Path Planning Problem 21

2.1.1 Configuration Space 21
2.1.2 Environment representation 23

2.2 Related Works 24
2.2.1 The A* Path Planning 24
2.2.2 The Bug Path Planning 28

The Bug1 strategy 28
The Bug2 strategy 29

2.2.3 The Rapidly-exploring Random Tree - RRT 31
2.2.4 The GA Path Planning 35

3 The Proposal 39
3.1 The Compact Genetic Algorithm 39

3.1.1 The Probability Vector - PV 40
3.1.2 Selection 40
3.1.3 Crossover 42

3.2 The Real-encoded Compact Genetic Algorithm. 42
3.2.1 The real-value representation in the rcGA. 42

3.3 The CGPlan 45
3.3.1 Evaluation 45
3.3.2 Avoiding local minima 48

4 Experiments and Results 50
4.1 The simulation setup 50
4.2 Performance and quality comparison 51

4.2.1 First scenario - Environment with random scattered obstacles 51
4.2.2 Second scenario - Environment with indoor-like configuration 55

4.3 Experiments Analysis. 57
4.4 Scalability Comparison 57

4.4.1 A* Scalability 58
4.4.2 RRT Scalability 58
4.4.3 CGPlan Scalability 59

5 Conclusion and Future Works 61
5.1 Conclusion 61
5.2 Future Works 62

Bibliography 63

A Random generated maps with 20% infill. 67

B The path planning simulator. 69

List of Figures

2.1 Common distance heuristics used in the A* 25
2.2 An Illustration on the A* and Dijkstra solutions to different path planning

problems.[25] 27
2.3 An Illustration of the Bug1 Algorithm. [16] 29
2.4 An Illustration of the Bug2 Algorithm. [16] 30
2.5 An Illustration of the RRT’s coverage. 31
2.6 An Illustration of the RRT’s expansion strategy. 34
2.7 An Illustration of the RRT’s behaviour in the presence of obstacles. 34
2.8 Different chromosomes evaluated by the GA. 36
2.9 Common path representation used by GAs. 37

3.1 Illustration of the CGPlan’s output at differing cycles. 45
3.2 Comparison of the original map and a visual gray-scale representation of

the distance transform. A darker pixel means closer to an obstacle in this
representation. 47

3.3 Representation of possible local minimum situations. 48
3.4 Illustration of the CGPlan’s strategy to overcome local minimum. 48

4.1 Best solutions found by A* (a), Bug2 (b), and GA (c) after 30 executions. 51
4.2 Best solutions found by RRT (a), and CGPlan (b) after 30 executions. 52
4.3 Overall results for path length comparison after 30 runs. 52
4.4 Overall results for time consumption after 30 runs (logarithm scale). 53
4.5 Overall results for final path’s length after 30 executions in 10 different maps. 54
4.6 Overall results for time consumption after 30 executions in 10 different

maps (logarithm scale). 54
4.7 The best solutions proposed by the chosen techniques after 30 executions. 55
4.8 Comparison of solution length after 30 executions. 56
4.9 Comparison of time consumption after 30 executions. 56
4.10 Comparison of the A*’s time consumption after 30 executions on each

resolution. 58
4.11 Comparison of RRT’s time consumption after 30 executions on each

resolution. 59
4.12 Comparison of CGPlan’s time consumption after 30 executions on each

resolution. 60

A.1 Randomly generated maps used in the comparison. 67
A.2 Randomly generated maps used in the comparison. 68

B.1 The main window of the simulator. 69

B.2 Editing a map in the simulator. 70
B.3 Loading a map into the simulator. 71
B.4 Report after a path planning execution. 72
B.5 The serial test feature. 73
B.6 Data Analysis Tool. 74

List of Tables

2.1 Some common robot configurations and their respective C-Space repre-
sentation. [14] 22

2.2 Comparison on the chosen techniques. 24
2.3 Chromosome representation for the path illustrated in figure 2.9 37

3.1 Individuals for the onemax example. 40

List of Algorithms

2.1 Pseudo-code of the A* 26
2.2 Pseudo-code of the RRT 33

3.1 Pseudocode of the cGA 41
3.2 Pseudocode of the rcGA 44
3.3 Pseudocode of the CGPlan 49

CHAPTER 1
Introduction

1.1 Contextualization

Machines that can operate autonomously is a concept that dates back to classical
times, but research into the functionality and potential uses of robots did not grow
substantially until the 20th century. Product of these researches, the first modern robots
appeared in industrial manufacturing – as simple fixed machines capable of manufacturing
tasks which allowed production without the need for human assistance. Robotics has also
achieved its first economic success in this field, as robot arms, or manipulators, became a
2 billion dollar industry in the early 2000s. Since this, robotic applications have rapidly
grown from purely industrial manufacturing to service and household assistants, reaching
3.6 million units of service robots and 1.6 million units of industrial robots worldwide,
with a total market value of 11.1 billion dollars in 2015 [23].

Even before the advent of affordable mobile robots, the path planning field was
heavily explored due to its applicability in the area of industrial manipulator robotics. This
fundamental robotic task was first used as a means of planning collision-free movements
for complex bodies from a beginning to a goal position among a collection of static
obstacles.

Static at a specific position in the assembly line, an industrial manipulator can
use path planning techniques to move with great speed and accuracy in order to perform
repetitive tasks such as spot welding and painting. In the electronics industry, manipu-
lators are also used to place surface-mounted components with superhuman precision,
making modern smartphones and laptop computers possible.

Although a relatively simple approach, the path planning problem turned out to
be computationally hard, becoming even worse when the environment’s map is scaled
up to represent larger scenarios [28]. Modern algorithms have been fairly successful
in addressing hard instances of the basic geometric problem and a lot of effort is
devoted to extend their capabilities to more challenging instances, in which computational
complexity and map scalability continues to be great challenges to overcome.

1.2 Motivation 18

Interestingly, the path planning problem for a manipulator is usually far more
complex than that of a common mobile robot operating in a simple environment. There-
fore, although inspired by the earlier techniques developed for manipulators, the path
planning algorithms used by mobile robots tend to be simpler approximations owing to
the greatly reduced degrees of freedom. Furthermore, industrial robots often operate at
the fastest possible speed because of the economic impact of high throughput on a factory
line. So, the dynamics and not just the kinematics of their motions are significant, further
complicating path planning and execution. In contrast, a number of mobile robots oper-
ate at such low speeds that dynamics are rarely considered during path planning, further
simplifying the mobile robot instantiation of the problem.

1.2 Motivation

In the upcoming subsections the topics that inspired the development of this work
are discussed.

1.2.1 Path planning efficiency.

Path planning efficiency for autonomous navigation is still an open challenge
in robotics. In the last decades, the efforts to reach an intelligent motion behavior lead
to various strategies both in literature and industry: the deterministic solution, based on
heuristic graph search; the reactive solution, based on environment sensor data; and the
sampling-based solution, representing the solutions to the path planning with a road map
of sampled configurations [5]. Recently, new evolutionary approaches have also reached
the spotlight, proving to be competitive with the already renowned solutions [18] [20].

Unfortunately, the main complications concerning path planning efficiency are
the difficulty to directly compute Cobs and C f ree from a real environment, as the dimen-
sionality of a real C-space often reaches high values. In terms of computational com-
plexity, the path planning problem of a rigid body in a 2D environment was shown to
be PSPACE-hard by Reif [28], and a series of polynomial time algorithms for problems
with fixed dimension suggested an exponential scalability with the dimensionality of the
C-space [31] [32].

Certain path planning problems can become even harder, for example, planning
under uncertainty in a 3D polyhedral environment was shown to be NEXPTIME-hard [4],
as the hardest problems in NEXPTIME are believed to require doubly-exponential time
to solve. In this work the term scalability refers to how a certain technique can handle the
increase in dimensionality or size of the C-space.

1.2 Motivation 19

1.2.2 Planning and reacting behaviours.

Planning and reacting are often viewed as contrary behaviours or even opposites
by the artificial intelligence community [34]. However, when applied to mobile agents,
combining these two behaviours can greatly enhance the agent’s ability to navigate in real
environments.

The navigation problem is usually solved by executing a previously established
course of action (or plan) in order to reach its goal position. Unfortunately, during
execution the agent can encounter unforeseen events (e.g., obstacles or other agents),
forcing it to react in such a way as to still reach the goal. Without reacting, the planning
effort will likely be incomplete, as the robot will diverge from its path and could never
physically reach its goal. Without planning, the reacting effort usually cannot solely guide
the robot through the environment, possibly never reaching the desired goal.

1.2.3 Planning with limited knowledge.

The autonomous navigation of a mobile agent relies heavily on its ability to
balance planning and reacting behaviours. In some cases, the agent has a complete
knowledge of the environment and can solely plan its path based on it, not needing a
reactive behavior. Unfortunately, in most applications the only available information cover
the task’s goal and little or no information are available about the environment, forcing
most real-world mobile agents to gather information about the environment and react
while moving.

Traditional approaches to the path planning problem tend to struggle with this
lack of knowledge, compelling applications with limited information to resort on sub-
optimal solutions. This problem becomes even worse when a path is planned entirely
before navigation begin, disregarding the possibility of unforeseen obstacles. This ap-
proach lead to expensive computational cost when reaction is needed, as modifications to
the original path must be made.

1.2.4 The Constructive Genetic Planning - CGPlan.

Based on the topics discussed above, an efficient and scalable approach is
desirable when dealing with restricted information, especially when a higher resolution
or dimension in the representation of the environment is required. Within the context of
mobile agents, the planning also needs to be computationally viable and be completed
within a reasonable time frame, since the agent must often perform its task with a low
performance on-board equipment.

1.3 The organization of this work. 20

With that in mind, the reacting and planning behaviour are merged in this work,
creating a technique that plan short trajectories aiming at the goal while still reacting to the
local environment around the agent. Aiming at a relative inexpensive optimization, these
trajectories are found using a Compact Genetic Algorithm search, and the collection of
these short trajectories forms, in a constructive fashion, the final path between the starting
and goal position, hence the name Constructive Genetic Planning or CGPlan in short.

This technique is especially designed to navigate in unknown environments but
it is competitive with traditional planning strategies in completely known environments.
Most importantly, it can also achieve the standards listed above, generating optimal or
near-optimal paths with low resources consumption using high resolution representations
of the environment.

1.3 The organization of this work.

We start by clarifying the path planning problem and its conventional approaches
in chapter 2. We then discuss the choice of a compact genetic algorithm for efficient
optimization, eventually reaching the proposed planning strategy in chapter 3. In this
chapter we then provide a full description on the path construction, the evaluation process
and the solution to the local minimum used in our proposal. Furthermore in chapter
4, computer simulations are used to compare the proposed technique with four well-
stabilised path planning approaches, addressing the differences and similarities both in
terms of solution quality and performance. Finally, experiments with scalability show
the behaviour of each strategy when exposed to increasing on the resolution of the
environment’s representation.

CHAPTER 2
Path Planning

This chapter starts with the definition behind the path planning problem and
its various classifications in section 2.1, ranging from available knowledge from the
environment through the choice of its representation. In section 2.2 a discussion on
the related works in the literature is present, focusing on the four techniques chosen to
compose a comparison group for the proposed CGPlan.

2.1 The Path Planning Problem

Path planning is an important task for autonomous mobile agents that lets them
find a path between points, obeying restrictions imposed by environment and requirements
from the application [16]. These paths can achieve any specific requirement, therefore,
algorithms designed to find these paths are important not only in robotics, but also in
network routing, video games, and gene sequencing. Path planning applications are also
often placed in two categories based on the previous knowledge of the environment
[33]. Global path planning, also known as offline path planning, occurs in environments
where complete information about stationary obstacles and moving obstacles is known
in advance. When this option is not available, the mobile agent gathers information as it
moves through the environment. This is known as online or local path planning.

2.1.1 Configuration Space

Modern path planning of manipulator robots, and even for most mobile robots, is
usually done using a representation of the workspace called configuration space. Let A be
a complete description of the geometry of a robot and W be a workspace populated with
obstacles, with W = IRN , in which N = 2 or N = 3. The configuration space, or C-space,
is defined as the set of all possible configurations, representing all transformations that
can be applied to a robot given its kinematics.

The path planning goal is to find a collision-free path for A to move from an initial
position and orientation to a goal position and orientation. To achieve that, a complete

2.1 The Path Planning Problem 22

specification of the location of every point on the robot geometry, i.e a configuration q,
must be provided. Supposing that A has k degrees of freedom, every state or configuration
possible of A can be described with k real values: q1, q2 , . . . , qk.

Likewise, the closed set A(q)⊂W denote the set of points that can be occupied
by the robot when at configuration q ∈C, and the closed set O ⊂W is used to represent
the obstacle points in the workspace. The subspace solely composed by obstacles in the
C-space, Cobs, can be defined as expressed in equation 2-1.

Cobs = {q ∈C | A(q)∩O 6= /0}[16] (2-1)

Since O and A(q) are closed sets in W , the obstacle region is a closed set in C.
Therefore, the set of configurations that avoid collision can be defined as C f ree = C \Cobs,
and is called the free space. This representation is a useful approach to abstract planning
problems in a unified way, mapping a robot with complex kinematics in the workspace to
a single k-dimensional point in the C-space. Several common robots and their respective
C-Space representation can be seen in table 2.1.

However, in common mobile applications the robot can often be simplified to
a single point in the workspace, reducing the configuration space to a 2D representation
with just x and y axes. This simplification make the configuration space looks essentially
identical to a 2D version of the workspace, with obstacles inflated by the robot’s radius.
In this work, the path planning is treated as a general problem to be solved in the
configuration space described above, disconnected from the kinematics of the robot that
will perform them. Therefore, the robot is also referred to with a general term - the agent.

Table 2.1: Some common robot configurations and their respective
C-Space representation. [14]

Type of Robot C-Space Representation
Mobile robot translating in the plane. IR2

Mobile robot translating and rotating in the plane. SE(2) or IR2×S1

Rigid body translating in the three-space. IR3

A Spacecraft. SE(3) or IR3×SO(3)
An n-joint revolute arm. T n

A planar mobile robot with an attached n-joint arm SE(2)×T n

Note that in table 2.1 the notations SO(n), SE(n) and S1, represents the set of all
n×n rotation matrices, the set of all n×n homogeneous transformation matrices and the
set of all 2D joint angles respectively. In the other hand, the notation T n represents the set
of all 2D joint angles, S1, multiplied n times (e.g T 2 = S1×S1).

2.1 The Path Planning Problem 23

2.1.2 Environment representation

In addition to knowledge of the environment, the choice of environment repre-
sentation (i.e the map), is also crucial to solve the path planning problem. The represen-
tation impacts directly on the performance and resources consumption of path planning
methods, since it is responsible for the processing and storage of information collected
from the environment. Hence, three fundamental relationships must be understood when
choosing a particular map [34]:

1. The size of the map must appropriately match the precision with which the agent
needs to achieve its goals.

2. The type of the map and the features represented must match the precision and data
types returned by the agent’s sensors.

3. And more importantly for low performance agents, the resolution of the map
representation has direct impact on the computational complexity of reasoning
about mapping, localization, and navigation.

Reasoning with these relationships, two main approaches to environment repre-
sentation emerged over time: continuous and discrete.

• The continuous approximation is one method for decomposition and representation
of the environment. The position of environmental features (e.g, obstacles, doors,
etc.) can be marked in continuous space. Generally, mobile agent implementations
use continuous maps only in 2D representations, as further increase in dimension-
ality can result in high computational complexity, as seen in subsection 1.2.1. A
common approach is to combine the exactness of a continuous representation with
the compactness of the closed-world assumption. This means that the representa-
tion will specify all objects in the environment, and that any area in the environment
that is devoid of objects will not be represented. Thus, the total storage needed in
this representation is proportional to the density of objects in the environment, and
a sparse environment can be represented by a low-memory structure. In summary,
the continuous map representation has the potential for high accuracy and expres-
siveness of the environment as well as the agent position within that environment
but the map can be computationally costly if not sparse [34].
• In a discrete approximation, the environment is sub-divided into equal areas (e.g., a

grid or hexagonal) or differing areas (e.g., rooms in a building). Discrete maps are
know to perfectly fit a graph representation, where the every area of the environment
corresponds to a vertex (also known as a node), which is connected by edges,
so an agent can navigate by traversing the graph. Computationally, this graph
can be stored as an adjacency, incidence list, or matrix, being a very inexpensive

2.2 Related Works 24

representation, growing with the size and resolution of the sub-divisions of the
environment. However, if a combination of high resolution and large environment
is present, this approach can quickly become untenable [34]. Assuming a discrete
approximation, an optimal path planning solution could be the shortest path from
one vertex to another through a connected graph. The term shortest here refers to
the minimum cumulative edge cost, which could be physical distance, time spent
on travel, or any other important metric for a particular application.

2.2 Related Works

Various possible strategies for local and global path planning have been used
effectively [22]. Classic techniques such as A∗ [7], the Bug2 algorithm [3], RRT [15]
and different heuristic approaches using well-known techniques such as particle swarm
optimization (PSO) [29], artificial neural networks (ANN) [26], fuzzy logic (FL) [1],
and genetic algorithms (GA) [13] have been described as effective and reliable for
path planning. Among these, four well renowned techniques were chosen to serve as
comparison to the proposed CGPlan. A brief relation on the main characteristics of each
technique can be found in table 2.2 and a detailed description to these techniques can be
found in subsections 2.2.1 through 2.2.4

Table 2.2: Comparison on the chosen techniques.
Technique Features Known Advantages Known Disadvantages

A*
• Global path planning.
• Heuristic distance consideration.

• Optimal path generation.
• Simple implementation.

• Restricted trajectories within grids or graphs.
• Bad scalability with map resolution.

Bug2
• Local path planning.
• Deterministic path planning.

• Low resource consumption.
• Very simple implementation.

• Can output an inefficient path in some
obstacle configurations.

RRT [12]
• Global path planning.
• Auxiliary path smoothing technique.

• Efficient search of non-convex spaces.
• Reasonable resource management.

• Struggles with narrow passages.
• Optimal path is not guaranteed.

GA [11]
• Global path planning.
• Fixed-length binary chromosome.
• Basic genetic operators.

• Can solve complex environments.
• Near-optimal path generation.

• Very time consuming.
• Bad scalability with map resolution.

2.2.1 The A* Path Planning

One of the earliest and simplest path planning algorithms is known as the
Dijkstra’s algorithm. Starting from the initial vertex of a graph, the algorithm marks all
direct neighbors with its respective distance cost. It then proceeds from the neighbor with
the lowest cost, repeating the process to all of its adjacent vertexes. Once the algorithm
reaches the goal, it terminates and the agent can follow the edges pointing towards the
lowest edge cost. One well known improvement to the Dijkstra’s algorithm can be done
by adding an estimated cost of movement, usually with a heuristic distance function. This
improved algorithm is known as A* path planning. The A* is a best-first search, with each
cell being evaluated by the fitness function:

2.2 Related Works 25

F(v) = H(v)+G(v) (2-2)

where H(v) is any heuristic distance function, e.g. Manhattan, Euclidean or Chebyshev of
a cell to the goal state and G(v) is the distance cost, a representation of the path’s length
from the initial state to the current cell. The algorithm proceeds to evaluate each adjacent
cell of its current state and chooses the cell with the lowest value of F(v) as the next one
in the path sequence.

The heuristic function H(v) must be a computationally easy estimate of the
distance between each node and the goal, as it will be calculated at least once for every
node before reaching the goal. The implementation of the H score can vary depending on
the properties of the graph being searched, with the most common being the heuristics
illustrated in figure 2.1:

(a) The Euclidean distance function. (b) The Chebyshev distance func-
tion.

(c) The Manhattan distance
function.

Figure 2.1: Common distance heuristics used in the A*

The classic implementation of the A* path planning uses two lists to manage the
search between nodes. The open list, usually contains nodes that have been visited but
not yet expanded (meaning that its successors have not been explored yet). This is also
known as the list of pending tasks. The closed list, however, consists on nodes that have
been visited and expanded (successors have been explored already and included in the
open list, if needed). The pseudo-code showed in 2.1 further explains the use of these two
data structures in the implementation of the A*.

2.2 Related Works 26

Algorithm 2.1: Pseudo-code of the A*

Let the goal node be denoted by node_goal, the source node be denoted by
node_start, the open list be denoted by OPEN and the closed list be denoted by
CLOSED.
/* Push the node_start in the OPEN list */

1 OPEN← node_start

/* While the open list is not empty */

2 while !OPEN.empty() do
/* Take the node with the lowest fitness from the open list */

3 node_current = OPEN.pull_lowest_node()

4 CLOSED← node_current

5 node_current_ f itness = H(node_start,node_current)+G(node_current)

/* Check if node_current is the goal node */

6 if node_current = node_goal then
7 return reconstruct_path(PAT H)

8 end
/* For each successor node do the following */

9 for i=1 to node_current.get_successor_total() do
/* Get the successor fitness */

10 node_successor = node_current.get_successor_node(i)

11 node_successor_ f itness =
G(node_current)+H(node_current,node_successor)

/* Do not evaluated previously expanded nodes. */

12 if !CLOSED.contains(node_successor) then
13 if !OPEN.contains(node_successor) then

/* Push the node_successor in the OPEN list for

further expansion */

14 OPEN← [node_successor , node_successor_ f itness]

15 end
16 if node_successor_ f itness <= G(node_successor) then

/* This path is the best until now. Record it. */

17 PAT H← [node_current,node_successor]

18 end
19 end
20 end
21 end

2.2 Related Works 27

An illustration on the solution to planning in different environments obtained
with the A* and Dijkstra’s algorithm can be seen in figure 2.2. In this figure, the pink
square represents the starting point, while the blue square represents the goal for the
path planning. Sub-figures (b) and (d) shows the Dijkstra’s solution to two different
environments, while the teal color shows the ones explored by the algorithm with lighter
tones being the most recent. In the other hand, the sub-figures (a) and (c) shows the A*’s
solution for the same environments with the yellow representing the heuristic distance
function and teal representing the distance cost for a given tile.

(a) A*’s solution to a simple plan-
ning problem.

(b) Dijkstra’s solution to a simple
planning problem.

(c) A* solution to a planning prob-
lem with obstacles.

(d) Dijkstra’s solution to a planning
problem with obstacles

Figure 2.2: An Illustration on the A* and Dijkstra solutions to
different path planning problems.[25]

In summary, the A* is a discrete global approach that combines the advantages
of uniform-cost and greedy searches using a fitness function [7]. The A* path planning is
also easily modifiable, as different task requirements can be added as heuristic functions
to the fitness, i.e. energy consumption or path safety. However, the computational time
can scale exponentially with increase in the number of cells to be processed [24]. The A*
was chosen for comparisons due to its well known solution quality and robustness, been
a good parallel to the proposed CGPlan.

2.2 Related Works 28

2.2.2 The Bug Path Planning

Bug is a family of algorithms that solve planning problems using ideas that are
related in many ways to the maze exploration. This class of algorithms is based on the
assumption that the agent is placed into an unknown 2D environment that may contain
any finite number of bounded obstacles. These obstacles could be composed by polygons,
smooth curves, or any combination of curved and linear parts [16].

The agent must know its position and orientation and should be able to perform
two simple types of sensing, these being :

• A goal sensing, indicating the current Euclidean distance to the goal and the relative
direction to the goal.
• A local visibility sensing, providing the shape and distance from obstacles within a

small radius from the robot.

The goal sensing encodes the robot and goal position in a polar coordinate system
in which the goal is the origin. Therefore, unique coordinates can be assigned to any
position already visited. This feature allows the agent to incrementally trace out obstacle
boundaries that it has already traversed. In the other hand, the local visibility sensing
provides just enough information to allow a wall-following behaviour; as the range of the
sensing is usually very short implying that the robot cannot learn any other information
about the environment.

These path planning approaches requires minimum sensing input and have a
simple algorithm that circumnavigate obstacles in order to reach the goal, being able
to work in global or local planning applications. Currently, there are many types of
Bug algorithms, the most commonly used and referred to in mobile robot path planning
being the Bug1 and Bug2, DistBug, VisBug, and TangentBug [3]. The DistBug, VisBug,
and TangentBug are the later evolutions to this family of algorithms, following the
same strategy as the Bug2 and incorporating range sensors to the usual Bug sensing
configuration in order to improve its solutions. Despite their differences, the variations
of Bug algorithms show the same effort toward shorter path planning, shorter timing,
simpler algorithms, and better performance.

The Bug1 strategy

The Bug1 algorithm was proposed by [19] as a simple and effective solution
to path planning problem. It is the first Bug’s family algorithm and its solution to the
planning problem is illustrated in figure 2.3. Its execution usually follows as described
below:

2.2 Related Works 29

1. Move toward the goal until an obstacle or the goal is encountered. If the goal is
reached, then stop.

2. Turn left and follow the entire perimeter of the contacted obstacle. Once the full
perimeter has been visited, then return to the point at which the goal was closest,
and go to Step 1.

Figure 2.3: An Illustration of the Bug1 Algorithm. [16]

In this strategy, finding a point at which the goal sensing repeats its output
indicates that the entire perimeter has been traversed. The worst case is conceptually
simple to understand, as the total distance travelled by the robot is no greater than Dmax ,
as expressed in equation 2-3;

Dmax = d +(3/2)
M

∑
i=1

pi (2-3)

In which d is the Euclidean distance from the initial position to the goal position, p is
the perimeter of the ith obstacle, and M is the number of obstacles. This means that the
boundary of each obstacle is followed no more than 3/2 times. This bound relies on the
fact that the robot can always recall the shortest path from which it needs to leave.

The Bug2 strategy

The Bug2 is an evolution, to some extent, from the Bug1. In this strategy, the
agent always attempts to move along a line that connects the initial (xI) and goal positions
(xG), this line is also referred as m-line. The execution of this strategy usually follows as
described bellow:

2.2 Related Works 30

1. Move toward the goal until an obstacle or the goal is encountered. If the goal is
reached, then stop.

2. Follow the perimeter of an obstacle until the m-line is reached. Once the m-line is
reached, then move towards the goal and return to Step 1.

The Bug2 solution to the same planning problem solved by Bug1 in figure 2.3 is
illustrated in figure 2.4.

Figure 2.4: An Illustration of the Bug2 Algorithm. [16]

As was expressed so far, it is possible that this strategy takes infinite cycles
to complete the planning. Therefore, a small modification is needed. The agent must
remembers the distance to the goal from the last point at which it departed from the
boundary, and only departs from the boundary again if the candidate point is closer to the
goal. This is applied iteratively until the goal is reached or it is deemed to be impossible.
For the Bug2 strategy, the total distance traveled is no more than Dmax, as expressed in
equation 2-4;

Dmax = d +(1/2)
M

∑
i=1

ni pi (2-4)

In which d is the Euclidean distance from the initial position to the goal position, p is the
perimeter of the ith obstacle, M is the number of obstacles and n is the number of times
the ith obstacle crosses the m-line.

As seen in the previous subsections, the Bug1 can be considered overcautious,
yet effective, meanwhile Bug2 can be inefficient in some cases, such as local loops and
crossings, but usually generates better optimized paths when compared to Bug1 [3]. The
Bug2 strategy was chosen for comparisons due to its unique, yet simple, circumnavigation

2.2 Related Works 31

behaviour that works with either global or local path planning problems and unlike the
Bug1, outputs more optimized paths. The classic Bug2 was also chosen in the detriment
of the DistBug, VisBug, and TangentBug, as being the simplest implementation that still
maintains the core characteristics wanted for comparison, as described earlier.

2.2.3 The Rapidly-exploring Random Tree - RRT

The Rapidly-Exploring Dense Tree (RDT) is one of the many incremental sam-
pling and searching approaches that usually yields good performance in practice without
any parameter tuning [16]. The core idea behind these approaches is to incrementally ad-
vance a tree towards the largest free portions of the environment, also known as Voronoi
regions, using collision-free branches. Through enough iterations, the tree should densely
cover all the free space in the environment ultimately finding the optimal path between
two points; an example of the RDT’s coverage in different iterations can be seen in fig-
ure 2.5.

(a) RRT after 45 iterations. [16] (b) RRT after 2345 iterations. [16]

Figure 2.5: An Illustration of the RRT’s coverage.

The configuration space C defined in subsection 2.1 is infinite, yet RDTs work by
considering at most a finite number of points (i.e samples) from C. The key idea behind
this strategy is to exploit advances in collision detection algorithms that were designed
to compute whether a single configuration is collision-free. Given this simple primitive,
the algorithm samples different configurations to construct a data structure that stores 1D
C-space curves, which represent collision-free paths. In this way, RDTs do not access the
Cobs directly but only through the collision detector and the constructed data structure.
Using this level of abstraction, the planners are applicable to a wide range of problems by
tailoring the collision detector to specific robots and applications

RDTs can sample the C-space probabilistically or deterministically. Either way,
the requirement is usually that a dense sequence, α, of samples is obtained. In this context,

2.2 Related Works 32

denseness denotes the ability of a given sample sequence to get arbitrarily close to every
single element of C, assuming C ⊆ IRn. Mathematically, suppose that C = [0,1] and let
I ⊂ [0,1] be an interval of length e. If k samples are chosen independently at random,
the probability that none of them falls into I is (1− e)k. As k approaches infinity, this
probability converges to zero meaning that the probability of any nonzero-length interval
in [0,1] to not contain points converges to zero. In other words, the number of samples
tends to infinity, the samples get arbitrarily close to every point in C.

For probabilistic sampling, this denseness (with probability one) ensures proba-
bilistic completeness for the planning algorithm, in which a solution is likely to be found
as long as the sampling sequence is large enough. For deterministic sampling, it ensures
resolution completeness, which means that if a solution exists, the algorithm is guaranteed
to find it; otherwise, it may search indefinitely.

The RRT is a special case of a Rapidly-Exploring Dense Tree, which uses a
random sampling strategy. The basic idea behind it is to randomly sample the C-space and
then induce a Voronoi bias in the exploration process by selecting for expansion the point
in the tree that is closest to a given sample in each iteration. Therefore, the probability that
a vertex is chosen is proportional to the volume of its Voronoi region. The The original
RRT [15] was also introduced with a step size parameter, restricting the maximum size of
its exploring branches and greatly simplifying the implementation of this approach.

Let α denote a random sequence of samples that are present in the configuration
space C = [0,1], while the ith sample being represented by α(i). Based on that, the
RRT can be expressed as a topological graph represented by an ordered pair G = (V,E),
comprising a set V of vertexes together with a set E of edges with S ⊂ C f ree indicating
the set of all points reached by G. Since each e ∈ E is a path, the swath S of the search
graph is the union of all possible known paths and is formally denoted as expressed in
equation 2-5.

S =
⋃
e∈E

e([0,1]). (2-5)

With this mathematical formulation in mind, a pseudo-code of the RRT can be
done as expressed in algorithm 2.2.

2.2 Related Works 33

Algorithm 2.2: Pseudo-code of the RRT

Let G be the representation of the graph structure used in the RRT, q0 be the starting point of
the planning problem and K be the sampling sequence size.

/* Initialize the tree with the starting position. */

1 G.init(q0)

/* Repeat the expansion until the max iteration is reached */

2 for i=1 to K do
/* Find the nearest edge relative to the sampling α(i) that is present

in S */

3 qn← NEAREST (S,α(i))

/* Find the nearest new edge possible within the boundary of C f ree,

along the direction toward α(i), if no collision is detected the

output is α(i) */

4 qs← STOPPING_CONFIGURAT ION(qn,α(i))

/* As long as the edges qs 6= qn, the new edge can be added to the RRT

alongside its vertex. */

5 if qs 6= qn then
/* Add the new vertex */

6 G.add_vertex(α(i))

/* Add the sampled edge connected to the nearest edge */

7 G.add_edge(qn,α(i))

8 end
9 end

Supposing that a RRT has been constructed so far using the pseudocode provided
in algorithm 2.2, an step-by-step of its expansion strategy can be seen in figure 2.6. In de-
tail, 2.6(a) represents an arbitrary iteration on the exploring tree trying to expand towards
a goal. In this step, the strategy is to use the NEAREST function to find the nearest edge
in S relative to the sampling position, followed by the STOPPING_CONFIGURAT ION

function in order to discover a new possible edge based on the α(i) sample.
In the absence of obstacles, the new edge should overlap with the sampled

position, as indicated by 2.6(b). On the order hand, if an obstacle is detected in the way,
the new edge should be in an intermediary position towards α(i), usually defined by a
"collision avoidance range" chosen beforehand, as illustrated in figure 2.6(c). In the other
hand, the overall behaviour of the RRT with the presence of obstacles in the workspace
can be seen in figure 2.7, being possible to see the expansion towards the objective while
still maintaining a certain distance from obstacles.

2.2 Related Works 34

(a) Initial Tree. (b) Branch expansion without obstacles.

(c) Branch expansion with obstacles present.

Figure 2.6: An Illustration of the RRT’s expansion strategy.

(a) RRT after 100 iterations. (b) RRT after 440 iterations.

(c) RRT after 662 iterations. (d) Final path after 1421 iterations.

Figure 2.7: An Illustration of the RRT’s behaviour in the presence
of obstacles.

2.2 Related Works 35

The classic RRT approach described in this subsection is widely used in global
path planning problems that uses continuous representation. Although being an efficient
alternative for high dimensional maps, it commonly struggles with narrow passages and
obstacle dense environments, due to the biased search towards large Voronoi regions.
Overall, the RRT shows good performances in real-world applications with the use of
continuous space representation.

2.2.4 The GA Path Planning

Genetic algorithms (GAs) have been widely explored as solutions to the global
path planning problem with discrete representations of the environment [27]. The GA’s
search and optimization are inspired by the principles of natural selection, proposed on
Darwin’s theory about evolution (the survival of the fittest), and as such, in GA based
approaches a group of candidate solutions goes trough natural selection and genetic
operations to find the ones with better fitness.

The figure 2.8 shows an illustration on different possible solutions considered by
a GA for the same map while searching for the fittest path. GAs were first created by John
Holland while studying the phenomenon of adaptation as it occurs in nature and trying
to develop ways in which the mechanisms of natural adaptation might be imported into
computer systems [8].

Holland presented the genetic algorithm as an abstraction of biological evolution
and gave a theoretical framework for adaptation under it. His solution to computational
adaptation starts from one population of "chromosomes" (e.g., sets of ones and zeros,
or "bits") and ends in a new population by using "natural selection", in the means of a
fitness function, together with the genetic inspired operators of crossover, mutation, and
selection.

Each chromosome consists of "genes" (e.g., bits), with each gene being an in-
stance of a particular "allele" (e.g., 0 or 1). The selection operator chooses the chromo-
somes in the population that will be allowed to reproduce, with fitter chromosomes being
most likely to produce offspring than less fit ones. The crossover operator exchanges
sub parts of two chromosomes, mimicking biological recombination between two single
chromosome organisms; while the mutation operator randomly changes the allele values
of some locations in the chromosome.

Holland’s introduction of a population based algorithm was a major innovation.
Moreover, it was the first to attempt to put computational evolution on a firm theoretical
base [8]. Until recently this theoretical foundation, based on the notion of "schemas," was
the basis of almost all subsequent theoretical work on genetic algorithms.

2.2 Related Works 36

(a) (b)

(c) (d)

Figure 2.8: Different chromosomes evaluated by the GA.

In order to use GAs for path planning applications the path planning paradigm
defined in this chapter must be modeled as an optimization problem. To achieve this, a
objective function and optimization variables must be formally expressed. The common
formulation is defined as follows: let a path be characterized by a fixed number of points
in the environment, with each point being connected to the next by a straight line and the
last being connected to the goal, as illustrated in figure 2.9.

The objective function is usually a minimization of the combined length of this
path with an additive penalty if any part of the path lies inside the obstacle, with it being
proportional to the length inside the obstacle. The locations of each of these fixed number
of points (in both x and y axis positions) are the optimization variables (i.e genes) present
in the chromosome, while the number of points is commonly referred as the chromosome
size. The respective chromosome to the path shown in figure 2.9 is illustrated in table 2.3.

2.2 Related Works 37

Figure 2.9: Common path representation used by GAs.

Table 2.3: Chromosome representation for the path illustrated in
figure 2.9

1o Gene 2o Gene 3o Gene 4o Gene 5o Gene
x (cm) 24.59 47.58 74.97 84.10 92.05
y (cm) 24.25 37.26 32.05 42.74 65.34

The total number of points is usually an algorithm parameter and should be equal
to the maximum number of turns the agent is expected to make in the environment. Setting
this number too high can result in large computational requirements and if slow processing
time is not allowed, random results may be the output. Furthermore, a large chromosome
in simple scenarios will result in useless turns and high path length, while a small one
may not give enough flexibility to the algorithm to model the optimal path, thus resulting
in collision-prone paths.

The inherently parallel and high quality search are clearly the main advantages
of the Genetic Algorithm when opposed to other search heuristics [30]. However, some
important characteristics of GAs can also translate into difficulties when applied to the
path planning problem. The initial population may include impossible paths, granting low
genetic diversion to feasible paths and delaying the convergence [30]. Likewise, large
chromosome sizes can result in impracticable paths due to time requirements, further
diminishing the efficiency of this GA path planning approach.

2.2 Related Works 38

Many researchers tried to take advantage of the GA’s optimization ability to com-
pute optimal paths in the context of path planning [35, 10, 9, 17]. However, most of them
still employs computationally expensive approaches, using standard path planning repre-
sentation, fixed-length binary chromosomes, basic genetic operators, with few modifica-
tions made on the GA canonical structure in order to improve GA based path planning.

For example, despite presenting optimal paths, the technique proposed in
Thomaz et al [35] suffers from several problems, being computationally expensive, re-
quiring large memory space when dealing with dynamic or large environments, and being
very time consuming, making it impractical for mobile agents applications.

In other research, Ismail et al [10] propose a GA based path planning that allow
more degrees of freedom on movement, but only on low complexity maps, a restriction
that cannot be employed in real unstructured environments. And lastly, Hu et al [9] make
good improvements with a variable-length chromosome paired with knowledge based
operators, but their approach requires domain knowledge to find feasible solutions for the
initial population, adding another step to an already complex approach, compromising
performance.

Lastly, the GA path planning by R. Kala [11] employs the standard evolutionary
solution to the path planning problem, using fixed-length binary chromosomes, basic
genetic operators and a continuous representation of the environment. However, this
basic approach clearly shows the advantages and weaknesses inherent to this type of
solution, with the benefit of being an open-software application of the GA path planning,
facilitating the reproduction of his work. Therefore, this approach was chosen to compose
the comparison group.

CHAPTER 3
The Proposal

This chapter starts with an explanation on the compact genetic algorithm and
its real encoded variation in section 3.1. It is then presented in section 3.3 the CGPlan’s
proposal, going through the specific features designed for the path planning application.

3.1 The Compact Genetic Algorithm

Analyzing the growth and decay of a particular gene in the population of a GA
as a one-dimensional random walk, Harik et al. [6] observed that as the GA progresses,
genes fight with their competitors and their number in the population increase or decrease
depending on the GA’s operators.

With a different understanding of the role of the GA’s parameters and operators,
Harik et al [6] proposed a minimalist view of the population and creates an algorithm
that mimics the behavior of conventional GAs by evolving a Probability Vector (PV) that
describes the hypothetical distribution of each gene in a population of solutions.

Named Compact Genetic Algorithm (cGA), it is designed to iteratively process
the PV with updating mechanisms that mimic the typical selection and recombination
operations performed in a standard GA until a stopping criteria is achieved. A pseudocode
of the classic cGA proposed by Harik et al. [6] can be seen in algorithm 3.1.

The main strength of the cGA is the significant reduction of memory require-
ments, as it needs to store only the PV instead of an entire population of solutions. This
feature makes cGAs particularly suitable for memory-constrained applications [6] such
as the path planning problem.

A further description of the PV can be found in subsection 3.1.1 and the operators
present in the cGA and its relation to the classic GA operators are explored in the
subsections 3.1.2 and 3.1.3, note that although used in the classic GA, a mutation operator
was not included in the classic cGA [6]. The number of individuals generated, the number
of individuals to update from, the stopping criterion, and the rate of the probability
vector’s change are all parameters of the cGA.

3.1 The Compact Genetic Algorithm 40

3.1.1 The Probability Vector - PV

In the classic implementation of the cGA by Harik et al. [6], the probability
vector’s role is to record the proportion of ones (and consequently zeroes) at each gene
position in the virtual population. These proportions are initially set to 0.5, expressing an
equal occurrence of zeros and ones, and move towards one of them as the updates are
made.

The aim of this update is to orientate the probability vector toward the fittest of
the generated solutions. This update step also has a constant size of 1

n . Therefore, while
the classic GA needs to store n bits for each gene position, the cGA only needs to keep
a proportion of ones (and zeros), being a finite set of (n+ 1) numbers that can be stored
with log2(n+1) bits.

3.1.2 Selection

The selection operator aims to choose better individuals for reproduction on a
given population. But unfortunately, this does not always benefit the better genes, as genes
are always evaluated within the context of a larger individual. For example, consider the
onemax problem, where the fitness evaluation of an individual depends solely on the
frequency of genes with value 1. Given the two individuals a and b in table 3.1 :

Table 3.1: Individuals for the onemax example.

Individual Chromosome Fitness
a 1011 3
b 0101 2

The selection operator will analyze the fitness function and declare individual a to be more
likely to reproduce. However, at the gene level a decision error is made on the second
position. Being that, the selection operator incorrectly prefers the schema *0* to *1* in
the second position. Fortunately the role of the population in GAs is to buffer against a
finite number of such decision errors.

Now consider a steady-state binary tournament selection that chooses two in-
dividuals randomly from the population and keeps two copies of the better one. With
this selection, considering a population of size n, the proportion of the winning gene will
always increase by 1/n. For instance, in the onemax example the proportion of 1’s will in-
crease by 1/n at gene positions 1 and 3, and the proportion of 0’s will also increase by 1/n

at gene position 2. At gene position 4, the proportion will remain the same, as both chro-
mosomes have this gene present. This experiment suggests that an update rule increasing
a gene’s proportion by 1/n can simulate a steady-state binary tournament selection of a
GA with a population of size n.

3.1 The Compact Genetic Algorithm 41

With that in mind, Harik et al. [6] proposed a similar update rule for the classic
cGA, aiming to select better individuals without the inherit decision error in the gene
level caused by the usual selection operator used in GAs. This update is triggered when
the best individual of a given generation is chosen, iterating each position of the winning
chromosome and updating the corresponding position in the PV with (+1

n), in the case of
a gene one, and with (−1

n), otherwise.

Algorithm 3.1: Pseudocode of the cGA
Let l be the length of the probability vector and n be the update rate.
/* Initialize the probability vector with probability 0.5 */

1 for i=1 to l do
2 PV[i]=0.5
3 end
/* Generate a random solution based on PV */

4 f ather← generate(PV)

/* Repeat until PV is fully converged */

5 while NotConverged(PV) do
6 son← generate(PV)

/* Evaluate the solutions */

7 [f atherFit,sonFit]← f itness(f ather,son)

/* Define the best (winner) and worse (loser) solutions. */

8 if f atherFit >= sonFit then
9 winner← f ather

10 loser← son

11 else
12 winner← son

13 loser← f ather

14 end
/* Update the probability vector towards the winner. */

15 for i=1 to l do
16 if winner[i]==1 then
17 PV[i]+=(1

n)

18 else
19 PV[i]-=(1

n)

20 end
21 f ather← winner

22 end
23 end

3.2 The Real-encoded Compact Genetic Algorithm. 42

3.1.3 Crossover

The role of crossover in the classic GA is to combine schemes from fit solutions
in order to create better individuals. However, when repeatedly used in a population,
it eventually leads to a decorrelation of it’s genes, making it possible to be compactly
represented as a probability vector of genes [6]. Further analysis showed that in this
probability vector state it is possible to generate individuals with decorrelated genes,
without the need of crossover [6]. Therefore, the generation of individuals from the PV in
the cGA can be seen as a shortcut to the eventual aim of usual crossover operators of the
GA.

3.2 The Real-encoded Compact Genetic Algorithm.

Real-value encoding has been widely used in evolutionary algorithms (including
GAs) to improve the quality of solutions for problems in the real numbers scope [21], as
binary encoding and its conversion into real solutions tends to increase the granularity in
real numbers applications.

Therefore, to avoid additional computational cost related to the binary-to-float
conversions and also increase the quality of solution, Mininno et al proposed a variant
of the cGA that works directly with real-valued chromosomes, using a PV that stores
the mean and the standard deviation of the distribution of each gene in the hypothetical
population. New update rules are also introduced in order to evolve the PV in a way that
mimics the binary-coded cGA, which in turn, emulates the behavior of the standard GA.
This new variant of the cGA was named real-encoded compact genetic algorithm, or rcGA
in short.

In the context of search-based path planning, the use of real-encoded path
representation brings various benefits to the application, since the final solution will not
be quantized nor restricted in fixed directions as the binary approach. This feature is
especially useful when using the continuous representation of the environment, as the
final solution can be refined even further to produce an optimal path. Therefore, the Real-
coded Compact Genetic Algorithm (rcGA) combines a reasonable time and resources
consumption with the ability to deliver optimized real-valued solutions, being a promising
search approach on the path planning problem especially for applications involving low
performance mobile agents.

3.2.1 The real-value representation in the rcGA.

As seen previously in section 3.1, a single gene in the cGA is expressed with a
scalar between [0,1], it being the probability of finding a “0” or a “1” in this single gene.

3.2 The Real-encoded Compact Genetic Algorithm. 43

As the rcGA uses real-valued genes, the distribution of a single gene in the hypothetical
population must be described by a Probability Density Function (PDF) defined on the
normalized interval [-1,+1]. Assuming that the distribution of the ith gene can be described
with a Gaussian PDF with mean xi and standard deviation σi. More precisely, since the
Gaussian PDF is defined in (−∞,+∞), a “Gaussian-shaped” PDF defined between [-1,+1]
is used. The height of this PDF is also normalized so that its area is equal to one.

Let us consider a minimization problem in a m-dimensional hyper-rectangle,
with m being the number of parameters. Without loss of generality, let us assume that
these parameters are also normalized so that each search interval is contained in [-1,+1].
Therefore, in the rcGA the PV becomes a m×2 matrix specifying the two parameters of
the PDF for each gene. Thus, the PV can be formally defined as

PV(k) = [x(k) σ
(k)] (3-1)

where x(k) = [x[1](k) x[2](k) ... x[m](k)] is the vector of mean values, σ(k) = [σ[1](k) σ[2](k)

... σ[m](k)] is the vector of standard deviations, and k being the iteration index. Therefore,
it is possible to express the update function for the mean x of a gene g in an iteration k

with the following equation:

x[g](k+1) = x[g](k)+
1
n
.(winner[g]− loser[g]) (3-2)

where winner and loser are the chromosomes with best and worst fitness in the given
iteration k. Similarly, it is possible to express the update function for the standard
deviation σ of a gene g in an iteration k with the following equations:

V[g](k) = (σ[g](k))2 +(x[g](k))2− (x[g](k+1))2 +
1
n
.((winner[g])2− (loser[g]]2) (3-3)

σ[g](k+1) =

√

V[g](k), if V[g](k) > 0

0, otherwise

With these modifications in mind, the pseudocode of the rcGA is defined in algorithm 3.2.

3.2 The Real-encoded Compact Genetic Algorithm. 44

Algorithm 3.2: Pseudocode of the rcGA
Using the definitions presented in section 3.2 and n being the virtual population

size that regulates the update step, the rcGA goes as follows:
/* Initialize the probability vector with initial mean xini and

standard deviation σini */

1 for i=1 to l do
2 PV[i][1]=xini

3 PV[i][2]=σini

4 end
/* Generate a random solution based on PV */

5 father← generate(PV)
/* Repeat until PV is fully converged */

6 while NotConverged(PV) do
7 son← generate(PV)

/* Evaluate the solutions */

8 [f atherFit,sonFit]← f itness(f ather,son)

/* Define the best (winner) and worse (loser) solutions. */

9 if f atherFit >= sonFit then
10 winner← f ather

11 loser← son

12 else
13 winner← son

14 loser← f ather

15 end
/* Update PV towards the winner. */

16 update(PV, winner, loser)
17 father← winner

18 end
19 Function update(PV, winner, loser)

20 for i=1 to l do
21 old_x = x[i]
22 x[i] = x[i]+ 1

n .(winner[i]− loser[i])

23 V = σ[i]2 +(old_x)2− (x[i])2 + 1
n .(winner[i]2− loser[i]]2)

24 σ[i] = sqrt(max(0,V))

25 end
26 PV = [x σ]

27 end

3.3 The CGPlan 45

3.3 The CGPlan

As stated by Hu and Yang [9], path representation is indeed a key issue for the
efficient use of any evolutionary path planning. Hence, its proposed a new representation
of individuals for the CGPlan, based on concepts of the local path planning paradigm.

In order to incorporate the reaction and planning behaviours within an evolu-
tionary technique, it is proposed a constructive approach on the assembly of the optimal
path. It starts with the rcGA searching for optimal partial trajectories that solve the path
planning on a local scope, with this stage being named the rcGA cycle. In this case, the
chromosome expresses a straight partial trajectory of the agent towards the objective, re-
stricted by a maximum length, while the PV represents a hypothetical population of these
chromosomes.

After a cycle is over (i.e the maximum generation count is reached), the rcGA
outputs the fittest chromosome, namely, the best partial trajectory found in that scope.
This partial trajectory is then applied to the agent, updating its position. This process
continues until the objective is reached, with the collection of the obtained trajectories
forming the final path between the starting position and the objective.

These partial trajectories are not restricted in directions nor quantized within
grids, different from the usual discrete approach with GA path planning. This represen-
tation can also reach solutions similar to the variable-length chromosome, without the
resource management problems, producing a high quality path with efficient resource
consumption that can be used in either local or global path planning problems. A de-
tailed illustration of the algorithm’s constructive output during each cycle can be seen in
figure 3.1.

(a) First cycle. (b) Second cycle. (c) Path found after 10 cycles.

Figure 3.1: Illustration of the CGPlan’s output at differing cycles.

3.3.1 Evaluation

The CGPlan uses a distance transform (also known as distance map) of the
environment to evaluate possible trajectories. This transform is continuously calculated

3.3 The CGPlan 46

using gathered environment and obstacle data and outputs a pixel grid in which each
pixel stores its distance to the nearest obstacle. Formally, the distance transform can be
expressed as follows:

Let Γ = {0, ...,n− 1}×{0, ...,m− 1} be a two-dimensional discrete map, and
f : Γ→ IR be a function describing the obstacles. The two-dimensional distance transform
of f under the squared Euclidean distance, DT , is given by equation 3-4.

DTf (x,y) = min
x′y′

((x− x′)2 +(y− y′)2 + f (x′,y′)). (3-4)

The first term of equation 3-4 does not depend on y′. Therefore, we can rewrite
it as expressed in equation 3-6.

DTf (x,y) = min
x′

((x− x′)2 +min
y′

((y− y′)2 + f (x′,y′))), (3-5)

DTf (x,y) = min
x′

((x− x′)2 +DTf |x′(y)). (3-6)

Where DTf |x′(y) is a one-dimensional distance transform of f restricted to the column
indexed by x′. Therefore, a two-dimensional distance transform can be computed by
fist evaluating a one-dimensional distance transform along each column of the map, and
another on-dimensional distance transform along each row of the result. This argument
can be extended to arbitrary dimensions, resulting in the composition of transforms along
each dimension of the map. This generalized multidimensional transform runs in O(dN)

time, where d is the dimension of the map and N is the overall number of discrete cells.
Although the repetitive use of this technique can become expensive computa-

tionally, in this approach it is executed only when new obstacles or features are detected
by the mobile agent, not harming our resource management goal. A visual representation
of the distance transform can be found in Figure 3.2.

3.3 The CGPlan 47

(a) Original map. (b) Distance transform representation.

Figure 3.2: Comparison of the original map and a visual gray-
scale representation of the distance transform. A
darker pixel means closer to an obstacle in this rep-
resentation.

To work along the constructive path representation, the algorithm must be able
to evaluate each partial trajectory individually, numerically expressing its solution quality
and distinguish feasible and infeasible ones. The evaluation function tailored to perform
this task is presented in equation 3-7:

f itness =
(m+1)
(m+2)

+
k

(k+d)
(3-7)

Where m is obtained from the distance map and represents the minimum distance between
the trajectory and the closest obstacle, d is the Euclidean distance between the last point
of the evaluated trajectory and the objective and k is a constant weight to adjust the bias
towards the goal.

A partial trajectory with a high m will drive the agent far from the obstacles,
while a m = 0 indicates an imminent collision. Meanwhile, the d value becomes smaller
if a trajectory manages to guide the agent closer to the goal and increasing as the agent
diverge from the goal. On the other hand, the weight k regulate the relation between
obstacle avoidance and final path length, with a high value representing a cautious
trajectory.

Therefore, it can be noticed that the best paths will be expressed by the highest
values given by this fitness function, while still penalizing infeasible segments (i.e
m = 0 → a lower fitness) and ensuring a non-null fitness that allow their data to still
update the probability vector, thus encouraging genetic diversity.

3.3 The CGPlan 48

3.3.2 Avoiding local minima

As a local planning strategy, the proposed algorithm acts as a greedy optimization
procedure, becoming vulnerable to local minimum on the evaluation function. This
situation usually occur when the agent runs into a dead end (e.g. inside a corner or
U-shaped obstacle), or into an obstacle bigger then the maximum length of a partial
trajectory (e.g in front of a wall-like obstacle). These can be easily detected by monitoring
the trajectory size between cycles, as the agent tends to "orbit" the local minimum with a
trajectory length close to zero. An illustration of these scenarios can be seen in figure 3.3.

(a) Corner obstacle. (b) Wall-like obstacle.

Figure 3.3: Representation of possible local minimum situations.

The solution found was to impose a restriction in the local minimum search
surface and then set a new temporary objective to redirect the agent. The new objective
is selected in order to circumnavigate the obstacle causing the minimum and it expires
when reached, allowing the CGPlan to advance towards the original goal once more. This
modular strategy was designed to fit our constructive representation, allowing the agent to
avoid local minimum while maintaining the partial trajectories approach. An illustration
of the proposed local minimum solution can be seen in figure 3.4.

(a) Local minimum detected,
choosing new objective.

(b) Temporary objective
reached, returning objective to
goal.

(c) Continue normal behaviour.

Figure 3.4: Illustration of the CGPlan’s strategy to overcome local
minimum.

3.3 The CGPlan 49

A simplified version of the algorithm using all the features discussed in the
sections above is presented in Algorithm 3.3.

Algorithm 3.3: Pseudocode of the CGPlan
Let PV be the population’s probability vector, N be the max generation count and C

be the current point on the constructive path.
START and END are respectively the starting and goal coordinates.
/* Initialize path on starting coordinates. */

1 C← START

2 while C 6= END do
3 T ← 0
4 ob jective← END

5 if New_Obstacle_Found() then
/* If new information is found, update distance map. */

6 DistanceMap← DistanceTrans f orm(Obstacles)

7 end
8 if LocalMinimumFound() then

/* If local minimum found, generate new objective. */

9 ob jective← AvoidLocalMinimum(C,DistanceMap)

10 end
/* Initialize the probability vector with initial values. */

11 initialize(PV)

/* Generate a random solution based on PV */

12 f ather← generate(PV)

13 while T < N do
14 son← generate(PV)

/* Evaluate solutions using the distance map. */

15 (f atherFit, sonFit)← evaluate(f ather,son,DistanceMap,ob jective)
/* Define the best (winner) and worse (loser) solutions. */

16 (winner, loser)← tournament(f atherFit,sonFit)
/* Update the probability vector towards the winner. */

17 update(PV,winner,loser)
18 f ather← winner

19 T ← T +1

20 end
/* Update the constructive path with the winning trajectory */

21 C←C+winner

22 end

CHAPTER 4
Experiments and Results

The four established approaches of intelligent navigation discussed in chapter 2
were compared in terms of performance, quality of solution, and scalability against the
proposed CGPlan. These techniques follow different strategies but were able to effectively
guide a mobile agent towards an objective in related works.

4.1 The simulation setup

All these path planning approaches were implemented and tested on the same
simulated environment, created using Matlab R2015b in a system with a Intel Core i5-
4670k 3.4GHz and 16GB RAM. More information on the simulation suite can be found
in appendix B. About the techniques, the A* and Bug2 were implemented in their classic
form whereas the GA and RRT were implementations by Rahul Kala, found in [11] and
[12], respectively. Furthermore, other relevant information on the implementations of each
technique are:

• The implemented A* uses a euclidean distance function.
• The implemented BUG2 always prefer to circumnavigate an obstacle by its right

side.
• The GA path planning from R. Kala uses a real-valued chromosome in witch

each gene represents a sequential point in the path. The chromosome have a
fixed length of 5, meaning that the path generated will always be formed by 5
points. This implementation also uses a stochastic uniform selection operator, a
standard Gaussian mutation operator and a binary mask crossover operator. Another
parameters of this GA are: population size = 50, number of generations = 10 and
mutation rate = 0.01.
• The RRT path planning from R. Kala is a usual implementation of the RRT

using a maximum sample size of 10000 with a threshold of 5cm from the goal
to prematurely end the planning.

4.2 Performance and quality comparison 51

• The CGPlan’s parameters used in its implementation were : 800 generations per
cycle, an update rate of 1

50 and a weight k = 150 in the fitness function.

The environment was assembled in a 100x100cm simulated area, using
0.1x0.1cm cells for the discrete representation. The obstacle detection was standardized
for all techniques, discretizing the obstacles into the cells used for the discrete represen-
tation and these cells were then represented with absolute coordinates in the continuous
representation. The time consumption of each technique is measure from its start to the
output of the final path, including the smoothing technique if present. On the other hand,
the path length is calculated after the output, using the points in the final path returned by
each technique.

4.2 Performance and quality comparison

The performance and quality of solutions were compared in two scenarios,
random scattered obstacles and indoor-like configurations. The objective of these tests
was to find the strengths and flaws of the CGPlan opposed to renowned solutions.

4.2.1 First scenario - Environment with random scattered obstacles

The first scenario was composed by randomly scattering obstacles, filling 20%
of the environment. This setting aims to measure the ability of a path planning strategy
to navigate over environments with multiple possible paths and different geometries of
obstacles. The RRT and the CGPlan also counted with a post-processing path smoothing
technique to refine the final path, therefore, the smoothed path is represented with a solid
line while the raw path is represented with a dotted line. After 30 executions, the best
paths found in this scenario by each of the techniques can be seen in Figures 4.1 and 4.2.

(a) A* final path. (b) Bug2 final path. (c) GA best path found.

Figure 4.1: Best solutions found by A* (a), Bug2 (b), and GA (c)
after 30 executions.

4.2 Performance and quality comparison 52

(a) RRT best path found. (b) CGPlan best path found.

Figure 4.2: Best solutions found by RRT (a), and CGPlan (b) after
30 executions.

After 30 executions of each technique on the first scenario a chart on the
solution quality can be made, regarding the final path length. A box plot illustrating this
comparison can be found in Figure 4.3.

A* Length BUG2 Length GA Length CGPlan Length RRT Length

130

140

150

160

170

180

190

200

P
a
th

 L
e
n
g
th

 (
c
m

)

Comparison of Path Length

Figure 4.3: Overall results for path length comparison after 30
runs.

In this experiment the A* was able to reach the optimal solution, regarding path
length, while the BUG2 presented the worst solution quality of the comparison group.
In between these two results, the GA, the CGPlan and the RRT presented reasonable
solutions, with the CGPlan having the lower average path length and standard deviation,

4.2 Performance and quality comparison 53

being the most consistent of the three. Another chart about the solutions can now be made
regarding the time consumption of each technique. Trying to improve the understanding
on the time consumption, the chart in Figure 4.4 is shown in logarithm scale due to large
differences between the time consumption of these techniques.

A* Time BUG2 Time GA Time CGPlan Time RRT Time

100

101

102

103

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

s
)

Comparison of Time Consumption

Figure 4.4: Overall results for time consumption after 30 runs
(logarithm scale).

In this comparison of time consumption it is possible to notice an outstanding
performance of the BUG2 algorithm, as expected for a reactionary technique. In contrast,
the GA reached an impracticable consumption for applications with time requirements as
the path planning of mobile agents. On the other hand, the A*, the CGPlan and the RRT
presented a reasonable performance, with the A* and CGPlan requiring a time frame in
the single digits. Again, the CGPlan showed to be competitive, and even better at some
cases, then the commonly used path planning approaches.

In order to support the results obtained in this first scenario, a serial test was
proposed. The comparison group was executed 30 times in 10 different random generated
maps with 20% infill, except for the GA that was executed 10 times on each map, due to
time constraints. The overall data gathered in this serial test was compressed in a chart for
time and another for path length and can be seen in figures 4.6 and 4.5, respectively.

4.2 Performance and quality comparison 54

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10
100

120

140

160

180

200

220

240

260

280

300

P
a

th
 L

e
n

g
th

 (
c
m

)

Comparison of Path Length

A*

BUG2

CGPlan

GA

RRT

Figure 4.5: Overall results for final path’s length after 30 execu-
tions in 10 different maps.

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10

101

102

T
im

e
 C

o
n
s
u
m

p
ti
o
n
 (

s
)

Comparison of Time Consumption

A*

BUG2

CGPlan

GA

RRT

Figure 4.6: Overall results for time consumption after 30 execu-
tions in 10 different maps (logarithm scale).

With these results in mind, it can be noted that the A* and BUG2 present a

4.2 Performance and quality comparison 55

low time consumption in this scenario, whereas the CGPlan and RRT present a moderate
consumption, with CGPlan being the lower of the two. The GA approach on the other
hand, demonstrated huge time consumption as was reported in related works in the
literature [35, 10, 9, 17] proving again to be an extremely inefficient approach to the
path planning problem, showing sub-optimal solutions and being the most time intensive
technique in the first scenario. Therefore, the GA was discarded for tests in the second
scenario, as its executions were delaying the advance of the study.

4.2.2 Second scenario - Environment with indoor-like configuration

The second scenario is composed of obstacles arranged to simulate an indoor-
like configuration. This setting aims to measure the ability of the chosen path planning
strategies to navigate in this common environment for mobile agents. RRT and the pro-
posed approach were again tested the aid of a post-processing path smoothing technique,
with the smoothed path being represented by a solid line and the raw path represented by
a dotted line. The best solutions found in this scenario after 30 executions by each of the
techniques can be seen in Figure 4.7

(a) A* final path. (b) Bug2 final path.

(c) RRT best path found. (d) CGPlan best path found.

Figure 4.7: The best solutions proposed by the chosen techniques
after 30 executions.

Again, after 30 executions of each technique on the scenario an observation
regarding path length was made. A box plot illustrating this comparison can be found
in figure 4.8.

4.2 Performance and quality comparison 56

A* Length BUG2 Length CGPlan Length RRT Length

250

300

350

400

450

500

550

600

P
a

th
 L

e
n

g
th

 (
c
m

)

Comparison of Path Length

Figure 4.8: Comparison of solution length after 30 executions.

Analysing the chart in figure 4.8 it can be seen that, again, the A* approach
reaches the shortest length between the compared techniques and the BUG2 shows
the longest solution to the problem. Right next to the A* solution, the CGPlan and
RRT approaches show similar results, with the CGPlan path planning being, again, the
technique with the lower average length and with the least difference between the first and
fourth quartiles, therefore being, comparatively, the more consistent approach between
the two. Using the data gathered among 30 executions on this second scenario another
observation regarding the time consumption of these techniques can be made. A box plot
illustrating the results on this comparison can be found in figure 4.9.

A* Time BUG2 Time CGPlan Time RRT Time

0

5

10

15

20

25

30

35

40

45

T
im

e
 C

o
n
s
u
m

p
ti
o
n
 (

s
)

Comparison of Time Consumption

Figure 4.9: Comparison of time consumption after 30 executions.

4.3 Experiments Analysis. 57

Again, as shown in Figure 4.9, A* and BUG2 showed little consumption while
the CGPlan and RRT showed moderate consumption of time in this scenario, with the
proposed approach being the lower of the two.

4.3 Experiments Analysis.

After the analysis of the data extracted from the tests in scenario one and two,
the following considerations for each technique can be made:

• The A* found the optimal solution with little time consumption, being the best
global technique for either scenario;
• The BUG2 represented a trade-off, being a local technique with outstanding time

efficiency but proposing poor solutions;
• The GA path planning had poor performance, presenting reasonable solutions

regarding path length but, unfortunately, being the most time expensive solution.
The time cost grew in an unbridled manner, forcing the removal of the technique
from the tests to preserve the continuity of the study in reasonable time.
• RRT proved again to be another reliable global technique for path planning, pre-

senting near-optimal solutions with moderate time consumption. The main issue
with this approach is the inherit dependence of path smoothing techniques, as the
random construction of the solution tree provides choppy paths.
• Finally, the proposed technique showed that it can reach solutions with near-optimal

quality within a reasonable time span in both scenarios and even though being a
local technique it outperformed the widely used global approach RRT.

4.4 Scalability Comparison

Based on the results obtained in the tests in scenarios 1 and 2, the best overall
three techniques, A*, RRT, and CGPlan were chosen for a new round of tests for
scalability. As the GA and BUG2 presented performance and solution quality problems,
respectively.

By definition, scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to accommodate such growth [2]. In
the context of path planning, scalability often describes the capability of a technique to
handle environments of greater resolution, size, or dimension than usual.

The next tests were designed to measure the time consumption of each technique
in the same environment (with the map presented in the second scenario) with four
different resolutions. The indexes 1 through 4 represent the configurations:

4.4 Scalability Comparison 58

1. Resolution: 1000x1000 - 100x100cm environment with 0.100x0.100cm pixels.
2. Resolution: 2000x2000 - 100x100cm environment with 0.050x0.050cm pixels
3. Resolution: 3000x3000 - 100x100cm environment with 0.033x0.033cm pixels
4. Resolution: 4000x4000 - 100x100cm environment with 0.020x0.020cm pixels

4.4.1 A* Scalability

A* showed promising results in the previous tests, presenting an optimal solution
with the least time consumption, but this technique is well known for its bad scalability
with resolution. The chart in Figure 4.10 presents the measured time consumption of the
A* after 30 executions on each resolution.

A* [1] Time A* [2] Time A* [3] Time A* [4] Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

s
)

Comparison of Time Consumption

Figure 4.10: Comparison of the A*’s time consumption after 30
executions on each resolution.

As can be seen, raising the resolution of the environment can cause the time
consumption to exponential increase, reaching infeasible values. Therefore, A * is not
suitable for high-resolution applications when time efficiency is required, although pre-
senting extremely good results in low-resolution applications.

4.4.2 RRT Scalability

The RRT also showed good results in the previous tests, presenting a near
optimal solution with reasonable time consumption and, as a sampling-based algorithm,

4.4 Scalability Comparison 59

it is expected to work well for high-resolution environments, because unlike grid-based
algorithms, its running time is not (explicitly) exponentially dependent on the resolution.
The chart in Figure 4.11 presents the time consumption after 30 executions on each
resolution.

RRT [1] Time RRT [2] Time RRT [3] Time RRT [4] Time

0

100

200

300

400

500

600

700

800

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

s
)

Comparison of Time Consumption

Figure 4.11: Comparison of RRT’s time consumption after 30 exe-
cutions on each resolution.

As can be seen, although presenting better scalability than A*, RRT still in-
creases its time consumption considerably on higher resolutions. This phenomena can be
explained by analysing the collision detection strategy of the RRT, witch scales poorly
with the substantial increase of obstacles triggered by a incremental change of resolution.

4.4.3 CGPlan Scalability

At last, the CGPlan demonstrated good results on previous tests, presenting a
near optimal solution within reasonable time consumption. Scalability to larger resolu-
tions are expected to be achieved due to the constructive search technique, which decom-
poses the global search into a series of smaller successive searches, significantly reducing
computation. The chart in Figure 4.12 presents the time consumption after 30 executions
on each resolution.

4.4 Scalability Comparison 60

CGPlan [1] Time CGPlan [2] Time CGPlan [3] Time CGPlan [4] Time

5

10

15

20

25

30

35
T

im
e
 C

o
n
s
u
m

p
ti
o
n
 (

s
)

Comparison of Time Consumption

Figure 4.12: Comparison of CGPlan’s time consumption after 30
executions on each resolution.

As can be seen, the increase in environment resolution slightly affects the time
consumption of the proposed approach, reaching approximately 1.35% and 5.8% of the
time consumed on the highest resolution by A* and RRT, respectively. Interestingly,
the increase of resolution between the first and second configuration resulted in a better
performance of the algorithm. This is due the fact that a higher resolution of the distance
map ends up improving the selection of better trajectories, slightly lowering the average
time consumption and improving its consistency.

CHAPTER 5
Conclusion and Future Works

5.1 Conclusion

This work investigated the use of a constructive genetic planning (CGPlan) for
solving the path planning problem with less resource consumption through different map
resolutions, aiming at usage in mobile agents. The proposed technique was compared
against four well known approaches and through a series of tests some conclusions about
performance, solution quality, and scalability can be made.

As seen, discrete algorithms (such as A*) can effectively solve low-resolution en-
vironments, overlaying a grid on the environment and searching for the optimal path. Un-
fortunately, scaling this planning strategy into high-resolution environments has proved to
be computationally intractable, especially when constant changes on the environment are
detected. In turn, reactive approaches (such as Bug1 and Bug2) solve the planning prob-
lem circumnavigating obstacles, being scalable and extremely time efficient, but despite
its performance, the solution is not guaranteed to be the minimum path and in some cases
can become impracticable.

In contrast, sampling-Based algorithms such as RRT can solve the planning prob-
lem in continuous environment with reasonable time and presenting near optimal solu-
tions. This class of algorithms is also known to be better than grid-based approaches at
higher resolution, as running time is not (explicitly) exponentially dependent on the res-
olution of the environment. However, despite showing a lower rise in time consumption,
RRT struggled in higher resolutions, increasing its time consumption considerably and
reaching infeasible time on the highest resolution.

The CGPlan, on the other hand, is a new evolutionary approach based on the
Compact Genetic Algorithm (cGA) that pursue efficient path planning in known and
unknown environments. This technique was especially designed for local applications
with restricted information but showed to be competitive in common global path planning
problems, unlike most path planning approaches using the classic GA.

The main strength of this technique relies on the cGA’s economic search paired
with a constructive representation of the path, providing near-optimal solutions within a

5.2 Future Works 62

reasonable time frame. Through simulations, the CGPlan also proved to be better suited
for higher resolutions than commonly used techniques such as the A* and RRT path
planning, while still maintaining competitive performance in low resolutions.

We hope that this interesting feature and the mild increase in time consumption
when scaled to higher resolutions places the proposed technique in a favorable position
among modern path planning approaches.

5.2 Future Works

This work showed the restrictions and advantages a new evolutionary local path
planning technique, the CGPlan. In future works, we would like to extend the CGPlan
to higher-dimension problems, such as aerial vehicles, robotic manipulators and more
complex mobile robots due to the scalable performance presented in this work. Further
improvements on the environment representation can also be done, including time-variant
obstacles and probabilistic prediction to support dynamic applications, thus enabling the
use of this technique in common real-world applications.

Future works can also explore on different rcGA operators and structures in order
to improve the performance of the algorithm, since more than 80% of the overall time is
consumed by the rcGA cycles.

Bibliography

[1] ANTONELLI, G.; CHIAVERINI, S.; FUSCO, G. A fuzzy-logic-based approach for

mobile robot path tracking. IEEE Transactions on Fuzzy Systems, 15(2):211–221,

2007.

[2] BONDI, A. B. Characteristics of scalability and their impact on performance.

In: Proceedings of the 2nd international workshop on Software and performance, p.

195–203. ACM, 2000.

[3] BUNIYAMIN, N.; NGAH, W. W.; WAN NGAH, W. A. J.; SARIFF, N.; MOHAMAD,

Z. A simple local path planning algorithm for autonomous mobile robots.

International journal of systems applications, Engineering & development, 5(2):151–

159, 2011.

[4] CANNY, J.; REIF, J. New lower bound techniques for robot motion planning

problems. In: Foundations of Computer Science, 1987., 28th Annual Symposium

on, p. 49–60. IEEE, 1987.

[5] FU, L.; SUN, D.; RILETT, L. R. Heuristic shortest path algorithms for trans-

portation applications: state of the art. Computers & Operations Research,

33(11):3324–3343, 2006.

[6] HARIK, G. R.; LOBO, F. G.; GOLDBERG, D. E. The compact genetic algorithm.

IEEE Transactions on Evolutionary Computation, 3(4):287–297, 1999.

[7] HOANG, V.-D.; HERNÁNDEZ, D. C.; HARIYONO, J.; JO, K.-H. Global Path Planning

for Unmanned Ground Vehicle based on Road Map Images. p. 82–87, 2014.

[8] HOLLAND, J. H. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. U

Michigan Press, 1975.

[9] HU, Y.; YANG, S. X. A knowledge based genetic algorithm for path planning of a

mobile robot. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE

International Conference on, volume 5, p. 4350–4355. IEEE, 2004.

Bibliography 64

[10] ISMAIL, A.; SHETA, A.; AL-WESHAH, M. A mobile robot path planning using

genetic algorithm in static environment. Journal of Computer Science, 4(4):341–

344, 2008.

[11] KALA, R. Code for Robot Path Planning using Genetic Algorithms. p. 2–5, 2014.

[12] KALA, R. Code for Robot Path Planning using Rapid Exploring Random Trees.

p. 2–5, 2014.

[13] KALA, R.; SHUKLA, A.; TIWARI, R.; RUNGTA, S.; JANGHEL, R. Mobile Robot

Navigation Control in Moving Obstacle Environment Using Genetic Algorithm,

Artificial Neural Networks and A* Algorithm. 2009 WRI World Congress on

Computer Science and Information Engineering, p. 705–713, 2009.

[14] KAVRAKI, L. E.; LAVALLE, S. M. Motion planning. In: Springer handbook of robotics,

p. 139–162. Springer, 2016.

[15] LAVALLE, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning.

Techreport, 11, 1998.

[16] LAVALLE, S. M. Planning Algorithms. 2006.

[17] LI, Q.; ZHANG, W.; YIN, Y.; WANG, Z.; LIU, G. An improved genetic algorithm

of optimum path planning for mobile robots. In: Intelligent Systems Design and

Applications, 2006. ISDA’06. Sixth International Conference on, volume 2, p. 637–

642. IEEE, 2006.

[18] LI, S.; DING, M.; CAI, C.; JIANG, L. Efficient path planning method based

on genetic algorithm combining path network. In: Genetic and Evolutionary

Computing (ICGEC), 2010 Fourth International Conference on, p. 194–197. IEEE,

2010.

[19] LUMELSKY, V. J.; STEPANOV, A. A. Path-planning strategies for a point mobile

automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,

2(1-4):403–430, 1987.

[20] MAHMOUDZADEH, S.; POWERS, D.; YAZDANI, A. Differential evolution for efficient

auv path planning in time variant uncertain underwater environment. arXiv

preprint arXiv:1604.02523, 2016.

[21] MININNO, E.; CUPERTINO, F.; NASO, D. Real-valued compact genetic algorithms

for embedded microcontroller optimization. IEEE Transactions on Evolutionary

Computation, 12(2):203–219, 2008.

Bibliography 65

[22] MOHANTY, P.; PARHI, D. Controlling the Motion of an Autonomous Mobile

Robot Using Various Techniques: a Review. Journal of Advanced Mechanical

Engineering, p. 24–39, 2013.

[23] OF ROBOTICS (IFR), I. F. IFR World Robotics 2016. http://www.ifr.org/, 2017.

[Online; accessed January-2017].

[24] PALA, M.; ERAGHI, N. O.; LÓPEZ-COLINO, F.; SANCHEZ, A.; DE CASTRO, A.;

GARRIDO, J. Hctnav: A path planning algorithm for low-cost autonomous

robot navigation in indoor environments. ISPRS International Journal of Geo-

Information, 2(3):729–748, 2013.

[25] PATEL, A. A* Comparisons in game programming. http://theory.stanford.

edu/~amitp/GameProgramming/AStarComparison.html, 2017. [Online; ac-

cessed January-2017].

[26] QU, H.; YANG, S. X.; WILLMS, A. R.; YI, Z. Real-time robot path planning based

on a modified pulse-coupled neural network model. Neural Networks, IEEE

Transactions on, 20(11):1724–1739, 2009.

[27] RAJA, P.; PUGAZHENTHI, S. Optimal path planning of mobile robots: A review.

International Journal of the Physical Sciences, 7(9):1314–1320, 2012.

[28] REIF, J. H. Complexity of the mover’s problem and generalizations. In: Foun-

dations of Computer Science, 1979., 20th Annual Symposium on, p. 421–427. IEEE,

1979.

[29] ROBERGE, V.; TARBOUCHI, M.; LABONTÉ, G. Comparison of parallel genetic

algorithm and particle swarm optimization for real-time uav path planning.

Industrial Informatics, IEEE Transactions on, 9(1):132–141, 2013.

[30] SAMADI, M.; OTHMAN, M. F. Global Path Planning for Autonomous Mobile

Robot Using Genetic Algorithm. 2013 International Conference on Signal-Image

Technology & Internet-Based Systems, p. 726–730, 2013.

[31] SCHWARTZ, J. T.; SHARIR, M. On the “piano movers’” problem i. the case

of a two-dimensional rigid polygonal body moving amidst polygonal barriers.

Communications on pure and applied mathematics, 36(3):345–398, 1983.

[32] SCHWARTZ, J. T.; SHARIR, M. On the piano movers’ problem: V. the case of a

rod moving in three-dimensional space amidst polyhedral obstacles. Commu-

nications on Pure and Applied Mathematics, 37(6):815–848, 1984.

http://www.ifr.org/
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Bibliography 66

[33] SEDIGHI, K. H.; ASHENAYI, K.; MANIKAS, T. W.; WAINWRIGHT, R. L.; TAI, H.-M.

Autonomous local path planning for a mobile robot using a genetic algorithm.

In: Evolutionary Computation, 2004. CEC2004. Congress on, volume 2, p. 1338–

1345. IEEE, 2004.

[34] SIEGWART, R.; NOURBAKHSH, I. R. Introduction to Autonomous Mobile Robots,

volume 23. 2004.

[35] THOMAZ, C. E.; PACHECO, M. A. C.; VELLASCO, M. M. B. Mobile robot path

planning using genetic algorithms. In: Foundations and Tools for Neural Modeling,

p. 671–679. Springer, 1999.

APPENDIX A
Random generated maps with 20% infill.

The 10 different maps generated for the tests in section 4.2.1 are displayed in
this appendix for transparency.

(a) Map 1. (b) Map 2.

(c) Map 3. (d) Map 4.

Figure A.1: Randomly generated maps used in the comparison.

Appendix A 68

(a) Map 5. (b) Map 6.

(c) Map 7. (d) Map 8.

(e) Map 9. (f) Map 10.

Figure A.2: Randomly generated maps used in the comparison.

APPENDIX B
The path planning simulator.

During the development of this work a simulator was created using the Matlab
environment. This united all tests into a single platform and provided the automation on
serial tests and the creation of a data analysis tool. In figure B.1 the main window of the
developed simulator can be seen.

Figure B.1: The main window of the simulator.

Appendix B 70

The standard map have obstacles present only on its borders, but it is possible
to create personalized maps using the Edit button. When triggered, this function places
squared obstacles using a pre-defined grid. To stop the obstacle placement the Edit button
must be pressed again. An example of this functionality can be seen in figure B.2. It is
also possible to change the starting position (circle) and the final position (star) of the
agent by clicking in its respectively symbol and then clicking in the desired position.

Figure B.2: Editing a map in the simulator.

In the Map Options section it is also possible to return to the standard map using
the Clear button, calculate the Distance Transform of the current map using the distMap

button, generate a random map given a infill percentage using the Random button, save
the current map into a .mat file and load previously created maps. The load function also
provides a list of the .map files present in the save folder. This functionality can be seen
in figure B.3

Appendix B 71

Figure B.3: Loading a map into the simulator.

After creating or loading a map is its possible to use any technique in the Path
Planners section to find a possible path between the starting position (circle) and the final
position (star). After choosing your technique, it is possible to see a report on performance
and path quality in the Report section. This can be notice in figure B.4, when the CGPlan
is tested in a complex indoor environment. The units are always in centimeters (for path
length) and seconds (for time consumption).

Appendix B 72

Figure B.4: Report after a path planning execution.

In this simulator you are also able to automate successive tests of a same
technique in the current map. This feature is triggered with the Serial Test button and
it is possible to choose from a list of path planing techniques, to input the number of
desired executions and the test name. The test name is then used to create a folder with
images representing the final solution of each execution as well as a .txt file with the
report on each execution. Figure B.5 illustrate the creation of a serial test.

Appendix B 73

Figure B.5: The serial test feature.

After a serial test it is possible to analyse the gathered data and create charts
using the Analyse Reports button. This function opens a new window in witch is possible
to import the raw reports in .txt files, select the variable to analyse and plot either as a
Box plot or a Error Line plot. This feature can be seen in figure B.6.

Appendix B 74

Figure B.6: Data Analysis Tool.

This simulator was of great importance for the development of the work, en-
abling the testing of different path planning techniques in the same environment and the
automated analysis of the gathered data.

	Elementos Pré-Textuais
	Capa
	Folha de Rosto
	Direitos Autorais
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract

	Sumary
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Contextualization
	1.2 Motivation
	1.2.1 Path planning efficiency.
	1.2.2 Planning and reacting behaviours.
	1.2.3 Planning with limited knowledge.
	1.2.4 The Constructive Genetic Planning - CGPlan.

	1.3 The organization of this work.

	2 Path Planning
	2.1 The Path Planning Problem
	2.1.1 Configuration Space
	2.1.2 Environment representation

	2.2 Related Works
	2.2.1 The A* Path Planning
	2.2.2 The Bug Path Planning
	The Bug1 strategy
	The Bug2 strategy

	2.2.3 The Rapidly-exploring Random Tree - RRT
	2.2.4 The GA Path Planning

	3 The Proposal
	3.1 The Compact Genetic Algorithm
	3.1.1 The Probability Vector - PV
	3.1.2 Selection
	3.1.3 Crossover

	3.2 The Real-encoded Compact Genetic Algorithm.
	3.2.1 The real-value representation in the rcGA.

	3.3 The CGPlan
	3.3.1 Evaluation
	3.3.2 Avoiding local minima

	4 Experiments and Results
	4.1 The simulation setup
	4.2 Performance and quality comparison
	4.2.1 First scenario - Environment with random scattered obstacles
	4.2.2 Second scenario - Environment with indoor-like configuration

	4.3 Experiments Analysis.
	4.4 Scalability Comparison
	4.4.1 A* Scalability
	4.4.2 RRT Scalability
	4.4.3 CGPlan Scalability

	5 Conclusion and Future Works
	5.1 Conclusion
	5.2 Future Works

	Bibliography
	A Random generated maps with 20% infill.
	B The path planning simulator.

