
INEXACT VARIANTS OF THE ALTERNATING

DIRECTION METHOD OF MULTIPLIERS AND

THEIR ITERATION-COMPLEXITY ANALYSES

Doctoral Thesis by

Vando Antônio Adona

Supervised by

Jefferson D. G. Melo

Funded by

CAPES

IME - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

UNIVERSIDADE FEDERAL DE GOIÁS

Goiânia, Goiás, Brazil

Março 2019

Vando Antônio Adona

INEXACT VARIANTS OF THE ALTERNATING DIRECTION METHOD

OF MULTIPLIERS AND THEIR ITERATION-COMPLEXITY ANALYSES

Tese apresentada ao Programa de Pós-Graduação do

Instituto de Matemática e Estat́ıstica da Universidade

Federal de Goiás, como requisito parcial para obtenção

do t́ıtulo de Doutor em Matemática.

Área de concentração: Otimização

Orientador: Prof. Dr. Jefferson Divino Gonçalves de Melo

Co-orientador: Prof. Dr. Max Leandro Nobre Gonçalves

Goiânia

2019

iii

Ficha de identificação da obra elaborada pelo autor, através do
Programa de Geração Automática do Sistema de Bibliotecas da UFG.

CDU 51

Adona, Vando Antônio
 INEXACT VARIANTS OF THE ALTERNATING DIRECTION
METHOD OF MULTIPLIERS AND THEIR ITERATION-COMPLEXITY
ANALYSES [manuscrito] / Vando Antônio Adona. - 2019.
 xiii, 79 f.

 Orientador: Prof. Dr. Jefferson Divino Gonçalves de Melo; co
orientador Dr. Max Leandro Nobre Gonçalves.
 Tese (Doutorado) - Universidade Federal de Goiás, Instituto de
Matemática e Estatística (IME), Programa de Pós-Graduação em
Matemática, Goiânia, 2019.
 Bibliografia.
 Inclui siglas, abreviaturas, símbolos, gráfico, tabelas, algoritmos.

 1. Alternating direction method of multipliers. 2. Convex program.
3. Hybrid extragradient method. 4. Relative error criterion. 5. Pointwise
iteration-complexity. I. Melo, Jefferson Divino Gonçalves de, orient. II.
Título.

Dedicado a:

Meu filho V́ıtor Gabriel

Minha sobrinha e afilhada Ĺıvia Maria

Em memória de meu pai Dirceu (1949-2007)

vii

Agradecimentos

Gostaria de agradecer primeiramente a Deus pela saúde, paz, por todas as graças alcançadas

e pela força divina que tenho recebido durante toda minha vida.

Sou muito grato aos meus orientadores Dr. Jefferson D. G. de Melo e Dr. Max Leandro

N. Gonçalves pela ajuda na elaboração deste trabalho, pelas idéias, sugestões, conselhos e

amizade, também pela paciência, atenção e cordialidade com que sempre me receberam.

Agradeço a Universidade Federal de Goiás (UFG) pela oportunidade como aluno, a todos

os professores e funcionários do Instituto de Matemática e Estat́ıstica (IME), em especial

aos Professores do grupo de Otimização do IME-UFG: Glaydston C. Bento, Jefferson D. G.

de Melo, Leandro F. Prudente, Luis R. L. Pérez, Max L. N. Gonçalves, Reinier D. Millán

e Orizon P. Ferreira que contribuiram considerávelmente com a minha formação. Agradeço

também aos Professores Gabriel Haeser, Leandro F. Prudente, Luis R. L. Pérez e Roberto

Andreani por participarem da banca examinadora, pelas sugestões e comentários.

Muito obrigado a todos os meus amigos do curso. Não mais importante do que outros, mas

provavelmente pela constante convivência e intimidade adquirida, agradeço especialmente

aos amigos: Fabiana Rodrigues de Oliveira, Fabŕıcia Rodrigues de Oliveira, Lucas Vidal de

Meireles e Mauŕıcio Silva Louzeiro.

Agradeço à minha mãe Neosa e meu falecido pai Dirceu, pela educação, amor e base familiar

que me deram. Tenho muito respeito e admiração por eles. Muito obrigado a todos os

meus familiares, às minhas irmãs Vanessa e Vânia sou grato principalmente pela motivação

e entusiasmo transmitos a mim durante meus estudos.

Agradeço também a minha namorada Simone pela paciência, compreensão, carinho e por

conceber nosso amado filho. Sou grato também a ele, meu filho Vı́tor Gabriel, pelo orgulho

e felicidade que me proporciona.

À CAPES, agradeço pelo suporte financeiro.

viii

Abstract

This thesis proposes and analyzes some variants of the alternating direction method

of multipliers (ADMM) for solving separable linearly constrained convex optimization

problems. This thesis is divided into three parts. First, we establish the iteration-complexity

of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein,

introduces a relaxation parameter α into the second ADMM subproblem in order to

improve its computational performance. We show that, for a given tolerance ρ > 0, the

proximal generalized ADMM with α ∈ (0, 2) provides, in at most O(1/ρ2) iterations, an

approximate solution of the Lagrangian system associated to the optimization problem under

consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate

solution of the Lagrangian system can be obtained by means of an ergodic sequence associated

to a sequence generated by the proximal generalized ADMM with α ∈ (0, 2]. Second, we

propose and analyze an inexact variant of the aforementioned proximal generalized ADMM.

In this variant, the first subproblem is approximately solved using a relative error condition

whereas the second one is assumed to be easy to solve. It is important to mention that in

many ADMM applications one of the subproblems has a closed-form solution; for instance,

`1-regularized convex composite optimization problems. We show that the proposed method

possesses iteration-complexity bounds similar to its exact version. Third, we develop an

inexact proximal ADMM whose first subproblem is inexactly solved using an approximate

relative error criterion similar to the aforementioned inexact proximal generalized ADMM.

Pointwise and ergodic iteration-complexity bounds for the proposed method are established.

Our approach consists of interpreting these ADMM variants as an instance of a hybrid

proximal extragradient framework with some special properties. Finally, in order to show the

applicability and advantage of the inexact ADMM variants proposed here, we present some

numerical experiments performed on a setting of problems derived from real-life applications.

Keywords: Alternating direction method of multipliers, Convex program, Hybrid

extragradient method, Relative error criterion, Pointwise iteration-complexity, Ergodic

iteration-complexity.

ix

Resumo

Esta tese propõe e analisa algumas variantes do método dos multiplicadores das direções

alternadas (ADMM) para resolver problemas de otimização convexa com restrição linear.

Esta tese é dividida em três partes. Primeiro, estabelecemos iteração complexidade de um

ADMM generalizado proximal. Essa variante ADMM, proposta por Bertsekas e Eckstein,

introduz um parâmetro de relaxação α no segundo subproblema do ADMM para melhorar

seu desempenho computacional. Mostramos que, para uma determinada tolerância ρ > 0, o

ADMM generalizado proximal com α ∈ (0, 2) fornece, em no máximo O(1/ρ2) iterações,

uma solução aproximada do sistema Lagrangiano associado ao problema de otimização

considerado. É ainda demonstrado que, em no máximo O(1/ρ) iterações, uma solução

aproximada do sistema Lagrangiano pode ser obtida por meio de uma sequência ergódica

associada à sequência gerada pelo ADMM generalizado proximal com α ∈ (0, 2]. Em

segundo lugar, propomos e analisamos uma variante inexata do ADMM generalizado

proximal acima mencionado. Nesta variante, o primeiro subproblema é aproximadamente

resolvido usando uma condição de erro relativo, enquanto o segundo é considerado fácil

de resolver. É importante mencionar que, em muitas aplicações do ADMM, um dos

subproblemas tem uma solução em forma fechada; por exemplo, problemas de otimização

convexos compostos `1-regularizados. Mostramos que o método proposto possui iteração

complexidade semelhantes à sua versão exata. Terceiro, desenvolvemos um ADMM proximal

inexato cujo primeiro subproblema é resolvido inexatamente usando um critério de erro

relativo aproximado semelhante ao ADMM inexato generalizado proximal acima mencionado.

Os limites de iteração complexidade pontual e ergódico para o método proposto são

estabelecidos. Nossa abordagem consiste em interpretar essas variantes do ADMM como

uma instância de um estrutura h́ıbrida proximal extragradiente com algumas propriedades

especiais. Finalmente, a fim de mostrar a aplicabilidade e vantagem das variantes inexatas

do ADMM propostas aqui, apresentamos alguns experimentos numéricos realizados em um

cenário de problemas derivados de aplicações da vida real.

Palavras-chave : Método dos multiplicadores das direções alternadas, Programa convexo,

Método extragradiente h́ıbrido, Critério de erro relativo, Iteração complexidade pontual,

Iteração complexidade ergódica.

x

Basic notation and terminology

<n: the n-dimensional Euclidean space,

<+: the set of nonnegative real numbers,

V ,X ,Y ,Z,Γ: finite-dimensional real inner product vector spaces,

Q∗ : Y → X : the adjoint of a linear operator Q : X → Y ,

‖ · ‖Q: the seminorm induced by self-adjoint semidefinite linear operator Q,

T : X ⇒ Y : a set-valued operator from X to Y ,

〈·, ·〉: inner product,

‖ · ‖: norm induced by an inner product,

∂h: subdifferential set of a convex function h,

ADMM: abbreviation for alternating direction method of multipliers,

P-ADMM: abbreviation for proximal ADMM,

PG-ADMM: abbreviation for proximal generalized ADMM,

HPE: abbreviation for hybrid proximal extragradient,

Pointwise: a term which refers to the sequence directly generated by a method,

Ergodic: a term associated to an auxiliary sequence obtained from a sequence by means of

an ergodic procedure.

xi

Contents

Agradecimentos viii

Basic notation and terminology xi

1 Introduction 1

1.1 Main contributions . 3

1.2 Previous most related works . 5

1.3 Thesis outline . 8

2 Preliminary 9

2.1 Notation and basic definitions . 9

2.2 A modified HPE framework . 10

2.2.1 Iteration-complexity of the modified HPE framework 13

2.3 Elementary concepts . 17

3 Iteration-complexity analysis of the proximal generalized ADMM 19

3.1 Proximal generalized ADMM (PG-ADMM) 19

3.2 Iteration-complexity of the PG-ADMM . 21

3.2.1 The PG-ADMM as an instance of the modified HPE framework . . . 21

3.2.2 Iteration-complexity bounds for the PG-ADMM 25

4 An inexact PG-ADMM and its iteration-complexity analysis 32

4.1 Inexact PG-ADMM . 32

4.2 Iteration-complexity of the inexact PG-ADMM 34

4.2.1 Inexact PG-ADMM in the setting of the modified HPE framework . . 35

4.2.2 Iteration-complexity bounds for the inexact PG-ADMM 40

xii

5 An inexact proximal ADMM and its iteration-complexity analysis 44

5.1 An inexact proximal ADMM (P-ADMM) . 44

5.2 Iteration-complexity of the inexact P-ADMM 46

5.2.1 Inexact P-ADMM in the setting of the modified HPE framework . . . 47

5.2.2 Iteration-complexity bounds for the inexact P-ADMM 55

6 Numerical experiments 58

6.1 Strategies . 59

6.2 LASSO problem . 60

6.3 `1-Regularized logistic regression problem . 66

7 Final remarks 72

Bibliography 72

xiii

Chapter 1

Introduction

Let X , Y and Γ be finite-dimensional real vector spaces with inner products and associated

norms denoted by 〈·, ·〉 and ‖ · ‖ respectively. Consider the following linearly constrained

optimization problem

min{f(x) + g(y) : Ax+By = b, x ∈ X , y ∈ Y}, (1.1)

where f : X → (−∞,∞] and g : Y → (−∞,∞] are proper, closed and convex functions,

A : X → Γ and B : Y → Γ are linear operators, and b ∈ Γ. This problem naturally arises in

many applications such as signal and image processing, statistics, compressive sensing and

machine learning (see, for example, [7, 12, 58]). An important class of problems that can be

fit into the above setting is the well-known composite convex optimization problems of the

form

min{f(x) + g(Qx) : x ∈ X}, (1.2)

where Q : X → Y is a linear operator. Indeed, this can be done by considering an artificial

variable y = Qx and setting A = −Q, B = I, and b = 0. Special instances of (1.2) include:

(i) LASSO [77,78] and `1-regularized logistic regression [51], where Q = I; (ii) least absolute

deviations [12, Sect. 6.1] and total variation denoising [67], where Q is associated to the

least squares fitting model for the former application and the first-order finite difference for

the latter.

The augmented Lagrangian function Lβ : X ×Y ×Γ→ (−∞,∞] associated with problem

(1.1) is defined as

Lβ(x, y, γ) = f(x) + g(y)− 〈γ,Ax+By − b〉+
β

2
‖Ax+By − b‖2 , (1.3)

where β > 0 is a penalty parameter and γ ∈ Γ denotes the Lagrange multiplier.

1

Recently, there has been a growing interest in the study of the alternating direction method

of multipliers (ADMM) and its variants, due to their efficiency for solving the aforementioned

class of problems; see, for instance, [12] for a complete review. The ADMM is an augmented

Lagrangian type method that explores the separable structure of problem (1.1) in such a

way that the augmented Lagrangian subproblem is solved alternately. More specifically, the

ADMM applied for solving (1.1) consists of the iterative scheme

xk ∈ arg min
x∈X

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2

}
, (1.4a)

yk ∈ arg min
y∈Y

{
g(y)− 〈γk−1, By〉+

β

2
‖Axk +By − b‖2

}
, (1.4b)

γk = γk−1 − θβ (Axk +Byk − b) , (1.4c)

where β > 0. Note that (1.4a)-(1.4b) corresponds to minimize, respectively, the “partial”

augmented Lagrangian functions Lβ(x, yk−1, γk−1) and Lβ(xk, y, γk−1), whereas (1.4c) is the

Lagrange multiplier update rule with a relaxation factor θ which is frequently chosen in

the interval (0, (1 +
√

5)/2). The first ones to consider this scheme (or slight variant of it)

were Glowinski and Marroco in [37] and Gabay and Mercier in [34]. Its convergence was

established in [32, 33], see also [33, 35, 36] and [12, 28] for detailed discussions about this

scheme. It has been observed that the use of the relaxation parameter θ, specially with

θ ≈ 1.6, in the Lagrange multiplier update (1.4c) improves the numerical performance of the

method, see [18,35,47]. Recently, many authors have proposed and studied some variants of

this method; see, for example, [10,13,17,21,25,31,42,43,45,48,52,61].

Among the aforementioned variants, one that has received a special attention is the so

called proximal ADMM, which can be described as follows:

xk ∈ arg min
x∈X

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2 +

1

2
‖x− xk−1‖2

G

}
, (1.5a)

yk ∈ arg min
y∈Y

{
g(y)− 〈γk−1, By〉+

β

2
‖Axk +By − b‖2 +

1

2
‖y − yk−1‖2

H

}
, (1.5b)

γk = γk−1 − θβ (Axk +Byk − b) , (1.5c)

where G : X → X and H : Y → Y are self-adjoint positive semidefinite linear operators.

Note that the difference between the proximal and the standard ADMMs is the inclusion

of the proximal terms in the associated subproblems. Indeed, the standard ADMM can

be recovered by setting (G,H) = (0, 0). In general, the inclusion of proximal terms as in

(1.5a)-(1.5b) make the subproblems easier to solve or even to have closed-form solutions.

This estrategy was first introduced by Eckstein in [25] and more recently considered in

2

several papers; see for example, [5, 21, 40, 46, 48, 49, 81]. The standard ADMM (1.4) with

θ = 1 can be recovered by applying the Douglas-Rachford splitting method [23, 53] to the

dual problem of (1.1) see, for example, [26, 33, 82]. In [26], Eckstein and Bertsekas also

proposed the following generalized ADMM for solving (1.2): fixed two summable sequences

{µk} ⊂ <+ and {νk} ⊂ <+, obtain (xk, yk, γk) as follows

xk ≈ arg min
x∈X

{
f(x) + 〈γk−1, Qx〉+

β

2
‖Qx− yk−1‖2

}
, (1.6a)

yk ≈ arg min
y∈Y

{
g(y)− 〈γk−1, y〉+

β

2
‖y − αQxk − (1− α)yk−1‖2

}
, (1.6b)

γk = γk−1 − β [yk − αQxk − (1− α)yk−1] , (1.6c)

where α ∈ (0, 2) and the approximate solutions xk and yk are such that ‖xk − xek‖ ≤ µk and

‖yk − yek‖ ≤ νk, with xek and yek being the exact solutions of (1.6a) and (1.6b), respectively.

Note that if µk = νk = 0 for every k and α = 1 the generalized ADMM (1.6) becomes the

ADMM (1.4) with θ = 1 applied to (1.2), i.e., with A = −Q, B = I, and b = 0. As has been

observed by many authors (see, e.g., [2, 9, 24, 31, 59]), the use of the relaxation parameter

α > 1 in (1.6b)–(1.6c) may considerably improve the numerical performance of the method.

1.1 Main contributions

We propose and analyze some ADMM variants applied for solving the linearly constrained

convex optimization problem (1.1). We are interested in establishing pointwise and ergodic

iteration-complexities for these variants to obtain approximate solutions of the following

Lagrangian system associated with problem (1.1)

0 ∈ ∂f(x)− A∗γ, 0 ∈ ∂g(y)−B∗γ, 0 = Ax+By − b. (1.7)

Note that (x∗, y∗, γ∗) is a solution of the above system, if and only if, (x∗, y∗) is a solution to

problem (1.1) and γ∗ is an associated Lagrange multiplier. Here, for a given tolerance ρ > 0,

we shall consider two concepts of approximate solutions of (1.7). A triple (x̂, ŷ, γ̂) is said to

be a ρ-approximate solution of (1.7) with residue (vx̂, vŷ, vγ̂) ∈ X × Y × Γ if the following

conditions hold

vx̂ ∈ ∂f(x̂)− A∗γ̂, vŷ ∈ ∂g(ŷ)−B∗γ̂, vγ̂ = Ax̂+Bŷ − b
max {‖vx̂‖ , ‖vŷ‖ , ‖vγ̂‖} ≤ ρ;

(1.8)

3

whereas a triple (x̄, ȳ, γ̄) is said to be a relaxed ρ-approximate solution of (1.7) with residues

(vx̄, vȳ, vγ̄) ∈ X × Y × Γ and (εx̄, εȳ) ∈ <+ ×<+ if the following conditions hold

vx̄ ∈ ∂εx̄f(x̄)−A∗γ̄, vȳ ∈ ∂εȳg(ȳ)−B∗γ̄, vγ̄ = Ax̄+Bȳ − b,
max {‖vx̄‖ , ‖vȳ‖ , ‖vγ̄‖ , εx̄, εȳ} ≤ ρ.

(1.9)

Note that the latter concept generalizes the former since ∂h(·) ⊂ ∂εh(·) for any convex

function h and ε ≥ 0. Indeed, a ρ-approximate solution (x̂, ŷ, γ̂) of (1.7) with residue

(vx̂, vŷ, vγ̂) is a relaxed ρ-approximate solution with residues (vx̄, vȳ, vγ̄) = (vx̂, vŷ, vγ̂) and

(εx̄, εȳ) = (0, 0).

Here, we first analyze an exact proximal generalized ADMM (a version of scheme (1.6)

applied to problem (1.1) with proximal terms added to the associated subproblems).

This analysis is essential to the subsequent study associated to two new inexact ADMM

variants. The first proposed inexact ADMM variant consists of an inexact version of the

aforementioned proximal generalized ADMM, whereas the second one is an inexact variant

of the proximal ADMM (1.5). These variants are such that their first partial subproblems

(corresponding to (1.5a) and (1.6a)) are approximately solved using relative error conditions

based on the works of Solodov and Svaiter [71–74]. The proposed schemes are interesting

in applications in which a solution to the first partial (proximal) ADMM subproblem can

not be easily obtained, whereas the second one is relatively easy to solve. We mention that

many real-life applications problems can be approached via `1-regularized convex composite

optimization which in turn can be approximately solved by means of the inexact variants

proposed here. In particular, a solution to the corresponding second proximal (generalized)

ADMM subproblem can be explicitly computed, see Chapter 6. We mention that in many

applications, a solution for the corresponding second (proximal) ADMM subproblem can be

explicitly computed; for instance, this is the case for the large class of `1-regularized convex

composite optimization problems.

We show that, for a given tolerance ρ > 0, the proposed ADMM variants generate

ρ-approximate solutions of (1.7) in at most O(1/ρ2) iterations. Moreover, we also show that

relaxed ρ-approximate solutions of (1.7) can be obtained by means of auxiliary sequences

(generated in an ergodic sense) associated to the proposed schemes in at most O(1/ρ)

iterations. Note that, the latter iteration-complexity bound is better than the former by

a factor of O(1/ρ); however, the inclusions in the ergodic case (see (1.9)) are, in general,

weaker than those considered in the pointwise case (see (1.8)). It is worth mentioning that

the residuals pairs (vx̂, vŷ), (vx̄, vȳ), and (εx̄, εȳ) in (1.8)-(1.9) are explicitly computed. Hence,

the last condition in (1.8) (resp. (1.9)) can be used as a verifiable pointwise (resp. ergodic)

stopping criterion. One of our goal is to show that aforementioned ADMM variants fall

4

within the setting of a hybrid proximal extragradient (HPE) framework1 since this is an

interesting approach to establish iteration-complexity bounds for these schemes in order to

obtain approximate solutions of (1.7) in the sense of (1.8)-(1.9).

The last part of this thesis is devoted to the computational study of the proposed

inexact ADMM variants. Some numerical experiments performed on a setting of problems

derived from real-life applications, such as LASSO and `1-regularized logistic regression, are

considered in order to show the applicability and advantage of these schemes. In particular,

we confirm that, similarly to the corresponding exact ADMM versions, the use of α ≈ 1.9

(rep. θ ≈ 1.6) in the inexact proximal generalized ADMM (resp. inexact proximal ADMM)

can lead to a better numerical performance.

Finally, the material of this thesis originated three papers which were submitted for

publication. Specifically, the material of Chapter 3 is associated to [2], whereas the materials

of Chapters 4 and 5 are associated to [1] and [3], respectively.

1.2 Previous most related works

For convenience, we divide this literature review into three parts. First, we review the papers

dealing with the standard ADMM and its proximal variants in the exact case. Second, we

provide a survey of the literature related to the proximal generalized ADMM. Finally, we

discuss the papers about inexact ADMMs.

Standard ADMM and its proximal variants: The first ones to establish

iteration-complexity bounds for the standard ADMM (1.4) with θ = 1 were Monteiro and

Svaiter [57] (although their analysis assumes θ = 1 and considers only the ergodic case, it

can be easily adapted to cover the pointwise case and the use of θ < 1). Subsequently,

He and Yuan analyzed ergodic [48] and pointwise [49] iteration-complexities of a partial

proximal ADMM (the proximal ADMM (1.5) with H = 0 and θ = 1). Pointwise and ergodic

iteration-complexity results for the proximal ADMM in its general form (1.5) were considered

in [20, 41, 43]. In [40], the authors established iteration-complexity bounds for a variable

metric proximal ADMM. It is worth mentioning that all of the aforementioned papers obtain

iteration-complexity bounds of the same order than the ones obtained here, i.e., O(1/ρ2) to

the pointwise case and O(1/ρ) in the ergodic case. However, it should be mentioned that

none of these papers deals with inexact ADMM. In [42], the authors proposed and analyzed

1The HPE framework considered here is a slight modification of the well-known HPE scheme first

introduced by Solodov and Svaiter [71] for solving monotone inclusion problems. Iteration-complexity bounds

for the latter HPE scheme was first established by Monteiro and Svaiter in [56].

5

a regularized ADMM whose pointwise iteration-complexity bound is better than the one

obtained here by an O(ε log(ε−1)) factor. The latter scheme was further explored in [39]

by expanding the region in which a relaxation parameter used in the Lagrange multiplier

update rule can be chosen. These regularized ADMMs consist of a combination of an inner

and an outer procedures, where each of the inner procedure is itself an implementation of

a proximal ADMM, whereas the outer one dynamically adjusts a regularization parameter.

Although this method has an improved pointwise iteration-complexity, it still lacks of a

computational study in order to improve its numerical performance since the aforementioned

overall procedure is, in general, time consuming in practice. By assuming that function f

in (1.1) is differentiable with Lipschitz continuous gradient, [61] proposed some accelerated

ADMM schemes which improve previous convergence rate bounds in terms of the dependence

on the Lipschitz constant of the gradient. Finally, under the latter assumptions along with

strong convexity of f and certain rank conditions on the matrices A and B, paper [21]

established linear convergence rate for a proximal variant of the ADMM. We refer the reader

to [2,11,31,39,42,45,52,68] where iteration-complexities of other exact ADMM variants have

been considered.

Proximal generalized ADMM: Convergence rates and iteration-complexity of the (exact)

generalized ADMM have been recently studied in different contexts (see [19, 31, 59, 75, 76]).

However, it should be mentioned that none of these papers is focused on approximately

solving the Lagrangian system (1.7) in the sense of (1.8) or (1.9). Namely, paper [31]

derived pointwise and ergodic iteration-complexity bounds for the generalized ADMM to

obtain an approximate solution of (1.1) in the context of variational inequality, assuming

that the matrix B has full column rank. Although its approach is different from ours, it can

be shown that its pointwise iteration-complexity bound is similar to the one provided in this

thesis. On the other hand, its ergodic iteration-complexity results are based on a termination

criterion which can not be easily verifiable and is not directly related to the one considered

here. Paper [19] proposed a generalized proximal point algorithm for finding roots of a

maximal monotone operator in a Hilbert space and analyzed its convergence rates under

different assumptions. In particular, for a given tolerance ρ > 0, the authors established

an O(1/ρ2) pointwise iteration-complexity bound to obtain an approximate solution based

on the Yosida approximation of the operator. As a by-product, the same bound can be

derived for a especial case of the proximal generalized ADMM considered here. It should

be noted, however, that the residual based on the Yosida approximation of the operator

is not easy to compute and, hence, it is not clear how their result can be used to obtain

and/or identify approximation solutions of (1.7) in the sense of (1.8) or (1.9). The algorithm

6

proposed in [19] was further explored in [76], where the authors established convergence (in

the weak and strong topology) of the proposed scheme as well as linear convergence rate.

Under the assumptions that A is invertible, B has full column rank, and f is a differentiable

strongly convex function with parameter m > 0 whose gradient is L-Lipschitz continuous,

paper [59] established the linear convergence of a special case of the proximal generalized

ADMM studied here with penalty parameter β specifically chosen depending on m, L, and

the smallest and largest singular values of the matrix A. Paper [75] analyzed the proximal

generalized ADMM as a particular case of a general scheme in a Hilbert space and obtained

O(1/k) ergodic convergence rate by measuring a partial primal-dual gap associated to the

Lagrangian function of problem (1.1). The latter result was obtained under the assumption

that the operators (∂f + βA∗A)−1 and (∂g + βB∗B)−1 exist and are Lipschitz continuous

which is stronger than the assumption that f and g are convex. Moreover, contrary to

our iteration-complexity analysis, the one presented in [75] does not provide any practical

termination criterion.

Inexact ADMMs: Inexact variants of the ADMM considering different strategies to

compute approximate solutions of its subproblems have been studied in the literature, see for

example [26,29,30,58,80]. Bertsekas and Eckstein in [26] introduced an inexact generalized

ADMM whose subproblems are approximately solved using absolute error conditions. In [58],

Ng et al. proposed inexact variants of the proximal ADMM (1.4) (with θ = 1 and proximal

terms defined by the identity operator) in the setting of variational inequalities, where

absolute and relative error criteria were considered. The aforementioned relative error

criterion is closely related to the one proposed here. The main advantage of our criterion

is that a parameter associated to the criterion is constant (see the parameters τ1 and τ2

in (5.2)) whereas the corresponding parameters in the former criterion needs to be square

summable, in particular, they vanish asymptotically. This property is too stringent and

makes their scheme quite slowly in practice. Most recently, Eckstein and Wang proposed

and analyzed other inexact ADMM variants whose subproblems are approximately solved

using relative and/or summable error criteria (see [29,30]). Specifically, [29] further developed

to the ADMM setting the study of [27], where an inexact augmented Lagrangian method

was proposed and analyzed. The main idea of the last references was to approximately solve

the associated subproblems using a relative error condition based on the one introduced

by Solodov and Svaiter [71–73] in the setting of proximal-point type methods. Numerical

comparisons with the inexact ADMM variant proposed in [29] is presented in Chapter 6.

Paper [30] proposed a relaxed Douglas–Rachford splitting method for solving (1.2) and

derived, as a consequence, a variant of the ADMM which uses, in a special way, a relative

7

error condition.

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 contains preliminary results, notation, basic

definitions as well as some assumptions. Chapter 3 is divided into two sections. The first

one formally states the proximal generalized ADMM, whereas the second one establishes its

pointwise and ergodic iteration-complexity bounds to obtain approximate solution of (1.1)

in the sense of (1.8)-(1.9). Chapter 4 and Chapter 5 introduce two new inexact ADMM

variants and present their iteration-complexity analysis. Specifically, Chapter 4 is devoted

to an inexact proximal generalized ADMM, whereas Chapter 5 deals with an inexact proximal

ADMM. Chapter 6 is devoted to numerical experiments. Finally, Chapter 7 contains some

concluding remarks.

8

Chapter 2

Preliminary

This chapter is divided into three sections. The first one presents our notation and basic

results. The second section describes a modified HPE framework and its corresponding

pointwise and ergodic iteration-complexity bounds for approximately solving a monotone

inclusion problem. The last section discuss some concepts of approximate solutions for a

monotone inclusion problems as well to the linearly constrained optimization problem (1.1).

Some assumptions that will be used throughout this thesis are also considered in this section.

2.1 Notation and basic definitions

In this thesis, <n denotes the usual n-dimensional Euclidean space. The coordinates of a

vector x ∈ <n will be written as x1, . . . , xn, i.e., x = (x1, . . . , xn). When n = 1, <1 := <
is the set of real numbers. <+ denotes the set of nonnegative real numbers. The p-norm

(p ≥ 1) and maximum norm of x ∈ <n are denoted, respectively, by ‖x‖p = (
∑n

i=1 |xi|p)
1/p

and ‖x‖∞ = max{|x1|, . . . , |xn|}. The index p is omitted when p = 2.

Let V be a finite-dimensional real vector space with inner product and associated norm

denoted by 〈·, ·〉 and ‖ · ‖, respectively, and let Q be a linear operator on V . Recall that

the adjoint of Q is the uniquely determined linear operator satisfying 〈v,Qṽ〉 = 〈Q∗v, ṽ〉,
for every v, ṽ ∈ V . Q∗. When Q∗ = Q, the operator Q is called self-adjoint. A self-adjoint

linear operator Q : V → V is said to be positive semidefinite if and only if 〈Qv, v〉 ≥ 0,

for all v ∈ V . For a given self-adjoint positive semidefinite linear operator Q : V → V , the

seminorm induced by Q on V is defined by ‖ · ‖Q = 〈Q(·), ·〉1/2. Since 〈Q(·), ·〉 is symmetric

and bilinear, for all v, ṽ ∈ V , we have

2 〈Qv, ṽ〉 ≤ ‖v‖2
Q + ‖ṽ‖2

Q, ‖v + v′‖2
Q ≤ 2

(
‖v‖2

Q + ‖v′‖2
Q

)
. (2.1)

9

We denote the identity operator on a vector space V by I.

Given a set-valued operator T : V ⇒ V , its domain and graph are defined, respectively, as

DomT = {v ∈ V : T (v) 6= ∅} and Gr(T) = {(v, ṽ) ∈ V × V : ṽ ∈ T (v)}.

The operator T is said to be monotone if

〈u− v, ũ− ṽ〉 ≥ 0 ∀ (u, ũ), (v, ṽ) ∈ Gr(T).

Moreover, T is maximal monotone if it is monotone and there is no other monotone operator

S such that Gr(T) ⊂ Gr(S). Given a scalar ε ≥ 0, the ε-enlargement T [ε] : V ⇒ V of the

operator T is defined as

T [ε](v) = {ṽ ∈ V : 〈ṽ − ũ, v − u〉 ≥ −ε, ∀(u, ũ) ∈ Gr(T)} ∀ v ∈ V . (2.2)

The ε-subdifferential of a proper closed convex function f : V → [−∞,∞] is defined by

∂εf(v) = {u ∈ V : f(ṽ) ≥ f(v) + 〈u, ṽ − v〉 − ε, ∀ ṽ ∈ V} ∀ v ∈ V .

When ε = 0, ∂0f(v) is denoted by ∂f(v) and is called the subdifferential of f at v. It is

well-known that the subdifferential operator of a proper closed convex function is maximal

monotone [65].

The next result is a consequence of the transportation formula in [15, Theorem 2.3]

combined with [14, Proposition 2(i)].

Proposition 2.1.1 Suppose T : V ⇒ V is maximal monotone and let ṽi, vi ∈ V, for i =

1, . . . , k, be such that vi ∈ T (ṽi) and define

ṽak =
1

k

k∑
i=1

ṽi, vak =
1

k

k∑
i=1

vi, εak =
1

k

k∑
i=1

〈vi, ṽi − ṽak〉.

Then, the following hold:

(a) εak ≥ 0 and vak ∈ T [εak](ṽak);

(b) if, in addition, T = ∂f for a proper closed and convex function f , then vak ∈ ∂εakf(ṽak).

2.2 A modified HPE framework

Our problem of interest in this section is the monotone inclusion problem

0 ∈ T (z), (2.3)

10

where T : Z ⇒ Z is a maximal monotone operator and Z is a finite-dimensional real vector

space with inner product and associated norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. We

consider the following basic assumption:

Assumption 2.2.1 The solution set of (2.3), denoted by T−1(0), is nonempty.

A classic iterative scheme applied to solve (2.3) is the proximal point method [55], which,

starting from an initial point z0 ∈ Z, generates a sequence {zk} satisfying

zk = (I + λkT)−1 (zk−1),

where λk > 0 is a parameter. Often, in applications, it can be difficult to explicitly obtain the

resolvent operator (I + λT)−1, so that some inexact versions of the proximal point method

were considered. In [66] Rockafellar proposed an inexact proximal point method which allows

{zk} to be computed such that∥∥zk − (I + λkT)−1 (zk−1)
∥∥ ≤ ek,

∞∑
k=1

ek <∞,

where λk is bounded away from zero, and {ek} is a non-negative sequence of error tolerances.

More recently, there is a growing interest in inexact versions that use relative error criteria

instead of absolute error. In this sense, the hybrid proximal extragradient (HPE) method

proposed by Solodov and Svaiter in [71] (see also [72–74]) suggests, in each iteration, to find

a triple (z̃k, vk, εk) ∈ Z × Z × <+ and λk > 0 such that

vk ∈ T [εk](z̃k), ‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ ‖z̃k − zk−1‖2 , (2.4)

where σ ∈ [0, 1) is a error tolerance parameter. The new iteration zk is then defined as

zk = zk−1 − λkvk. If σ = 0, it follows easily that for every k ≥ 1, εk = 0 and z̃k = zk, and

hence

vk ∈ T (zk), λkvk + zk − zk−1 = 0,

which is equivalente to the exact iteration of the proximal point method. Thus, we can

conclude that, by increasing the value of σ in the interval [0, 1), the HPE method (2.4)

allows a growing relaxation in inclusion and/or equation of the above system. Monteiro and

Svaiter in [56] established iteration-complexity results for the HPE method (2.4). Since then,

iteration-complexity of other HPE-type methods have been considered in the literature (see,

e.g., [42, 50,54,57,74]).

In the following, we formally describe a modified HPE framework for computing

approximate solutions of (2.3) which will be essential to characterize and analyze the

algorithms considered in this thesis.

11

Modified HPE framework.

0. Let z0 ∈ Z, η0 ∈ <+, σ ∈ [0, 1] and a self-adjoint positive semidefinite linear operator

M : Z → Z be given, and set k = 1;

1. obtain (zk, z̃k, ηk) ∈ Z × Z × <+ such that

M(zk−1 − zk) ∈ T (z̃k), (2.5a)

‖z̃k − zk‖2
M + ηk ≤ σ‖z̃k − zk−1‖2

M + ηk−1; (2.5b)

2. set k ← k + 1 and go to step 1.

end

Remark 2.2.2 Some remarks about the modified HPE framework are in order:

(a) It is an instance of the non-Euclidean HPE framework of [41] with λk = 1, εk = 0

and (dw)z(z
′) = (1/2)‖z − z′‖2

M , for every z, z′ ∈ Z. Note that, the distance generating

function w(·) = (1/2)‖ · ‖2
M is a (1, 1)-regular with respect to (Z, ‖ · ‖M) in the sense of [41,

Definition 3.2].

(b) The way to obtain (zk, z̃k, ηk) will depend on the particular instance of the framework

and properties of the operator T . In later chapters, we will show that the proposed variants of

ADMM can be seen as an instance of the modified HPE framework specifying, in particular,

how this triple (zk, z̃k, ηk) can be obtained in this context.

(c) The inclusion in (2.5a) can be interpreted as a generalized proximal inclusion where the

pair (zk, z̃k) is controlled according to the relative error condition in (2.5b). Indeed, if M

is positive definite and σ = η0 = 0, then (2.5b) implies that ηk = 0 and zk = z̃k for every

k ≥ 1, and hence that M(zk−1 − zk) ∈ T (zk) in view of (2.5a). In particular, if M = I and

σ = η0 = 0, then (2.5) implies that ηk = 0, zk = z̃k and 0 ∈ zk−zk−1 +T (zk) for every k ≥ 1,

which corresponds to the proximal point method to solve problem (2.3). Therefore, the HPE

error conditions (2.5) can be viewed as a relaxation of an iteration of the exact proximal

point method. It is worth mentioning that the use of a positive semidefinite operator M

instead of a positive definite is essential in the analysis discussed in the next chapters. More

examples of algorithms which can be seen as special cases of HPE-type frameworks can be

found in [56,57,71].

(d) In view of Assumption 2.2.1 and the first remark above, it follows from [41, Lemma 3.6(d)]

that the sequence {zk} is bounded when M is positive definite. On the other hand, if

12

the solution set of (2.3) is empty, then {zk} may be unbounded; see, for example, [71,

Theorem 3.1], where is shown that the sequence generated by a special case of the modified

HPE framework has this behavior.

It should be noted that all results given in this section are derived from [41] (incluing the

modified HPE framework as mentioned in Remark 2.2.2(a)). Due to the relevance of this

framework in the analysis of the ADMM variants considered here, and also for completeness

and convenience of the reader, we formally present a simplified proofs of these facts.

The next result summarizes some useful properties about the sequence generated by the

modified HPE framework (see [41, Lemma 3.6]).

Lemma 2.2.3 Let {(zk, z̃k, ηk)} be the sequence generated by the modified HPE framework.

For every k ≥ 1, the following statements hold:

(a) for every z ∈ Z, we have

‖z− zk‖2
M + ηk ≤ (σ− 1)‖z̃k − zk−1‖2

M + ‖z− zk−1‖2
M + 2〈M(zk−1− zk), z− z̃k〉+ ηk−1;

(b) for every z∗ ∈ T−1(0), we have

‖z∗ − zk‖2
M + ηk ≤ (σ − 1)‖z̃k − zk−1‖2

M + ‖z∗ − zk−1‖2
M + ηk−1 ≤ ‖z∗ − zk−1‖2

M + ηk−1.

Proof. (a) Note that, for every z ∈ Z,

‖z − zk‖2
M − ‖z − zk−1‖2

M = ‖(z − z̃k) + (z̃k − zk)‖2
M − ‖(z − z̃k) + (z̃k − zk−1)‖2

M

= ‖z̃k − zk‖2
M − ‖z̃k − zk−1‖2

M + 2〈M(zk−1 − zk), z − z̃k〉,

which, combined with (2.5b), proves the desired inequaliy.

(b) Since M(zk−1 − zk) ∈ T (z̃k) and 0 ∈ T (z∗), we have 〈M(zk−1 − zk), z̃k − z∗〉 ≥ 0. Hence,

the first inequality in (b) follows from (a) with z = z∗. Now, the second inequality in (b)

follows from the fact that σ ≤ 1. �

Lemma 2.2.3(b) is closely related to the well-known quasi-Fejér inequality which can be

used to show that {zk} converges to a point in T−1(0) when M is positive definite.

2.2.1 Iteration-complexity of the modified HPE framework

In order to present pointwise and ergodic iteration-complexity results for the modified HPE

framework, the following scalar needs to be defined

d0 = inf{‖z∗ − z0‖2
M : z∗ ∈ T−1(0)}, (2.6)

13

where M is given in step 0 of the modified HPE framework.

We first consider the pointwise case (see [41, Theorem 3.3(b)]).

Theorem 2.2.4 Consider the sequence {(zk, z̃k, ηk)} generated by the modified HPE

framework with σ < 1. Then, for every k ≥ 1, there hold M(zk−1 − zk) ∈ T (z̃k) and

there exists i ≤ k such that

‖zi − zi−1‖M ≤
1√
k

√
2(1 + σ)d0 + 4η0

1− σ
,

where d0 is as defined in (2.6).

Proof. The inclusion M(zk−1 − zk) ∈ T (z̃k) holds due to (2.5a). It follows from the second

property in (2.1) with Q = M that, for every j ≥ 1,

‖zj − zj−1‖2
M ≤ 2(‖z̃j − zj−1‖2

M + ‖z̃j − zj‖2
M) ≤ 2(1 + σ)‖z̃j − zj−1‖2

M + 2(ηj−1 − ηj)

where the last inequality is due to (2.5b). Now, if z∗ ∈ T−1(0), we obtain from Lemma

2.2.3(b)

(1− σ)‖z̃j − zj−1‖2
M ≤ ‖z∗ − zj−1‖2

M − ‖z∗ − zj‖2
M + ηj−1 − ηj, ∀ j ≥ 1.

Combining the last two estimates, we get

(1− σ)
k∑
j=1

‖zj − zj−1‖2
M ≤ 2(1 + σ)

(
‖z∗ − z0‖2

M − ‖z∗ − zk‖2
M + η0 − ηk

)
+ 2(1− σ)(η0 − ηk)

≤ 2(1 + σ)‖z∗ − z0‖2
M + 4η0.

Hence, as σ < 1, we obtain

min
i=1,...,k

‖zi − zi−1‖2
M ≤

1

k(1− σ)

(
2(1 + σ)‖z∗ − z0‖2

M + 4η0

)
.

Therefore, the desired inequality follows from the latter inequality and the definition of d0

given in (2.6).

�

Corollary 2.2.5 Consider the sequence {(zk, z̃k, ηk)} generated by the modified HPE

framework with σ < 1, and asssume that the sequence {‖zk − zk−1‖M} is nonincreasing.

Then, for every k ≥ 1, there hold M(zk−1 − zk) ∈ T (z̃k) and

‖zk − zk−1‖M ≤
1√
k

√
2(1 + σ)d0 + 4η0

1− σ
,

where d0 is as defined in (2.6).

14

Proof. This result follows immediately from Theorem 2.2.4 noting that, for every k ≥ 1,

mini=1,...,k ‖zi − zi−1‖2
M = ‖zk − zk−1‖2

M . �

Remark 2.2.6 For a given tolerance ρ̄ > 0, it follows from Theorem 2.2.4 that in at most

O(1/ρ̄2) iterations, the modified HPE framework computes an approximate solution z̃ of

(2.3) and a residual r in the sense that Mr ∈ T (z̃) and ‖r‖M ≤ ρ̄. Although M is assumed

to be only positive semidefinite, if ‖r‖M = 0, then M1/2r = 0 which, in turn, implies that

Mr = 0. Hence, the latter inclusion implies that z̃ is a solution of problem (2.3). Therefore,

the aforementioned concept of approximate solutions makes sense.

Let {(zk, z̃k, ηk)} be the sequence generated by the modified HPE framework. In order to

present the ergodic case (see [41, Theorem 3.4]), consider the ergodic sequences {(z̃ak , rak, εak)}
defined by

z̃ak =
1

k

k∑
i=1

z̃i, rak =
1

k

k∑
i=1

(zi−1−zi), εak =
1

k

k∑
i=1

〈M(zi−1 − zi), z̃i − z̃ak〉 , ∀ k ≥ 1. (2.7)

Theorem 2.2.7 Let σ ∈ [0, 1] and consider the ergodic sequence {(z̃ak , rak, εak)} as in (2.7).

Then, for every k ≥ 1, there hold εak ≥ 0, Mrak ∈ T [εak](z̃ak) and

‖rak‖M ≤
2
√
d0 + η0

k
, εak ≤

3 [3(d0 + η0) + σρ̃k]

2k

where

ρ̃k := max
i=1,...,k

‖z̃i − zi−1‖2
M , (2.8)

and d0 is as defined in (2.6). Moreover, the sequence {ρ̃k} is bounded under either one of

the following situations:

(a) σ < 1, in which case

ρ̃k ≤
d0 + η0

1− σ
; (2.9)

(b) DomT := {z ∈ Z : T (z) 6= ∅} is bounded, in which case

ρ̃k ≤ 2[d0 + η0 + D̃],

where D̃ := sup{‖y′ − y‖2
M : y, y′ ∈ DomT}.

Proof. The inequality εak ≥ 0 and inclusion Mrak ∈ T [εak](z̃ak) follow from (2.5a), (2.7), and

Theorems 2.1.1(a). Using (2.7), it is easy see that for any z∗ ∈ T−1(0)

krak = zk − z0 = (z∗ − z0) + (zk − z∗).

15

Hence, from the second inequality in (2.1) with Q = M and Lemma 2.2.3(b), we have

k2‖rak‖2
M ≤ 2(‖z∗ − z0‖2

M + ‖z∗ − zk‖2
M) ≤ 4(‖z∗ − z0‖2

M + η0).

Combining the above inequality with definition of d0, we obtain the bound on ‖rak‖M . Let

us now to prove the bound on εak. From Lemma 2.2.3(a), we have

2
k∑
i=1

〈M(zi−1 − zi), z̃i − z〉 ≤ ‖z − z0‖2
M − ‖z − zk‖2

M + η0 − ηk ≤ ‖z − z0‖2
M + η0,

for every z ∈ Z. Letting z = z̃ak and using (2.7), we get

2kεak ≤ ‖z̃ak − z0‖2
M + η0 ≤

1

k

k∑
i=1

‖z̃i − z0‖2
M + η0 ≤ max

i=1,...,k
‖z̃i − z0‖2

M + η0 (2.10)

where the second inequality is due to convexity of the function ‖ · ‖2
M , which also implies

that, for every i ≥ 1 and z∗ ∈ T−1(0),

‖z̃i − z0‖2
M ≤ 3

[
‖z̃i − zi‖2

M + ‖z∗ − zi‖2
M + ‖z∗ − z0‖2

M

]
.

Hence, using (2.5b) and twice Lemma 2.2.3(b), it follows, for every i ≥ 1 and z∗ ∈ T−1(0),

that

‖z̃i − z0‖2
M ≤ 3

[
σ‖z̃i − zi−1‖2

M + ηi−1 + ‖z∗ − zi−1‖2
M + ηi−1 + ‖z∗ − z0‖2

M

]
≤ 3

[
σ‖z̃i − zi−1‖2

M + 2(‖z∗ − zi−1‖2
M + ηi−1) + ‖z∗ − z0‖2

M

]
≤ 3

[
σ‖z̃i − zi−1‖2

M + 3‖z∗ − z0‖2
M + 2η0

]
,

which, combined with (2.10) and definitions of ρ̃k in (2.8), yields

2kεak ≤ 3
[
3‖z∗ − z0‖2

M + σρ̃k
]

+ 7η0 ≤ 3
[
3(‖z∗ − z0‖2

M + η0) + σρ̃k
]
.

Thus, the bound on εak now follows from the definition of the d0 in (2.6).

It remains to prove the second part of the theorem.

(a) if σ < 1, then it follows from Lemma 2.2.3(b), for every i ≥ 1 and z∗ ∈ T−1(0), that

(1− σ)‖z̃i − zi−1‖2
M ≤ ‖z∗ − zi−1‖2

M + ηi−1 ≤ ‖z∗ − z0‖2
M + η0.

Hence, in view of definitions of ρ̃k and d0, we obtain (2.9).

(b) If DomT is bounded, then it follows from the second inequality in (2.1) with Q = M ,

and Lemma 2.2.3(b), for every i ≥ 1 and z∗ ∈ T−1(0), that

‖z̃i − zi−1‖2
M ≤ 2

[
‖z∗ − zi−1‖2

M + ‖z̃i − z∗‖2
M

]
≤ 2

[
‖z∗ − z0‖2

M + η0 + D̃
]

16

which, combined with definitions of ρ̃k and d0, proves the desired result. �

If σ < 1 or DomT is bounded, it follows from Theorem 2.2.7 that {ρ̃k} is bounded

and hence max{‖vak‖M , εak} = O(1/k). However, it may happen that the sequence {ρ̃k} is

bounded even when σ = 1. Indeed, in Chapter 3, we will show that this is the case for the

proximal generalized ADMM, which is an instance of the modified HPE framework.

Remark 2.2.8 For a given tolerance ρ̄ > 0, Theorem 2.2.7 ensures that in at most O(1/ρ̄)

iterations of the modified HPE framework, the triple (z̃, r, ε) := (z̃ak , r
a
k, ε

a
k) satisfies Mr ∈

T ε(z̃) and max{‖r‖M , ε} ≤ ρ̄. Similarly to Remark 2.2.6, the point z̃ can be interpreted as

an approximate solution of (2.3). Note that, the above ergodic complexity bound is better

than the pointwise one by a factor of O(1/ρ̄); however, the above inclusion is, in general,

weaker than that of the pointwise case.

2.3 Elementary concepts

In this section, we introduce a maximal monotone operator constructed from the Lagrangian

system (1.7), which will be used throughout this thesis.

We assume that Z := X × Y × Γ and T : Z ⇒ Z is the operator defined as

T (x, y, γ) =


∂f(x)− A∗γ

∂g(y)−B∗γ

Ax+By − b

 . (2.11)

Since f and g are proper, closed and convex functions, the operators ∂f and ∂g are maximal

monotone (see [64]), hence the operator T is maximal monotone. Indeed, the maximal

monotonicity of the operator T in (2.11) follows from the fact that T can be decomposed as

T = T̃ + T̂ , where T̃ : Z ⇒ Z is the multi-valued map given by

T̃ (x, y, γ) = ∂f(x)× ∂g(y)× {−b}

and T̂ : Z → Z is the linear operator given by

T̂ (x, y, γ) = (−A∗γ,−B∗γ,Ax+By)

(note that T̂ is skew-symmetric, i.e., 〈T̂ z, z̃〉 = −〈z, T̂ z̃〉 for all z, z̃ ∈ Z).

Throughout this thesis, we also consider the following basic assumption.

Assumption 2.3.1 The solution set of the Lagrangian system (1.7), denoted by Ω∗, is

nonempty.

17

Note that (x∗, y∗, γ∗) ∈ Ω∗ if and only if 0 ∈ T (z∗), where z∗ := (x∗, y∗, γ∗) and T is as

defined above. Moreover, as previously mentioned, it is well-known that (x∗, y∗, γ∗) ∈ Ω∗ if

and only if (x∗, y∗) is a solution to problem (1.1) and γ∗ is an associated Lagrange multiplier.

For convenience, we rewrite the concept of approximate solutions (1.8) of the Lagrangian

system in terms of the operator T given in (2.11). This is convenient in order to obtain

the pointwise iteration-complexity bounds of some ADMM variants in the setting of the

modified HPE framework. Similarly, we could consider a concept of approximate solution

closely related to the relaxed approximate solution (1.9) in terms of the enlargement T [ε] of

the aforementioned operator T . However, this latter concept is a bit more general and is

more useful when analyzing ergodic sequences derived from general instances of HPE-type

methods. In the case of the ADMM variants considered in this thesis, we will be able

to present a more refined analysis in order to avoid the use of this general enlargement

operator, using instead the ε-subdifferential of the functions f and g. This will provide a

sharper ergodic iteration-complexity bound for the ADMM variants studied here.

Definition 2.3.2 Given a tolerance ρ > 0, a triple (x, y, γ) ∈ X × Y × Γ is said to be a

ρ-approximate solution of (1.7) with residue r if

r ∈ T (x, y, γ) and ‖r‖ ≤ ρ, (2.12)

where T is as in (2.11).

Obviously, a triple (x∗, y∗, γ∗) ∈ Ω∗ if and only if 0 ∈ T (x∗, y∗, γ∗). Hence, for all ρ > 0, any

element in Ω∗ is a ρ-approximate solution with residue 0.

18

Chapter 3

Iteration-complexity analysis of the

proximal generalized ADMM

This chapter is devoted to the iteration-complexity analysis of the proximal generalized

ADMM and is related to paper [2]. In Section 3.1, we formally state the method

(Algorithm 1). In Section 3.2, we present the iteration-complexity analysis of the

method. This section is divided into two subsections. Subsection 3.2.1 presents some

technical results and shows that the proximal generalized ADMM is an instance of the

modified HPE framework, whereas Subsection 3.2.2 establishes its pointwise and ergodic

iteration-complexity results.

3.1 Proximal generalized ADMM (PG-ADMM)

In the following, we formally state the proximal generalized ADMM for solving (1.1).

19

Algorithm 1: Proximal generalized ADMM

0. Let an initial point (x0, y0, γ0) ∈ X × Y × Γ, a penalty parameter β > 0, a relaxa-

tion factor α ∈ (0, 2], and two self-adjoint positive semidefinite linear operators

G : X → X and H : Y → Y be given, and set k = 1.

1. Compute an optimal solution xk ∈ X of the subproblem

min
x∈X

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2 +

1

2
‖x− xk−1‖2

G

}
(3.1)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
g(y)− 〈γk−1, By〉+

β

2
‖α(Axk +Byk−1 − b) +B(y − yk−1)‖2

+
1

2
‖y − yk−1‖2

H

}
. (3.2)

2. Set

γk = γk−1 − β[α(Axk +Byk−1 − b) +B(yk − yk−1)] (3.3)

and k ← k + 1, and go to step (1).

Remark 3.1.1 Algorithm 1 has different features depending on the choices of the matrices

G, H, and the relaxation factor α. For instance, by taking α = 1 and (G,H) = (0, 0), it

reduces to the standard ADMM (1.4). By choosing (G,H) = (τ1I − βA∗A, τ2I − βB∗B)

with τ1 ≥ β‖A∗A‖ and τ2 ≥ β‖B∗B‖, it reduces to a linearized ADMM with a relaxation

parameter. The latter method cancels the quadratic terms (β/2)‖Ax‖2 and (β/2)‖By‖2 in

(3.1) and (3.2), respectively. More specifically, the subproblems (3.1) and (3.2) become

min
x∈X

{
f(x)− 〈γk−1 − β(Axk−1 +Byk−1 − b), Ax〉+

τ1

2
‖x− xk−1‖2

}
,

and

min
y∈Y

{
g(y)− 〈γk−1 − αβ(Axk +Byk−1 − b), By〉+

τ2

2
‖y − yk−1‖2

}
.

In many applications, the above subproblems are much easier to solve or even have

closed-form solutions (see [48,79,83] for more details). We also mention that depending on the

structure of problem (1.1), other choices of G and H may be recommended; see, for instance,

[21] (although the latter reference considers α = 1, it is clear that the same discussion

regarding the choices of G and H holds for arbitrary α ∈ (0, 2)). In some applications,

the use of an over-relaxation parameter (α > 1) leads to a better numerical performance

20

than the standard ADMM; see, for example, [9,24,31] and Chapter 6, where some numerical

experiments are reported in order to illustrate the performance of Algorithm 1 with different

choices of the relaxation parameter α.

3.2 Iteration-complexity of the PG-ADMM

This section presents pointwise and ergodic iteration-complexity bounds for Algorithm 1.

Our approach consists of interpreting Algorithm 1 as an instance of the modified HPE

framework with a very special property, namely, a key parameter sequence {ρ̃k} associated

to the sequence generated by the method is upper bounded by a multiple of d0 (a

parameter measuring, in some sense, the distance of the initial point to the solution set),

see Lemma 3.2.7. This property is essential to obtain the ergodic iteration-complexity of

Algorithm 1.

3.2.1 The PG-ADMM as an instance of the modified HPE

framework

Our aim in this subsection is to show that the PG-ADMM is an instance of the modified

HPE framework for solving problem (1.7).

Let us first introduce the elements required by the setting of Section 2.2. Consider the

linear operator

M :=


G 0 0

0 (H + β
α
B∗B) (1−α)

α
B∗

0 (1−α)
α

B 1
αβ
I

 , (3.4)

and the quantity

d0 := inf
(x,y,γ)∈T−1(0)

{
‖(x− x0, y − y0, γ − γ0)‖2

M

}
, (3.5)

where T is as in (2.11). It is easy to verify that M is a self-adjoint positive semidefinite

linear operator for every β > 0 and α ∈ (0, 2]. Let {(xk, yk, γk)} be the sequence generated

by Algorithm 1. In order to simplify some relations in the results below, define the sequence

{(∆xk,∆yk,∆γk, γ̃k)} as

∆xk = xk − xk−1, ∆yk = yk − yk−1,

∆γk = γk − γk−1, γ̃k = γk−1 − β(Axk +Byk−1 − b), ∀ k ≥ 1.
(3.6)

21

We next present two technical results.

Lemma 3.2.1 Let {(xk, yk, γk)} be generated by Algorithm 1 and consider the sequence

{(∆xk,∆yk,∆γk, γ̃k)} as in (3.6). Then, for every k ≥ 1,

γ̃k − γk−1 =
1

α
[∆γk + βB∆yk] , (3.7)

0 ∈ G∆xk + [∂f(xk)− A∗γ̃k] , (3.8)

0 ∈ (H +
β

α
B∗B)∆yk +

(1− α)

α
B∗∆γk + [∂g(yk)−B∗γ̃k] , (3.9)

0 =
(1− α)

α
B∆yk +

1

αβ
∆γk + [Axk +Byk − b] . (3.10)

As a consequence, zk := (xk, yk, γk) and z̃k := (xk, yk, γ̃k) satisfy the inclusion (2.5a) with T

and M as in (2.11) and (3.4), respectively.

Proof. It follows from the definitions of γk and γ̃k in (3.3) and (3.6), respectively, that

1

α
(γk − γk−1) +

β

α
B(yk − yk−1) = −β(Axk +Byk−1 − b) = γ̃k − γk−1,

which, combined with the definitions of ∆yk and ∆γk in (3.6), proves (3.7). From the

optimality condition for (3.1), we have

0 ∈ ∂f(xk)− A∗(γk−1 − β(Axk +Byk−1 − b)) +G(xk − xk−1),

which, combined with the definitions of γ̃k and ∆xk in (3.6), yields (3.8). Similarly, from the

optimality condition for (3.2) and definitions of γk and ∆yk in (3.3) and (3.8), respectively,

we obtain

0 ∈ ∂g(yk)−B∗ [γk−1 − β[α(Axk +Byk−1 − b) +B(yk − yk−1)]] +H(yk − yk−1)

= ∂g(yk)−B∗γk +H∆yk. (3.11)

On the other hand, note that (3.7) implies that

γk = γ̃k + (γk − γk−1)− (γ̃k − γk−1) = γ̃k −
(1− α)

α
∆γk −

β

α
B∆yk,

which in turn, combined with (3.11), gives (3.9). The relation (3.10) follows immediately

from (3.3).

Now, the last statement of the lemma follows directly by (3.8)–(3.10) and the definitions

of T and M given in (2.11) and (3.4), respectively. �

22

Lemma 3.2.2 The sequences {∆yk} and {∆γk} defined in (3.6) satisfy

2〈B∆y1,∆γ1〉 ≥ ‖∆y1‖2
H − 4d0, 2〈B∆yk,∆γk〉 ≥ ‖∆yk‖2

H − ‖∆yk−1‖2
H ∀k ≥ 2, (3.12)

where d0 is as in (3.5).

Proof. Let a point z∗ := (x∗, y∗, γ∗) be such that 0 ∈ T (x∗, y∗, γ∗) (see Assumption 2.3.1)

and consider zi := (xi, yi, γi), i = 0, 1. First, note that

0 ≤ β

α
‖B∆y1‖2 +

2

α
〈B∆y1,∆γ1〉+

1

αβ
‖∆γ1‖2,

where ∆y1 and ∆γ1 are as in (3.6). Hence, by adding ‖∆y1‖2
H − 2〈B∆y1,∆γ1〉 to both sides

of the above inequality, we obtain

‖∆y1‖2
H − 2〈B∆y1,∆γ1〉 ≤ ‖∆y1‖2

H +
β

α
‖B∆y1‖2 + 2

(1− α)

α
〈B∆y1,∆γ1〉+

1

αβ
‖∆γ1‖2

≤ ‖z1 − z0‖2
M ≤ 2

(
‖z∗ − z1‖2

M + ‖z∗ − z0‖2
M

)
, (3.13)

where M is as in (3.4) and the last inequality is a consequence of the second property in (2.1)

withQ = M . On the other hand, taking z̃1 = (x1, y1, γ̃1), Lemma 3.2.1 implies that (z0, z1, z̃1)

satisfies (2.5a) with T and M as in (2.11) and (3.4), respectively; namely, M(z0−z1) ∈ T (z̃1).

Hence, since 0 ∈ T (z∗) and T is monotone, we obtain 〈M(z0 − z1), z̃1 − z∗〉 ≥ 0. Thus, it

follows that

‖z∗ − z1‖2
M − ‖z∗ − z0‖2

M = ‖(z∗ − z̃1) + (z̃1 − z1)‖2
M − ‖(z∗ − z̃1) + (z̃1 − z0)‖2

M

= ‖z̃1 − z1‖2
M + 2〈M(z0 − z1), z∗ − z̃1〉 − ‖z̃1 − z0‖2

M

≤ ‖z̃1 − z1‖2
M − ‖z̃1 − z0‖2

M . (3.14)

Combining (3.6) and (3.7), we have γ̃1 − γ1 = [(1 − α)∆γ1 + βB∆y1]/α. Hence, using the

definitions of M , z1 and z̃1, we obtain

‖z̃1 − z1‖2
M =

1

αβ
‖γ̃1 − γ1‖2 =

β

α3
‖B∆y1‖2 + 2

(1− α)

α3
〈B∆y1,∆γ1〉+

(1− α)2

α3β
‖∆γ1‖2

and

‖z̃1 − z0‖2
M ≥

β

α
‖B(y1 − y0)‖2 +

2(1− α)

α
〈B(y1 − y0), γ̃1 − γ0〉+

1

αβ
‖γ̃1 − γ0‖2

=

(
β

α
+ 2

(1− α)β

α2
+

β

α3

)
‖B∆y1‖2

+ 2

(
(1− α)

α2
+

1

α3

)
〈B∆y1,∆γ1〉+

1

α3β
‖∆γ1‖2 ,

23

where the last equality is due to (3.6) and (3.7). Hence, it is easy to see that

‖z̃1 − z1‖2
M − ‖z̃1 − z0‖2

M ≤
(α− 2)

α2

∥∥∥∥√βB∆y1 +
1√
β

∆γ1

∥∥∥∥2

≤ 0.

Thus, it follows from (3.14) that

‖z∗ − z1‖2
M ≤ ‖z∗ − z0‖2

M ,

which, combined with (3.13), yields

‖∆y1‖2
H − 2〈B∆y1,∆γ1〉 ≤ 4‖z∗ − z0‖2

M .

Therefore, the first inequality in (3.12) follows from definition of d0 (see (3.5)) and the fact

that z∗ ∈ T−1(0) is arbitrary.

Let us now prove the second inequality in (3.12). First, from the optimality condition of

(3.2), and (3.3), we obtain

B∗γj −H(yj − yj−1) ∈ ∂g(yj) ∀j ≥ 1.

For every k ≥ 2, using the previous inclusion for j = k − 1 and j = k, it follows from the

monotonicity of the subdifferential of g that

〈B∗(γk − γk−1)−H(yk − yk−1) +H(yk−1 − yk−2), yk − yk−1〉 ≥ 0,

which, combined with (3.6), yields

〈B∆yk,∆γk〉 ≥ ‖∆yk‖2
H − 〈H∆yk−1,∆yk〉 ∀k ≥ 2.

To conclude the proof, use the first relation in (2.1) with Q = H. �

Let us consider the following quantity:

σα =
1

1 + α(2− α)
. (3.15)

Note that σ2 = 1, and for any α ∈ (0, 2) we have σα ∈ (0, 1). The following theorem shows

that Algorithm 1 is an instance of the modified HPE framework.

Theorem 3.2.3 Let {(xk, yk, γk)} be generated by Algorithm 1 and consider {(∆yk, γ̃k)} and

σα as in (3.6) and (3.15), respectively. Define

zk−1 = (xk−1, yk−1, γk−1) z̃k = (xk, yk, γ̃k), ∀ k ≥ 1, (3.16)

and

η0 =
4(2− α)σα

α
d0, ηk =

(2− α)σα
α

‖∆yk‖2
H ∀ k ≥ 1, (3.17)

where d0 is as in (3.5). Then, the sequence {(zk, z̃k, ηk)} is an instance of the modified HPE

framework, applied for solving (1.7), where σ := σα and M is as in (3.4).

24

Proof. The inclusion (2.5a) follows from the last statement in Lemma 3.2.1. Let us now

show that (2.5b) holds. Using (3.6), (3.7) and (3.16), we obtain

‖z̃k − zk‖2
M =

1

αβ
‖γ̃k − γk‖2 =

1

αβ

∥∥∥∥ 1

α
[(1− α)∆γk + βB∆yk]

∥∥∥∥2

=
1

α3β

[
(1− α)2‖∆γk‖2 + 2(1− α)β〈B∆yk,∆γk〉+ β2‖B∆yk‖2

]
. (3.18)

Also, (3.6) and (3.16) imply that

‖z̃k − zk−1‖2
M = ‖∆xk‖2

G + ‖∆yk‖2
H +

β

α
‖B∆yk‖2

+ 2
(1− α)

α
〈B∆yk, γ̃k − γk−1〉+

1

αβ
‖γ̃k − γk−1‖2. (3.19)

It follows from (3.7) that

1

αβ
‖γ̃k − γk−1‖2 =

1

α3β

[
‖∆γk‖2 + 2β〈B∆yk,∆γk〉+ β2‖B∆yk‖2

]
,

2
(1− α)

α
〈B∆yk, γ̃k − γk−1〉 = 2

(1− α)

α2

[
〈B∆yk,∆γk〉+ β‖B∆yk‖2

]
which, combined with (3.19), yields

‖z̃k − zk−1‖2
M = ‖∆xk‖2

G + ‖∆yk‖2
H +

(
β

α
+ 2

(1− α)β

α2
+

β

α3

)
‖B∆yk‖2

+ 2

(
(1− α)

α2
+

1

α3

)
〈B∆yk,∆γk〉+

1

α3β
‖∆γk‖2. (3.20)

Therefore, combining (3.18) and (3.20), it is easy to verify that

σα‖z̃k − zk−1‖2
M − ‖z̃k − zk‖2

M

= σα‖∆xk‖2
G + σα‖∆yk‖2

H + 2
(2− α)σα

α
〈B∆yk,∆γk〉+

(2− α)2σα
αβ

‖∆γk‖2

≥ 2
(2− α)σα

α
〈B∆yk,∆γk〉 ≥ ηk − ηk−1 ∀ k ≥ 1,

where σα is as in (3.15), and the last inequality is due to (3.12) and (3.17). Therefore, (2.5b)

holds, and then we conclude that the sequence {(zk, z̃k, ηk)} is an instance of the modified

HPE framework. �

3.2.2 Iteration-complexity bounds for the PG-ADMM

In this subsection, we establish pointwise and ergodic iteration-complexity bounds for

Algorithm 1. We start by presenting a pointwise bound under the assumption that the

25

relaxation parameter α belongs to (0, 2). For this, we first introduce a result which shows

that the sequence {‖zk−zk−1‖M}, with {zk} given in (3.16), is monotonically nonincreasing.

Then, we consider an auxiliary result which is used to show that the sequence {ρ̃k}, as defined

in Theorem 2.2.7 with {zk} and {z̃k} as in (3.16), is bounded even in the extreme case in

which α = 2. This latter result is then used to present the ergodic bounds of Algorithm 1

for any α ∈ (0, 2].

Lemma 3.2.4 Let {(xk, yk, γk)} be generated by Algorithm 1 and consider the sequence {zk}
as in (3.16). Then, for every k ≥ 2,

‖zk − zk−1‖M ≤ ‖zk−1 − zk−2‖M ,

where M is as in (3.4).

Proof. First, note that for any z ∈ Z, we have

‖zk−1 − zk−2‖2
M − ‖zk − zk−1‖2

M = ‖zk−1 − z + z − zk−2‖2
M − ‖zk − z + z − zk−1‖2

M

= ‖zk−2 − z‖2
M − ‖zk − z‖

2
M + 2 〈M(zk−2 − zk), z − zk−1〉 .

Letting z := zk−1 + z̃k−1 − z̃k in the above relations, where {z̃k} is given in (3.16), it follows

that

‖zk−1 − zk−2‖2
M − ‖zk − zk−1‖2

M

= ‖zk−2 − zk−1 − z̃k−1 + z̃k‖2
M − ‖zk − zk−1 − z̃k−1 + z̃k‖2

M + 2 〈M(zk−2 − zk), z̃k−1 − z̃k〉
≥ ‖zk−2 − zk−1 − z̃k−1 + z̃k‖2

M − ‖zk−1 − zk + z̃k−1 − z̃k‖2
M + 4 〈M(zk−1 − zk), z̃k−1 − z̃k〉

= ‖z̃k − zk−1 − (z̃k−1 − zk−2)‖2
M − ‖zk−1 − zk − (z̃k−1 − z̃k)‖2

M , (3.21)

where the inequality above is due to the monotonicity of the operator T (given in (2.11)),

the last part of Lemma 3.2.1 and the following inequality

〈M(zk−2 − zk), z̃k−1 − z̃k〉 = 〈M(zk−2 − zk−1)−M(zk−1 − zk), z̃k−1 − z̃k〉
+ 2 〈M(zk−1 − zk), z̃k−1 − z̃k〉
≥ 2 〈M(zk−1 − zk), z̃k−1 − z̃k〉 .

Using (3.6), (3.7), and the definitions of zk and z̃k in (3.16), it is easy to see that

z̃k − zk−1−(z̃k−1 − zk−2)

= (∆xk −∆xk−1,∆yk −∆yk−1, γ̃k − γk−1 − (γ̃k−1 − γk−2))

=

(
∆xk −∆xk−1,∆yk −∆yk−1,

1

α

(
∆γk −∆γk−1 + βB(∆yk −∆yk−1)

))

26

and

zk−1 − zk − (z̃k−1 − z̃k) = z̃k − zk − (z̃k−1 − zk−1) = (0, 0, γ̃k − γk − (γ̃k−1 − γk−1))

=

(
0, 0,

1

α

(
(1− α)(∆γk −∆γk−1) + βB(∆yk −∆yk−1)

))
.

Combining the last two relations with (3.21) and the definition of M in (3.4), we obtain

‖zk−1 − zk−2‖2
M −‖zk − zk−1‖2

M ≥
β

α
‖B(∆yk −∆yk−1)‖2

+
2(1− α)

α2
〈B(∆yk −∆yk−1),∆γk −∆γk−1 + βB(∆yk −∆yk−1)〉

+
1

α3β
‖∆γk −∆γk−1 + βB(∆yk −∆yk−1)‖2

− 1

α3β
‖(1− α)(∆γk −∆γk−1) + βB(∆yk −∆yk−1)‖2 .

By performing some simple algebraic manipulations, the above expression becomes

‖zk−1 − zk−2‖2
M − ‖zk − zk−1‖2

M ≥
(
β

α
+

2(1− α)β

α2

)
‖B(∆yk −∆yk−1)‖2

+

(
2(1− α)

α2
+

2

α2

)
〈B(∆yk −∆yk−1),∆γk −∆γk−1〉+

2α− α2

α3β
‖∆γk −∆γk−1‖2

=
(2− α)β

α2

∥∥∥∥B(∆yk −∆yk−1) +
1

β
(∆γk −∆γk−1)

∥∥∥∥2

≥ 0,

where the last inequality follows from the fact that α ∈ (0, 2]. �

Theorem 3.2.5 Let {(xk, yk, γk)} be generated by Algorithm 1 with α ∈ (0, 2) and consider

the sequence {(∆xk,∆yk,∆γk, γ̃k)} as in (3.6). Then, for every k ≥ 1,

0 ∈M


∆xk

∆yk

∆γk

+


∂f(xk)− A∗γ̃k

∂g(yk)−B∗γ̃k

Axk +Byk − b

 (3.22)

and

‖(∆xk,∆yk,∆γk)‖M ≤
1√
k

√
2[α(1 + σα) + 8(2− α)σα]d0

α(1− σα)
,

where M , d0, and σα are as (3.4), (3.5) and (3.15), respectively.

27

Proof. Since σα ∈ (0, 1) for any α ∈ (0, 2) (see (3.15)), we obtain by combining Theorem 3.2.3,

Lemma 3.2.4, and Corollary 2.2.5 that (3.22) holds and

‖(∆xk,∆yk,∆γk)‖M ≤
1√
k

√
2(1 + σα)d0 + 4η0

1− σα
.

Hence, to conclude the proof use the definition of η0 given in (3.17). �

Remark 3.2.6 For a given tolerance ρ̄ > 0, Theorem 3.2.5 implies that in at most O(1/ρ̄2)

iterations, Algorithm 1 obtains an approximate solution (x̂, ŷ, γ̂) and a residual û of (2.11)

satisfying

Mû ∈ T (x̂, ŷ, γ̂), ‖û‖M ≤ ρ̄, (3.23)

where T is as in (2.11). It is worth pointing out that although M may not be invertible,

the above complexity result makes sense due to the fact that ‖û‖M = 0 yields Mû = 0,

which in turn implies that the triple (x̂, ŷ, γ̂) is a solution of (1.7). Let λM be the largest

eigenvalue of M and (vx̂, vŷ, vγ̂) := Mû. For a given tolerance ρ > 0, (1.8) follows from (3.23)

with ρ̄ = ρ/
√
λM and the fact that ‖M(·)‖ ≤

√
λM‖ · ‖M . Hence, Algorithm 1 provides a

ρ-approximate solution of (1.7) in at most O(1/ρ2) iterations.

We next present an auxiliary result which is essential to obtain ergodic iteration-complexity

bounds for Algorithm 1.

Lemma 3.2.7 Let {(xk, yk, γk)} be generated by Algorithm 1 and consider the sequence

{(∆xk,∆yk,∆γk, γ̃k)} as in (3.6). Then, {ρ̃k} given in (2.8) with M and {(zk, z̃k)} as in

(3.4) and (3.16), respectively, satisfies

ρ̃k ≤
4(1 + 2α)[α + 4(2− α)σα]d0

α3
∀ k ≥ 1,

where d0 is as in (3.5).

Proof. The same argument used to prove (3.19) and (3.20) yields, for every k ≥ 1,

‖z̃k − zk−1‖2
M = ‖∆xk‖2

G + ‖∆yk‖2
H + ξk, (3.24)

where

ξk :=
β

α3
‖B∆yk‖2 +

2(1− α)

α3
〈B∆yk,∆γk〉+

1

α3β
‖∆γk‖2

+
(2− α)

α

[
β

α
‖B∆yk‖2 +

2

α
〈B∆yk,∆γk〉

]
.

28

Using the definitions of M and zk given in (3.4) and (3.16), respectively, it follow that

ξk ≤
1

α2
‖zk − zk−1‖2

M +
(2− α)

α

[
β

α
‖B∆yk‖2 +

2

α
〈B∆yk,∆γk〉

]
=

1

α2
‖zk − zk−1‖2

M +
(2− α)

α

[
β

α
‖B∆yk‖2 +

2(1− α)

α
〈B∆yk,∆γk〉

]
+

2(2− α)

α
〈B∆yk,∆γk〉

≤ 1

α2
‖zk − zk−1‖2

M +
(2− α)

α
‖zk − zk−1‖2

M +
2(1− α)

α
〈B∆yk,∆γk〉+

2

α
〈B∆yk,∆γk〉

≤ 1 + 2α− α2

α2
‖zk − zk−1‖2

M +
2(1− α)

α
〈B∆yk,∆γk〉+

β

α
‖B∆yk‖2 +

1

αβ
‖∆γk‖2, (3.25)

where in the last two inequalities we used the fact that α ∈ (0, 2] and the first property in

(2.1) with Q = I, respectively. Combining (3.24), (3.25) and definitions of M and zk, we

obtain, for every k ≥ 1,

‖z̃k − zk−1‖2
M ≤

1 + 2α− α2

α2
‖zk − zk−1‖2

M + ‖zk − zk−1‖2
M =

1 + 2α

α2
‖zk − zk−1‖2

M .

Now, letting z∗ := (x∗, y∗, γ∗) be an arbitrary solution of (1.7), we obtain from the last

inequality and the second relation in (2.1) with Q = M that

‖z̃k − zk−1‖2
M ≤

2(1 + 2α)

α2

[
‖z∗ − zk‖2

M + ‖z∗ − zk−1‖2
M

]
∀k ≥ 1. (3.26)

Since Algorithm 1 is an instance of the modified HPE framework (see Theorem 3.2.3), it

follows from (3.26) and Lemma 2.2.3(b) that

‖z̃k − zk−1‖2
M ≤

4(1 + 2α)

α2

[
‖z∗ − z0‖2

M + η0

]
∀k ≥ 1.

Since z∗ is an arbitrary solution of (1.7), the result follows from the definition of ρ̃k, d0, and

η0 given in (2.8), (3.5) and (3.17), respectively. �

Next result presents iteration-complexity bounds for the ergodic sequence associated to

Algorithm 1.

Theorem 3.2.8 Let {(xk, yk, γk)} be the sequence generated by Algorithm 1 and consider

29

{(∆xk,∆yk,∆γk, γ̃k)} as in (3.6). Define the ergodic sequences as

(xak, y
a
k , γ

a
k , γ̃

a
k) =

1

k

k∑
i=1

(xi, yi, γi, γ̃i) , (rak,x, r
a
k,y, r

a
k,γ) =

1

k

k∑
i=1

(∆xi,∆yi,∆γi), (3.27)

εak,x =
1

k

k∑
i=1

〈G∆xi − A∗γ̃i, xak − xi〉, (3.28)

εak,y =
1

k

k∑
i=1

〈(
H +

β

α
B∗B

)
∆yi +

(1− α)

α
B∗∆γi −B∗γ̃i, yak − yi

〉
. (3.29)

Then, for every k ≥ 1, there hold εak,x ≥ 0, εak,y ≥ 0, and

0 ∈M


rak,x

rak,y

rak,γ

+


∂εak,xf(xak)− A∗γ̃ak

∂εak,yg(yak)−B∗γ̃ak

Axak +Byak − b

 , (3.30)

‖(rak,x, rak,y, rak,γ)‖M ≤
2
√
cαd0

k
, εak,x + εak,y ≤

c̃αd0

k
, (3.31)

where

cα :=
α + 4(2− α)σα

α
, c̃α :=

3[3α2 + 4(1 + 2α)σα][α + 4(2− α)σα]

2α3
, (3.32)

and M , d0, and σα are as in (3.4), (3.5), and (3.15), respectively.

Proof. Note that the inclusions (3.8)-(3.9) are equivalent to

− (G∆xk − A∗γ̃k) ∈ ∂f(xk), −
((

H +
β

α
B∗B

)
∆yk +

(1− α)

α
B∗∆γk −B∗γ̃k

)
∈ ∂g(yk).

Hence, by combining Proposition 2.1.1, (3.27) and definition of M , we obtain εak,x ≥ 0,

εak,y ≥ 0, and the first two inclusions of (3.30). The third inclusion of (3.30) holds trivially

from (3.10), (3.27) and definition of M . Now, it follows from Theorem 3.2.3 that Algorithm 1

is an instance of the modified HPE where {(zk, z̃k)} is given by (3.16). Moreover, it is easy

to see that the quantities rak and εak given in (2.7) satisfy

rak = (rak,x, r
a
k,y, r

a
k,γ), εak =

1

k

k∑
i=1


〈
M


∆xi

∆yi

∆γi

, (xak − xi, yak − yi, γ̃ak − γ̃i)
〉 . (3.33)

30

Hence, from Theorems 2.2.7 and definition of η0 in (3.17), we have

‖rak‖M ≤
2
√

(α + 4(2− α)σα)d0

k
√
α

, εak ≤
3[3α2 + 4(1 + 2α)σα][α + 4(2− α)σα]d0

2α3k
, (3.34)

where in the last inequality we also used Lemma 3.2.7. Now, we claim that εak = εak,x + εak,y.

Using this claim, (3.31) follows immediately from (3.32) and (3.34). Hence, to conclude the

proof of the theorem, it just remains to prove the above claim. To this end, note that (3.28)

and (3.29) yield

εak,x + εak,y =
1

k

k∑
i=1

[
〈G∆xi, x

a
k − xi〉+

〈(
H +

β

α
B∗B

)
∆yi +

(1− α)

α
B∗∆γi, y

a
k − yi

〉]

+
1

k

k∑
i=1

〈A (xak − xi) +B (yak − yi),−γ̃i〉] . (3.35)

On the other hand, from (3.27), we obtain

1

k

k∑
i=1

〈A(xak − xi) +B(yak − yi),−γ̃i〉 =
1

k

k∑
i=1

〈Axak +Byak − b− (Axi +Byi − b), γ̃ak − γ̃i〉

=
1

k

k∑
i=1

〈−(Axi +Byi − b), γ̃ak − γ̃i〉

=
1

k

k∑
i=1

〈
(1− α)

α
B∆yi +

1

αβ
∆γi, γ̃

a
k − γ̃i

〉
where the last equality is due to (3.10). Hence, the claim follows by combining (3.35), and

the definitions of M and εak in (3.4) and (3.33), respectively. �

Remark 3.2.9 Using the fact that ‖M(·)‖ ≤
√
λM‖ · ‖M , where λM denotes the largest

eigenvalue of M , it follows from the first inequality in (3.31) that

‖M(rak,x, r
a
k,y, r

a
k,γ)
∗‖ ≤ 2

√
λMcαd0

k
.

Therefore, for a given tolerance ρ > 0, Theorem 3.2.8 implies that in at most O(1/ρ)

iterations of Algorithm 1, we obtain an approximate solution (x̄, ȳ, γ̄) and a residual

(vx̄, vȳ, vγ̄) of (1.7) satisfying

vx̄ ∈ ∂εx̄f(x̄)−A∗γ̄, vȳ ∈ ∂εȳg(ȳ)−B∗γ̄, vγ̄ = Ax̄+Bȳ − b,
max {‖vx̄‖ , ‖vȳ‖ , ‖vγ̄‖ , εx̄, εȳ} ≤ ρ.

Hence, Algorithm 1 provides a relaxed ρ-approximate solution of (1.7) in at most O(1/ρ)

iterations.

31

Chapter 4

An inexact PG-ADMM and its

iteration-complexity analysis

In this chapter, we propose and analyze an inexact proximal generalized ADMM for

approximately solving (1.1). This chapter is associated to [1] and is organized as follows.

In Section 4.1, we introduce the proposed scheme, whereas Section 4.2 contains its

iteration-complexity analysis. Section 4.2 is divided into two subsections. The first one

shows that the proposed method falls within the setting of the modified HPE framework of

Section 2.2, whereas the last subsection establishes its iteration-complexity bounds to obtain

approximate solution of (1.1).

4.1 Inexact PG-ADMM

In this section, we formally state the inexact proximal generalized ADMM for computing

approximate solutions of (1.1).

32

Algorithm 2: Inexact proximal generalized ADMM

0. Let an initial point (x0, y0, γ0) ∈ X × Y × Γ, a penalty parameter β > 0, two error

tolerance parameters τ1, τ2 ∈ [0, 1), a relaxation factor α ∈ (0, 2− τ1), and a

self-adjoint positive semidefinite linear operator H : Y → Y be given, and set k = 1.

1. Compute (x̃k, vk) ∈ X × X such that

vk ∈ ∂f(x̃k)− A∗γ̃k, ‖x̃k − xk−1 + βvk‖2 ≤ τ1 ‖γ̃k − γk−1‖2 + τ2 ‖x̃k − xk−1‖2 , (4.1)

where

γ̃k = γk−1 − β(Ax̃k +Byk−1 − b). (4.2)

2. Compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
g(y)− 〈γk−1, By〉+

β

2
‖α(Ax̃k +Byk−1 − b) +B(y − yk−1)‖2

+
1

2
‖y − yk−1‖2

H

}
. (4.3)

3. Set

xk = xk−1 − βvk, γk = γk−1 − β [α(Ax̃k +Byk−1 − b) +B(yk − yk−1)] , (4.4)

and k ← k + 1, and go to step 1.

Remark 4.1.1 Some comments about Algorithm 2 are in order.

(a) Algorithm 2 is an inexact version of Algorithm 1. It is well-suitable in applications in

which subproblem (3.2) is easy to solve whereas (3.1) is not, being necessary therefore to use

iterative methods to approximately solve it. The proposed scheme allows inexact solutions

of the following inclusion (derived from the first-order optimality condition for (3.1) with

G = 1
β
I)

0 ∈ ∂f(x)− A∗(γk−1 − β(Ax+Byk−1 − b)) +
1

β
(x− xk−1), (4.5)

such that a relative error condition is satisfied. The error condition used here is similar to

the one studied in [71, 72] in the context of a hybrid proximal extragradient method. It

is shown that the new inexact method Algorithm 2 possesses iteration-complexity bounds

similar to its exact version Algorithm 1.

33

(b) If τ1 = τ2 = 0, then the inequality in (4.1), combined with the first relation in (4.4),

implies that x̃k = xk and vk = (xk−1 − xk)/β. Hence, in view of the definition of γ̃k in (4.2)

and the inclusion in (4.1), we conclude that xk is a solution of (4.5). Therefore, Algorithm 2

can be seen as a variant of Algorithm 1 in which its first subproblem is approximately solved

using a relative error condition. Now, if xk is a solution of the inclusion in (4.5), then the

pair (x̃k, vk) := (xk, (xk−1 − xk)/β) trivially satisfies (4.1).

(c) It is assumed that (4.3) can be easily solved. On the one hand, if the matrix B in

(1.1) is not the identity, then subproblem (4.3) with the usual choice H := ξI − βB∗B with

ξ ≥ β‖B∗B‖ becomes a prox-subproblem

yk = arg min
y∈Y

{
g(y) +

ξ

2
‖y − ŷ‖2

}
(4.6)

for some ŷ ∈ Y . In many ADMM applications, g is well-structured (e.g., the `1-norm) and

hence the latter problem is easy to solve or even has a closed-form solution. On the other

hand, if B = I in (1.1), then H = 0 seems to be a natural choice.

Some numerical experiments will be presented in Chapter 6 in order to illustrate the

performance of Algorithm 2. In particular, it is verified that the use of the relaxation

parameter α > 1, specially α ≈ 1.9, improves considerably its numerical behavior.

4.2 Iteration-complexity of the inexact PG-ADMM

This section analyzes pointwise and ergodic iteration-complexity bounds for Algorithm 2

to obtain an approximate solution of (1.1). It is divided into two subsections. In the first

subsection, we show that Algorithm 2 can be regarded as an instance of the modified HPE

framework of Section 2.2. The last subsection establishes the iteration-complexity bounds

for Algorithm 2.

In order to show that Algorithm 2 falls within the setting of the modified HPE framework,

we need to define the elements required by Section 2.2. We consider a linear operator M

defined as follows

M =


1
β
I 0 0

0 (H + β
α
B∗B) 1−α

α
B∗

0 1−α
α
B 1

αβ
I

 . (4.7)

It can be easily verified that, for every β > 0 and α ∈ (0, 2), M is self-adjoint and positive

34

semidefinite. Let us now introduce the constant d0 given by

d0 = inf
{
‖(x− x0, y − y0, γ − γ0)‖2

M : (x, y, γ) ∈ Ω∗
}
, (4.8)

where Ω∗ is given in Assumption 2.3.1. Note that, if M is positive definite, then d0 measures

the distance in the norm ‖ · ‖M of the initial point (x0, y0, γ0) to the solution set Ω∗.

Let {(xk, yk, γk, x̃k, γ̃k)} be generated by Algorithm 2 and consider the sequences {zk} and

{z̃k} defined by

zk−1 = (xk−1, yk−1, γk−1), z̃k = (x̃k, yk, γ̃k), ∀ k ≥ 1. (4.9)

It will be shown that, for any given ρ > 0, there exists an index k such that z̃k is a

ρ-approximate solution of (1.7) with residue rk := M(zk−1 − zk) (see Definition 2.3.2). To

this end, we present two technical results. Note first that, from the definitions of γ̃k and γk

given in (4.2) and (4.4), respectively, it follows that

γ̃k − γk−1 =
β

α
B(yk − yk−1) +

1

α
(γk − γk−1) , ∀ k ≥ 1, (4.10)

which, in turn, implies that

‖γ̃k − γk−1‖2 =
β

α2
‖(yk − yk−1, γk − γk−1)‖2

S , where S =

 βB∗B B∗

B 1
β
I

 . (4.11)

For simplicity, we also consider the following linear operators

N =

 [1 + α(2− α)] βB∗B (1 + α− α2)B∗

(1 + α− α2)B 1
β
I

 , P =

 βB∗B (1− α)B∗

(1− α)B (1−α)2

β
I

 . (4.12)

It is easy to verify that S, N and P are self-adjoint positive semidefinite linear operators for

every β > 0 and α ∈ (0, 2).

4.2.1 Inexact PG-ADMM in the setting of the modified HPE

framework

This subsection is devoted to show that Algorithm 2 can be regarded as an instance of

modified HPE framework. In order to show this, we first need to establish some technical

lemmas.

35

Lemma 4.2.1 Let {zk} and {z̃k} be as in (4.9). Then, for every k ≥ 1, the following hold:

‖z̃k − zk−1‖2
M ≥

1

β
‖x̃k − xk−1‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2

N (4.13)

and

‖z̃k − zk‖2
M =

1

β
‖x̃k − xk‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2

P , (4.14)

where the matrices M , N and P are as in (4.7) and (4.12).

Proof. Using the fact that z̃k − zk−1 = (x̃k − xk−1, yk − yk−1, γ̃k − γk−1) and the definition of

M in (4.7), we obtain

‖z̃k − zk−1‖2
M =

1

β
‖x̃k − xk−1‖2 + ‖yk − yk−1‖2

H +
β

α
‖B(yk − yk−1)‖2

+
2(1− α)

α
〈B(yk − yk−1), γ̃k − γk−1〉+

1

αβ
‖γ̃k − γk−1‖2.

On the other hand, equality (4.10) implies that

〈B(yk − yk−1), γ̃k − γk−1〉 =
β

α
‖B(yk − yk−1)‖2 +

1

α
〈B(yk − yk−1), γk − γk−1〉,

and

‖γ̃k − γk−1‖2 =
β2

α2
‖B(yk − yk−1)‖2 +

2β

α2
〈B(yk − yk−1), γk − γk−1〉+

1

α2
‖γk − γk−1‖2.

Combining the last three equalities, we find

‖z̃k − zk−1‖2
M ≥

1

β
‖x̃k − xk−1‖2 +

(
1

α
+

2(1− α)

α2
+

1

α3

)
β‖B(yk − yk−1)‖2

+

(
2(1− α)

α2
+

2

α3

)
〈B(yk − yk−1), γk − γk−1〉+

1

α3β
‖γk − γk−1‖2.

Thus, (4.13) follows from the last equality and the definition of N in (4.12).

Let us now prove (4.14). Using z̃k− zk = (x̃k−xk, 0, γ̃k−γk) (see (4.9)) and the definition

of M in (4.7), we have

‖z̃k − zk‖2
M =

1

β
‖x̃k − xk‖2 +

1

αβ
‖γ̃k − γk‖2.

It follows from (4.10) and some algebraic manipulations that

‖γ̃k − γk‖2 =
β2

α2
‖B(yk − yk−1)‖2 +

2(1− α)β

α2
〈B(yk − yk−1), γk − γk−1〉

+
(1− α)2

α2
‖γk − γk−1‖2 .

Therefore, the desired equality now follows by combining the last two equalities and the

definition of P in (4.12). �

36

Lemma 4.2.2 Let {zk} and {z̃k} be as in (4.9). Then, for every k ≥ 1,

M (zk−1 − zk) ∈ T (z̃k),

where T and M are as in (2.11) and (4.7), respectively.

Proof. This result follows directly from Lemma 3.2.1 with G = 1
β
I and z̃k replaced by

(x̃k, yk, γ̃k). �

The proof of the next lemma is similar to the one of Lemma 3.2.2. We present it for the

sake of completeness.

Lemma 4.2.3 Let {(xk, yk, γk)} be generated by Algorithm 2. Then, the following hold:

(a) 2〈B(y1 − y0), γ1 − γ0〉 ≥ ‖y1 − y0‖2
H − 4d0, where d0 is as in (4.8);

(b) 2〈B(yk − yk−1), γk − γk−1〉 ≥ ‖yk − yk−1‖2
H − ‖yk−1 − yk−2‖2

H , for every k ≥ 2.

Proof. (a) Consider z0, z1 and z̃1 as in (4.9), and let an arbitrary z∗ := (x∗, y∗, γ∗) ∈ Ω∗ (see

Assumpiton 2.3.1). Note that, in view of the definition of d0 in (4.8), in order to establish

(a), it is sufficient to prove that

Θ := ‖y1 − y0‖2
H − 2〈B(y1 − y0), γ1 − γ0〉 ≤ 4‖z∗ − z0‖2

M , (4.15)

where M is as in (4.7). Let us then show (4.15). From the definitions of M and {zk}, we

have

‖z1 − z0‖2
M =

1

β
‖x1 − x0‖2 + ‖y1 − y0‖2

H +
β

α
‖B(y1 − y0)‖2

+
2(1− α)

α
〈B(y1 − y0), γ1 − γ0〉+

1

αβ
‖γ1 − γ0‖2

=
1

β
‖x1 − x0‖2 + Θ +

∥∥∥∥√β√αB(y1 − y0) +
1√
αβ

(γ1 − γ0)

∥∥∥∥2

.

Hence, we obtain

Θ ≤ ‖z1 − z0‖2
M ≤ 2

(
‖z∗ − z1‖2

M + ‖z∗ − z0‖2
M

)
, (4.16)

where the last inequality is due to the second property in (2.1). We will now prove that

‖z∗ − z1‖2
M ≤ ‖z

∗ − z0‖2
M . (4.17)

37

From Lemma 4.2.2, we have M(z0 − z1) ∈ T (z̃1) where T and M are as in (2.11) and

(4.7) respectively. Thus, using the fact that 0 ∈ T (z∗) and T is monotone, we obtain

〈M(z0 − z1), z∗ − z̃1〉 ≤ 0. Hence,

‖z∗ − z1‖2
M − ‖z∗ − z0‖2

M = ‖(z∗ − z̃1) + (z̃1 − z1)‖2
M − ‖(z∗ − z̃1) + (z̃1 − z0)‖2

M

= ‖z̃1 − z1‖2
M + 2〈M(z0 − z1), z∗ − z̃1〉 − ‖z̃1 − z0‖2

M

≤ ‖z̃1 − z1‖2
M − ‖z̃1 − z0‖2

M .

Using (4.14), the inequality in (4.1), and the first equality in (4.4) (all with k = 1), we have

‖z̃1 − z1‖2
M ≤

τ1

β
‖γ̃1 − γ0‖2 +

τ2

β
‖x̃1 − x0‖2 +

1

α3
‖(y1 − y0, γ1 − γ0)‖2

P ,

where P is as in (4.12). Now, (4.13) with k = 1 becomes

‖z̃1 − z0‖2
M ≥

1

β
‖x̃1 − x0‖2 +

1

α3
‖(y1 − y0, γ1 − γ0)‖2

N

where N is as in (4.12). Combining the last three inequalities and the fact that τ2 < 1 (see

Algorithm 2), we find

‖z∗ − z1‖2
M − ‖z

∗ − z0‖2
M ≤

τ1

β
‖γ̃1 − γ0‖2 +

1

α3

(
‖(y1 − y0, γ1 − γ0)‖2

P − ‖(y1 − y0, γ1 − γ0)‖2
N

)
=
τ1

β
‖γ̃1 − γ0‖2 − 2− α

α2
‖(y1 − y0, γ1 − γ0)‖2

S , (4.18)

where the last equality is due to the fact that P −N = −α(2− α)S, with S given in (4.11).

The last inequality, (4.11) with k = 1 and the fact that α ∈ (0, 2− τ1) yield

‖z∗ − z1‖2
M − ‖z

∗ − z0‖2
M ≤

α + τ1 − 2

α2
‖(y1 − y0, γ1 − γ0)‖2

S ≤ 0,

which implies that (4.17) holds. Therefore, (a) now follows by combining (4.16) and (4.17).

(b) The proof of this statement is the same as the last part of the Lemma 3.2.2. �

Now we are ready to show that Algorithm 2 is an instance of the modified HPE framework.

We consider the following quantities

σ := max

{
1 + ατ1

1 + α(2− α)
, τ2

}
and ξ :=

1

α3
[σ(1 + α− α2) + (1− τ1)α− 1]. (4.19)

Note that, in view of the assumptions on α, τ1 and τ2 in Algorithm 2, we trivially have

σ ∈ (0, 1) and ξ > 0. Furthermore, if τ1 = τ2 = 0, we have σ = σα, where σα is as in (3.15).

38

Theorem 4.2.4 Let {zk} and {z̃k} be as in (4.9). Consider {ηk} defined by

η0 = 4ξd0, ηk = ξ‖yk − yk−1‖2
H , ∀ k ≥ 1, (4.20)

where d0 and ξ are as in (4.8) and (4.19), respectively. Then, for every k ≥ 1,

M (zk−1 − zk) ∈ T (z̃k), ‖zk − z̃k‖2
M + ηk ≤ σ‖zk−1 − z̃k‖2

M + ηk−1, (4.21)

where T , M and σ are as in (2.11), (4.7) and (4.19), respectively. As a consequence,

Algorithm 2 is an instance of the modified HPE framework with σ < 1.

Proof. The inclusion in (4.21) follows from Lemma 4.2.2. Let us now show the inequality in

(4.21). Using (4.14) and the first relation in (4.4), we have

‖z̃k − zk‖2
M =

1

β
‖x̃k − xk−1 + βvk‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2

P

≤ τ1

β
‖γ̃k − γk−1‖2 +

τ2

β
‖x̃k − xk−1‖2 +

1

α3
‖(yk − yk−1, γk − γk−1)‖2

P ,

where the inequality is due to the second condition in (4.1). It follows from the last inequality,

(4.13) and the fact that σ ≥ τ2 (see (4.19)) that

σ‖z̃k − zk−1‖2
M − ‖z̃k − zk‖2

M ≥ ak (4.22)

where

ak := −τ1

β
‖γ̃k − γk−1‖2 +

1

α3

(
σ ‖(yk − yk−1, γk − γk−1)‖2

N − ‖(yk − yk−1, γk − γk−1)‖2
P

)
.

We will show that ak ≥ ηk− ηk−1, where the sequence {ηk} is defined in (4.20). From (4.11),

we find
τ1

β
‖γ̃k − γk−1‖2 =

1

α3
‖(yk − yk−1, γk − γk−1)‖2

ατ1S
,

which, combined with definition of ak, yields

ak =
1

α3
‖(yk − yk−1, γk − γk−1)‖2

σN−ατ1S−P .

Hence, using the definitions of N , S and P in (4.11) and (4.12), we obtain

ak =
1

α3

(
ξ̂β‖B(yk − yk−1)‖2 + 2ξ 〈B(yk − yk−1), γk − γk−1〉+

ξ̃

β
‖γk − γk−1‖2

)
, (4.23)

where

ξ̂ = σ(1+α(2−α))−ατ1−1, ξ = σ(1+α−α2)+(1−τ1)α−1, ξ̃ = σ−ατ1−(1−α)2. (4.24)

39

Now, from the definition of σ given in (4.19), we obtain σ ≥ (1+ατ1)/(1+α(2−α)). Hence,

ξ̂ ≥ 0 and

ξ̃ ≥ 1 + ατ1

1 + α(2− α)
− ατ1 − (1− α)2 =

α2(2− τ1 − α)(2− α)

1 + α(2− α)
> 0,

where the last inequality is due to the fact that α ∈ (0, 2 − τ1). Moreover, since σ ∈ (0, 1)

(see (4.19)), we find

ξ = σ(1 + α− α2) + α− τ1α− 1 > σ(1 + α(2− α))− ατ1 − 1 = ξ̂.

Thus, ξ > ξ̂ ≥ 0, and ξ̃ ≥ 0. Hence, from (4.23) and Lemma 4.2.3, it follows that

ak ≥
2ξ

α3
〈B(yk − yk−1), γk − γk−1〉 ≥


1

α3

(
ξ ‖y1 − y0‖2

H − 4ξd0

)
, k = 1,

1

α3

(
ξ ‖yk − yk−1‖2

H − ξ ‖yk−1 − yk−2‖2
H

)
, k ≥ 2,

which, combined with the definitions of {ηk} in (4.20), yields ak ≥ ηk− ηk−1 for every k ≥ 1.

Hence, the desired inequality now follows from (4.22).

�

4.2.2 Iteration-complexity bounds for the inexact PG-ADMM

We next establish the iteration-complexity for Algorithm 2 in order to compute an

approximate solution of (1.1). First, we present a pointwise iteration-complexity

bound and subsequently we derive an ergodic iteration-complexity bound to obtain a

relaxed approximate solution of (1.7) in the sense of (1.9). We mention that the

pointwise iteration-complexity bound presented in Theorem 4.2.5 can also be derived from

Theorem 4.2.4 combined with Theorem 2.2.4. However, we decide to present a direct and

easy to follow proof, for completeness and convenience of the reader.

Theorem 4.2.5 For a given tolerance ρ > 0, Algorithm 2 generates a ρ-approximate

solution (x̃i, yi, γ̃i) of (1.7) with an associated residue ri = M(zi−1− zi) in at most O(d0/ρ
2)

iterations, where {zi} and d0 are as in (4.9) and (4.8), respectively.

Proof. First note that, in view of the inclusion in (4.21), we have rk := M(zk−1 − zk) is a

residue to the inclusion in (2.12) associated to z̃k, for every k ≥ 1. Let λM be the largest

eigenvalue of M in (4.7). Hence, combining the definition of rk, the inequality in (4.21) and

simple algebra, we obtain

‖rk‖2 ≤ λM‖zk−1 − zk‖2
M ≤ 2λM

[
‖zk−1 − z̃k‖2

M + ‖z̃k − zk‖2
M

]
≤ 2λM

[
(σ + 1)‖zk−1 − z̃k‖2

M + ηk−1 − ηk
]
, (4.25)

40

for every k ≥ 1. From Proposition 4.2.4, Algorithm 2 is an instance of the modified HPE

framework with {(zk, z̃k)} and {ηk} given in (4.9) and (4.20), respectively. Then, it follows

from Lemma 2.2.3(b) and (4.25) that, for every z∗ := (x∗, y∗, γ∗) ∈ Ω∗,

i∑
k=1

‖rk‖2 ≤ 2λM
1− σ

i∑
k=1

[
(σ + 1)

(
‖zk−1 − z∗‖2

M − ‖zk − z∗‖2
M

)
+ 2(ηk−1 − ηk)

]
≤ 2λM

1− σ
(
(σ + 1)‖z0 − z∗‖2

M + 2η0

)
,

which in turn, in view of the definitions of d0 and η0 given in (4.8) and (4.20), implies that

there exists a scalar c > 0 such that

i∑
k=1

‖rk‖2 ≤ cd0. (4.26)

In particular, the latter inequality implies that {rk} converges to zero. Hence, let i be the

first index in which ‖ri‖ ≤ ρ (which is equivalent to say that z̃i is a ρ-approximate solution

with residue ri). Note that if i = 1, then the statement of the theorem trivially follows. Now

assume that i > 1. It follows from (4.26) that

(i− 1)ρ2 <
i−1∑
k=1

‖rk‖2 ≤ cd0

and hence i = O(d0/ρ
2), concluding the proof of the theorem. �

The next theorem presents the ergodic iteration-complexity bound for Algorithm 2.

Theorem 4.2.6 Let {(xk, yk, γk, x̃k, γ̃k)} be generated by Algorithm 2 and consider the

sequences {(xak, yak , γak , x̃ak, γ̃ak)} and {rak} defined by

(xak, y
a
k , γ

a
k , x̃

a
k, γ̃

a
k) =

1

k

k∑
i=1

(xi, yi, γi, x̃i, γ̃i) , rak =
1

k

k∑
i=1

(zi−1 − zi) , (4.27)

where {zi} is as in (4.9). Then, for every k ≥ 1, there exist εak,x, ε
a
k,y ≥ 0 such that the

following relations hold

Mrak ∈
(
∂εak,xf(x̃ak)− A∗γ̃ak , ∂εak,yg(yak)−B∗γ̃ak , Ax̃ak +Byak − b

)
(4.28)

‖Mrak‖ ≤
√
ϑd0

k
, max{εak,x, εak,y} ≤

ϑd0

k
, (4.29)

where M and d0 are as in (4.7) and (4.8), respectively, and ϑ is a positive scalar depending

on (α, τ1, τ2) and the largest eigenvalue of M .

41

Proof. First of all, define (vi, ui, wi) = M(zi−1 − zi) for every i ≥ 1. Hence, it follows from

Proposition 4.2.4, (2.11), and (4.7) that

vi + A∗γ̃i ∈ ∂f(x̃i), ui +B∗γ̃i ∈ ∂g(yi), wi = Ax̃i +Byi − b. (4.30)

On the one hand, from the above equality and (4.27), we have

wak :=
1

k

k∑
i=1

wi = Ax̃ak +Byak − b. (4.31)

Now, in view of the inclusions in (4.30), it follows from (4.27) and Proposition 2.1.1 that the

sequences {εak,x} and {εak,y} defined by

εak,x :=
1

k

k∑
i=1

〈vi + A∗γ̃i, x̃i − x̃ak〉 , εak,y :=
1

k

k∑
i=1

〈ui +B∗γ̃i, yi − yak〉 , (4.32)

are nonnegative and

1

k

k∑
i=1

vi ∈ ∂εak,xf(x̃ak)− A∗γ̃ak ,
1

k

k∑
i=1

ui ∈ ∂εak,yg(yak)−B∗γ̃ak . (4.33)

The inclusion in (4.28) follows from (4.31) and (4.33) and the fact that
∑k

i=1(vi, ui, wi) =

M(z0 − zk). Therefore, the proof of the existence of the elements εak,x, ε
a
k,y ≥ 0 such that

(4.28) holds is completed.

Let us now prove that (4.29) holds for εak,x and εak,y as defined above. Since Algorithm 2

is an instance of the modified HPE framework with σ < 1 (see Proposition 4.2.4), using

Theorem 2.2.7, we have

‖rak‖M ≤
2
√
d0 + η0

k
, εak ≤

3(3− 2σ)(d0 + η0)

2(1− σ)k
, (4.34)

where

εak =
1

k

k∑
i=1

〈M(zi−1 − zi), z̃i − z̃ak〉 , (4.35)

with {z̃i} given in (4.9) and z̃ak := (x̃ak, y
a
k , γ̃

a
k). It is well-known that ‖Mrak‖

2 ≤ λM ‖rak‖
2
M ,

where λM is the largest eigenvalue of M . Hence, using the first inequality in (4.34) and

the definition of η0 in (4.20), we conclude that the bound on ‖Mrak‖ in (4.29) holds with

ϑ = ϑ1 := 4λM(1 + 4ξ). It remains to show the second estimate in (4.29). Using (4.32), we

42

have

εak,x + εak,y =
1

k

k∑
i=1

(
〈vi, x̃i − x̃ak〉+ 〈ui, yi − yak〉+ 〈γ̃i, Ax̃i − Ax̃ak +Byi −Byak〉

)
=

1

k

k∑
i=1

(
〈vi, x̃i − x̃ak〉+ 〈ui, yi − yak〉+ 〈γ̃i, wi − wak〉

)
,

where the last equality is due to the definitions of wi and wak in (4.30) and (4.31), respectively.

Additionally, the definitions of wi, w
a
k and γ̃ak imply that

1

k

k∑
i=1

〈γ̃i, wi − wak〉 =
1

k

k∑
i=1

〈γ̃i − γ̃ak , wi − wak〉 =
1

k

k∑
i=1

〈wi, γ̃i − γ̃ak〉.

Therefore, since zi = (xi, yi, γi) and M(zi−1−zi) = (vi, ui, wi), it follows that εak,x+εak,y = εak,

where εak is given in (4.35). Hence, using the estimate on εak given in (4.34) and the definition

of η0 in (4.20), we conclude that the second inequality in (4.29) holds with ϑ = ϑ2 :=

3(3− 2σ)(1 + 4ξ)/2(1− σ). Therefore, the estimations in (4.29) trivially follow by defining

ϑ = max{ϑ1, ϑ2}. �

Remark 4.2.7 It follows from Theorem 4.2.6 that, for a given tolerance ρ > 0, in at most

k = O(max{
√
d0, d0}/ρ) iterations, the triple (x̃ak, y

a
k , γ̃

a
k), together with rak, satisfies the

inclusion in (4.28) with εak,x, ε
a
k,y ≥ 0 and max

{
‖Mrak‖ , εak,x, εak,y

}
≤ ρ. Hence, the triple

(x̃ak, y
a
k , γ̃

a
k) can be seen as a relaxed ρ-approximate solution of (1.7) with residue (vx̄, vȳ, vγ̄) :=

Mrak in the sense that the inclusions in (1.7) are relaxed by using the ε-subdifferential

operator instead of the subdifferential (see (1.9)). Therefore, Algorithm 2 provides a relaxed

ρ-approximate solution of (1.7) in at most O(1/ρ) iterations. It should be mentioned that

the quantities εak,x and εak,y can be explicitly computed (see (4.32)). Their expressions are

not explicitly stated in order to simplify the statement of the theorem.

43

Chapter 5

An inexact proximal ADMM and its

iteration-complexity analysis

In this chapter, we propose and analyze an inexact proximal ADMM for computing

approximate solutions of (1.1). This chapter is related to [3] and is organized as follows.

In Section 5.1, we introduce the proposed method and discuss its relationship with other

ADMM variants. Section 5.2 is devoted to the iteration-complexity analysis of the proposed

scheme. This section is divided into two subsections. The first one shows that our scheme

falls within the setting of the modified HPE framework of Section 2.2, whereas in the last

subsection, we establish the iteration-complexity bound for the proposed scheme in order to

obtain an approximate solution of (1.1).

5.1 An inexact proximal ADMM (P-ADMM)

The inexact proximal ADMM proposed here is described as follows.

44

Algorithm 3: Inexact proximal ADMM

0. Let an initial point (x0, y0, γ0) ∈ X × Y × Γ, a penalty parameter β > 0, two error

tolerance parameters τ1, τ2 ∈ [0, 1), and a self-adjoint positive semidefinite linear

operator H : Y → Y be given. Choose a stepsize parameter

θ ∈

(
0,

1− 2τ1 +
√

(1− 2τ1)2 + 4(1− τ1)

2(1− τ1)

)
, (5.1)

and set k = 1.

1. Compute (vk, x̃k) ∈ X × X such that

vk ∈ ∂f(x̃k)−A∗γ̃k, ‖x̃k − xk−1 + βvk‖2 ≤ τ1‖γ̃k − γk−1‖2 + τ2‖x̃k − xk−1‖2, (5.2)

where

γ̃k = γk−1 − β(Ax̃k +Byk−1 − b), (5.3)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
g(y)− 〈γk−1, By〉+

β

2
‖Ax̃k +By − b‖2 +

1

2
‖y − yk−1‖2

H

}
. (5.4)

2. Set

xk = xk−1 − βvk, γk = γk−1 − θβ (Ax̃k +Byk − b) (5.5)

and k ← k + 1, and go to step 1.

Remark 5.1.1 Some remaks about Algorithm 3 are in order:

(a) If τ1 = τ2 = 0, then x̃k = xk due to the inequality in (5.2) and the first relation in (5.5).

Hence, since vk = (xk−1 − xk)/β, the first subproblem of Step 1 is equivalent to compute an

exact solution xk ∈ X of the following subproblem

min
x∈X

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2 +

1

2β
‖x− xk−1‖2

}
, (5.6)

and then Algorithm 3 becomes the proximal ADMM (1.5) with stepsize parameter θ ∈
(0, (1+

√
5)/2) and proximal terms given by (1/β)I and H. Therefore, the proposed method

can be seen as an extension of the proximal ADMM (1.5) in which subproblem (5.6) is solved

inexactly using a relative approximate criterion.

(b) Subproblem (5.4) contains a proximal term defined by a self-adjoint positive semidefinite

45

linear operator H which, appropriately chosen, makes the subproblem easier to solve or even

to have closed-form solution. For instance, if H = sI − βB∗B with s > β‖B‖2, subproblem

(5.4) is equivalent to

min
y∈Y

{
g(y) +

s

2
‖y − ȳ‖2

}
,

for some ȳ ∈ Y , which has a closed-form solution in many applications. For example, if

g(·) = ‖ · ‖1, then to solve the above problem corresponds to evaluating the well-known

(explicitly computed) thresholding operator, see (6.5); we refer the reader to [6,62] for other

examples in which the solution of the above proximal subproblem can be explicitly computed.

(c) The use of a relative approximate criterion in (5.4) requires, as far as we know, the

stepsize parameter θ ∈ (0, 1]. However, since, in many applications, the second subproblem

(5.4) is solved exactly and a stepsize parameter θ > 1 accelerates the method, here only the

first subproblem is assumed to be solved inexactly.

(d) The inexact proximal ADMM is close related to [29, Algorithm 2]. Indeed, the latter

method corresponds to the former one with H = 0, θ = 1 and the following condition

2β|〈x̃k − xk−1, vk〉|+ β2‖vk‖2 ≤ τ1‖γ̃k − γk−1‖2 (5.7)

instead of the inequality in (5.2). Numerical comparisons between the inexact proximal

ADMM and [29, Algorithm 2] will be provided in Chapter 6.

Some preliminary numerical experiments to illustrate the advantages of Algorithm 3 are

reported in Chapter 6.

5.2 Iteration-complexity of the inexact P-ADMM

In this section, we present an iteration-complexity analysis for the inexact proximal ADMM

in order to obtain approximate solution of (1.1). As previously mentioned, our analysis

is done by showing that it is an instance of the modified HPE framework for computing

approximate solutions of the Lagrangian system (1.7). Thus, we need to introduce the

elements required by the setting of Section 2.2. Namely, consider the self-adjoint positive

semidefinite linear operator

M =


I/β 0 0

0 (H + βB∗B) 0

0 0 I/(θβ)

 . (5.8)

46

In this setting, the quantity d0 defined in (2.6) becomes

d0 = inf
{
‖(x− x0, y − y0, γ − γ0)‖2

M : (x, y, γ) ∈ T−1(0)
}
, (5.9)

where T is as in (2.11).

5.2.1 Inexact P-ADMM in the setting of the modified HPE

framework

Our main goal in this subsection is to show that Algorithm 3 falls within the setting of

the modified HPE framework. We start by presenting a preliminary technical result, which

basically shows that a certain sequence generated by Algorithm 3 satisfies the inclusion in

(2.5b) with T and M as in (2.11) and (5.8), respectively.

Lemma 5.2.1 Consider (xk, yk, γk) and (x̃k, γ̃k) generated at the k-iteration of Algorithm 3.

Then,

1

β
(xk−1 − xk) ∈ ∂f(x̃k)− A∗γ̃k, (5.10)

(H + βB∗B)(yk−1 − yk) ∈ ∂g(yk)−B∗γ̃k, (5.11)

1

θβ
(γk−1 − γk) = Ax̃k +Byk − b. (5.12)

As a consequence, zk = (xk, yk, γk) and z̃k = (x̃k, yk, γ̃k) satisfy inclusion (2.5a) with T and

M as in (2.11) and (5.8), respectively.

Proof. Inclusion (5.10) follows trivially from the inclusion in (5.2) and the first relation in

(5.5). Now, from the optimality condition of (5.4) and the definition of γ̃k in (5.3), we obtain

0 ∈ ∂g(yk)−B∗γk−1 + βB∗(Ax̃k +Byk − b) +H(yk − yk−1)

= ∂g(yk)−B∗[γk−1 − β(Ax̃k +Byk−1 − b)] + βB∗B(yk − yk−1) +H(yk − yk−1)

= ∂g(yk)−B∗γ̃k + βB∗B(yk − yk−1) +H(yk − yk−1).

which proves to (5.11). The relation (5.12) follows immediately from the second relation

in (5.5). To end the proof, note that the last statement of the lemma follows directly by

(5.10)–(5.12) and definitions of T and M in (2.11) and (5.8), respectively. �

The following result presents some relations satisfied by the sequences generated by the

inexact proximal ADMM. These relations are essential to show that the latter method is an

instance of the modified HPE framework.

47

Lemma 5.2.2 Let {(xk, yk, γk)} and {(x̃k, γ̃k)} be generated by Algorithm 3. Then, the

following hold:

(a) for any k ≥ 1, we have

γ̃k−γk−1 =
1

θ
(γk−γk−1)+βB(yk−yk−1), γ̃k−γk =

1− θ
θ

(γk−γk−1)+βB(yk−yk−1);

(b) we have

1

2
‖y1 − y0‖2

H −
1√
θ
〈B(y1 − y0), γ1 − γ0〉 ≤ 2 max

{
1,

θ

2− θ

}
d0,

where d0 is as in (5.9);

(c) for every k ≥ 2, we have

1

θ
〈γk − γk−1,B(yk − yk−1)〉 ≥ 1− θ

θ
〈γk−1 − γk−2,B(yk − yk−1)〉

+
1

2
‖yk − yk−1‖2

H −
1

2
‖yk−1 − yk−2‖2

H .

Proof. (a) The first relation follows by noting that the definitions of γ̃k and γk in (5.3) and

(5.5), respectively, yield

γ̃k − γk−1 = −β(Ax̃k +Byk−1 − b) =
1

θ
(γk − γk−1) + βB(yk − yk−1).

The second relation in (a) follows trivially from the first one.

(b) First, note that

0 ≤ 1

2β

∥∥∥∥ 1√
θ

(γ1 − γ0) + βB(y1 − y0)

∥∥∥∥2

=
1

2θβ
‖γ1 − γ0‖2 +

1√
θ
〈B(y1 − y0), γ1 − γ0〉+

β

2
‖B(y1 − y0)‖2,

which, for every z∗ = (x∗, y∗, γ∗) ∈ Ω∗, yields

1

2
‖y1 − y0‖2

H −
1√
θ
〈B(y1 − y0), γ1 − γ0〉

≤ 1

2

(
‖y1 − y0‖2

H +
1

θβ
‖γ1 − γ0‖2 + β‖B(y1 − y0)‖2

)
≤ ‖y1 − y∗‖2

H + ‖y0 − y∗‖2
H +

1

θβ
‖γ1 − γ∗‖2 +

1

θβ
‖γ0 − γ∗‖2

+ β‖B(y1 − y∗)‖2 + β‖B(y0 − y∗)‖2,

48

where the last inequality is due to the second property in (2.1). Hence, using (5.8), we obtain

1

2
‖y1 − y0‖2

H −
1√
θ
〈B(y1 − y0), γ1 − γ0〉 ≤ ‖z1 − z∗‖2

M + ‖z0 − z∗‖2
M , (5.13)

where z0 = (x0, y0, γ0) and z1 = (x1, y1, γ1). On the other hand, from Lemma 5.2.1 with

k = 1, we haveM(z0−z1) ∈ T (z̃1), where z̃1 = (x̃1, y1, γ̃1) and T is as in (2.11). Using this fact

and the monotonicity of T , we obtain 〈z̃1− z∗,M(z0− z1)〉 ≥ 0 for all z∗ = (x∗, y∗, z∗) ∈ Ω∗.

Hence,

‖z∗ − z0‖2
M − ‖z∗ − z1‖2

M = ‖z̃1 − z0‖2
M − ‖z̃1 − z1‖2

M + 2〈z̃1 − z∗,M(z0 − z1)〉
≥ ‖z̃1 − z0‖2

M − ‖z̃1 − z1‖2
M . (5.14)

It follows from (5.8), item (a), and some direct calculations that

‖z̃1 − z1‖2
M =

1

β
‖x̃1 − x1‖2 +

1

θβ
‖γ̃1 − γ1‖2

=
1

β
‖x̃1 − x1‖2 +

1

θβ

∥∥∥∥1− θ
θ

(γ1 − γ0) + βB(y1 − y0)

∥∥∥∥2

=
1

β
‖x̃1 − x1‖2 +

(1− θ)2

βθ3
‖γ1 − γ0‖2 +

β

θ
‖B(y1 − y0)‖2

+
2(1− θ)

θ2
〈B(y1 − y0), γ1 − γ0〉. (5.15)

Moreover, (5.8) and item (a) also yield

‖z̃1 − z0‖2
M =

1

β
‖x̃1 − x0‖2 + ‖y1 − y0‖2

(βB∗B+H) +
1

θβ
‖γ̃1 − γ0‖2

≥ 1

β
‖x̃1 − x0‖2 + β‖B(y1 − y0)‖2 +

τ1

β
‖γ̃1 − γ0‖2 +

1− τ1θ

θβ

∥∥∥∥1

θ
(γ1 − γ0) + βB(y1 − y0)

∥∥∥∥2

=
1

β
‖x̃1 − x0‖2 +

τ1

β
‖γ̃1 − γ0‖2 +

[1 + (1− τ1)θ]β

θ
‖B(y1 − y0)‖2 +

1− τ1θ

βθ3
‖γ1 − γ0‖2

+
2(1− τ1θ)

θ2
〈B(y1 − y0), γ1 − γ0〉. (5.16)

Combining the above two conclusions, we obtain

‖z̃1 − z0‖2
M − ‖z̃1 − z1‖2

M ≥
1

β

(
‖x̃1 − x0‖2 − ‖x̃1 − x1‖2 + τ1‖γ̃1 − γ0‖2

)
+ (1− τ1)β‖B(y1 − y0)‖2 +

2− θ − τ1

βθ2
‖γ1 − γ0‖2 +

2(1− τ1)

θ
〈B(y1 − y0), γ1 − γ0〉. (5.17)

Now, note that the inequality in (5.2) with k = 1 and the definition of x1 in (5.5) imply that

0 ≤ τ2‖x̃1 − x0‖2 − ‖x̃1 − x1‖2 + τ1‖γ̃1 − γ0‖2

49

which, combined with (5.17) and τ2 ∈ [0, 1), yields

‖z̃1 − z0‖2
M − ‖z̃1 − z1‖2

M

≥ (1− τ1)β‖B(y1 − y0)‖2 +
2− θ − τ1

βθ2
‖γ1 − γ0‖2 +

2(1− τ1)

θ
〈B(y1 − y0), γ1 − γ0〉

=
1− θ
βθ2
‖γ1 − γ0‖2 + (1− τ1)

∥∥∥∥√βB(y1 − y0) +
1

θ
√
β

(γ1 − γ0)

∥∥∥∥2

≥ 1− θ
βθ2
‖γ1 − γ0‖2.

Hence, if θ ∈ (0, 1], then we have

‖z̃1 − z0‖2
M − ‖z̃1 − z1‖2

M ≥ 0,

which, combined with (5.14), yields

‖z1 − z∗‖2
M ≤ ‖z0 − z∗‖2

M . (5.18)

Now, if θ > 1, then we have

‖z̃1 − z1‖2
M − ‖z̃1 − z0‖2

M ≤
θ − 1

βθ2
‖γ1 − γ0‖2

≤ 2(θ − 1)

θ

(
1

βθ
‖γ1 − γ∗‖2 +

1

βθ
‖γ0 − γ∗‖2

)
≤ 2(θ − 1)

θ

[
‖z0 − z∗‖2

M + ‖z1 − z∗‖2
M

]
(5.19)

where the second inequality is due to the second property in (2.1), and the last inequality

is due to (5.8) and definitions of z0, z1 and z∗. It follows from (5.1) that θ < (1 +
√

5)/2, in

particular, θ < 2. Hence, adding (5.14) and (5.19), we obtain

‖z1 − z∗‖2
M ≤

3θ − 2

2− θ
‖z0 − z∗‖2

M .

Thus, it follows from (5.18) and the last inequality that

‖z1 − z∗‖2
M ≤ max

{
1,

3θ − 2

2− θ

}
‖z0 − z∗‖2

M . (5.20)

Therefore, the desired inequality follows from (5.13), (5.20) and the definition of d0 in (5.9).

(c) From the optimality condition for (5.4), the definition of γ̃k in (5.3) and item (a), we

have, for every k ≥ 1,

∂g(yk) 3 B∗(γ̃k − βB(yk − yk−1))−H(yk − yk−1) =
1

θ
B∗(γk − (1− θ)γk−1)−H(yk − yk−1).

50

For any k ≥ 2, using the above inclusion with k ← k and k ← k − 1 and the monotonicity

of ∂g , we obtain

1

θ
〈B∗(γk − γk−1)− (1− θ)B∗(γk−1 − γk−2), yk − yk−1〉

≥ 〈H(yk − yk−1), yk − yk−1〉 − 〈H(yk−1 − yk−2), yk − yk−1〉

≥ 1

2
‖yk − yk−1‖2

H −
1

2
‖yk−1 − yk−2‖2

H ,

where the last inequality is due to the first property in (2.1), and so the proof of the lemma

follows. �

We next consider a technical result.

Lemma 5.2.3 Let scalars τ1, τ2 and θ be as in step 0 of Algorithm 3. Then, there exists a

scalar σ ∈ [τ2, 1) such that the matrix

L =

 σ − 1 + (σ − τ1)θ −|(1− θ)[σ − 1 + (1− τ1)θ]|

−|(1− θ)[σ − 1 + (1− τ1)θ]| σ − 1 + (2− θ − τ1)θ

 (5.21)

is positive definite.

Proof. Since τ1 and θ are fixed scalars given in step 0 of Algorithm 3, the determinant and

trace of L are polynomial functions of σ denoted here by Φ(σ) and Φ̃(σ), respectively. It is

easy to see that

Φ(1) = θ2(1− τ1)
[
−(1− τ1)θ2 + (1− 2τ1)θ + 1

]
, Φ̃(1) = [3− 2τ1 − θ]θ.

Note that the upper bound on θ given in (5.1), namely,

θ̂ :=
1− 2τ1 +

√
(1− 2τ1)2 + 4(1− τ1)

2(1− τ1)

corresponds to the positive root of the quadratic q(θ) = −(1− τ1)θ2 + (1− 2τ1)θ + 1, which

appears in the expression of Φ(1). Hence, since τ1 ∈ [0, 1) and θ ∈ (0, θ̂), we can conclude

that Φ(1) > 0. Now, by using τ1 ∈ [0, 1) and some simple algebraic manipulations, it can

be verified that θ̂ < 3− 2τ1, which, combined with the fact that θ ∈ (0, θ̂), yields Φ̃(1) > 0.

Therefore, there exists σ̂ ∈ [0, 1) such that Φ(σ) > 0 and Φ̃(σ) > 0 for all σ ∈ [σ̂, 1), which

in turn implies that L := L(σ) is positive definite for all σ ∈ [σ̂, 1). The statement of the

lemma follows now by choosing σ = max{τ2, σ̂}. �

In the following, we show that the inexact proximal ADMM can be regarded as an instance

of the modified HPE framework.

51

Theorem 5.2.4 Let {(xk, yk, γk)} and {(x̃k, γ̃k)} be generated by Algorithm 3. Let also T ,

M and d0 be as in (2.11), (5.8) and (5.9), respectively. Define

z0 = (x0, y0, γ0), µ =
4[σ − 1 + (1− τ1)θ]

θ3/2
max

{
1,

θ

2− θ

}
, η0 = µd0 (5.22)

and, for all k ≥ 1,

zk = (xk, yk, γk), z̃k = (x̃k, yk, γ̃k), (5.23)

ηk =
[σ − 1 + (2− θ − τ1)θ]

βθ3
‖γk − γk−1‖2 +

[σ − 1 + (1− τ1)θ]

θ
‖yk − yk−1‖2

H , (5.24)

where σ ∈ [τ2, 1) is given by Lemma 5.2.3. Then, (zk, z̃k, ηk) satisfies the error condition in

(2.5b) for every k ≥ 1. As a consequence, the inexact proximal ADMM is an instance of the

modified HPE framework with σ < 1.

Proof. First of all, since σ < 1 and the matrix L in (5.21) is positive definite (in particular,

l11 is positive), we have

[σ − 1 + (1− τ1)θ] ≥ [σ − 1 + (σ − τ1)θ] = l11 > 0. (5.25)

Now, using (5.8) and definitions of {zk} and {z̃k} in (5.23), we obtain

‖z̃k − zk−1‖2
M =

1

β
‖x̃k − xk−1‖2 + ‖yk − yk−1‖2

H + β‖B(yk − yk−1)‖2 +
1

βθ
‖γ̃k − γk−1‖2,

‖z̃k − zk‖2
M =

1

β
‖x̃k − xk‖2 +

1

βθ
‖γ̃k − γk‖2.

Hence,

σ‖z̃k − zk−1‖2
M − ‖z̃k − zk‖2

M =
1

β

(
σ‖x̃k − xk−1‖2 − ‖x̃k − xk‖2 + τ1‖γ̃k − γk−1‖2

)
+ σ‖yk − yk−1‖2

H + σβ‖B(yk − yk−1)‖2 +
σ − τ1θ

βθ
‖γ̃k − γk−1‖2 − 1

βθ
‖γ̃k − γk‖2. (5.26)

Note that the inequality in (5.2) and definition of xk in (5.4) imply that

0 ≤ τ2‖x̃k − xk−1‖2 − ‖x̃k − xk‖2 + τ1‖γ̃k − γk−1‖2

which, combined with (5.26) and the fact that σ ≥ τ2, yields

σ‖z̃k − zk−1‖2
M − ‖z̃k − zk‖2

M ≥ σ‖yk − yk−1‖2
H + σβ‖B(yk − yk−1)‖2

+
σ − τ1θ

βθ
‖γ̃k − γk−1‖2 − 1

βθ
‖γ̃k − γk‖2. (5.27)

52

On the other hand, it follows from Lemma 5.2.2(a) that

σ − τ1θ

βθ
‖γ̃k − γk−1‖2 − 1

βθ
‖γ̃k − γk‖2

=
σ − τ1θ

βθ

∥∥∥∥1

θ
(γk − γk−1) + βB(yk − yk−1)

∥∥∥∥2

− 1

βθ

∥∥∥∥1− θ
θ

(γk − γk−1) + βB(yk − yk−1)

∥∥∥∥2

=
σ − 1 + (2− θ − τ1)θ

βθ3
‖γk − γk−1‖2 +

(σ − 1− τ1θ)β

θ
‖B(yk − yk−1)‖2

+
2[σ − 1 + (1− τ1)θ]

θ2
〈γk − γk−1, B(yk − yk−1)〉.

Hence, combining the last equality and (5.27), we obtain

σ‖z̃k−zk−1‖2
M − ‖z̃k − zk‖2

M ≥ σ‖yk − yk−1‖2
H

+
[σ − 1 + (2− θ − τ1)θ]

βθ3
‖γk − γk−1‖2 +

[σ − 1 + (σ − τ1)θ]β

θ
‖B(yk − yk−1)‖2

+
2[σ − 1 + (1− τ1)θ]

θ2
〈γk − γk−1, B(yk − yk−1)〉. (5.28)

We will now consider two cases: k = 1 and k > 1.

Case 1 (k = 1): Since [σ − 1 + (1− τ1)θ] > 0 (see (5.25)), it follows from (5.28) with k = 1

and Lemma 5.2.2(b) that

σ‖z̃1−z0‖2
M − ‖z̃1 − z1‖2

M ≥
[
σ +

[σ − 1 + (1− τ1)θ]

θ3/2

]
‖y1 − y0‖2

H

+
[σ − 1 + (2− θ − τ1)θ]

βθ3
‖γ1 − γ0‖2 +

[σ − 1 + (σ − τ1)θ]β

θ
‖B(y1 − y0)‖2

− 4[σ − 1 + (1− τ1)θ]

θ3/2
max

{
1,

θ

2− θ

}
d0

which, combined with definitions of η0 and η1 in (5.22) and (5.24), respectively, yields

σ‖z̃1 − z0‖2
M − ‖z̃1 − z1‖2

M + η0 − η1 ≥
[σ − 1 + (σ − τ1)θ]β

θ
‖B(y1 − y0)‖2

+

[
σ +

[σ − 1 + (1− τ1)θ]

θ3/2
− [σ − 1 + (1− τ1)θ]

θ

]
‖y1 − y0‖2

H .

53

From the last inequality and some algebraic manipulations, we obtain

σ‖z̃1 − z0‖2
M − ‖z̃1−z1‖2

M + η0 − η1

≥ [σ − 1 + (σ − τ1)θ]

θ

(
β‖B(y1 − y0)‖2 +

1√
θ
‖y1 − y0‖2

H

)
+

[
σ +

1− σ√
θ
− [σ − 1 + (1− τ1)θ]

θ

]
‖y1 − y0‖2

H

=
[σ − 1 + (σ − τ1)θ]

θ

(
β‖B(y1 − y0)‖2 +

1√
θ
‖y1 − y0‖2

H

)
+

[(1− σ)(1 +
√
θ − θ) + τ1θ]

θ
‖y1 − y0‖2

H . (5.29)

Using (5.1), we have θ ∈]0, (1 +
√

5)/2[which in turn implies that (1 +
√
θ− θ) ≥ 0. Hence,

inequality (2.5b) with k = 1 follows from (5.25), (5.29) and the fact that σ < 1.

Case 2 (k > 1): Since [σ − 1 + (1 − τ1)θ] > 0 (see (5.25)), it follows from (5.28) and

Lemma 5.2.2(c) that

σ‖z̃k−zk−1‖2
M − ‖z̃k − zk‖2

M ≥
[σ − 1 + (1− τ1)θ]

θ

(
‖yk − yk−1‖2

H − ‖yk−1 − yk−2‖2
H

)
+

[σ − 1 + (2− θ − τ1)θ]

βθ3
‖γk − γk−1‖2 +

[σ − 1 + (σ − τ1)θ]β

θ
‖B(yk − yk−1)‖2

+
2(1− θ)[σ − 1 + (1− τ1)θ]

θ2
〈γk−1 − γk−2, B(yk − yk−1)〉

which, combined with definition of {ηk} in (5.24) and the Cauchy-Schwarz inequality, yields

σ‖z̃k−zk−1‖2
M − ‖z̃k − zk‖2

M + ηk−1 − ηk

≥ [σ − 1 + (2− θ − τ1)θ]

βθ3
‖γk−1 − γk−2‖2 +

[σ − 1 + (σ − τ1)θ]β

θ
‖B(yk − yk−1)‖2

− 2|(1− θ)[σ − 1 + (1− τ1)θ]|
θ2

‖γk−1 − γk−2‖‖B(yk − yk−1)‖

=
1

θ

〈
L

 √β‖B(yk − yk−1)‖

‖γk−1 − γk−2‖/θ
√
β

 ,
 √β‖B(yk − yk−1)‖

‖γk−1 − γk−2‖/θ
√
β

〉

where L is as in (5.21). Therefore, since L is positive definite (see Lemma 5.2.3(b)), we

conclude that inequality (2.5b) also holds for k > 1.

To end the proof, note that the last statement of the proposition follows trivially from the

first one and Lemma 5.2.1. �

54

5.2.2 Iteration-complexity bounds for the inexact P-ADMM

We are now ready to establish pointwise and ergodic iteration-complexity bounds for the

inexact proximal ADMM in order to obtain an approximate solution of problem (1.1).

Theorem 5.2.5 Consider the sequences {(xk, yk, γk)} and {(x̃k, γ̃k)} generated by Algorithm 3.

Then, for every k ≥ 1,
1
β
(xk−1 − xk)

(H + βB∗B)(yk−1 − yk)

1
βθ

(γk−1 − γk)

 ∈

∂f(x̃k)− A∗γ̃k

∂g(yk)−B∗γ̃k

Ax̃k +Byk − b

 (5.30)

and there exist σ ∈ (0, 1) and i ≤ k such that(
1

β
‖xi − xi−1‖2 + ‖yi − yi−1‖2

(H+βB∗B) +
1

βθ
‖γi − γi−1‖2

)1/2

≤
√
d0√
k

√
2(1 + σ) + 4µ

1− σ
,

where d0 and µ are as in (5.9) and (5.22), respectively.

Proof. This result follows by combining Theorem 5.2.4 and Theorem 2.2.4. �

Remark 5.2.6 For a given tolerance ρ̄ > 0, Theorem 5.2.5 ensures that in at most

O(1/ρ̄2) iterations, Algorithm 3 provides an approximate solution (x̂, ŷ, γ̂) of the Lagrangian

system (1.7) together with a residual r := (rx, ry, rγ) in the sense that

1

β
rx ∈ ∂f(x̂)− A∗γ̂, (H + βB∗B)ry ∈ ∂g(ŷ)−B∗γ̂, 1

βθ
rγ = Ax̂+Bŷ − b,

and ‖(rx, ry, rγ)‖M ≤ ρ̄, where M is as in (5.8). Note that, for a given tolerance ρ > 0, the

above relations are equivalent to (1.8) with (vx̂, vŷ, vγ̂) := Mr, ρ̄ := ρ/
√
λM , where λM is

the largest eigenvalue of M , and the fact that ‖M(·)‖ ≤
√
λM‖ · ‖M . Therefore, Algorithm 3

provides a ρ-approximate solution of (1.7) in at most O(1/ρ2) iterations.

Theorem 5.2.7 Let the sequences {(xk, yk, γk)} and {(x̃k, γ̃k)} be generated by Algorithm 3.

Consider the ergodic sequences {(xak, yak , γak)}, {(x̃ak, γ̃ak)}, {(rak,x, rak,y, rak,γ)} and {(εak,x, εak,y)}
defined by

(xak, y
a
k , γ

a
k , x̃

a
k, γ̃

a
k) =

1

k

k∑
i=1

(xi, yi, γi, x̃i, γ̃i) , (rak,x, r
a
k,y, r

a
k,γ) =

1

k

k∑
i=1

(ri,x, ri,y, ri,γ) , (5.31)

(εak,x, ε
a
k,y) =

1

k

k∑
i=1

(〈ri,x/β + A∗γ̃i, x̃i − x̃ak〉 , 〈(H + βB∗B) ri,y +B∗γ̃i, yi − yak〉) , (5.32)

55

where

(ri,x, ri,y, ri,γ) = (xi−1 − xi, yi−1 − yi, γi−1 − γi) . (5.33)

Then, for every k ≥ 1, we have εak,x, ε
a
k,y ≥ 0,

1
β
rak,x

(H + βB∗B)rak,y

1
βθ
rak,γ

 ∈

∂εak,xf(x̃ak)− A∗γ̃ak

∂εak,yg(yak)−B∗γ̃ak

Ax̃ak +Byak − b,

 , (5.34)

and there exists σ ∈ (0, 1) such that(
1

β
‖rak,x‖2 + ‖rak,y‖2

(H+βB∗B) +
1

βθ
‖rak,γ‖2

)1/2

≤
2
√

(1 + µ)d0

k
(5.35)

and

εak,x + εak,y ≤
3(3− 2σ)(1 + µ)d0

2(1− σ)k
, (5.36)

where d0 and µ are as in (5.9) and (5.22), respectively.

Proof. By combining Theorem 5.2.4, the definition of η0 in (5.22), and Theorem 2.2.7, we

conclude that inequality (5.35) holds, and

εak ≤
3(3− 2σ)(1 + µ)d0

2(1− σ)k
, (5.37)

where

εak =
1

k

[
k∑
i=1

(
〈ri,x/β, x̃i − x̃ak〉+ 〈(H + βB∗B) ri,y, yi − yak〉+ 〈ri,γ/(θβ), γ̃i − γ̃ak〉

)]
(5.38)

On the other hand, (5.12), (5.31) and (5.33) yield

Ax̃k +Byk =
1

θβ
rk,γ + b, Ax̃ak +Byak =

1

θβ
rak,γ + b.

Additionally, it follows from definitions of ri,γ and rak,γ that

1

k

k∑
i=1

〈γ̃i, ri,γ − rak,γ〉 =
1

k

k∑
i=1

〈γ̃i − γ̃ak , ri,γ − rak,γ〉 =
1

k

k∑
i=1

〈γ̃i − γ̃ak , ri,γ〉.

56

Hence, combining the identity in (5.38) with the last two equations, we have

εak =
1

k

k∑
i=1

(
〈ri,x/β, x̃i − x̃ak〉+ 〈(H + βB∗B) ri,y, yi − yak〉

)
+

1

k

k∑
i=1

〈
γ̃i,
(
ri,γ − rak,γ

)
/ (θβ)

〉
=

1

k

k∑
i=1

(
〈ri,x/β, x̃i − x̃ak〉+ 〈(H + βB∗B) ri,y, yi − yak〉+ 〈γ̃i, Ax̃i − Ax̃ak +Byi −Byak〉

)
=

1

k

k∑
i=1

〈ri,x/β + A∗γ̃i, x̃i − x̃ak〉+
1

k

k∑
i=1

〈(H + βB∗B) ri,y +B∗γ̃i, yi − yak〉 = εak,x + εak,y,

where the last equality is due to the definitions of εak,x and εak,y in (5.32). Therefore, the

inequality in (5.36) follows trivially from the last equality and (5.37).

To finish the proof of the theorem, note that direct use of Proposition 2.1.1(b) (for f and

g), (5.30)–(5.33) give εak,x, ε
a
k,y ≥ 0 and the inclusion in (5.34). �

Remark 5.2.8 For a given tolerance ρ̄ > 0, Theorem 5.2.7 ensures that in at most O(1/ρ̄)

iterations, Algorithm 3 provides, in the ergodic sense, an approximate solution (x̄, ȳ, γ̄) of

the Lagrangian system (1.7) together with residues r̄ := (rx̄, rȳ, rγ̄) and (εx̄, εȳ) such that

1

β
rx̄ ∈ ∂εx̄f(x̄)− A∗γ̄, (H + βB∗B)rȳ ∈ ∂εȳg(ȳ)−B∗γ̄, 1

βθ
rγ̄ = Ax̄+Bȳ − b,

and max {‖(rx̄, rȳ, rγ̄)‖M , εx̄, εȳ} ≤ ρ̄, where M is as in (5.8). For a given tolerance ρ > 0, the

above relations are equivalent to (1.9) with (vx̄, vȳ, vγ̄) := Mr̄, ρ̄ := ρ/
√
λM , where λM is the

largest eigenvalue of M , and the fact that ‖M(·)‖ ≤
√
λM‖·‖M . Hence, Algorithm 3 provides

a relaxed ρ-approximate solution of (1.7) in at most O(1/ρ) iterations. The above ergodic

complexity bound is better than the pointwise one by a factor of O(1/ρ); however, the above

inclusion is, in general, weaker than that of the pointwise case due to the ε-subdifferentials

of f and g instead of subdifferentials.

57

Chapter 6

Numerical experiments

In this chapter we report some numerical experiments to illustrate the performance of the

ADMM variants analyzed in Chapters 3, 4, and 5. All experiments were performed on

MATLAB R2015a using an Intel(R) Core i7 2.4GHz computer with 8GB of RAM.

We considered two classes of problems, namely, LASSO and `1-regularized logistic

regression. We are more interested in showing the efficiency of the proposed inexact

ADMM variants. For this, we considered some randomly generated problems and we

also collected non-simulated data sets, namely, six biomedical data sets from the Elvira

biomedical repository [16] representing different types of cancer and one artificial “Madelon”

data set from the ICU Machine Learning Repository [22]. Each one of them is associated

with a matrix D ∈ <m×n and a vector d ∈ <m and are listed in more detail in Table 6.1

below.

Table 6.1: List of non-simulated data sets

Data sets m n

Colon tumor gene expression [4] 62 2000

Central nervous system (CNS) [63] 60 7129

Leukemia cancer-ALLMLL [38] 38 7129

Lung cancer-Michigan [8] 96 7129

Lymphoma-Harvard [69] 77 7129

Prostate cancer [70] 102 12600

Madelon [44] 2000 500

58

6.1 Strategies

In this section, we define the initial parameters and the strategies used to present some

comparisons among the considered ADMM variants. Initially, it is important to note that in

all our implementations and for all algorithms, we set the initial point (x0, y0, γ0) = (0, 0, 0),

and the penalty parameter β = 1. In the following, we specify some details regarding the

implementation of each tested algorithms:

Algorithm 1: In our implementation of Algorithm 1, we chose different values of α, namely

α ∈ {1.0, 1.3, 1.5, 1.7, 1.9}. We set (G,H) = (0, 0), and used the following condition as

a stopping criterion

‖M(zk − zk−1)‖∞ ≤ 10−4, (6.1)

where zk := (xk, yk, γk) is the sequence generated by Algorithm 1 and M is as in (3.4).

Algorithm 2: We report the numerical performance of Algorithm 2 to solve the two classes

of problems, LASSO and `1-regularized logistic regression.

Different values of the relaxation parameter α were considered in order to illustrate

its effect and show that, similarly to the exact generalized ADMM, the performance

of the algorithm improves considerably when α > 1, specially α ≈ 1.9. Algorithm 2

was compared with its “exact” version, namely, the generalized ADMM considered in

Chapter 3. The latter method corresponds to Algorithm 1 with (G,H) = (0, 0) and

xk being such that there exists a residue vk satisfying

vk ∈ ∂f(xk)− A∗ [γk−1 + β (Axk +Byk−1 − b)] , ‖vk‖ ≤ 10−8.

Note that the above inclusion with vk = 0 is the one derived from the first-order

optimality condition for (3.1) with G = 0. It should be mentioned that the applications

considered here are such that the solution of the second subproblem of the three

analyzed algorithms can be explicitly computed.

For the first test problem, the algorithms were tested using six non-simulated data sets

reported in Table 6.1. In addition, for the second class of problems, we select all data

sets from Table 6.1.

For all tests, we used the same overall termination condition (6.1), with M and zk

given in (4.7) and (4.9), respectively. In Algorithm 2, the remaining initialization data

were τ1 = 0.99(2−α), τ2 = 1− 10−8 and H = 0, and a hybrid inner stopping criterion

was used; specifically, the inner-loop terminates when vk satisfies either the inequality

59

in (4.1) or ‖vk‖ ≤ 10−8. The latter strategy was also used in [29, 30, 80] and it is

motivated by the fact that, close to a solution, the former condition seems to be more

restrictive than the latter.

Algorithm 3: We also report some numerical tests to illustrate the performance of

Algorithm 3 in the two classes of problems, LASSO and `1-regularized logistic

regression. Our main goal is to show that, in some applications, the method performs

better with a stepsize parameter θ > 1 instead of the choice θ = 1 as considered in the

related literature. Similarly to the strategy use in Algorithm 2, we also used a hybrid

inner stopping criterion for Algorithm 3, i.e., the inner-loop terminates when vk satisfies

either the inequality in (5.2) or ‖vk‖ ≤ 10−8. We set τ1 = 0.99(1 + θ − θ2)/(θ(2− θ)),
τ2 = 1 − 10−8 and H = 0. For a comparison purpose, we also run [29, Algorithm 2],

denoted here by relerr-ADMM; see Remark 5.1.1(d) for more details on the relationship

between Algorithm 3 and the relerr-ADMM. As suggested in [29], the error tolerance

parameter τ1 in (5.7) was taken equal to 0.99. For all tests, both algorithms stopped

when the condition (6.1) was satisfied, where M is as in (5.8) and zk := (xk, yk, γk) is

the sequence generated by the respective algorithms.

6.2 LASSO problem

We consider the following LASSO problem [77,78]

min
x∈<n

1

2
‖Dx− d‖2 + µ‖x‖1, (6.2)

where D ∈ <m×n, d ∈ <m, µ > 0 is a regularization parameter, and ‖·‖1 denotes the `1-norm.

In our experiment, we scaled d and the columns of D in order to have unit `2-norm. The

regularization parameter µ was set equal to 0.1‖D∗d‖∞, where ‖ · ‖∞ denotes the maximum

norm. By introducing a new variable, the above problem is usually rewritten as

min

{
1

2
‖Dx− d‖2 + µ‖y‖1 : y − x = 0, x ∈ <n, y ∈ <n

}
. (6.3)

Obviously, (6.3) is an instance of (1.1) with

f(x) =
1

2
‖Dx− d‖2, g(y) = µ‖y‖1, A = −I, B = I and b = 0. (6.4)

First, we verify the performance of Algorithm 1, for solving problem (6.2). Note that,

with the specifications in (6.4), the subproblems (3.1) and (3.2) have closed-form solutions

xk = (D∗D + βI)−1(D∗d+ βyk−1 − γk−1), yk = Sµ
β

(
αxk + (1− α)yk−1 +

1

β
γk−1

)
,

60

where, for a scalar κ > 0, Sκ : <n → <n is the shrinkage operator [7] defined as

S iκ(w) = sign(wi) max(0, |wi| − κ) i = 1, 2, . . . , n, (6.5)

with sign(·) denotes the sign function. In our experiments of Algorithm 1, the matrix D was

randomly generated and the vector d ∈ <m was chosen as d = Dx +
√

0.001y, where the

(100/n)-sparse vector x ∈ <n and the noisy vector y ∈ <m were also randomly generated.

Table 6.2: Performance of Algorithm 1 to solve three randomly generated LASSO problems

Dim. of D α = 1.0 α = 1.3 α = 1.5 α = 1.7 α = 1.9

m× n Iter Time Iter Time Iter Time Iter Time Iter Time

900× 3000 27 7.2 21 5.6 19 5.0 19 5.0 47 12.6

1200× 4000 26 14.8 23 13.1 21 12.5 20 12.4 49 32.1

1500× 5000 26 26.6 21 24.5 20 27.1 20 24.0 46 58.1

The performance of Algorithm 1 to solve the three randomly generated LASSO problem

instances is reported in Table 6.2, in which “Iter” and “Time” denote the number of iterations

and the CPU time in seconds, respectively. From this table, we can see that, in all considered

instances of (6.3), Algorithm 1 with α ∈ {1.3, 1.5, 1.7} performed better than Algorithm 1

with α ∈ {1, 1.9}. Moreover, Algorithm 1 with α = 1.7 presented the best performance.

Therefore, we can conclude that Algorithm 1 with a suitable relaxation factor α > 1

outperformed the standard ADMM (which corresponds to Algorithm 1 with α = 1) in

our numerical experiments.

We also tested Algorithm 2 for the problem (6.2). In view of (6.4), the pair (x̃k, vk) in

(4.1) can be obtained by computing an approximate solution x̃k with a residual vk of the

following linear system

(D∗D + βI)x = (D∗d+ βyk−1 − γk−1). (6.6)

For approximately solving the above linear system, we used the conjugate gradient method

[60] with starting point D∗d+ βyk−1 − γk−1. Similarly to the previous case, the subproblem

(4.3) has a closed-form solution

yk = Sµ
β

(
αx̃k + (1− α)yk−1 +

1

β
γk−1

)
,

where S is as in (6.5).

61

Table 6.3: Performance of Algorithms 1 and 2 for six instances of the LASSO problem

α = 1.0 α = 1.3 α = 1.5 α = 1.7 α = 1.9

Data set Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Number of outer iterations

Colon 114 116 89 88 77 78 69 69 63 63

CNS 321 319 249 248 217 217 194 194 182 182

Leukemia 600 600 431 431 370 370 330 329 320 320

Lung 535 535 412 412 357 357 315 315 282 282

Lymphoma 331 331 255 255 222 222 196 196 176 176

Prostate 430 431 331 331 287 287 254 254 227 227

Total number of inner iterations

Colon 4656 2136 3639 1607 3149 1450 2822 1308 2576 1216

CNS 16064 10060 12466 7818 10862 6871 9712 6203 9108 6024

Leukemia 17365 11351 12478 8033 10715 6909 9556 6196 9263 6195

Lung 22836 12516 17588 9622 15240 8373 13451 7475 12048 6881

Lymphoma 15182 8619 11703 6522 10180 5850 8998 5208 8072 4796

Prostate 35002 19562 26944 15083 23374 13088 20700 11906 18478 11003

CPU time in seconds

Colon 23.3 16.4 18.2 12.3 17.0 10.9 14.4 9.7 13.1 9.2

CNS 944.4 754.4 743.4 584.6 643.1 515.6 576.7 472.9 538.7 449.0

Leukemia 1290.4 1119.2 927.8 789.0 797.0 679.4 710.5 606.1 689.4 600.4

Lung 1470.9 1114.7 1159.5 872.3 998.5 762.5 880.5 670.9 788.8 607.6

Lymphoma 931.0 769.7 728.1 601.8 634.6 489.0 564.1 433.3 504.1 393.1

Prostate 5926.5 4325.1 4494.2 3509.2 3900.2 3083.7 3438.1 2664.4 3103.0 2343.7

Table 6.3 displays the numerical results obtained. In order to compare the algorithms, we

consider the number of outer iterations, the total number of accumulated inner iterations

and the CPU time in seconds. In Figure 6.1, we plot the arithmetic mean of the latter

three comparisons criteria for each algorithm for solving the six LASSO problem instances.

From these results, one can see that the number of outer iterations of Algorithm 2 and

Algorithm 1 are basically the same for every considered relaxation parameter α. In particular,

62

the numerical advantage of using α > 1, specially α ≈ 1.9, is also verified for Algorithm 2.

Algorithm 2 performed at least 33% less inner iterations than Algorithm 1, reaching, in some

instances, 50% less inner iterations. Note that this performance improvement also reflected

favorably in terms of CPU time.

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
o

u
te

r
it
e

ra
ti
o

n
s

200

220

240

260

280

300

320

340

360

380

400
LASSO

Algorithm 1

Algorithm 2

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
to

ta
l
o

f
in

n
e

r
it
e

ra
ti
o

n
s

×104

0.6

0.8

1

1.2

1.4

1.6

1.8

2
LASSO

Algorithm 1

Algorithm 2

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
C

P
U

 t
im

e
 i
n

 s
e

c
o

n
d

s

600

800

1000

1200

1400

1600

1800
LASSO

Algorithm 1

Algorithm 2

Figure 6.1: Arithmetic mean of the LASSO problem results given in Table 6.3

Now, let us discuss the performance of Algorithm 3 for approximately solving problem

(6.2). In this case, the pair (x̃k, vk) in (5.2) was obtained using the same strategy as in

Algorithm 2, i.e., we applied the conjugate gradient method [60] with starting point D∗d+

βyk−1 − γk−1 in order to obtain an approximate solution x̃k with residual vk of the linear

system (6.6). Note that subproblem (5.4) also has a closed-form solution

yk = Sµ
β

(
x̃k +

1

β
γk−1

)
,

where S is the shrinkage operator defined in (6.5).

We tested the relerr-ADMM and Algorithm 3 for solving 3 randomly generated LASSO

problem instances. For a given dimension m × n, we generated a random matrix D and

choose vector d ∈ <m as d = Dx +
√

0.001y, where the (100/n)−sparse vector x ∈ <n and

the noisy vector y ∈ <m were also generated randomly. We also tested the relerr-ADMM

and Algorithm 3 on six standard cancer data sets given in Table 6.1. Their performances

are listed in Tables 6.4 and 6.5, in which “Out” and “Inner” denote the number of iterations

and the total number of inner iterations of the methods, respectively, whereas “Time” is the

63

CPU time in seconds. From these tables, we see that the relerr-ADMM and Algorithm 3

with θ = 1 presented similar performances. However, Algorithm 3 with θ = 1.3 and θ = 1.6

clearly outperformed the relerr-ADMM.

Table 6.4: Performance of the relerr-ADMM and Algorithm 3 to solve three randomly

generated LASSO problems

Dim. of D relerr-ADMM Alg. 3 (θ = 1) Alg. 3 (θ = 1.3) Alg. 3 (θ = 1.6)

m× n Out Inner Time Out Inner Time Out Inner Time Out Inner Time

900× 3000 27 206 12.3 27 206 11.9 23 183 10.4 21 202 9.6

1200× 4000 27 207 26.2 27 207 25.6 24 191 22.2 21 197 19.9

1500× 5000 25 186 42.2 25 186 42.2 22 169 39.1 20 190 35.8

Table 6.5: Performance of the relerr-ADMM and Algorithm 3 for six instances of the LASSO

problem

Data set
relerr-ADMM Alg. 3 (θ = 1) Alg. 3 (θ = 1.3) Alg. 3 (θ = 1.6)

Out Inner Time Out Inner Time Out Inner Time Out Inner Time

Colon 116 2298 18.3 116 2136 17.4 107 1977 16.0 99 1990 15.3

CNS 319 10077 823.5 319 10060 793.4 315 10292 817.1 312 11029 831.1

Leukemia 600 11390 1216.5 600 11351 1172.6 427 7948 845.5 362 7068 741.3

Lung 535 12499 1321.4 535 12516 1218.4 404 9332 924.8 338 8426 777.6

Lymphoma 331 8737 769.2 331 8619 765.0 264 6901 610.3 216 6038 521.4

Prostate 430 19400 4559.3 431 19562 4303.1 358 16465 3592.9 328 16989 3536.1

Figures 6.2, 6.3, and 6.4 summarize the results presented in Tables 6.3 and 6.5 for

the following inexact versions: Algorithm 2 with α = 1.3, 1.5, 1.7, 1.9, relerr-ADMM and

Algorithm 3 with θ = 1.3, 1.6. We omit the results related to Algorithm 2 with α = 1.0 and

Algorithm 3 with θ = 1.0, because they are identical and, basically, the same as those of the

relerr-ADMM. In these figures we can easily verify the superiority of Algorithm 2, especially

with α = 1.9.

64

Colon CNS Leukemia Lung Lymphoma Prostate

N
u

m
b

e
r

o
f

o
u

te
r

it
e

ra
ti
o

n
s

0

100

200

300

400

500

600

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.2: LASSO problem: number of outer iterations

Colon CNS Leukemia Lung Lymphoma Prostate

T
o

ta
l
n

u
m

b
e

r
o

f
in

n
e

r
it
e

ra
ti
o

n
s

×10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.3: LASSO problem: total number of inner iterations

65

Colon CNS Leukemia Lung Lymphoma Prostate

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.4: LASSO problem: CPU time in seconds

6.3 `1-Regularized logistic regression problem

Consider the `1-regularized logistic regression problem [51]

min
t∈<,u∈<n

1

m

m∑
i=1

log
(

1 + exp
(
− di (〈Di, u〉+ t)

))
+ µ ‖u‖1 , (6.7)

where Di ∈ <n are the rows of a matrix D ∈ <m×n, di ∈ {−1,+1} are the coordinates of a

vector d ∈ <m and µ > 0 is a regularization parameter. In our experiment, the matrix D

and the vector d were chosen as described in the beginning of this chapter (see Table 6.1).

We scaled the columns of D in order to have unit `2-norm and set µ = 0.5λmax, where λmax

is as defined in [51, Subsection 2.1].

By defining zi:j := (zi, . . . , zj) ∈ <j−i+1 for j ≥ i, problem (6.7) can be rewritten as an

instance of (1.1) in which

f(x) =
1

m

m∑
i=1

log
(

1+ exp
(
− di

(〈
Di, x

2:n+1
〉

+ x1
)))

, g(y) = µ
∥∥y2:n+1

∥∥
1
,

A = −I, B = I, and b = 0.

(6.8)

First we apply Algorithm 2 to solve problem (6.7). In order to compute a pair (x̃k, vk) as in

(4.1), we implemented the limited-memory BFGS method [60, Algorithm 7.5] with starting

66

point equal to (0, . . . , 0). The subproblem (4.3) has a closed-form solution yk := (y1
k, y

2:n+1
k)

given by

y1
k = αx̃1

k + (1− α)y1
k−1 +

1

β
γ1
k−1, y2:n+1

k = Sµ
β

(
αx̃2:n+1

k + (1− α)y2:n+1
k−1 +

1

β
γ2:n+1
k−1

)
,

where S is the shrinkage operator as defined in (6.5).

Table 6.6 displays the numerical results obtained. As in Subsection 6.2, the methods were

compared in terms of the number of outer iterations, the total number of inner iterations

and the CPU time in seconds. In Figure 6.5, we plot the arithmetic mean of the latter three

comparison criteria for each method for solving the seven `1-regularized logistic regression

problem instances. By analyzing Table 6.6 and Figure 6.5, one can see that Algorithm 2

performed, basically, the same number of outer iterations than Algorithm 1. Regarding the

total number of inner iterations, Algorithm 2 performed at least 41% less than Algorithm 1,

reaching, in some instances, 60% less inner iterations. Note that the saving with respect

to CPU times was very expressive. Specifically, Algorithm 2 was at least 48% faster than

Algorithm 1. The reason lies in the difficulty to solve (3.1) for the `1-regularized logistic

regression problem.

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
o

u
te

r
it
e

ra
ti
o

n
s

400

450

500

550

600

650

700

750
Logistic regression

Algorithm 1

Algorithm 2

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
to

ta
l
o

f
in

n
e

r
it
e

ra
ti
o

n
s

×104

0.5

1

1.5

2

2.5

3

3.5
Logistic regression

Algorithm 1

Algorithm 2

α

1 1.2 1.4 1.6 1.8 2

A
ri
th

m
e

ti
c
 m

e
a

n
 o

f
C

P
U

 t
im

e
 i
n

 s
e

c
o

n
d

s

200

300

400

500

600

700

800

900

1000

1100
Logistic regression

Algorithm 1

Algorithm 2

Figure 6.5: Arithmetic mean of the `1-regularized logistic regression problem results given

in Table 6.6

We also tested Algorithm 3 applied for solving seven `1-regularized logistic regression

problem (6.7) using the data sets given in Table 6.1. The pair (x̃k, vk) in (5.2) also was

67

Table 6.6: Performance of Algorithms 1 and 2 for seven instances of the `1-regularized logistic

regression problem

α = 1.0 α = 1.3 α = 1.5 α = 1.7 α = 1.9

Data set Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Number of outer iterations

Colon 337 370 259 253 224 216 197 196 176 175

CNS 278 278 213 216 185 186 163 163 145 144

Leukemia 624 625 480 481 416 416 367 367 328 328

Lung 513 551 400 435 347 375 380 378 528 548

Lymphoma 375 375 287 289 248 251 219 223 195 197

Prostate 879 882 676 678 585 585 516 512 462 457

Madelon 1953 1935 1502 1480 1302 1269 1148 1105 1027 975

Total number of inner iterations

Colon 18645 9912 14460 7033 12334 5784 10949 5515 9688 4883

CNS 15515 8758 11881 6781 10259 5969 9068 5086 8077 4528

Leukemia 27859 15402 21486 11763 18560 10354 16271 8951 14538 7925

Lung 28487 15744 22329 13005 18813 10642 20320 10559 28931 16208

Lymphoma 21638 11191 16485 8666 14248 7443 12590 6546 11228 5826

Prostate 68770 37327 52865 28419 45705 24842 40480 22902 36160 21267

Madelon 38698 19857 29584 14859 25871 11898 22601 9806 20371 8159

CPU time in seconds

Colon 48.3 21.8 37.4 13.5 31.8 10.3 28.3 9.8 24.7 8.7

CNS 302.0 107.9 232.2 88.9 199.0 79.0 177.4 68.9 159.2 61.5

Leukemia 417.1 168.6 337.4 131.8 279.7 110.1 243.0 93.4 215.8 91.4

Lung 844.1 352.2 638.4 292.5 539.1 239.8 572.5 242.9 822.8 363.72

Lymphoma 527.5 190.0 402.5 156.3 351.9 134.3 308.7 121.8 276.0 108.1

Prostate 3844.6 1246.5 2950.4 918.9 2562.0 807.8 2271.1 761.8 2036.8 782.1

Madelon 1589.2 817.6 1205.2 605.6 1065.1 461.3 887.6 390.6 809.4 332.2

obtained with the aid of the limited-memory BFGS method [60, Algorithm 7.5], being the

starting point the origin. Again, the subproblem (5.4) has a closed-form solution yk =

68

(y1
k, y

2:n+1
k) given by

y1
k = x̃1

k +
1

β
γ1
k−1, y2:n+1

k = Sµ
β

(
x̃2:n+1
k +

1

β
γ2:n+1
k−1

)
,

where S is the shrinkage operator given in (6.5).

Tables 6.7 reports the performances of the relerr-ADMM and Algorithm 3 for solving

the aforementioned seven instances of the problem (6.7). In Table 6.7, “Out” and “Inner”

are the number of iterations and the total of inner iterations of the methods, respectively,

whereas “Time” is the CPU time in seconds. Similarly to the numerical results of Section 6.2,

we observe that the relerr-ADMM and Algorithm 3 with θ = 1 had similar performances,

whereas Algorithm 3 with θ = 1.3 and θ = 1.6 outperformed the relerr-ADMM. Therefore,

the efficiency of the inexact proximal ADMM for solving real-life applications is illustrated.

Table 6.7: Performance of the relerr-ADMM and Algorithm 3 for seven instances of the

`1-regularized logistic regression problem

Data set
relerr-ADMM Alg. 3 (θ = 1) Alg. 3 (θ = 1.3) Alg. 3 (θ = 1.6)

Out Inner Time Out Inner Time Out Inner Time Out Inner Time

Colon 335 11621 26.0 370 9912 22.7 276 7694 15.6 234 6903 13.9

CNS 278 10116 172.5 278 8758 151.4 245 7836 135.2 229 7286 123.8

Leukemia 624 17788 237.5 625 15402 221.7 601 14825 211.5 592 14987 201.7

Lung 519 19715 568.1 551 15744 428.8 539 16235 482.5 547 15948 442.1

Lymphoma 374 14358 324.8 375 11191 226.6 356 10773 228.4 353 10811 237.5

Prostate 879 41145 1720.1 882 37327 1463.9 688 29367 1183.7 560 28239 1384.3

Madelon 1957 22830 890.7 1935 19857 923.8 1938 19790 929.8 1961 26553 1131.3

Figures 6.6, 6.7, and 6.8 were constructed with the numerical values contained in Tables

6.6 and 6.7 of the following inexact methods: Algorithm 2 with α = 1.3, 1.5, 1.7, 1.9,

relerr-ADMM and Algorithm 3 with θ = 1.3, 1.6. It can be easily seen that, in most tests,

Algorithm 2, especially with α = 1.9, obtained the best numerical performance.

We end this section by making some remarks. First, Algorithm 3 was tested with other

values of θ different from the ones presented in tables 6.4, 6.5 and 6.7, and we observed

the following: (i) if θ ∈ [0.1, 1.6], then the performance of Algorithm 3 improved as θ

was increased; (ii) if θ ∈ (1.6, (
√

5 + 1)/2), then Algorithm 3 performed similarly to its

exact version, since the relative error condition (5.2) became stringent. Second, the classical

proximal gradient method and its accelerated versions such as FISTA can also be applied

69

to solve LASSO and `1-regularized logistic regression problems. Numerical comparisons

showing that the relerr-ADMM is competitive with FISTA for solving the aforementioned

problems were reported in [29]. Therefore, since Algorithm 3 performed better than the

relerr-ADMM for these applications, we can conclude that Algorithm 3 is also competitive

with FISTA.

Colon CNS Leukemia Lung Lymphoma Prostate Madelon

N
u

m
b

e
r

o
f

o
u

te
r

it
e

ra
ti
o

n
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.6: `1-Regularized logistic regression problem: number of outer iterations

70

Colon CNS Leukemia Lung Lymphoma Prostate Madelon

T
o

ta
l
n

u
m

b
e

r
o

f
in

n
e

r
it
e

ra
ti
o

n
s

×10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.7: `1-Regularized logistic regression problem: total number of inner iterations

Colon CNS Leukemia Lung Lymphoma Prostate Madelon

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

0

200

400

600

800

1000

1200

1400

1600

1800

Alg. 2 α = 1.3 Alg. 2 α = 1.5 Alg. 2 α = 1.7 Alg. 2 α = 1.9 relerr-ADMM Alg. 3 θ = 1.3 Alg. 3 θ = 1.6

Figure 6.8: `1-Regularized logistic regression problem: CPU time in seconds

71

Chapter 7

Final remarks

In this thesis, we proposed and analyzed some variants of the alternating direction method

of multipliers (ADMM) for computing approximate solutions of linearly constrained convex

optimization problems. Initially, we studied iteration-complexity results for a proximal

generalized ADMM. Specifically, for a given tolerance ρ > 0, we established O(1/ρ2)

pointwise and O(1/ρ) ergodic iteration-complexity bounds for the proximal generalized

ADMM to obtain an approximate solution of the Lagrangian system associated to the

aforementioned optimization problem. We also proposed and analyzed two inexact variants

of the (generalized) proximal ADMM. These variants are such that their first partial

subproblems are approximately solved using relative error conditions based on the works of

Solodov and Svaiter [71–74]. It was shown that from a theoretical view point, the proposed

inexact schemes have pointwise and ergodic iteration-complexity bounds similar to their

exact versions, whereas from a computational viewpoint the proposed schemes are relatively

cheaper and more efficient. Our analysis is essentially based on showing that these considered

schemes can be seen as special instances of a hybrid proximal extragradient framework for

solving monotone inclusion problems. Some numerical experiments were carried out in order

to illustrate the numerical behavior of the methods. They confirm that appropriately chosen

parameters can improve the performance of the methods and indicate that the proposed

inexact versions represents an useful tool for solving some real-life applications that can

be formulated as linearly constrained convex optimization problems. Finally, a possible

direction for future research would be to analyze inexact variants of the regularized ADMMs

due to their improved iteration-complexity bounds. This would be interesting also to improve

the applicability of these methods. Another direction, would be to explore the proximal terms

of the inexact proximal ADMM in order to enlarge the region in which one can choose the

relaxation parameter included in the Lagrange multipliers update rule.

72

Bibliography

[1] V. A. Adona, M. L. N. Gonçalves, and J. G. Melo. An inexact proximal generalized

alternating direction method of multipliers. Submitted to Comput. Optim. Appl., 2018.

[2] V. A. Adona, M. L. N. Gonçalves, and J. G. Melo. Iteration-complexity analysis of a

generalized alternating direction method of multipliers. J. Glob. Optim., 73(2):331–348,

2019.

[3] V. A. Adona, M. L. N. Gonçalves, and J. G. Melo. A partially inexact proximal

alternating direction method of multipliers and its iteration-complexity analysis. J.

Optim. Theory Appl. doi:10.1007/s10957-019-01525-8, 2019.

[4] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.

Levine. Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U. S.

A., 96(12):6745–6750, 1999.

[5] H. Attouch and M. Soueycatt. Augmented Lagrangian and proximal alternating

direction methods of multipliers in Hilbert spaces. Applications to games, PDE’s and

control. Pac. J. Optim., 5(1):17–37, 2008.

[6] A. Beck. First-Order Methods in Optimization. SIAM, Philadelphia, 2017.

[7] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[8] D. G. Beer, S. L. R. Kardia, C. Huang, T. J. Giordano, A. M. Levin, D. E. Misek,

L. Lin, G. Chen, T. G. Gharib, D. G. Thomas, et al. Gene-expression profiles predict

survival of patients with lung adenocarcinoma. Nat. Med., 8(8):816, 2002.

[9] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic

Press, New York, 1982.

73

[10] S. Bitterlich, R. I. Boţ, E. R. Csetnek, and G. Wanka. The Proximal Alternating

Minimization Algorithm for two-block separable convex optimization problems with

linear constraints. arXiv preprint arXiv:1806.00260, 2018.

[11] R. I. Boţ and E. R. Csetnek. ADMM for monotone operators: convergence analysis and

rates. Adv. Computat. Math., 2018.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Found. Trends

Mach. Learn., 3(1):1–122, 2011.

[13] K. Bredies and H. Sun. A proximal point analysis of the preconditioned alternating

direction method of multipliers. J. Optim. Theory Appl., 173(3):878–907, 2017.

[14] R. S. Burachik, A. N. Iusem, and B. F. Svaiter. Enlargement of monotone operators

with applications to variational inequalities. Set-Valued Anal., 5(2):159–180, 1997.

[15] R. S. Burachik, C. A. Sagastizábal, and B. F. Svaiter. ε-enlargements of maximal

monotone operators: theory and applications. In Reformulation: nonsmooth, piecewise

smooth, semismooth and smoothing methods (Lausanne, 1997), volume 22 of Appl.

Optim., pages 25–43. Kluwer Acad. Publ., Dordrecht, 1999.

[16] A. Cano, A. Masegosa, and S. Moral. ELVIRA biomedical data set repository, 2005.

[17] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems

with applications to imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

[18] C. Chen, B. He, and X. Yuan. Matrix completion via an alternating direction method.

IMA J. of Numer. Anal., 32(1):227–245, 06 2011.

[19] E. Corman and X. Yuan. A generalized proximal point algorithm and its convergence

rate. SIAM J. Optim., 24(4):1614–1638, 2014.

[20] Y. Cui, X. Li, D. Sun, and K. C. Toh. On the convergence properties of a majorized

ADMM for linearly constrained convex optimization problems with coupled objective

functions. J. Optim. Theory Appl., 169(3):1013–1041, 2016.

[21] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating

direction method of multipliers. J. Sci. Comput., 66(3):889–916, 2016.

[22] D. Dheeru and E. K. Taniskidou. UCI machine learning repository, 2018.

74

[23] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems

in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

[24] J. Eckstein. Parallel alternating direction multiplier decomposition of convex programs.

J. Optim. Theory Appl., 80(1):39–62, 1994.

[25] J. Eckstein. Some saddle-function splitting methods for convex programming. Optim.

Method Softw., 4(1):75–83, 1994.

[26] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the

proximal point algorithm for maximal monotone operators. Math. Program., 55(3, Ser.

A):293–318, 1992.

[27] J. Eckstein and P. J. S. Silva. A practical relative error criterion for augmented

Lagrangians. Math. Program., 141(1):319–348, 2013.

[28] J. Eckstein and W. Yao. Understanding the convergence of the alternating direction

method of multipliers: theoretical and computational perspectives. Pacific J. Optim.,

11(4):619–644, 2015.

[29] J. Eckstein and W. Yao. Approximate ADMM algorithms derived from Lagrangian

splitting. Comput. Optim. Appl., 68(2):363–405, 2017.

[30] J. Eckstein and W. Yao. Relative-error approximate versions of Douglas–Rachford

splitting and special cases of the ADMM. Math. Program., 170(2):417–444, 2018.

[31] E. X. Fang, H. Bingsheng, H. Liu, and Y. Xiaoming. Generalized alternating direction

method of multipliers: new theoretical insights and applications. Math. Prog. Comp.,

7(2):149–187, 2015.

[32] M. Fortin and R. Glowinski. On decomposition-coordination methods using an

augmented lagrangian. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian

Methods: Applications to the Numerical Solution of Boundary-Value Problems,

volume 15 of Studies in Mathematics and Its Applications, pages 97 – 146. Elsevier,

1983.

[33] D. Gabay. Applications of the method of multipliers to variational inequalities. In

M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applications

to the Numerical Solution of Boundary-Value Problems, volume 15 of Studies in

Mathematics and Its Applications, pages 299 – 331. Elsevier, Amsterdam, 1983.

75

[34] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Comput. Math. Appl., 2(1):17–40, 1976.

[35] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer Series

in Computational Physics. Springer-Verlag, Houston, 1984.

[36] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods

in Nonlinear Mechanics. Society for Industrial and Applied Mathematics, Philadelphia,

1989.

[37] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la

résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires.

R.A.I.R.O. Anal. Numér., 9(2):41–76, 1975.

[38] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,

H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.

Lander. Molecular classification of cancer: Class discovery and class prediction by gene

expression monitoring. Science, 286(5439):531–537, 1999.

[39] M. L. N. Gonçalves. On the pointwise iteration-complexity of a dynamic regularized

ADMM with over-relaxation stepsize. Appl. Math. Comput., 336:315–325, 2018.

[40] M. L. N. Gonçalves, M. M. Alves, and J. G. Melo. Pointwise and ergodic convergence

rates of a variable metric proximal alternating direction method of multipliers. J. Optim.

Theory Appl., 177(2):448–478, 2018.

[41] M. L. N. Gonçalves, J. G. Melo, and R. D. C. Monteiro. Extending the ergodic

convergence rate of the proximal ADMM. arXiv preprint arXiv:1611.02903, 2016.

[42] M. L. N. Gonçalves, J. G. Melo, and R. D. C. Monteiro. Improved pointwise

iteration-complexity of a regularized ADMM and of a regularized non-euclidean HPE

framework. SIAM J. Optim., 27(1):379–407, 2017.

[43] Y. Gu, B. Jiang, and H. Deren. A semi-proximal-based strictly contractive

Peaceman-Rachford splitting method. arXiv preprint arXiv:1506.02221, 2015.

[44] I. Guyon, S. Gunn, A. B. Hur, and G. Dror. Result analysis of the NIPS 2003 feature

selection challenge. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Adv. Neural Inf.

Process. Syst., pages 545–552. MIT Press, 2005.

76

[45] W. W. Hager, M. Yashtini, and H. Zhang. An O(1/k) convergence rate for the variable

stepsize Bregman operator splitting algorithm. SIAM J. Numer. Anal., 54(3):1535–1556,

2016.

[46] B. He, L. Z. Liao, D. Han, and H. Yang. A new inexact alternating directions method

for monotone variational inequalities. Math. Program., 92(1):103–118, 2002.

[47] B. He, H. Liu, Z. Wang, and X. Yuan. A strictly contractive peaceman–rachford splitting

method for convex programming. SIAM J. Optim., 24(3):1011–1040, 2014.

[48] B. He and X. Yuan. On theO(1/n) convergence rate of the Douglas-Rachford alternating

direction method. SIAM J. Numer. Anal., 50(2):700–709, 2012.

[49] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating

direction method of multipliers. Numer. Math., 130(3):567–577, 2015.

[50] Y. He and R. D. C. Monteiro. An accelerated HPE-type algorithm for a class of

composite convex-concave saddle-point problems. SIAM J. Optim., 26(1):29–56, 2016.

[51] K. Koh, S. J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized

logistic regression. J. Mach. Learn. Res., 8:1519–1555, 2007.

[52] T. Lin, S. Ma, and S. Zhang. An extragradient-based alternating direction method for

convex minimization. Found. Comput. Math., pages 1–25, 2015.

[53] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.

SIAM J. Numer. Anal., 16(6):964–979, 1979.

[54] M. Marques Alves, R. D. C. Monteiro, and B. F. Svaiter. Regularized HPE-type methods

for solving monotone inclusions with improved pointwise iteration-complexity bounds.

SIAM J. Optim., 26(4):2730–2743, 2016.

[55] B. Martinet. Régularisation d’inéquations variationnelles par approximations

successives. Rev. Française Informat. Recherche Opérationnelle, 4(R3):154–158, 1970.

[56] R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal

extragradient method for the iterates and the ergodic mean. SIAM J. Optim.,

20(6):2755–2787, 2010.

[57] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition

algorithms and the alternating direction method of multipliers. SIAM J. Optim.,

23(1):475–507, 2013.

77

[58] M. Ng, F. Wang, and X. Yuan. Inexact alternating direction methods for image recovery.

SIAM J. Sci. Comput., 33(4):1643–1668, 2011.

[59] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan. A general analysis

of the convergence of ADMM. arXiv preprint arXiv:1502.02009, 2015.

[60] J. Nocedal and S. J. Wright. Numerical Optimization 2nd. Springer, New York, 2006.

[61] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao, Jr. An accelerated linearized alternating

direction method of multipliers. SIAM J. Imaging Sci., 8(1):644–681, 2015.

[62] N. Parikh and S. Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239,

2014.

[63] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaughlin,

J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, et al. Prediction of

central nervous system embryonal tumour outcome based on gene expression. Nature,

415(6870):436–442, 2002.

[64] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[65] R. T. Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific

J. Math., 33:209–216, 1970.

[66] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J.

Control Optim., 14(5):877–898, 1976.

[67] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal

algorithms. Physica D, 60(1):259 – 268, 1992.

[68] R. Shefi and M. Teboulle. Rate of convergence analysis of decomposition methods

based on the proximal method of multipliers for convex minimization. SIAM J. Optim.,

24(1):269–297, 2014.

[69] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T. Aguiar,

M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, et al. Diffuse large B-cell lymphoma

outcome prediction by gene-expression profiling and supervised machine learning. Nat.

Med., 8(1):68–74, 2002.

[70] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A.

Renshaw, A. V. D’Amico, J. P. Richie, et al. Gene expression correlates of clinical

prostate cancer behavior. Cancer Cell, 1(2):203–209, 2002.

78

[71] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal point

algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal.,

7(4):323–345, 1999.

[72] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm. J.

Convex Anal., 6(1):59–70, 1999.

[73] M. V. Solodov and B. F. Svaiter. An inexact hybrid generalized proximal point

algorithm and some new results on the theory of Bregman functions. Math. Oper.

Res., 25(2):214–230, 2000.

[74] M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point

algorithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

[75] H. Sun. Analysis of fully preconditioned ADMM with relaxation in Hilbert spaces.

arXiv preprint arXiv:1611.04801, 2016.

[76] M. Tao and X. Yuan. On the optimal linear convergence rate of a generalized proximal

point algorithm. J. Sci. Comput., 74(2):826–850, 2018.

[77] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B,

58(1):267–288, 1996.

[78] R. J. Tibshirani. The lasso problem and uniqueness. Electron. J. Stat., 7:1456–1490,

2013.

[79] X. Wang and X. Yuan. The linearized alternating direction method of multipliers for

dantzig selector. SIAM J. Sci. Comput., 34(5):2792–2811, 2012.

[80] J. Xie, A. Liao, and X. Yang. An inexact alternating direction method of multipliers

with relative error criteria. Optim. Lett., 11(3):583–596, 2017.

[81] M. H. Xu. Proximal alternating directions method for structured variational inequalities.

J. Optim. Theory Appl., 134(1):107–117, Jul 2007.

[82] Z. Xu, M. Figueiredo, X. Yuan, C. Studer, and T. Goldstein. Adaptive relaxed ADMM:

Convergence theory and practical implementation. arXiv preprint arXiv:1704.02712,

2017.

[83] J. Yang and X. Yuan. Linearized augmented Lagrangian and alternating direction

methods for nuclear norm minimization. Math. Comput., 82(281):301–329, 2013.

79

	Agradecimentos
	Basic notation and terminology
	Introduction
	Main contributions
	Previous most related works
	Thesis outline

	Preliminary
	Notation and basic definitions
	A modified HPE framework
	Iteration-complexity of the modified HPE framework

	Elementary concepts

	Iteration-complexity analysis of the proximal generalized ADMM
	Proximal generalized ADMM (PG-ADMM)
	Iteration-complexity of the PG-ADMM
	The PG-ADMM as an instance of the modified HPE framework
	Iteration-complexity bounds for the PG-ADMM

	An inexact PG-ADMM and its iteration-complexity analysis
	Inexact PG-ADMM
	Iteration-complexity of the inexact PG-ADMM
	Inexact PG-ADMM in the setting of the modified HPE framework
	Iteration-complexity bounds for the inexact PG-ADMM

	An inexact proximal ADMM and its iteration-complexity analysis
	An inexact proximal ADMM (P-ADMM)
	Iteration-complexity of the inexact P-ADMM
	Inexact P-ADMM in the setting of the modified HPE framework
	Iteration-complexity bounds for the inexact P-ADMM

	Numerical experiments
	Strategies
	LASSO problem
	1-Regularized logistic regression problem

	Final remarks
	Bibliography

