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Abstract

This thesis proposes and analyzes some variants of the alternating direction method
of multipliers (ADMM) for solving separable linearly constrained convex optimization
problems. This thesis is divided into three parts. First, we establish the iteration-complexity
of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein,
introduces a relaxation parameter « into the second ADMM subproblem in order to
improve its computational performance. We show that, for a given tolerance p > 0, the
proximal generalized ADMM with a € (0,2) provides, in at most O(1/p?) iterations, an
approximate solution of the Lagrangian system associated to the optimization problem under
consideration. It is further demonstrated that, in at most O(1/p) iterations, an approximate
solution of the Lagrangian system can be obtained by means of an ergodic sequence associated
to a sequence generated by the proximal generalized ADMM with « € (0,2]. Second, we
propose and analyze an inexact variant of the aforementioned proximal generalized ADMM.
In this variant, the first subproblem is approximately solved using a relative error condition
whereas the second one is assumed to be easy to solve. It is important to mention that in
many ADMM applications one of the subproblems has a closed-form solution; for instance,
(1-regularized convex composite optimization problems. We show that the proposed method
possesses iteration-complexity bounds similar to its exact version. Third, we develop an
inexact proximal ADMM whose first subproblem is inexactly solved using an approximate
relative error criterion similar to the aforementioned inexact proximal generalized ADMM.
Pointwise and ergodic iteration-complexity bounds for the proposed method are established.
Our approach consists of interpreting these ADMM variants as an instance of a hybrid
proximal extragradient framework with some special properties. Finally, in order to show the
applicability and advantage of the inexact ADMM variants proposed here, we present some

numerical experiments performed on a setting of problems derived from real-life applications.

Keywords: Alternating direction method of multipliers, Convex program, Hybrid
extragradient method, Relative error criterion, Pointwise iteration-complexity, Ergodic

iteration-complexity.
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Resumo

Esta tese propoe e analisa algumas variantes do método dos multiplicadores das direcoes
alternadas (ADMM) para resolver problemas de otimiza¢ao convexa com restrigao linear.
Esta tese ¢ dividida em trés partes. Primeiro, estabelecemos iteracao complexidade de um
ADMM generalizado proximal. Essa variante ADMM, proposta por Bertsekas e Eckstein,
introduz um parametro de relaxacao a no segundo subproblema do ADMM para melhorar
seu desempenho computacional. Mostramos que, para uma determinada tolerancia p > 0, o
ADMM generalizado proximal com « € (0,2) fornece, em no maximo O(1/p?) iteragoes,
uma solucao aproximada do sistema Lagrangiano associado ao problema de otimizacao
considerado. E ainda demonstrado que, em no méximo O(1/p) iteragdes, uma solugao
aproximada do sistema Lagrangiano pode ser obtida por meio de uma sequéncia ergodica
associada a sequéncia gerada pelo ADMM generalizado proximal com « € (0,2]. Em
segundo lugar, propomos e analisamos uma variante inexata do ADMM generalizado
proximal acima mencionado. Nesta variante, o primeiro subproblema é aproximadamente
resolvido usando uma condicao de erro relativo, enquanto o segundo é considerado facil
de resolver. E importante mencionar que, em muitas aplicacoes do ADMM, um dos
subproblemas tem uma solucao em forma fechada; por exemplo, problemas de otimizacao
convexos compostos {i-regularizados. Mostramos que o método proposto possui iteragao
complexidade semelhantes a sua versao exata. Terceiro, desenvolvemos um ADMM proximal
inexato cujo primeiro subproblema é resolvido inexatamente usando um critério de erro
relativo aproximado semelhante ao ADMM inexato generalizado proximal acima mencionado.
Os limites de iteracao complexidade pontual e ergddico para o método proposto sao
estabelecidos. Nossa abordagem consiste em interpretar essas variantes do ADMM como
uma instancia de um estrutura hibrida proximal extragradiente com algumas propriedades
especiais. Finalmente, a fim de mostrar a aplicabilidade e vantagem das variantes inexatas
do ADMM propostas aqui, apresentamos alguns experimentos numéricos realizados em um

cenario de problemas derivados de aplicagoes da vida real.

Palavras-chave : Método dos multiplicadores das direcoes alternadas, Programa convexo,
Método extragradiente hibrido, Critério de erro relativo, Iteragao complexidade pontual,

Iteragao complexidade ergodica.



Basic notation and terminology

R": the n-dimensional Euclidean space,

R, : the set of nonnegative real numbers,

V, X, Y, Z, I finite-dimensional real inner product vector spaces,

Q* : Y — X: the adjoint of a linear operator Q) : X — Y,

| - |lo: the seminorm induced by self-adjoint semidefinite linear operator @,
T:X = )Y: a set-valued operator from X to ),

(-,+): inner product,

| - ||: norm induced by an inner product,

Oh: subdifferential set of a convex function h,

ADMM: abbreviation for alternating direction method of multipliers,
P-ADMM: abbreviation for proximal ADMM,

PG-ADMM: abbreviation for proximal generalized ADMM,

HPE: abbreviation for hybrid proximal extragradient,

Pointwise: a term which refers to the sequence directly generated by a method,

Ergodic: a term associated to an auxiliary sequence obtained from a sequence by means of

an ergodic procedure.
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Chapter 1

Introduction

Let X, Y and I' be finite-dimensional real vector spaces with inner products and associated
norms denoted by (-,-) and || - || respectively. Consider the following linearly constrained

optimization problem
min{f(z) +g(y) : Ar+ By =0b, x € X,y € YV}, (1.1)

where f: X — (—o00,00| and g: Y — (—o0, 0] are proper, closed and convex functions,
A: X =T and B: Y — I are linear operators, and b € I'. This problem naturally arises in
many applications such as signal and image processing, statistics, compressive sensing and
machine learning (see, for example, [7,12,58]). An important class of problems that can be
fit into the above setting is the well-known composite convex optimization problems of the

form
min{ f(z) + g(Qx) : x € X}, (1.2)

where @): X — ) is a linear operator. Indeed, this can be done by considering an artificial
variable y = Qx and setting A = —Q, B = I, and b = 0. Special instances of (1.2) include:
(i) LASSO [77,78] and ¢;-regularized logistic regression [51], where ) = I; (ii) least absolute
deviations [12, Sect. 6.1] and total variation denoising [67], where @ is associated to the
least squares fitting model for the former application and the first-order finite difference for
the latter.

The augmented Lagrangian function Lg: X x Y x I' = (—o00, 00| associated with problem
(1.1) is defined as

B
Ls(w,y,7) = f(z) + 9(y) = (v, Az + By = b) + 5 || Az + By — olI*, (1.3)
where > 0 is a penalty parameter and 7 € I" denotes the Lagrange multiplier.
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Recently, there has been a growing interest in the study of the alternating direction method
of multipliers (ADMM) and its variants, due to their efficiency for solving the aforementioned
class of problems; see, for instance, [12] for a complete review. The ADMM is an augmented
Lagrangian type method that explores the separable structure of problem (1.1) in such a
way that the augmented Lagrangian subproblem is solved alternately. More specifically, the

ADMM applied for solving (1.1) consists of the iterative scheme

. € argmip {f(w) ~ (e Ax) + D)\ Az + By b||2} | (14a)
o< arganip {o06) = us B + 5 1Ame+ By -0l (1.4
Vi = Ye—1 — 08 (Al’k + By, — b) ) (1-4(3)

where > 0. Note that (1.4a)-(1.4b) corresponds to minimize, respectively, the “partial”
augmented Lagrangian functions Lg(z, yk—1, Vk—1) and Lg(xy, y, vk—1), whereas (1.4c) is the
Lagrange multiplier update rule with a relaxation factor # which is frequently chosen in
the interval (0, (1 4+ +/5)/2). The first ones to consider this scheme (or slight variant of it)
were Glowinski and Marroco in [37] and Gabay and Mercier in [34]. Its convergence was
established in [32, 33], see also [33,35,36] and [12, 28] for detailed discussions about this
scheme. It has been observed that the use of the relaxation parameter 6, specially with
0 ~ 1.6, in the Lagrange multiplier update (1.4c) improves the numerical performance of the
method, see [18,35,47]. Recently, many authors have proposed and studied some variants of
this method; see, for example, [10,13,17,21,25,31,42,43,45,48 52, 61].

Among the aforementioned variants, one that has received a special attention is the so
called proximal ADMM, which can be described as follows:

. 1
Tk € argmin {f(:c) — (M1, Az) + g |4z + By,—1 — b)) + 5 lle = :L‘MHZ} ., (L5a)

. B 1
yi € argmin {g(y) — (Vk-1, By) + 5 || Ay, + By — b||” + 5 ly — vkl ¢ (1.5b)
Ve = Vk—1 — 00 (Azy + Byy — 1), (1.5¢)

where G: X — X and H: )Y — ) are self-adjoint positive semidefinite linear operators.
Note that the difference between the proximal and the standard ADMMs is the inclusion
of the proximal terms in the associated subproblems. Indeed, the standard ADMM can
be recovered by setting (G, H) = (0,0). In general, the inclusion of proximal terms as in
(1.5a)-(1.5b) make the subproblems easier to solve or even to have closed-form solutions.

This estrategy was first introduced by Eckstein in [25] and more recently considered in

2



several papers; see for example, [5,21,40,46,48,49,81]. The standard ADMM (1.4) with
6 = 1 can be recovered by applying the Douglas-Rachford splitting method [23,53] to the
dual problem of (1.1) see, for example, [26,33,82]. In [26], Eckstein and Bertsekas also
proposed the following generalized ADMM for solving (1.2): fixed two summable sequences
{ue} € Ry and {1} C R, obtain (2, Yk, 7x) as follows

o= argmip {10+ Ges, Qo) + 2 102 — e (1.6a)
e~ argin { o)~ (uoson) + 5 Iy = aQnu = (L-alnalP} (L6
Ve = Y1 — Blyr — aQux — (1 — a)yp-1], (1.6¢c)

where a € (0,2) and the approximate solutions x; and yj are such that ||z — z¢|| < px and
lyr — ys|| < v, with x§ and y§ being the exact solutions of (1.6a) and (1.6b), respectively.
Note that if g = v, = 0 for every k and a = 1 the generalized ADMM (1.6) becomes the
ADMM (1.4) with 8 = 1 applied to (1.2), i.e., with A = —Q, B =1, and b = 0. As has been
observed by many authors (see, e.g., [2,9,24,31,59]), the use of the relaxation parameter

a > 11in (1.6b)—(1.6¢c) may considerably improve the numerical performance of the method.

1.1 Main contributions

We propose and analyze some ADMM variants applied for solving the linearly constrained
convex optimization problem (1.1). We are interested in establishing pointwise and ergodic
iteration-complexities for these variants to obtain approximate solutions of the following

Lagrangian system associated with problem (1.1)
0€df(x)— Ay, 0 € dg(y) — B™y, 0= Az + By —b. (1.7)

Note that (z*,y*,~v*) is a solution of the above system, if and only if, (z*, y*) is a solution to
problem (1.1) and v* is an associated Lagrange multiplier. Here, for a given tolerance p > 0,
we shall consider two concepts of approximate solutions of (1.7). A triple (z,9,7) is said to
be a p-approximate solution of (1.7) with residue (vz, vy, v5) € X x Y x I' if the following

conditions hold

vy € Of (z) — A™9, vy € 09(y) — B*7, vy = AT+ By —0b

(1.8)
max {||vz |, logll, [losll} < p;

3



whereas a triple (7, 7,7) is said to be a relaxed p-approximate solution of (1.7) with residues
(vz,05,v5) € X x Y x I and (gz,¢5) € Ry x Ry if the following conditions hold
vz € 0., f(T)—A"y, vy €0,9(y) — B,  vy=AT+ By—b,

max {[[vz]|, [|vg]

(1.9)

) H'U'?H » €2, 617} < p.
Note that the latter concept generalizes the former since 0h(-) C 0:h(-) for any convex
function h and € > 0. Indeed, a p-approximate solution (Z,7, &) of (1.7) with residue
(vz,vy,v5) is a relaxed p-approximate solution with residues (vz
(€z,€5) = (0,0).

Here, we first analyze an exact proximal generalized ADMM (a version of scheme (1.6)

vz, v5) = (vz,vg,v5) and

applied to problem (1.1) with proximal terms added to the associated subproblems).
This analysis is essential to the subsequent study associated to two new inexact ADMM
variants. The first proposed inexact ADMM variant consists of an inexact version of the
aforementioned proximal generalized ADMM, whereas the second one is an inexact variant
of the proximal ADMM (1.5). These variants are such that their first partial subproblems
(corresponding to (1.5a) and (1.6a)) are approximately solved using relative error conditions
based on the works of Solodov and Svaiter [71-74]. The proposed schemes are interesting
in applications in which a solution to the first partial (proximal) ADMM subproblem can
not be easily obtained, whereas the second one is relatively easy to solve. We mention that
many real-life applications problems can be approached via ¢;-regularized convex composite
optimization which in turn can be approximately solved by means of the inexact variants
proposed here. In particular, a solution to the corresponding second proximal (generalized)
ADMM subproblem can be explicitly computed, see Chapter 6. We mention that in many
applications, a solution for the corresponding second (proximal) ADMM subproblem can be
explicitly computed; for instance, this is the case for the large class of ¢;-regularized convex
composite optimization problems.

We show that, for a given tolerance p > 0, the proposed ADMM variants generate
p-approximate solutions of (1.7) in at most O(1/p?) iterations. Moreover, we also show that
relaxed p-approximate solutions of (1.7) can be obtained by means of auxiliary sequences
(generated in an ergodic sense) associated to the proposed schemes in at most O(1/p)
iterations. Note that, the latter iteration-complexity bound is better than the former by
a factor of O(1/p); however, the inclusions in the ergodic case (see (1.9)) are, in general,
weaker than those considered in the pointwise case (see (1.8)). It is worth mentioning that
the residuals pairs (vz, vg), (v, vy), and (€, &5) in (1.8)-(1.9) are explicitly computed. Hence,
the last condition in (1.8) (resp. (1.9)) can be used as a verifiable pointwise (resp. ergodic)

stopping criterion. One of our goal is to show that aforementioned ADMM variants fall
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within the setting of a hybrid proximal extragradient (HPE) framework! since this is an
interesting approach to establish iteration-complexity bounds for these schemes in order to
obtain approximate solutions of (1.7) in the sense of (1.8)-(1.9).

The last part of this thesis is devoted to the computational study of the proposed
inexact ADMM variants. Some numerical experiments performed on a setting of problems
derived from real-life applications, such as LASSO and /¢;-regularized logistic regression, are
considered in order to show the applicability and advantage of these schemes. In particular,
we confirm that, similarly to the corresponding exact ADMM versions, the use of o ~ 1.9
(rep. 6 ~ 1.6) in the inexact proximal generalized ADMM (resp. inexact proximal ADMM)
can lead to a better numerical performance.

Finally, the material of this thesis originated three papers which were submitted for
publication. Specifically, the material of Chapter 3 is associated to [2], whereas the materials

of Chapters 4 and 5 are associated to [1] and [3], respectively.

1.2 Previous most related works

For convenience, we divide this literature review into three parts. First, we review the papers
dealing with the standard ADMM and its proximal variants in the exact case. Second, we
provide a survey of the literature related to the proximal generalized ADMM. Finally, we
discuss the papers about inexact ADMMs.

Standard ADMM and its proximal variants: The first ones to establish
iteration-complexity bounds for the standard ADMM (1.4) with # = 1 were Monteiro and
Svaiter [57] (although their analysis assumes § = 1 and considers only the ergodic case, it
can be easily adapted to cover the pointwise case and the use of # < 1). Subsequently,
He and Yuan analyzed ergodic [48] and pointwise [49] iteration-complexities of a partial
proximal ADMM (the proximal ADMM (1.5) with H = 0 and 6 = 1). Pointwise and ergodic
iteration-complexity results for the proximal ADMM in its general form (1.5) were considered
in [20,41,43]. In [40], the authors established iteration-complexity bounds for a variable
metric proximal ADMM. It is worth mentioning that all of the aforementioned papers obtain
iteration-complexity bounds of the same order than the ones obtained here, i.e., O(1/p?) to
the pointwise case and O(1/p) in the ergodic case. However, it should be mentioned that

none of these papers deals with inexact ADMM. In [42], the authors proposed and analyzed

!The HPE framework considered here is a slight modification of the well-known HPE scheme first
introduced by Solodov and Svaiter [71] for solving monotone inclusion problems. Iteration-complexity bounds
for the latter HPE scheme was first established by Monteiro and Svaiter in [56].



a regularized ADMM whose pointwise iteration-complexity bound is better than the one
obtained here by an O(elog(e™!)) factor. The latter scheme was further explored in [39)]
by expanding the region in which a relaxation parameter used in the Lagrange multiplier
update rule can be chosen. These regularized ADMMSs consist of a combination of an inner
and an outer procedures, where each of the inner procedure is itself an implementation of
a proximal ADMM, whereas the outer one dynamically adjusts a regularization parameter.
Although this method has an improved pointwise iteration-complexity, it still lacks of a
computational study in order to improve its numerical performance since the aforementioned
overall procedure is, in general, time consuming in practice. By assuming that function f
in (1.1) is differentiable with Lipschitz continuous gradient, [61] proposed some accelerated
ADMM schemes which improve previous convergence rate bounds in terms of the dependence
on the Lipschitz constant of the gradient. Finally, under the latter assumptions along with
strong convexity of f and certain rank conditions on the matrices A and B, paper [21]
established linear convergence rate for a proximal variant of the ADMM. We refer the reader
to [2,11,31,39,42,45,52,68] where iteration-complexities of other exact ADMM variants have
been considered.

Proximal generalized ADMM: Convergence rates and iteration-complexity of the (exact)
generalized ADMM have been recently studied in different contexts (see [19,31,59,75,76]).
However, it should be mentioned that none of these papers is focused on approximately
solving the Lagrangian system (1.7) in the sense of (1.8) or (1.9). Namely, paper [31]
derived pointwise and ergodic iteration-complexity bounds for the generalized ADMM to
obtain an approximate solution of (1.1) in the context of variational inequality, assuming
that the matrix B has full column rank. Although its approach is different from ours, it can
be shown that its pointwise iteration-complexity bound is similar to the one provided in this
thesis. On the other hand, its ergodic iteration-complexity results are based on a termination
criterion which can not be easily verifiable and is not directly related to the one considered
here. Paper [19] proposed a generalized proximal point algorithm for finding roots of a
maximal monotone operator in a Hilbert space and analyzed its convergence rates under
different assumptions. In particular, for a given tolerance p > 0, the authors established
an O(1/p?) pointwise iteration-complexity bound to obtain an approximate solution based
on the Yosida approximation of the operator. As a by-product, the same bound can be
derived for a especial case of the proximal generalized ADMM considered here. It should
be noted, however, that the residual based on the Yosida approximation of the operator
is not easy to compute and, hence, it is not clear how their result can be used to obtain
and/or identify approximation solutions of (1.7) in the sense of (1.8) or (1.9). The algorithm



proposed in [19] was further explored in [76], where the authors established convergence (in
the weak and strong topology) of the proposed scheme as well as linear convergence rate.
Under the assumptions that A is invertible, B has full column rank, and f is a differentiable
strongly convex function with parameter m > 0 whose gradient is L-Lipschitz continuous,
paper [59] established the linear convergence of a special case of the proximal generalized
ADMM studied here with penalty parameter (3 specifically chosen depending on m, L, and
the smallest and largest singular values of the matrix A. Paper [75] analyzed the proximal
generalized ADMM as a particular case of a general scheme in a Hilbert space and obtained
O(1/k) ergodic convergence rate by measuring a partial primal-dual gap associated to the
Lagrangian function of problem (1.1). The latter result was obtained under the assumption
that the operators (Of + SA*A)~! and (9g + SB*B)~! exist and are Lipschitz continuous
which is stronger than the assumption that f and g are convex. Moreover, contrary to
our iteration-complexity analysis, the one presented in [75] does not provide any practical

termination criterion.

Inexact ADMMs: Inexact variants of the ADMM considering different strategies to
compute approximate solutions of its subproblems have been studied in the literature, see for
example [26,29,30,58,80]. Bertsekas and Eckstein in [26] introduced an inexact generalized
ADMM whose subproblems are approximately solved using absolute error conditions. In [58],
Ng et al. proposed inexact variants of the proximal ADMM (1.4) (with § = 1 and proximal
terms defined by the identity operator) in the setting of variational inequalities, where
absolute and relative error criteria were considered. The aforementioned relative error
criterion is closely related to the one proposed here. The main advantage of our criterion
is that a parameter associated to the criterion is constant (see the parameters 71 and 7,
in (5.2)) whereas the corresponding parameters in the former criterion needs to be square
summable, in particular, they vanish asymptotically. This property is too stringent and
makes their scheme quite slowly in practice. Most recently, Eckstein and Wang proposed
and analyzed other inexact ADMM variants whose subproblems are approximately solved
using relative and /or summable error criteria (see [29,30]). Specifically, [29] further developed
to the ADMM setting the study of [27], where an inexact augmented Lagrangian method
was proposed and analyzed. The main idea of the last references was to approximately solve
the associated subproblems using a relative error condition based on the one introduced
by Solodov and Svaiter [71-73] in the setting of proximal-point type methods. Numerical
comparisons with the inexact ADMM variant proposed in [29] is presented in Chapter 6.
Paper [30] proposed a relaxed Douglas—Rachford splitting method for solving (1.2) and

derived, as a consequence, a variant of the ADMM which uses, in a special way, a relative



error condition.

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 contains preliminary results, notation, basic
definitions as well as some assumptions. Chapter 3 is divided into two sections. The first
one formally states the proximal generalized ADMM, whereas the second one establishes its
pointwise and ergodic iteration-complexity bounds to obtain approximate solution of (1.1)
in the sense of (1.8)-(1.9). Chapter 4 and Chapter 5 introduce two new inexact ADMM
variants and present their iteration-complexity analysis. Specifically, Chapter 4 is devoted
to an inexact proximal generalized ADMM, whereas Chapter 5 deals with an inexact proximal
ADMM. Chapter 6 is devoted to numerical experiments. Finally, Chapter 7 contains some

concluding remarks.



Chapter 2
Preliminary

This chapter is divided into three sections. The first one presents our notation and basic
results. The second section describes a modified HPE framework and its corresponding
pointwise and ergodic iteration-complexity bounds for approximately solving a monotone
inclusion problem. The last section discuss some concepts of approximate solutions for a
monotone inclusion problems as well to the linearly constrained optimization problem (1.1).

Some assumptions that will be used throughout this thesis are also considered in this section.

2.1 Notation and basic definitions

In this thesis, " denotes the usual n-dimensional Euclidean space. The coordinates of a
Jie, x = (2',...,2"). Whenn =1, R .= R

?

vector x € R" will be written as z!,..., 2"

is the set of real numbers. R, denotes the set of nonnegative real numbers. The p-norm
(p > 1) and maximum norm of € R are denoted, respectively, by ||z|, = > i, |xi|p)1/p

Y. ..., |2"|}. The index p is omitted when p = 2.

and ||z||e = max{|x

Let V be a finite-dimensional real vector space with inner product and associated norm
denoted by (-,-) and || - ||, respectively, and let @ be a linear operator on V. Recall that
the adjoint of @ is the uniquely determined linear operator satisfying (v, Q0) = (Q*v,7),
for every v, v € V. Q*. When Q* = ), the operator () is called self-adjoint. A self-adjoint
linear operator @): V — V is said to be positive semidefinite if and only if (Qu,v) > 0,
for all v € V. For a given self-adjoint positive semidefinite linear operator @: V — V., the
seminorm induced by @ on V is defined by || - |lo = (Q(-), -)*/2. Since (Q(-),-) is symmetric

and bilinear, for all v, v € V, we have
2(Qu,0) < [lvlly + 119l llv+v'lIG < 2(vlg + 1V13) - (2.1)
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We denote the identity operator on a vector space V by [

Given a set-valued operator T': ¥V == V), its domain and graph are defined, respectively, as
DomT ={v eV : T(v)#0} and Gr(T) ={(v,0) e VxV : v€T(v)}.
The operator T is said to be monotone if
(u—v,a—o)>0  V(u,a), (v,0) € Gr(T).

Moreover, T' is maximal monotone if it is monotone and there is no other monotone operator
S such that Gr(T) c Gr(S). Given a scalar £ > 0, the e-enlargement T15): V = V of the

operator T is defined as
TE W)y ={6eV : (o —a,v—u) > —¢, Y(u,a)€Gr(T)} Yve. (2.2)
The e-subdifferential of a proper closed convex function f: V — [—o00, o] is defined by
O.fw)y={ueV: f(0)> flv)+{u,0 —v)—¢, YVoeEV} YVve.

When ¢ = 0, dpf(v) is denoted by 0f(v) and is called the subdifferential of f at v. It is
well-known that the subdifferential operator of a proper closed convex function is maximal
monotone [65].

The next result is a consequence of the transportation formula in [15, Theorem 2.3]
combined with [14, Proposition 2(i)].

Proposition 2.1.1 Suppose T:V = V is mazximal monotone and let v;,v; € V, for i =
1,...,k, be such that v; € T(v;) and define

1 @ 1 o 1 @
17,?:%26' UZ:EZU“ z—EZv“v,—vk

i=1 =1

Then, the following hold:
(a) €% >0 and vy € TEN(9);

(b) if, in addition, T = Of for a proper closed and conver function f, then vj € Oa f(Uf).

2.2 A modified HPE framework

Our problem of interest in this section is the monotone inclusion problem

0€T(2), (2.3)
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where T': Z = Z is a maximal monotone operator and Z is a finite-dimensional real vector
space with inner product and associated norm denoted by (-,-) and || - ||, respectively. We
consider the following basic assumption:

Assumption 2.2.1 The solution set of (2.3), denoted by T1(0), is nonempty.

A classic iterative scheme applied to solve (2.3) is the proximal point method [55], which,

starting from an initial point zy € Z, generates a sequence {z} satisfying
2 = ([ + )\kT)il (Zk—l)a

where A\ > 0 is a parameter. Often, in applications, it can be difficult to explicitly obtain the
resolvent operator (I + AT )_1, so that some inexact versions of the proximal point method
were considered. In [66] Rockafellar proposed an inexact proximal point method which allows

{2k} to be computed such that
sz — ([ -+ )\kT)_l (Zkfl)H < €k, Z@k < 00,
k=1

where A, is bounded away from zero, and {e;} is a non-negative sequence of error tolerances.
More recently, there is a growing interest in inexact versions that use relative error criteria
instead of absolute error. In this sense, the hybrid proximal extragradient (HPE) method
proposed by Solodov and Svaiter in [71] (see also [72-74]) suggests, in each iteration, to find
a triple (Z, v, ex) € Z x Z x Ry and A\, > 0 such that

Vg € T[Ek](gk)’ H)\kvk + gk — Zk:le2 -+ 2>\k5k S o H'gk — Zk,1”2 s (24)

where ¢ € [0,1) is a error tolerance parameter. The new iteration z; is then defined as
2y = 21 — Mg, If 0 = 0, it follows easily that for every k > 1, ¢, = 0 and Z, = 2, and
hence

v € T(zp), AUk + 2k — 2—1 = 0,

which is equivalente to the exact iteration of the proximal point method. Thus, we can
conclude that, by increasing the value of ¢ in the interval [0,1), the HPE method (2.4)
allows a growing relaxation in inclusion and/or equation of the above system. Monteiro and
Svaiter in [56] established iteration-complexity results for the HPE method (2.4). Since then,
iteration-complexity of other HPE-type methods have been considered in the literature (see,
e.g., [42,50,54,57,74]).

In the following, we formally describe a modified HPE framework for computing
approximate solutions of (2.3) which will be essential to characterize and analyze the
algorithms considered in this thesis.

11



Modified HPE framework.

0. Let zp € Z, mo € Ry, 0 € [0,1] and a self-adjoint positive semidefinite linear operator
M: Z — Z be given, and set k = 1;

1. obtain (zy, Zk,nk) € Z X Z x R, such that
M(Zk_l — Zk) S T(gk), (25&)
12k — 2l + e < oll2 — zealliy + ne-1; (2.5b)

2. set k < k+ 1 and go to step 1.

end

Remark 2.2.2 Some remarks about the modified HPE framework are in order:

(a) It is an instance of the non-Euclidean HPE framework of [41] with Ay = 1,64 = 0
and (dw),(z") = (1/2)||z — 2'||3;, for every 2,2’ € Z. Note that, the distance generating
function w(-) = (1/2)] - ||3; is a (1, 1)-regular with respect to (Z,|| - ||as) in the sense of [41,
Definition 3.2].

(b) The way to obtain (zy, Zx, mx) will depend on the particular instance of the framework
and properties of the operator T'. In later chapters, we will show that the proposed variants of
ADMM can be seen as an instance of the modified HPE framework specifying, in particular,

how this triple (zg, Zx, %) can be obtained in this context.

(c) The inclusion in (2.5a) can be interpreted as a generalized proximal inclusion where the
pair (2, Z;) is controlled according to the relative error condition in (2.5b). Indeed, if M
is positive definite and o = 19 = 0, then (2.5b) implies that n, = 0 and z, = Z; for every
k > 1, and hence that M (zx_1 — 2x) € T(2x) in view of (2.5a). In particular, if M = I and
o =mno = 0, then (2.5) implies that n, = 0, zx = Zx and 0 € 2z, — 21 + T'(2x) for every k > 1,
which corresponds to the proximal point method to solve problem (2.3). Therefore, the HPE
error conditions (2.5) can be viewed as a relaxation of an iteration of the exact proximal
point method. It is worth mentioning that the use of a positive semidefinite operator M
instead of a positive definite is essential in the analysis discussed in the next chapters. More
examples of algorithms which can be seen as special cases of HPE-type frameworks can be
found in [56,57,71].

(d) In view of Assumption 2.2.1 and the first remark above, it follows from [41, Lemma 3.6(d)]
that the sequence {z;} is bounded when M is positive definite. On the other hand, if
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the solution set of (2.3) is empty, then {z;} may be unbounded; see, for example, [71,
Theorem 3.1], where is shown that the sequence generated by a special case of the modified
HPE framework has this behavior.

It should be noted that all results given in this section are derived from [41] (incluing the
modified HPE framework as mentioned in Remark 2.2.2(a)). Due to the relevance of this
framework in the analysis of the ADMM variants considered here, and also for completeness
and convenience of the reader, we formally present a simplified proofs of these facts.

The next result summarizes some useful properties about the sequence generated by the
modified HPE framework (see [41, Lemma 3.6]).

Lemma 2.2.3 Let {(z, Zx,nk)} be the sequence generated by the modified HPE framework.
For every k > 1, the following statements hold:

(a) for every z € Z, we have
Iz = 2ll3s + e < (0 = D2k = zoallay + 12 = 2ol + 2(M (211 = 21), 2 = Z) + ks
(b) for every z* € T=1(0), we have
12 = zellas + e < (0 = DIl 2k — 2r-1lliy + 12" = 20-1llig + M1 < 12" = 201l + M1
Proof. (a) Note that, for every z € Z,

Iz = 2ll3s = 12 = zeall3r = 11z = 2) + G — 2013 = 11z = Z) + (G — 2e-0) 13
= [1Ze — 23 — 126 — 201 ll3s + 2(M (251 — 21), 2 — Z5),
which, combined with (2.5b), proves the desired inequaliy.
(b) Since M(z—1 — zx) € T'(Z) and 0 € T'(z*), we have (M (zx_1 — zx), Z — 2*) > 0. Hence,
the first inequality in (b) follows from (a) with z = z*. Now, the second inequality in (b)
follows from the fact that o < 1. [ |

Lemma 2.2.3(b) is closely related to the well-known quasi-Fejér inequality which can be

used to show that {23} converges to a point in 7~!(0) when M is positive definite.

2.2.1 Iteration-complexity of the modified HPE framework

In order to present pointwise and ergodic iteration-complexity results for the modified HPE

framework, the following scalar needs to be defined
do = inf{||z* — 20||3, : 2 € T7(0)}, (2.6)
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where M is given in step 0 of the modified HPE framework.
We first consider the pointwise case (see [41, Theorem 3.3(b)]).

Theorem 2.2.4 Consider the sequence {(zp,Zx,nx)} generated by the modified HPE
framework with o < 1. Then, for every k > 1, there hold M(z—1 — z) € T(2) and
there exists 1 < k such that

\/ (14 0)do + 4no

20 = ziallar < T

Y

where dy is as defined in (2.6).

Proof. The inclusion M (zx_1 — 2x) € T'(2;) holds due to (2.5a). It follows from the second
property in (2.1) with Q = M that, for every j > 1,

127 — zi—all3r < 2002 — z—alli + 112 — 2ll30) < 200+ 0)lIZ5 — 2113 + 2(nj-1 — m5)

where the last inequality is due to (2.5b). Now, if z* € T—!(0), we obtain from Lemma
2.2.3(b)

(L=0)lIz; — zj—allis < Nz = zall3 — 112" — zll3 +nj—1 —mj, V=1

Combining the last two estimates, we get

k
(L=0) D Iz = z-allir <201 +0) (17 = =0ll3y — 12" = 2l + 1m0 — 1) +2(1 = o) (0 — 1)
j=1

< 2(1+0)]2" = zll3; + 4.

Hence, as 0 < 1, we obtain

min |z =z < (2(L +o)ll2" = =0/l + 410) -

1
=1,.., k(1 —o)
Therefore, the desired inequality follows from the latter inequality and the definition of dy
given in (2.6).
[

Corollary 2.2.5 Consider the sequence {(zg,Zr,nmr)} generated by the modified HPE
framework with o < 1, and asssume that the sequence {||zr — zk—1||,,} is nonincreasing.
Then, for every k > 1, there hold M (z_1 — z) € T(Z) and

||Z _ . ” \/ 1+O' d0+4770
k klM_\/— 1—o )

where dy is as defined in (2.6).
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Proof. This result follows immediately from Theorem 2.2.4 noting that, for every k£ > 1,

ming—1,.k |2 = 21l = 2k — 2113 u

Remark 2.2.6 For a given tolerance p > 0, it follows from Theorem 2.2.4 that in at most
O(1/p?) iterations, the modified HPE framework computes an approximate solution Z of
(2.3) and a residual r in the sense that Mr € T'(2) and ||r||» < p. Although M is assumed
to be only positive semidefinite, if ||7|y; = 0, then M'/?r = 0 which, in turn, implies that
Mr = 0. Hence, the latter inclusion implies that Z is a solution of problem (2.3). Therefore,

the aforementioned concept of approximate solutions makes sense.

Let {(zx, 2k, nk)} be the sequence generated by the modified HPE framework. In order to
present the ergodic case (see [41, Theorem 3.4]), consider the ergodic sequences {(Z¢, r¢, %)}
defined by

k k
“p A g2 laasa)
Theorem 2.2.7 Let 0 € [0,1] and consider the ergodic sequence {(Z¢,r, %)} as in (2.7).
Then, for every k > 1, there hold £f > 0, Mr{ € TE(28) and

2\/(10 + Mo ca 3 [3(d0 + 770) + Uﬁk]

a —_— <
||Tk‘||M —= L ) k = Qk

k
Z (zic1—2i),2i — 25y, Yk >1.(2.7)

Prl»—k
wIH
?rl»—k

where

pri= max |15 -z, (2.8)

and dy is as defined in (2.6). Moreover, the sequence {pr} is bounded under either one of

the following situations:

(a) o <1, in which case

b < do + 1o

; 2.
bt 29)
(b) DomT :={z € Z : T(z) # 0} is bounded, in which case
pr < 2[do + 1m0 + D],
where D := sup{||ly’ — y||%, : y,4' € DomT"}.

Proof. The inequality ¢ > 0 and inclusion Mr¢ € TE(22) follow from (2.5a), (2.7), and
Theorems 2.1.1(a). Using (2.7), it is easy see that for any z* € T-1(0)

kry = zk — 20 = (2% — 20) + (2, — 27).
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Hence, from the second inequality in (2.1) with Q = M and Lemma 2.2.3(b), we have
Rkl < 20l12" = 2olla + 1127 = 2ell3) < 412" = 20l + m0)-
Combining the above inequality with definition of dy, we obtain the bound on ||r¢|/5;. Let

us now to prove the bound on €f. From Lemma 2.2.3(a), we have

k

22<M(2’i—1 —21), % — 2) < |z = 20l — 12 = 2ll3s + 10 — e < [z = 20l3s + 70,
i=1

for every z € Z. Letting z = 2 and using (2.7), we get

k
a 1 - -
2kl < ||Zf = 20l +m0 < z > Iz — zoll3 +mo < Jmax ||z — 20ll3 + 10 (2.10)
i=1
where the second inequality is due to convexity of the function || - ||2,, which also implies

that, for every i > 1 and z* € T71(0),
12 = zoll3s < 3 [I1% — 2illiy + 12" = zill3 + 112" = 20ll3] -

Hence, using (2.5b) and twice Lemma 2.2.3(b), it follows, for every ¢ > 1 and 2z* € T~1(0),
that

12 — z0ll3 < 3 [ollz — zicall3y + mic1 + 112" — zica 3 + i1 + 125 — 20l134]
<3 [ollzi — zimallir + 2(12° = zicall3 + mim1) + 127 — 20ll34]
< 3[ollz — zic1llar + 3l2* — 20ll3; + 2m0]

which, combined with (2.10) and definitions of p in (2.8), yields
2kef < 3 (3|12 = z0ll3s + opk] + To < 3 [3(||z* — 2013 + m0) + 9] -

Thus, the bound on ¢ now follows from the definition of the dy in (2.6).
It remains to prove the second part of the theorem.
(a) if ¢ < 1, then it follows from Lemma 2.2.3(b), for every i > 1 and 2* € T~1(0), that

(L =01z — zicallar < N12° — zicall3s + mir < |12 — 20l37 + 7m0

Hence, in view of definitions of g5 and dy, we obtain (2.9).
(b) If Dom T is bounded, then it follows from the second inequality in (2.1) with Q = M,
and Lemma 2.2.3(b), for every i > 1 and 2* € T71(0), that

I = 21l < 212" = za 3+ 15 — 2] < 2[12 = =l + 0+ D
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which, combined with definitions of p; and dy, proves the desired result. [ |

If o < 1 or DomT is bounded, it follows from Theorem 2.2.7 that {g;} is bounded
and hence max{||v{| s, et} = O(1/k). However, it may happen that the sequence {p;} is
bounded even when ¢ = 1. Indeed, in Chapter 3, we will show that this is the case for the

proximal generalized ADMM, which is an instance of the modified HPE framework.

Remark 2.2.8 For a given tolerance p > 0, Theorem 2.2.7 ensures that in at most O(1/p)
iterations of the modified HPE framework, the triple (Z,r,e) := (2¢, 7, }) satisfies Mr €
T¢(z) and max{||r|ar,e} < p. Similarly to Remark 2.2.6, the point Z can be interpreted as
an approximate solution of (2.3). Note that, the above ergodic complexity bound is better
than the pointwise one by a factor of O(1/p); however, the above inclusion is, in general,

weaker than that of the pointwise case.

2.3 Elementary concepts

In this section, we introduce a maximal monotone operator constructed from the Lagrangian
system (1.7), which will be used throughout this thesis.
We assume that Z:= X x Y x ' and T: Z == Z is the operator defined as

Of (x) — Ay
T(z,y,7) = dg(y) — B*y | - (2.11)
Ax+ By —b

Since f and g are proper, closed and convex functions, the operators 0f and dg are maximal
monotone (see [64]), hence the operator T is maximal monotone. Indeed, the maximal
mon0t0n1c1ty of the > operator T in (2.11) follows from the fact that 7" can be decomposed as
T=T+ T where T: Z = Z is the multi-valued map given by

T(x,y,7) = 0f (x) x dg(y) x {~b}
and T: Z — Z is the lincar operator given by
f(:ﬁ, y,v) = (—A*y, —B*y, Ax + By)

(note that T is skew-symmetric, i.e., (Tz, %) = —(z,T%) for all z,% € Z).

Throughout this thesis, we also consider the following basic assumption.

Assumption 2.3.1 The solution set of the Lagrangian system (1.7), denoted by QF, i

nonempty.
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Note that (z*,y*,7*) € Q* if and only if 0 € T'(2*), where z* := (z*,y*,7*) and T is as
defined above. Moreover, as previously mentioned, it is well-known that (z*,y*, v*) € Q* if
and only if (z*, y*) is a solution to problem (1.1) and v* is an associated Lagrange multiplier.

For convenience, we rewrite the concept of approximate solutions (1.8) of the Lagrangian
system in terms of the operator 7' given in (2.11). This is convenient in order to obtain
the pointwise iteration-complexity bounds of some ADMM variants in the setting of the
modified HPE framework. Similarly, we could consider a concept of approximate solution
closely related to the relaxed approximate solution (1.9) in terms of the enlargement Tl of
the aforementioned operator 7. However, this latter concept is a bit more general and is
more useful when analyzing ergodic sequences derived from general instances of HPE-type
methods. In the case of the ADMM variants considered in this thesis, we will be able
to present a more refined analysis in order to avoid the use of this general enlargement
operator, using instead the e-subdifferential of the functions f and g. This will provide a

sharper ergodic iteration-complexity bound for the ADMM variants studied here.

Definition 2.3.2 Given a tolerance p > 0, a triple (x,y,7) € X x Y x I' is said to be a

p-approximate solution of (1.7) with residue r if
reT(xy,y) and Il < p, (2.12)

where T is as in (2.11).

Obviously, a triple (z*,y*,~v*) € Q* if and only if 0 € T'(z*, y*,~*). Hence, for all p > 0, any

element in * is a p-approximate solution with residue 0.
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Chapter 3

Iteration-complexity analysis of the

proximal generalized ADMM

This chapter is devoted to the iteration-complexity analysis of the proximal generalized
ADMM and is related to paper [2]. In Section 3.1, we formally state the method
(Algorithm 1). In Section 3.2, we present the iteration-complexity analysis of the
method. This section is divided into two subsections. Subsection 3.2.1 presents some
technical results and shows that the proximal generalized ADMM is an instance of the
modified HPE framework, whereas Subsection 3.2.2 establishes its pointwise and ergodic

iteration-complexity results.

3.1 Proximal generalized ADMM (PG-ADMM)

In the following, we formally state the proximal generalized ADMM for solving (1.1).
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Algorithm 1: Proximal generalized ADMM

0. Let an initial point (zg,yo,7) € X x Y x I', a penalty parameter § > 0, a relaxa-
tion factor a € (0, 2], and two self-adjoint positive semidefinite linear operators
G: X — X and H: Y — ) be given, and set k = 1.

1. Compute an optimal solution z, € X of the subproblem

. 1
miy {f(w) ~ (hrs A} + 5 Az Byos — bl + 4l - a:k_lné} (3.1)

and compute an optimal solution y; € Y of the subproblem

min {g(y) — (-1, By) + gl\a(Axk + Byr-1 —b) + B(y — yr—1)|”

1
#3lv=waalls | (32)

2. Set
Ve = Yie-1 — Bla(Azy + Byg—1 — b) + B(yr — Yr—1)] (3.3)

and k < k + 1, and go to step (1).

Remark 3.1.1 Algorithm 1 has different features depending on the choices of the matrices
G, H, and the relaxation factor «. For instance, by taking o = 1 and (G, H) = (0,0), it
reduces to the standard ADMM (1.4). By choosing (G, H) = (nnl — fA*A, n] — SB*B)
with 7 > S||A*Al| and 75 > (|| B*B]|, it reduces to a linearized ADMM with a relaxation
parameter. The latter method cancels the quadratic terms (3/2)||Ax||? and (3/2)|By||* in
(3.1) and (3.2), respectively. More specifically, the subproblems (3.1) and (3.2) become
min { f() = (n-1 = BlAzk1 + Byer — b), Az) + Sllz — w2}

reX

and

. T
min {g(y) — (yk-1 — aB(Azy 4+ Byx—1 — b), By) + flly - yk_1||2} :

In many applications, the above subproblems are much easier to solve or even have
closed-form solutions (see [48,79,83] for more details). We also mention that depending on the
structure of problem (1.1), other choices of G and H may be recommended; see, for instance,
[21] (although the latter reference considers o = 1, it is clear that the same discussion
regarding the choices of G and H holds for arbitrary a € (0,2)). In some applications,

the use of an over-relaxation parameter (« > 1) leads to a better numerical performance
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than the standard ADMM; see, for example, [9,24,31] and Chapter 6, where some numerical
experiments are reported in order to illustrate the performance of Algorithm 1 with different

choices of the relaxation parameter a.

3.2 Iteration-complexity of the PG-ADMM

This section presents pointwise and ergodic iteration-complexity bounds for Algorithm 1.
Our approach consists of interpreting Algorithm 1 as an instance of the modified HPE
framework with a very special property, namely, a key parameter sequence {py} associated
to the sequence generated by the method is upper bounded by a multiple of dy (a
parameter measuring, in some sense, the distance of the initial point to the solution set),
see Lemma 3.2.7. This property is essential to obtain the ergodic iteration-complexity of
Algorithm 1.

3.2.1 The PG-ADMM as an instance of the modified HPE

framework

Our aim in this subsection is to show that the PG-ADMM is an instance of the modified
HPE framework for solving problem (1.7).
Let us first introduce the elements required by the setting of Section 2.2. Consider the

linear operator

G 0 0
M:=1|0 (H+2pB) L¥p |, (3.4)
(1-a) 1
O o4 B aﬂI
and the quantity
do:= inf  {(@ =20,y — 0,7 — )%} (3.5)

(z,y,7)€T~(0)
where T" is as in (2.11). It is easy to verify that M is a self-adjoint positive semidefinite

linear operator for every 8 > 0 and «a € (0,2]. Let {(xg, yr, 1)} be the sequence generated
by Algorithm 1. In order to simplify some relations in the results below, define the sequence

{(Al‘k, Ay/w A’Yka ik)} as

Axp =2 — Tpm1,  AYp = Yk — Yi—1,

) (3.6)
AYe = Y, — V-1, e = Y1 — B(Azg + Byy—1 — b), V> 1.
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We next present two technical results.

Lemma 3.2.1 Let {(xk, yr,Vk)} be generated by Algorithm 1 and consider the sequence
{(Azg, Ayg, Ave, %)} as in (3.6). Then, for every k > 1,

N 1
Vo= Y1 = [Ay + BBAY,], (3.7)
6 * (]‘ - Oé) * * ~
0€ (H+=B"B)Ay, + ———B"Ay. + [09(yx) — B 0], (3.9)
1-— 1
0= ( Oé) BAy, + Q—BA’)% + [A[Ek + By, — b] . (310)

As a consequence, z := (Tg, Yr, k) and Zx = (Tk, Yk, k) Satisfy the inclusion (2.5a) with T
and M as in (2.11) and (3.4), respectively.

Proof. 1t follows from the definitions of 4, and 4% in (3.3) and (3.6), respectively, that
1
a
which, combined with the definitions of Ay, and A~ in (3.6), proves (3.7). From the

optimality condition for (3.1), we have

(v — Ye-1) + gB(yk — Yp—1) = —B(Axy + Byp_1 — b) = Y — Vi—1,

0 € 0f(wx) — A" (-1 — B(Azy, + Byp—1 — b)) + G(xg — 25-1),

which, combined with the definitions of 43 and Axy in (3.6), yields (3.8). Similarly, from the
optimality condition for (3.2) and definitions of v, and Ay, in (3.3) and (3.8), respectively,

we obtain

0 € d9(yx) — B* [yk—1 — Bla(Axy 4+ Byp—1 — b) + B(yr — yr—1)]] + H(yx — yr—1)
= 09(yx) — B™ v + HAyg. (3.11)

On the other hand, note that (3.7) implies that

(1-a) B
a
which in turn, combined with (3.11), gives (3.9). The relation (3.10) follows immediately
from (3.3).

Now, the last statement of the lemma follows directly by (3.8)—(3.10) and the definitions

of T'and M given in (2.11) and (3.4), respectively. |

Yo =Yk + (W — Yo=1) — (T — Vo—1) = T — Ay, — —BAyy,
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Lemma 3.2.2 The sequences {Ayx} and {Ay} defined in (3.6) satisfy

2(BAYy1, Am) > | Ayi|lf — 4do.  2(BAyg, Ayi) > Ayl — [|Ay— 7 VE>2, (3.12)
where dy is as in (3.5).
Proof. Let a point z* := (z*,y*,+*) be such that 0 € T'(z*,y*,7*) (see Assumption 2.3.1)

and consider z; := (z;,¥;,7), ¢ = 0, 1. First, note that

2 1

0< S1BARI? + 2By, A + A
« « af

where Ay, and A~ are as in (3.6). Hence, by adding ||Ay1]|% — 2(BAy;, Av;) to both sides

of the above inequality, we obtain

(1-a)

3 1
Ay |7 — 2(BAy1, Ayi) < || Ayl + EHBAylH2 +2 (BAyy, Avi) + &—BIIAMII2

<z = 2ol <2 (12" — 2lla + 112" — 20ll) (3.13)

where M is as in (3.4) and the last inequality is a consequence of the second property in (2.1)
with @ = M. On the other hand, taking Z; = (x1, y1,71), Lemma 3.2.1 implies that (zo, 21, 21)
satisfies (2.5a) with 7"and M as in (2.11) and (3.4), respectively; namely, M (zo—z1) € T'(Z;).
Hence, since 0 € T'(z*) and T is monotone, we obtain (M(zp — 21), 21 — 2*) > 0. Thus, it
follows that

12" — z1]13 — 12" = 20l = 1(z" = 1) + (G — 20) |30 — 1z = 21) + (21 — 20) |34
= |21 — 21|13 + 2(M (20 — 21), 2* — Z1) — |21 — 20|34
<z — 2113 — 1121 — 20l3s- (3.14)

Combining (3.6) and (3.7), we have 43 — v = [(1 — a)Avy, + SBAy,|/a. Hence, using the
definitions of M, z; and Z;, we obtain

. 1, A (1—a) (1— )2
121 — 21||?\4 = a_ﬂH% - 71||2 = 5||BA?J1||2 +2 o (BAy1, Avp) + T@ ||AV1||2

and

2(1 — «)

N 5 3 1,
121 — 2o0ll3 > EHB(% —yo)|* + (B(y1 — 40)s 71 — 7o) + @H% — %l?
1 _
= (2425070 D) i
0] [0}

a3

a2

1—a) 1 1 ,
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where the last equality is due to (3.6) and (3.7). Hence, it is easy to see that
2

(@—2) L <0.
a? -

VB

12— 2l — 151 — 2ol < HﬁBAyl LAy,

Thus, it follows from (3.14) that
Iz = z1ll3 < Ml2" = 2ol
which, combined with (3.13), yields
1Ay 7 — 2(BAyy, Ayi) < 412" = zoll3;-

Therefore, the first inequality in (3.12) follows from definition of dy (see (3.5)) and the fact
that z* € T-1(0) is arbitrary.

Let us now prove the second inequality in (3.12). First, from the optimality condition of
(3.2), and (3.3), we obtain

By — H(y; —y;—1) € 0g(y;)  Vji=1
For every k > 2, using the previous inclusion for j = k — 1 and j = k, it follows from the
monotonicity of the subdifferential of g that
(B*(vk — Ye-1) — H(yx — Y1) + H(Yr—1 — Yr—2), Yr — Y1) > 0,
which, combined with (3.6), yields
(BAyx, Avi) > | Ayallfy — (HAyx—1, Ayp) Yk >2.

To conclude the proof, use the first relation in (2.1) with @ = H. [ |
Let us consider the following quantity:
1

% = Tl o) (3.15)

Note that oo = 1, and for any a € (0,2) we have o, € (0,1). The following theorem shows
that Algorithm 1 is an instance of the modified HPE framework.

Theorem 3.2.3 Let {(zk, yx, V&) } be generated by Algorithm 1 and consider {(Ayy, vx)} and
0q as in (3.6) and (3.15), respectively. Define
ze-1 = (Tr-1, Y1, Me—1) 2= (T Uk, k), VE 2>, (3.16)

and
4(2 — a)o, 2 —a)oy,
m= 20 ey P eyny e ks, (3.17)

where dy is as in (3.5). Then, the sequence {(zx, Zx, M)} s an instance of the modified HPE

framework, applied for solving (1.7), where o := o, and M is as in (3.4).
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Proof. The inclusion (2.5a) follows from the last statement in Lemma 3.2.1. Let us now
show that (2.5b) holds. Using (3.6), (3.7) and (3.16), we obtain

2

50 = 21l = =1 =l = BH (1= a)Ay, + ABAY]

1
ey (L= a)?[[Anl* +2(1 — @) B{BAYx, Ayi) + 82| BAy[?] . (3.18)
Also, (3.6) and (3.16) imply that

i 8
12 = 21l = [[Azelle + | Al + = BAKI

(1—-a)

- 1.
+2 (BAYk, Yo — Ve-1) + a—ﬁH'yk —ve1]|?. (3.19)

It follows from (3.7) that

1 .. 1
@H% — | = o5 [ A1 + 28(BAyx, Ayi) + 87| BAy||?] |

2(1—04) . :2(1;204)

(BAYk, V& — Yr—1) [(BAyk, Ayi) + B BAyy ]

which, combined with (3.19), yields

a2

N B 5 5
5= sy = Dol + 18wl + (2 + 202224 )y

1— 1
o (( 9 4 07) (B3 80 + Al (3:20)

a?

Therefore, combining (3.18) and (3.20), it is easy to verify that
0allZk — zuallns — 12k — 2l

2 —a)o, 2 —a)?o,
— oul Al + ol Al + 222 By, Ay + BT oy

> 2

2 —a)o,
%(BAZJM Avg) > 0k — Mk Vi >1,

where o, is as in (3.15), and the last inequality is due to (3.12) and (3.17). Therefore, (2.5b)
holds, and then we conclude that the sequence {(zx, Zx,7x)} is an instance of the modified
HPE framework. |

3.2.2 TIteration-complexity bounds for the PG-ADMM

In this subsection, we establish pointwise and ergodic iteration-complexity bounds for

Algorithm 1. We start by presenting a pointwise bound under the assumption that the
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relaxation parameter « belongs to (0,2). For this, we first introduce a result which shows
that the sequence {||zx — zk—1||ar }, with {z;} given in (3.16), is monotonically nonincreasing.
Then, we consider an auxiliary result which is used to show that the sequence {y}, as defined
in Theorem 2.2.7 with {2} and {Z;} as in (3.16), is bounded even in the extreme case in
which o = 2. This latter result is then used to present the ergodic bounds of Algorithm 1
for any « € (0, 2].

Lemma 3.2.4 Let {(zk, yx, )} be generated by Algorithm 1 and consider the sequence {zy}
as in (3.16). Then, for every k > 2,

26 = ze-1llpr < 21 = ze2llyr s
where M is as in (3.4).

Proof. First, note that for any z € Z, we have
261 = zkalla = llze = 21l = ll2nor = 2+ 2 = 2xcallyy — 2w — 2+ 2 — zea |y
= llzr-2 = zllar = llze = 23 + 2 (M (25 — 24), 2 = 21) -
Letting z := 251 + Zx—1 — 2 in the above relations, where {Z;} is given in (3.16), it follows

that

1ok = 22l = 2k = 2i-1ll

= |lzh-2 — Zh-1 — Zoo1 + Zlly — N2k — 21 — Zeor + Zll5y + 2 (M (252 — 20), Bie1 — Z)

> || zk—2 — Zk—1 — Zk—1 + ka?w — lzk—1 — 2 + Zk—1 — Zk”?\/[ + 4 (M (2p—1 — 2k), o1 — Zk)

=12 = 251 = (1 = 20-2) g = 121 = 26 = (G = 20) [l (3.21)
where the inequality above is due to the monotonicity of the operator T' (given in (2.11)),
the last part of Lemma 3.2.1 and the following inequality

(M(2k—2 — 21), 21 — Zk) = (M (2k—2 — 26-1) — M (2k-1 — 2&), 21 — Z)
(M (21 — 21), 21 — k)
(M (251 — 21), Zk1 — Zi) -
Using (3.6), (3.7), and the definitions of z; and Zj in (3.16), it is easy to see that
Zy — 2h1—(Zh-1 — 2-2)

= (Azp — Azg_1, Ay — Ayk—1, Y — Ve—1 — (Ye—1 — Ve—2))

1
= (Awk — Azp_1, Ay — Ay, o (A’Yk — A1 + BB(Ayy, — Ayk—l)))
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and

ko1 — 2k — (Zpo1 — Zk) = Zk — 2k — (Zeo1 — 2k—1) = (0,0, 9% — Y — (Ye—1 — V1))

1
= (07 0, a((l —a)(Av — A1) + BB(Ayy, — Ayk—l))) :
Combining the last two relations with (3.21) and the definition of M in (3.4), we obtain

5
251 = zk—2l 3y — |2k — 201l 3 > o | B(Ayy, — Ayg1)|?

2(1 —
it o2 ) (B(Ayy, — Ayp—1), Aye — Ayt + BB(Ayy, — Ayi—1))

TB | Ay, — Ayt + BB(Ayy, — Ayk—l)H2

%ﬂ 11— @) (A — Avucy) + BB(Ag — Agey)]?.

By performing some simple algebraic manipulations, the above expression becomes

2(1l -«
loncs = sncalfy = o= sl 2 (2 4+ 20522 h(ane - Apon)f

+ (M + 3) (B(Ayr — Ayg—1), Ay — Ayp1) +

o? o?

200 — ?
a3f

Ay — Ay ||

1 2
3 (Ave — Ayy)|| 20

where the last inequality follows from the fact that « € (0, 2]. |

B(Ayk — Ayk_l) +

Y

i

Theorem 3.2.5 Let {(xk, yr, 1)} be generated by Algorithm 1 with « € (0,2) and consider
the sequence {(Axy, Ayk, Avk, Jx)} as in (3.6). Then, for every k > 1,

Ay, Of (xy) — A*
OEML Age | 1 d9ly) — B (3.22)
Avg Azy, + By — b
and
1Ay, Age, Ay)llar < \/ o1+ 0, 1+—8((72a - ol
where M, dy, and o, are as (3.4), (3.5) and (3.15), respectively.
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Proof. Since o, € (0,1) for any a € (0,2) (see (3.15)), we obtain by combining Theorem 3.2.3,
Lemma 3.2.4, and Corollary 2.2.5 that (3.22) holds and

1+ 0,)dy+ 4
(A, A, Al ar < \/ Ze)o0 T T
— o,
Hence, to conclude the proof use the definition of 1y given in (3.17). [ |

Remark 3.2.6 For a given tolerance p > 0, Theorem 3.2.5 implies that in at most O(1/p?)
iterations, Algorithm 1 obtains an approximate solution (z,y,%) and a residual @ of (2.11)
satisfying

Mi e T(&,9,7), |l <p, (3.23)

where T is as in (2.11). It is worth pointing out that although M may not be invertible,
the above complexity result makes sense due to the fact that ||a|/y = 0 yields Ma = 0,
which in turn implies that the triple (Z,7,7) is a solution of (1.7). Let Ay be the largest
eigenvalue of M and (vz, vy, v4) := Mu. For a given tolerance p > 0, (1.8) follows from (3.23)
with p = p/v/Ayr and the fact that ||M(-)| < v Al - |lm. Hence, Algorithm 1 provides a

p-approximate solution of (1.7) in at most O(1/p?) iterations.

We next present an auxiliary result which is essential to obtain ergodic iteration-complexity
bounds for Algorithm 1.

Lemma 3.2.7 Let {(xy,yr,Vk)} be generated by Algorithm 1 and consider the sequence

{(Azg, Ay, Ay, %)} as in (3.6). Then, {pr} given in (2.8) with M and {(zx, 2x)} as in

(3.4) and (3.16), respectively, satisfies

41 4 2a)[a+ 4(2 — a)o.]dy
3

Pr < VE 21,
where dy is as in (3.5).

Proof. The same argument used to prove (3.19) and (3.20) yields, for every k > 1,
125 — 2r-1ll3s = 1Az IE + 1 AyllEr + &, (3.24)

where

2(1 - a) 1 )
T(BAyk7A7k> + QTBHA%”

+(2;a)

5
§k 1= gﬂBAkaQ +

2
2Bl + 2 By, )
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Using the definitions of M and z;, given in (3.4) and (3.16), respectively, it follow that

(2-a)

2
Cipanl? + 2580, 200

1
< —lzp — zi1|? z
& < 052”2k zo-1lla + o

1 2—« 2(1l — «
= <2k — ze-alla + (Gl FHBA%W + Q(BAyk, Aw}
@ @ a a
202 —«
+ %(BA%A%)
1 (2—a) 2(1 — )

)
(BAYR, Avyy)

«

1
(B, i) + | BaRI + A, (325

[ (BAyg, Avyi) +

2(1 —«)

< @sz — zellis +

1+ 2a—a? 5
LR A

<
where in the last two inequalities we used the fact that o € (0,2] and the first property in

(2.1) with @ = I, respectively. Combining (3.24), (3.25) and definitions of M and zj, we
obtain, for every k > 1,

N 1+ 2a —a? 14 2
12k — zr-all3y < —r - ze-1llir + 12k — ze-1llly = e Ze-1llar-
Now, letting z* := (2*,y*,7*) be an arbitrary solution of (1.7), we obtain from the last
inequality and the second relation in (2.1) with @ = M that
i 2(1+2a) ., . .
= nalt < 22 e g —all) w21 20

Since Algorithm 1 is an instance of the modified HPE framework (see Theorem 3.2.3), it
follows from (3.26) and Lemma 2.2.3(b) that

i A(1+2a) -, ,
5= el < 2 g ] k2L

Since z* is an arbitrary solution of (1.7), the result follows from the definition of py, dy, and
no given in (2.8), (3.5) and (3.17), respectively. |

Next result presents iteration-complexity bounds for the ergodic sequence associated to
Algorithm 1.

Theorem 3.2.8 Let {(xk, yr,v)} be the sequence generated by Algorithm 1 and consider
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{(Azg, Ayg, Ay, 76)} as in (3.6). Define the ergodic sequences as

k k
~a 1 a a 1
(xka yk? 7]?7 f}/k E Z Lis Yis Vis 71 ) (Tk,aw Ty Tk 'y = E Z Axi7 Ayh A71)7 (327>
1 ; 7
She = 7 D (GAT; — A%, 2 — ), (3.28)
=1
1o 8 (1-a)
Sy = 7 > < (H + EB*B> Ay + ———B Ay — B,y — yz> . (3.29)
1=1

Then, for every k > 1, there hold ey , > 0, €, > 0, and

Tha Oca  f (k) — A"
OeM | o || 0s gup) - B3 |- (3.30)
Thn Axg + Byt —b

a a a 2 V Cado a a 6ozd(]
H(rk,zﬂrk,y7rk,’y)HM < [ €ka T Eky = T (3.31)
where
. a+4(2 - oz)cra7 i 3[3a% +4(1+ 204)206;] [+ 4(2 — a)aa]’ (3.32)
« «

and M, dy, and o, are as in (3.4), (3.5), and (3.15), respectively.

Proof. Note that the inclusions (3.8)-(3.9) are equivalent to

— (GAzy, — A*F) € Of (1), — ((H + gB*B> Ay, + g ;a) B* Ay, — B*:Yk) € 99(yr,).

Hence, by combining Proposition 2.1.1, (3.27) and definition of M, we obtain e = 0,
€ty = 0, and the first two inclusions of (3.30). The third inclusion of (3.30) holds trivially
from (3.10), (3.27) and definition of M. Now, it follows from Theorem 3.2.3 that Algorithm 1
is an instance of the modified HPE where {(z, Zx)} is given by (3.16). Moreover, it is easy
to see that the quantities r{ and €{ given in (2.7) satisfy

a a a a a 1 a a ~a ~
Ty = (Tk,:mrk,yark,'y)? € = 7 Z <M Ay; Ty = Ty — Yo T — ’Yz)> . (3.33)



Hence, from Theorems 2.2.7 and definition of 7y in (3.17), we have
. 2¢/(a+ 4(2 — a)o,)dy . 3[3a +4(1 + 2a)0,][a + 4(2 — a)o,]dg
||Tk||M < ) €k < 3 )
ky/a 203k
where in the last inequality we also used Lemma 3.2.7. Now, we claim that e =¢ef , +¢f .
Using this claim, (3.31) follows immediately from (3.32) and (3.34). Hence, to conclude the
proof of the theorem, it just remains to prove the above claim. To this end, note that (3.28)
and (3.29) yield

(3.34)

a a
gk,m + 6k,y -

1—
{(GAxi, Ty — x;) + <<H + §3*3> Ay; + %B*A%,y;‘i - y1>:|

| =

M- 11

+ (A (g — i) + B (yk — i), =) - (3.35)

=

1
On the other hand, from (3.27), we obtain

<.
I

<Axk + Byk —b— (sz + Byz - b) 71)

T =
-

Z (A(zy — 2) + By — vi), =) =

1

]

< (A:L“Z + By; — b) %>

I
T =
Mw

1

)

11—« 1 ca -
<( )BAyH——A%Wk —%‘>
« af

HM?T

1
k 4
where the last equality is due to (3.10). Hence, the claim follows by combining (3.35), and
the definitions of M and &} in (3.4) and (3.33), respectively. [

Remark 3.2.9 Using the fact that ||M(:)|| < VAum|| - ||ar, where Ay denotes the largest
eigenvalue of M, it follows from the first inequality in (3.31) that
2\/ )\Mcado
. :
Therefore, for a given tolerance p > 0, Theorem 3.2.8 implies that in at most O(1/p)

iterations of Algorithm 1, we obtain an approximate solution (Z,7y,7) and a residual

M1y o Ty ) Nl <

(vz, vy, v5) of (1.7) satisfying
U:reaazf( ) 77 Uﬂeasgg(ZU)_B*:ya U’V:AE—*—Bg_ba
max {[|vz ]|, lvgll . losll, ez, €5} < p-

Hence, Algorithm 1 provides a relaxed p-approximate solution of (1.7) in at most O(1/p)

iterations.
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Chapter 4

An inexact PG-ADMM and its

iteration-complexity analysis

In this chapter, we propose and analyze an inexact proximal generalized ADMM for
approximately solving (1.1). This chapter is associated to [1] and is organized as follows.
In Section 4.1, we introduce the proposed scheme, whereas Section 4.2 contains its
iteration-complexity analysis. Section 4.2 is divided into two subsections. The first one
shows that the proposed method falls within the setting of the modified HPE framework of
Section 2.2, whereas the last subsection establishes its iteration-complexity bounds to obtain

approximate solution of (1.1).

4.1 Inexact PG-ADMM

In this section, we formally state the inexact proximal generalized ADMM for computing

approximate solutions of (1.1).
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Algorithm 2: Inexact proximal generalized ADMM

0. Let an initial point (2o, yo,7) € X x Y x I, a penalty parameter § > 0, two error
tolerance parameters 71,75 € [0, 1), a relaxation factor a € (0,2 — 71), and a

self-adjoint positive semidefinite linear operator H: Y — ) be given, and set k = 1.

1. Compute (T, v;) € X x X such that
vk € Of (@) — Ak, || — 2ier + Bul)® < 7 13k — ot P + 72 180 — 2P, (401)

where
Yo = W-1 — B(AZ), + Byy—1 — b). (4.2)

2. Compute an optimal solution y; € Y of the subproblem

min {g(y) — (Ye—1, By) + gH@(Afk + Byp—1 — b) + B(y — yr—1)|?

yey
]‘ 2
+§Hy — Y1l - (4.3)
3. Set
Ty = Tp—1 — Puk, Ve = V-1 — B a(AZ + Byg—1 — b) + B(yr — yk—1)], (4.4)

and k < k+ 1, and go to step 1.

Remark 4.1.1 Some comments about Algorithm 2 are in order.

(a) Algorithm 2 is an inexact version of Algorithm 1. It is well-suitable in applications in
which subproblem (3.2) is easy to solve whereas (3.1) is not, being necessary therefore to use
iterative methods to approximately solve it. The proposed scheme allows inexact solutions

of the following inclusion (derived from the first-order optimality condition for (3.1) with

G = 11)

. 1
0e 8f(:c) — A (’kal — ﬁ(AI + Byk,1 — b)) -+ E(ZL’ — ‘Ik,l), (45)
such that a relative error condition is satisfied. The error condition used here is similar to
the one studied in [71,72] in the context of a hybrid proximal extragradient method. It
is shown that the new inexact method Algorithm 2 possesses iteration-complexity bounds

similar to its exact version Algorithm 1.
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(b) If ; = 70 = 0, then the inequality in (4.1), combined with the first relation in (4.4),
implies that ¥ = x; and vy = (xx_1 — x)/6. Hence, in view of the definition of 44 in (4.2)
and the inclusion in (4.1), we conclude that xy is a solution of (4.5). Therefore, Algorithm 2
can be seen as a variant of Algorithm 1 in which its first subproblem is approximately solved
using a relative error condition. Now, if xj is a solution of the inclusion in (4.5), then the

pair (Zx, vg) := (xk, (Tg—1 — xx)/F) trivially satisfies (4.1).

(c) It is assumed that (4.3) can be easily solved. On the one hand, if the matrix B in
(1.1) is not the identity, then subproblem (4.3) with the usual choice H := {1 — fB*B with
¢ > B||B*B|| becomes a prox-subproblem

: £ "
_ Sy — 4.6
Y = argmin {g(y) +5lly =9l (4.6)

for some g € Y. In many ADMM applications, g is well-structured (e.g., the ¢;-norm) and
hence the latter problem is easy to solve or even has a closed-form solution. On the other
hand, if B =1 in (1.1), then H = 0 seems to be a natural choice.

Some numerical experiments will be presented in Chapter 6 in order to illustrate the
performance of Algorithm 2. In particular, it is verified that the use of the relaxation

parameter o > 1, specially o =~ 1.9, improves considerably its numerical behavior.

4.2 Iteration-complexity of the inexact PG-ADMM

This section analyzes pointwise and ergodic iteration-complexity bounds for Algorithm 2
to obtain an approximate solution of (1.1). It is divided into two subsections. In the first
subsection, we show that Algorithm 2 can be regarded as an instance of the modified HPE
framework of Section 2.2. The last subsection establishes the iteration-complexity bounds
for Algorithm 2.

In order to show that Algorithm 2 falls within the setting of the modified HPE framework,
we need to define the elements required by Section 2.2. We consider a linear operator M

defined as follows

1
L1 0 0
M=| 0 (H+£pB) L2p*|. (4.7)
et 1
0 Lop LI

It can be easily verified that, for every 5 > 0 and « € (0,2), M is self-adjoint and positive
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semidefinite. Let us now introduce the constant dy given by

do - mf{”(x_xoay_9077_70)”?\/[ : (.T,y,’7> S Q*}7 (48)

where Q* is given in Assumption 2.3.1. Note that, if M is positive definite, then dy measures
the distance in the norm || - || of the initial point (z¢,yo,Y0) to the solution set Q*.

Let {(xk, Yk, Yk, Tk, Yk )} be generated by Algorithm 2 and consider the sequences {z;} and
{Zx} defined by

Zk—1 = (l‘kz—layk’—la’yk—l)7 Zk’ = (i'kaykas/k’)a Vk Z 1. (49)

It will be shown that, for any given p > 0, there exists an index k such that z; is a
p-approximate solution of (1.7) with residue ry := M (zx—1 — z) (see Definition 2.3.2). To
this end, we present two technical results. Note first that, from the definitions of 7, and ~,

given in (4.2) and (4.4), respectively, it follows that

- 1
Ve — k-1 = gB(yk — Y1) + o (e —-1), VE2>1, (4.10)
which, in turn, implies that
) 3 B6B*B B*
|9 — 71471||2 -2 (Y — Yk—1, 7% — kal)lli, where S = : (4.11)
B 17
B
For simplicity, we also consider the following linear operators
1+a2—-a)]BB*B (1+a-—a*)B* fB*B (1 —«a)B*
N = , P= . (4.12)
(14+a—a®)B i (1-a)B  2Ey

It is easy to verify that S, N and P are self-adjoint positive semidefinite linear operators for
every >0 and a € (0,2).

4.2.1 Inexact PG-ADMM in the setting of the modified HPE

framework

This subsection is devoted to show that Algorithm 2 can be regarded as an instance of
modified HPE framework. In order to show this, we first need to establish some technical

lemmas.
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Lemma 4.2.1 Let {2z} and {Z;} be as in (4.9). Then, for every k > 1, the following hold:

5 1 . 1
(B 3 [ s o3 (o = Y1 = Y1) Ix (4.13)
and . .
12k — 2l 3 = 3 |13 — @l|” + pe (e = Yo—1, 76 — Y6-1) || 5 (4.14)

where the matrices M, N and P are as in (4.7) and (4.12).

Proof. Using the fact that Zy — zx_1 = (Zx — Tr—1, Yk — Ys—1, Tk — Vk—1) and the definition of
M in (4.7), we obtain
- 2 L 2 s B
126 — 25-1llar = BHfEk = P+ e = gl + 1B (Y — yi)

2(1 — «)

1
——— (B — Y1), Ve — Ve 1A — v_qlI?.
+ 5 (B(Yk — Yr-1), Y& — Tk 1>+aﬁ“% YVie—1]]

I*

On the other hand, equality (4.10) implies that

N 5 1
(B(Yr — Yr—1), Tk — Vh—1) = EHB(% —ye1)|? + E(B(yk — Yk—1)> Ve — Vh—1)>

and
2

. B 2f 1
15 = eall® = @HB(yk —yr—)|1* + g(B(yk = Yk—1), Yk — Vk-1) + @H% — Ye|®
Combining the last three equalities, we find

_ 1, 1 21-a) 1
2 2 2
o = sl 2 1 = auca P+ (5 + 25524 1) 51— o)

WEETE

1
— | (B(yr — yp_ — Vi — S|
S+ ag) (B(Yx — Yr—1), 7% — W—1) + a35||% V-1l

Thus, (4.13) follows from the last equality and the definition of N in (4.12).
Let us now prove (4.14). Using Zx — 2, = (T — Tk, 0, 7% — V) (see (4.9)) and the definition
of M in (4.7), we have

1 1
~ 2 ~ 2 ~ 2
Zr — Zk = =Tk — Tk||” + — |V — VeIl
I I = 3l 1"+ 25! I
It follows from (4.10) and some algebraic manipulations that
s 32 2(1 —a)p
=0 = T~ el + 2B g ) e~ )

(1—a)

+ T2 e — -1l

Therefore, the desired equality now follows by combining the last two equalities and the
definition of P in (4.12). |
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Lemma 4.2.2 Let {2z} and {Zx} be as in (4.9). Then, for every k > 1,
M (Zk,1 — Zk) S T(ék),
where T and M are as in (2.11) and (4.7), respectively.

Proof. This result follows directly from Lemma 3.2.1 with G = %I and Zj replaced by

(‘%lm Yk ’?k’) . [ |
The proof of the next lemma is similar to the one of Lemma 3.2.2. We present it for the

sake of completeness.

Lemma 4.2.3 Let {(xg, yr, 1)} be generated by Algorithm 2. Then, the following hold:
(a) 2(B(y1 — %), —v0) = lly1 — ?/0||%1 — 4dy, where dy is as in (4.8);
(b) 2Bk — Yr—1), Ve — Ye-1) = Nk — ve—1ll3r = lyn—1 — ye—2ll3y, for every k > 2.

Proof. (a) Consider zp, 2, and Z; as in (4.9), and let an arbitrary z* := (2*, y*,v*) € Q* (see
Assumpiton 2.3.1). Note that, in view of the definition of dy in (4.8), in order to establish

(a), it is sufficient to prove that

O = lly1 — yollzr — 2(B(y1 — %o), 11 — Y0) < 4]|2* — 2034, (4.15)

where M is as in (4.7). Let us then show (4.15). From the definitions of M and {z}, we

have

1 g
121 = zoll3 = EH% = @ol” + llyr = wollzr + 1B = v0) I
2(1 — ) 1
+ =——(B(y1 — v0): 11 — ) + —= 71— 0l?
« af

1 2

= L ol + 0.+ H%B@l - )+ <m0

Hence, we obtain
O < [l — 20lly < 2 (12" = 23 + 12" = 20ll3) - (4.16)
where the last inequality is due to the second property in (2.1). We will now prove that
12 = 2113 < Nlz" = 20l - (4.17)
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From Lemma 4.2.2; we have M(zyp — z1) € T(Z;) where T and M are as in (2.11) and
(4.7) respectively. Thus, using the fact that 0 € T(z*) and T is monotone, we obtain
(M (29 — z1), 2" — Z1) < 0. Hence,

12" = 213 = 112" = 2olly = (2" = 21) + (B — 20) |l — 12" = 21) + (21 — 20) [l
=21 = 21lliy + 2(M (20 — 21), 2" = 1) = |21 — 2013y
<& = alli = 12 = 23
Using (4.14), the inequality in (4.1), and the first equality in (4.4) (all with & = 1), we have

T1

. - Ty |\~ 1
21 = 2By < 720 =l + 7 1 = 2ol + o N = o = 0

where P is as in (4.12). Now, (4.13) with k£ = 1 becomes
~ 2 1. 2 1 2
120 = 2ol = 121 = zoll” + —5 (41 = v0, 71 = 70)lly

where N is as in (4.12). Combining the last three inequalities and the fact that 7 < 1 (see
Algorithm 2), we find

. 2 . 9 _T1- 9 1 2 2
12" = 21|35 — Iz —20||M§E||71—70|| +$(||(y1—yo7%—%)||p—||(?J1—yo,71—70)||1v)
2—a||

T
= El 151 = Yoll® = (1 — Yo, 1 — ) |I3 (4.18)

o

where the last equality is due to the fact that P — N = —a(2 — a)S, with S given in (4.11).
The last inequality, (4.11) with & = 1 and the fact that a € (0,2 — 1) yield

. . a+T1 —2
o = 2l = 1" = 2ol € —5— w1 =0, =205 <0,

which implies that (4.17) holds. Therefore, (a) now follows by combining (4.16) and (4.17).
(b) The proof of this statement is the same as the last part of the Lemma 3.2.2. |
Now we are ready to show that Algorithm 2 is an instance of the modified HPE framework.

We consider the following quantities

1 1
a::max{%,ﬁ} and ¢ = —fo(l+a—a’)+(l-m)a—1]. (419

Note that, in view of the assumptions on «, 7 and 75 in Algorithm 2, we trivially have

o € (0,1) and £ > 0. Furthermore, if 7y = 75 = 0, we have ¢ = 0, where 0, is as in (3.15).
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Theorem 4.2.4 Let {2z} and {Zx} be as in (4.9). Consider {n;} defined by
no = 4€dy, m=Ellyk —veallf, VE>1, (4.20)
where dy and & are as in (4.8) and (4.19), respectively. Then, for every k > 1,
M (zk-1—2) €T(Z), llze = Zellar + e < ollon-r = Zll3s + mer, (4.21)

where T, M and o are as in (2.11), (4.7) and (4.19), respectively. As a consequence,
Algorithm 2 is an instance of the modified HPE framework with o < 1.

Proof. The inclusion in (4.21) follows from Lemma 4.2.2. Let us now show the inequality in
(4.21). Using (4.14) and the first relation in (4.4), we have

N 1, . 1
12k — 2ll3; = 3 ik — zpo1 + Buel” + pe (v — Yr—1, 76 — Y1) >
Tl ~ T2 | ~ 1
< 3 13k = Yr-all” + 3 3% — zpa|” + e Wk — Yre1s W — Vo) ||,

where the inequality is due to the second condition in (4.1). It follows from the last inequality,
(4.13) and the fact that ¢ > 75 (see (4.19)) that

ollzk = zi-1llhy — 12k — 2l > a (4.22)
where
) 71~ 2 1 2 2
ay = 5 1Yk — Ye—1ll” + o3 (o 1wk = yr—1, 76 = =) Iy = 1wk = Yk—1, % — Ye-1)llp) -
We will show that a, > n — n—1, where the sequence {7} is defined in (4.20). From (4.11),

we find

1 |1~ 2 _ 1 2
E 1% — —all” = o3 (ke — Y1,V — ’Yk—1)||cms7

which, combined with definition of ay, yields

1 2
ak = 5 ||(yk — Yk—-1,7k — ryk—l)HaN—anS—P ’

Hence, using the definitions of N, S and P in (4.11) and (4.12), we obtain

ai = % (éﬁ”B(Z/k — ykfl)Hz + 26 (B(Yk — Yr-1), Yk — Ve-1) + %H% - ’7k1||2> , (4.23)

where

~ ~

¢ =o(l+a(2—a))—ar—1, &=o(l+a—a®)+(1-n)a—-1, &=oc—an—(1—a)’ (4.24)
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Now, from the definition of o given in (4.19), we obtain o > (1+am)/(14+a(2—«)). Hence,
é > (0 and
&> _dtonm
1+ a(2—-a)
where the last inequality is due to the fact that a € (0,2 — 7). Moreover, since o € (0, 1)
(see (4.19)), we find

a?2—1—a)2—a)
1+ a2-a)

—an —(1—a)? = >0,

t=c(l+a—-a)+a—-na—-1>c(l+al2-a))—an —1=¢.
Thus, &€ > £ >0, and € > 0. Hence, from (4.23) and Lemma 4.2.3, it follows that

1

2¢ — (€llyr = wolly — 48do) k=1,
ap > e (B(Yk — Yk=1), Y — Vh—1) = 1 ) )
(E Nk — vl — € k-1 — n—2llzy) . k> 2,

which, combined with the definitions of {n,} in (4.20), yields ay > 1y —ng_1 for every k > 1.

s

Hence, the desired inequality now follows from (4.22).
[

4.2.2 Iteration-complexity bounds for the inexact PG-ADMM

We next establish the iteration-complexity for Algorithm 2 in order to compute an
approximate solution of (1.1).  First, we present a pointwise iteration-complexity
bound and subsequently we derive an ergodic iteration-complexity bound to obtain a
relaxed approximate solution of (1.7) in the sense of (1.9). We mention that the
pointwise iteration-complexity bound presented in Theorem 4.2.5 can also be derived from
Theorem 4.2.4 combined with Theorem 2.2.4. However, we decide to present a direct and

easy to follow proof, for completeness and convenience of the reader.

Theorem 4.2.5 For a given tolerance p > 0, Algorithm 2 generates a p-approrimate
solution (Z;,y;,7%;) of (1.7) with an associated residue r; = M(z;_1 — z;) in at most O(dy/p?)

iterations, where {z;} and dy are as in (4.9) and (4.8), respectively.

Proof. First note that, in view of the inclusion in (4.21), we have ry := M(z;_1 — 2) is a
residue to the inclusion in (2.12) associated to Zx, for every k > 1. Let Ay be the largest
eigenvalue of M in (4.7). Hence, combining the definition of r, the inequality in (4.21) and

simple algebra, we obtain

Im6l1? < Aullze—1 — zell3r < 22 [ll2e=1 — Zell3s + 1126 — 2ell3]

< 20w (0 + Dllzr-1 = 23 + e — ] (4.25)

40



for every £k > 1. From Proposition 4.2.4, Algorithm 2 is an instance of the modified HPE
framework with {(zx, Zx)} and {n} given in (4.9) and (4.20), respectively. Then, it follows
from Lemma 2.2.3(b) and (4.25) that, for every z* := (z*,y*,7*) € QF,

: 2\
> Il < Z [0+ 1) (lzk—1 — 2113 — llze — 2*[130) + 20m—1 — )]

< 2
k:l
2 .
< 2 (o 1)llzo — 2[R, + 2m)

which in turn, in view of the definitions of dy and 7y given in (4.8) and (4.20), implies that

there exists a scalar ¢ > 0 such that
> lrell* < edo. (4.26)
k=1

In particular, the latter inequality implies that {ry} converges to zero. Hence, let i be the
first index in which ||r;|| < p (which is equivalent to say that Z; is a p-approximate solution
with residue r;). Note that if i = 1, then the statement of the theorem trivially follows. Now
assume that ¢ > 1. It follows from (4.26) that

i—1
(i —1)p* <D lIrell* < edo
k=1
and hence i = O(dy/p?), concluding the proof of the theorem. |

The next theorem presents the ergodic iteration-complexity bound for Algorithm 2.

Theorem 4.2.6 Let {(zk,Yr, V&, Tk, Jx)} be generated by Algorithm 2 and consider the
sequences { (2, yi, Vi, T, 7¢)} and {ri} defined by

wl»—t
?rl»—k

(xkv yka 'Yka :Bka 'Vk;

k k
Z (T4, Yis Yir Tis Vi) » Z Zi1 — Zi) (4.27)

where {2} is as in (4.9). Then, for every k > 1, there exist f €4, > 0 such that the

following relations hold

Mri e (85%1]‘(:2’%) — A", O 9(yi) — B*Y, ATy + Byg — b) (4.28)
Vid vd
Il < == max{el . ef,} < (4.29)

where M and dy are as in (4.7) and (4.8), respectively, and 9 is a positive scalar depending

on (a, T, 72) and the largest eigenvalue of M.
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Proof. First of all, define (v, w;, w;) = M(z;_1 — 2;) for every i > 1. Hence, it follows from
Proposition 4.2.4, (2.11), and (4.7) that

On the one hand, from the above equality and (4.27), we have

wIH

k
}: = A% + By —D. (4.31)

Now, in view of the inclusions in (4.30), it follows from (4.27) and Proposition 2.1.1 that the
sequences {ef .} and {e}  } defined by

k k
1 *~ ~a 1 * ~ a
kw’l? = EZ 'Uz+A 7i7xi_xk>7 EZ u’L_'_B ﬁ}/lvyl_yk>7 (432)
are nonnegative and
i i
S vy f@3) - AT Y i€ g glul) - B (4.33)
i=1 i=1

The inclusion in (4.28) follows from (4.31) and (4.33) and the fact that Zle(vi,ui,wi) =
M (29 — 2). Therefore, the proof of the existence of the elements €} &%, > 0 such that
(4.28) holds is completed.

Let us now prove that (4.29) holds for e} , and e , as defined above. Since Algorithm 2
is an instance of the modified HPE framework with ¢ < 1 (see Proposition 4.2.4), using

Theorem 2.2.7, we have

”,r,zz” 2\/d0+770 e < 3(3_ 20)(d0+770)
MM = koo = 21—k

(4.34)

where

k
Z Zl 1 — ,Zi — 5Z> s (435)

ETQ
?rli—

with {Z} given in (4.9) and 3 := (&%, y¢,3¢). It is well-known that [[M7¢]]> < A |72,
where \j; is the largest eigenvalue of M. Hence, using the first inequality in (4.34) and
the definition of 7y in (4.20), we conclude that the bound on ||M7¢|| in (4.29) holds with
U =11 =4 (1 4 4€). It remains to show the second estimate in (4.29). Using (4.32), we
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have

€ T Ehy = <<Uia Ty — ) + (wi, ¥ — yi) + G, AT — AZy, + By — Byi@)

| =
M-

=1

(Gon, 6 — 80 + Gy s — 93) + (G — )

I
S
M-

1

7

where the last equality is due to the definitions of w; and w{ in (4.30) and (4.31), respectively.
Additionally, the definitions of w;, wg and 5 imply that

K K k
> Gy wi — Z — A8 w; — w Z w;, A —
=1 i=1 i=1

Therefore, since 2; = (i, yi, vi) and M (zi—1 — z;) = (vi, wi, w;), it follows that e} , +¢f | = ef,

| =
wl»—k
wIH

where ¢§ is given in (4.35). Hence, using the estimate on e§ given in (4.34) and the definition
of mo in (4.20), we conclude that the second inequality in (4.29) holds with ¥ = ¥y :=
3(3 —20)(1+4£)/2(1 — o). Therefore, the estimations in (4.29) trivially follow by defining
Y = max{d;, 95} [

Remark 4.2.7 It follows from Theorem 4.2.6 that, for a given tolerance p > 0, in at most
k = O(max{y/dy,do}/p) iterations, the triple (7¢,y%, 7¢), together with r{, satisfies the
inclusion in (4.28) with ef ,ef > 0 and max {||Mr{|| ¢, e, } < p. Hence, the triple
(Z%, yg, A%) can be seen as a relaxed p-approximate solution of (1.7) with residue (vz, vy, v5) =
Mr¢ in the sense that the inclusions in (1.7) are relaxed by using the e-subdifferential
operator instead of the subdifferential (see (1.9)). Therefore, Algorithm 2 provides a relaxed
p-approximate solution of (1.7) in at most O(1/p) iterations. It should be mentioned that
the quantities ef , and ef , can be explicitly computed (see (4.32)). Their expressions are

not explicitly stated in order to simplify the statement of the theorem.
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Chapter 5

An inexact proximal ADMM and its

iteration-complexity analysis

In this chapter, we propose and analyze an inexact proximal ADMM for computing
approximate solutions of (1.1). This chapter is related to [3] and is organized as follows.
In Section 5.1, we introduce the proposed method and discuss its relationship with other
ADMM variants. Section 5.2 is devoted to the iteration-complexity analysis of the proposed
scheme. This section is divided into two subsections. The first one shows that our scheme
falls within the setting of the modified HPE framework of Section 2.2, whereas in the last
subsection, we establish the iteration-complexity bound for the proposed scheme in order to

obtain an approximate solution of (1.1).

5.1 An inexact proximal ADMM (P-ADMM)

The inexact proximal ADMM proposed here is described as follows.
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Algorithm 3: Inexact proximal ADMM

0. Let an initial point (2o, yo,7) € X x Y x I, a penalty parameter § > 0, two error
tolerance parameters 71,75 € [0,1), and a self-adjoint positive semidefinite linear

operator H: ) — ) be given. Choose a stepsize parameter

e

and set k = 1.

1. Compute (vg, Tx) € X x X such that
v, € Of(Tr) — A", |2k — zr—1 + Boel® < 1ullAk — Wer P + 2|3 — 2 ||?, (5.2)

where
Ve = Ye—1 — B(AZy, + Byp—1 — b), (5.3)

and compute an optimal solution y, € ) of the subproblem

| 81 !
win {900) — (ucss B0} + S 145+ By =P+ Gy - il ). (60

2. Set
T = Tp—1 — Pk, Vi = Vi—1 — 08 (AT + Byp — b) (5.5)

and k < k+ 1, and go to step 1.

Remark 5.1.1 Some remaks about Algorithm 3 are in order:

(a) If m = 7 =0, then T = 2 due to the inequality in (5.2) and the first relation in (5.5).
Hence, since vy = (zx_1 — xx) /3, the first subproblem of Step 1 is equivalent to compute an

exact solution x; € X of the following subproblem

. 1
i {f(fv) ~ er. Ax) + D Ax 4 By — bl + e xk_1||2} C656)

and then Algorithm 3 becomes the proximal ADMM (1.5) with stepsize parameter 6 €
(0, (1++/5)/2) and proximal terms given by (1/3)I and H. Therefore, the proposed method
can be seen as an extension of the proximal ADMM (1.5) in which subproblem (5.6) is solved

inexactly using a relative approximate criterion.

(b) Subproblem (5.4) contains a proximal term defined by a self-adjoint positive semidefinite
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linear operator H which, appropriately chosen, makes the subproblem easier to solve or even
to have closed-form solution. For instance, if H = sI — 8B*B with s > || B||?, subproblem
(5.4) is equivalent to

: s __2}
I;lelg{g(y)+2||y yll* ¢,

for some y € ), which has a closed-form solution in many applications. For example, if
g(+) = || - ||1, then to solve the above problem corresponds to evaluating the well-known
(explicitly computed) thresholding operator, see (6.5); we refer the reader to [6,62] for other

examples in which the solution of the above proximal subproblem can be explicitly computed.

(c) The use of a relative approximate criterion in (5.4) requires, as far as we know, the
stepsize parameter § € (0, 1]. However, since, in many applications, the second subproblem
(5.4) is solved exactly and a stepsize parameter § > 1 accelerates the method, here only the

first subproblem is assumed to be solved inexactly.

(d) The inexact proximal ADMM is close related to [29, Algorithm 2]. Indeed, the latter

method corresponds to the former one with H = 0, # = 1 and the following condition

28(@ — w1, vr)| + Blvell® < 71l — el (5.7)

instead of the inequality in (5.2). Numerical comparisons between the inexact proximal
ADMM and [29, Algorithm 2] will be provided in Chapter 6.

Some preliminary numerical experiments to illustrate the advantages of Algorithm 3 are

reported in Chapter 6.

5.2 Iteration-complexity of the inexact P-ADMM

In this section, we present an iteration-complexity analysis for the inexact proximal ADMM
in order to obtain approximate solution of (1.1). As previously mentioned, our analysis
is done by showing that it is an instance of the modified HPE framework for computing
approximate solutions of the Lagrangian system (1.7). Thus, we need to introduce the
elements required by the setting of Section 2.2. Namely, consider the self-adjoint positive

semidefinite linear operator

1/B 0 0
M=| 0 (H+8BB) 0 |. (5.8)
0 0 1/(08)
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In this setting, the quantity dy defined in (2.6) becomes

do = inf {||(z — 20,y — yo.7v — )3 : (z,9,7) € T(0)}, (5.9)

where T is as in (2.11).

5.2.1 Inexact P-ADMM in the setting of the modified HPE

framework
Our main goal in this subsection is to show that Algorithm 3 falls within the setting of
the modified HPE framework. We start by presenting a preliminary technical result, which

basically shows that a certain sequence generated by Algorithm 3 satisfies the inclusion in
(2.5b) with 7" and M as in (2.11) and (5.8), respectively.

Lemma 5.2.1 Consider (g, yr, Vi) and (Tg, k) generated at the k-iteration of Algorithm 3.

Then,
Sy = ) € 0f(@) - A5 (5.10)

(H + BB*B)(Yr-1 — yx) € 09(yr) — B* ¥, (5.11)

%(%1 — ) = Ay + By — b. (5.12)

As a consequence, z, = (Tr, Y, Vi) and Zx = (Tk, Yk, Yr) Satisfy inclusion (2.5a) with T and
M as in (2.11) and (5.8), respectively.

Proof. Inclusion (5.10) follows trivially from the inclusion in (5.2) and the first relation in

(5.5). Now, from the optimality condition of (5.4) and the definition of 7, in (5.3), we obtain
0 € 99(yx) — B k-1 + BB (AZy, + By, — b) + H(yx — yr—1)
= 09(yx) — B*[y—1 — B(ATy + Byr—1 — )] + BB*B(yx — yr—1) + H(Yr — Yr-1)
= 09(yr) — B + BB"B(yx — yu-1) + H(ye — yr-1)-

which proves to (5.11). The relation (5.12) follows immediately from the second relation
in (5.5). To end the proof, note that the last statement of the lemma follows directly by
(5.10)—(5.12) and definitions of 7" and M in (2.11) and (5.8), respectively. |

The following result presents some relations satisfied by the sequences generated by the
inexact proximal ADMM. These relations are essential to show that the latter method is an

instance of the modified HPE framework.
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Lemma 5.2.2 Let {(xk,yr,ve)} and {(Zx,Y)} be generated by Algorithm 3. Then, the
following hold:

(a) for any k > 1, we have

N 1-46
(’Yk_f)/k—1>+BB(yk_ykfl)a Ve =V = —(’Yk—%fl)JrﬁB(yk—ykfl);

Ve —Vk—1 = 9

| =

(b) we have
1H — 50|13 —L<B( — %), —Y0) < 2m 1 b d
9 Y1 Yoll g \/@ Y1 Yo), M Y, > ax 99 05

where dy is as in (5.9);
(c) for every k > 2, we have

1 1-0

g (Ve — Ye-1,B(Yr — Yr—1)) > 5 (V-1 — Vo—2,B(Yr — Y-1))

1 1
+ §Hyk — Y13 — §Hyk71 — Yrall3-

Proof. (a) The first relation follows by noting that the definitions of 44 and v in (5.3) and
(5.5), respectively, yield

- - 1
Vi — Y1 = —B(AZy, + Byp—1 — b) = 5(% — Yk—1) + BB(Yr — Yr—1)-
The second relation in (a) follows trivially from the first one.
(b) First, note that

2

1 1
0< % H%(’Yl — %) + BB(y1 — yo)
= =0l + —= (Bl — 90),m — 0} + 2Bl — o)l
203 Y1 — Y0 \/5 Y1 —%Yo), 71— V0 5 Y1 —Yo)ll >
which, for every z* = (z*,y*,7*) € Q*, yields

(B(y1 — %0),71 — Y0)

Sis

1 2
5”91 - y0||H -

<

DN | —

1
(nyl ~ oll + gl =0l + BB —yo>||2)
<l — 512+ o — 57 1% + =l — 77112+ = o — 712
< 03 03

+ BBy — y*)I* + Bl B(yo — y*)II,
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where the last inequality is due to the second property in (2.1). Hence, using (5.8), we obtain

Sl = wolly = -
92 U1 Yollg \/a
where zy = (xo,%0,7) and 21 = (x1,%1,7). On the other hand, from Lemma 5.2.1 with
k =1, we have M(z9—z1) € T(Z1), where Z; = (Z1,y1,%1) and T'is as in (2.11). Using this fact
and the monotonicity of T, we obtain (2; — 2*, M (29 — 21)) > 0 for all z* = (z*, y*, 2*) € Q*.

(B(y1 — o), 71 — 0) < |lz1 — 2*|[3s + |20 — 2*|13s, (5.13)

Hence,

12" = 20ll3 — 12" = 21ll3r = 1120 = 20ll3r — 1210 = 21013 + 2(21 — 27, M (20 — 21))

> 1|20 — zoll3 — 1121 — z1ll3s- (5.14)

It follows from (5.8), item (a), and some direct calculations that

1 2 1 ~ 2
||Zl leM - 6”xl 1'1” + 95"’}/1 71”
1

1—6 2
= Lo - mlf + 55 H—(% ) + BB — )
1 1
= Lo -l + ( P s =l + 21y~ ol
+ M(B(yl —Y0),71 — V0)- (5.15)

92
Moreover, (5.8) and item (a) also yield

s L, . _
121 — zoll3 = =181 — woll” + [lvr — yOH%,BB*BJrH) + %H% —ll?

g
1 Ti - 1—m0 |1
> Sl + 81Bn )l + 15 =l + 2522 201 =)+ 55—

14+ (1—m)0 1—mn6
I+ Oy, — 24 L2 oy =l

2

1

EHﬂfl — aol* + —HV — 0
(1 — 719)

+T

Combining the above two conclusions, we obtain

DO

(B(y1 — 90): 11 — 70)- (5.16)

- - 1, - -
121 — ZOH?\/[ — |z = Zl”?w > B (H331 - l’OHQ — || — 951H2 + 7|1 — WOHZ)
2

-0 - 21 —
Tﬁ I + M<B(yl —90), 11 — o). (5.17)

71— 9
Now, note that the inequality in (5.2) with & = 1 and the definition of z; in (5.5) imply that

+ (1= 7)BIB( — yo)lI* +

0 < nllZy — zol|* — |71 — @1l + 7151 — 7ol
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which, combined with (5.17) and 7 € [0, 1), yields

121 — 20ll3s — 121 — 2113
> (1—7)8|B(y1 — vo)||* +

1-40
= WH% —Yll* + (1 —7)

Hence, if 8 € (0, 1], then we have

2—-0-r1 2(1 -7
TH% —7l* + %(B(yl — %), — o)

2
’\/BB(yl_yO)-i- L0

> — 7|2
= 562 71— oll

1
m(% - %)

120 = zoll3r — 1120 — 21ll3, = 0,
which, combined with (5.14), yields
lze = 213 < llzo — 2713 (5.18)
Now, if # > 1, then we have

- . 0—1
121 — 213 — 121 — 2o0ll3s < WH% —oll?

2(9—1) 1 %112 1 * (12
< — _ _ _
< 202D (o= gl =l
_20-1)
- 0

(20 — 2" l13s + llz1 — 2"[I3] (5.19)

where the second inequality is due to the second property in (2.1), and the last inequality
is due to (5.8) and definitions of zy, z; and z*. It follows from (5.1) that 6 < (1 ++/5)/2, in
particular, # < 2. Hence, adding (5.14) and (5.19), we obtain

. 30— 2 )
|21 — 2*|13; < HHZO — 2|3

Thus, it follows from (5.18) and the last inequality that

30 — 2
o = 1By < ma {1, 52 o = 21 (5:20)

Therefore, the desired inequality follows from (5.13), (5.20) and the definition of dy in (5.9).
(c¢) From the optimality condition for (5.4), the definition of 4% in (5.3) and item (a), we
have, for every k > 1,

99(yr) > B* (% — BBk — yk—1)) — H(yr — yr—1) = %B*(’Yk — (1= )v—1) — H(Yx — Y1)
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For any k > 2, using the above inclusion with k <— k£ and k£ < k — 1 and the monotonicity
of 0g , we obtain

(B* (v — Yk—1) — (1 = 0) B*(Vk—1 — Vk—2)s Yk — Yr—1)

| =

> (H(yr — Ye-1)s Yk — Yk—1) — (H (Yb—1 — Yk—2), Yk — Yk—1)
1
§||yk — Yk— 1||H - —||yk 1~ Y- 2||H>

where the last inequality is due to the first property in (2.1), and so the proof of the lemma
follows. |

We next consider a technical result.

Lemma 5.2.3 Let scalars 7,7 and 0 be as in step 0 of Algorithm 3. Then, there exists a

scalar o € [12,1) such that the matrix

o= o—14(0c—m)0 ~l(T =)o = 14 (1 = m)d]] (5.21)
A= —1+A-m)f]] o—1+(@2-0-n)0

1s positive definite.

Proof. Since 7, and 6 are fixed scalars given in step 0 of Algorithm 3, the determinant and
trace of L are polynomial functions of ¢ denoted here by ®(¢) and ®(c), respectively. It is

easy to see that
(1) =0*1—mn) [-(1—m)0* + (1 —2m)0+1], (1) =[3-2r —0)06.

Note that the upper bound on 6 given in (5.1), namely,

j._l=2n+ V(I —27)2+4(1 —7)
T 2(1 — 1)

corresponds to the positive root of the quadratic ¢(8) = —(1 — 7,)0? + (1 — 271)0 + 1, which
appears in the expression of ®(1). Hence, since 71 € [0,1) and 6 € (0, é), we can conclude
that ®(1) > 0. Now, by using 7 € [0,1) and some simple algebraic manipulations, it can
be verified that § < 3 — 27y, which, combined with the fact that € (0,6), yields ®(1) > 0.
Therefore, there exists & € [0,1) such that ®(¢) > 0 and ®(¢) > 0 for all ¢ € [, 1), which
in turn implies that L := L(o) is positive definite for all o € [6,1). The statement of the
lemma follows now by choosing 0 = max{,,5}. |

In the following, we show that the inexact proximal ADMM can be regarded as an instance
of the modified HPE framework.
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Theorem 5.2.4 Let {(zx, Y, )} and {(Tg,7%)} be generated by Algorithm 3. Let also T,
M and dy be as in (2.11), (5.8) and (5.9), respectively. Define
4o —1 1-

o =14 (1 —m)0] i { 7

93/2 1, m} > T = ,udo (522)

20 = (x07y0770)7 M=
and, for all k > 1,

2k = (T Yo Ve, 2k = Tk, Yo, o), (5.23)

o—14+(2-0-7)0 o—-1+(1—-7)f
e B R PR E LR T PN AR CEY

where o € [Ta,1) is given by Lemma 5.2.3. Then, (zy, Zk, i) satisfies the error condition in
(2.5b) for every k > 1. As a consequence, the inexact proximal ADMM is an instance of the
modified HPE framework with o < 1.

Proof. First of all, since 0 < 1 and the matrix L in (5.21) is positive definite (in particular,

l11 is positive), we have
c—1+(1—=7)0 >[c—1+4 (0 —m)0] =111 > 0. (5.25)

Now, using (5.8) and definitions of {2} and {Z;} in (5.23), we obtain

- 1. . 1 .
126 — 26113 = EHZ‘k — z1 P+ Ny — ve—all3r + BIB(ye — yi—r)||* + @H% — Ye|l?,

1 1
z 2 =, 2 ~ 2
Hence,

N N 1 N . .
ollze — ze-1ll3 — 1126 — 2ell3 = 3 (ol|@r — zp—1l]* = 112 — @ll? + 71l — Y1)

oc—16  _ 1 ..
B91 13 = -1 l” — @H% —l”. (5.26)

+0llye =yl + oBIByr — yr-1) I” +
Note that the inequality in (5.2) and definition of xj in (5.4) imply that
0 < 7ol|Zx — 2pal® = 20 — 2]l + 7l — Y1 |1®

which, combined with (5.26) and the fact that o > 7, yields

ollzk — zu-1ll3r — 112 — 2ll3 = ollye — ye—1ll7r + o Bl Bys — ys—1)|?

o—T10 9 1 . 9
— Ve - — — ) 2
50 ¥ — V1] MH% YllF. (5.27)
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On the other hand, it follows from Lemma 5.2.2(a) that

59 H%—% 1? - |I%—%H2

2
0—7'1(9

= H (Ve — Ye—1) + BB(yr — ye—1)

—— (Y — k1) + BB(yr — Yr—1)

——HH

0-_]-"‘ 2 0 o — 1

- (593 n)9 ’|7k—7k—1|| —i—( 7 ||B(yk_yk 1)”2
200 —1+(1—m7)0

+ | 92( Y ]<'Yk—”7k—1aB(yk—yk_1)>.

Hence, combining the last equality and (5.27), we obtain

ollZ—ze-1l13 — 1126 — 213 = ollye — ye—1 |

R L L
pAo ] +92(1 e Bl — ). (5.28)

We will now consider two cases: k=1 and k > 1.

Case 1 (k =1): Since [0 — 1+ (1 —71)0] > 0 (see (5.25)), it follows from (5.28) with k =1
and Lemma 5.2.2(b) that

~ - oc—1+(1—-7)0
ola=zall o~y 2 |o + EE B Z P o
c—14+(2—-0—1)0 c—14+(c—m1)0
o Oy g+ =D gy, 2
4o =1+ (1 —m)b] 0
— 32 max 12 7 do

which, combined with definitions of 79 and 7, in (5.22) and (5.24), respectively, yields

7= =) iy - ol

oc—1+(1—m)0 o—1+(1—m7)0
s oy Em it Qoml o L QoA g,

ol — 2l — 117 — 23 + 10 —m >
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From the last inequality and some algebraic manipulations, we obtain

allz1 — 20ll3; = 1Z2i—213 + 70 — m

o1+ (o= n)d) (ﬁnB@l —y0)lI? + %Hw - yo“?f>
l—0 J[o—14(1—m)f 2
o e e O
o1 +éa — 1)t (BHB(% —yo)|I? + %Hyl — yonq)
LA TEULS UV (5:29)

Using (5.1), we have 8 €0, (1++/5)/2[ which in turn implies that (1++/6 —6) > 0. Hence,
inequality (2.5b) with & = 1 follows from (5.25), (5.29) and the fact that o < 1.

Case 2 (k > 1): Since [0 — 1+ (1 — 7)0] > 0 (see (5.25)), it follows from (5.28) and
Lemma 5.2.2(c) that

o0 —1+(1—m)b]
0

ollZe—ze-1l13 — 1126 — 213 > (lye — ye-1ll7 = Nlye—1 — ye—2ll%)

. Ly AL AR R
Nt e e e VL PO

62

which, combined with definition of {n;} in (5.24) and the Cauchy-Schwarz inequality, yields

ollZr—zr-1l13 — 13 — zll3s + e—1 —

L A Tt
A T, el B~ )

1 <L VBB w0l | | VBB — ui) >

-1 — Ye—2[l/0v/B 16-1 = -2l /OVB
where L is as in (5.21). Therefore, since L is positive definite (see Lemma 5.2.3(b)), we
conclude that inequality (2.5b) also holds for k& > 1.

To end the proof, note that the last statement of the proposition follows trivially from the
first one and Lemma 5.2.1. [ |
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5.2.2 Iteration-complexity bounds for the inexact P-ADMM

We are now ready to establish pointwise and ergodic iteration-complexity bounds for the

inexact proximal ADMM in order to obtain an approximate solution of problem (1.1).

Theorem 5.2.5 Consider the sequences {(zk, Yg, v&)} and {(Zx, %)} generated by Algorithm 3.
Then, for every k > 1,

5@k — ) Of (T) — A%
(H + BB B)(yr—1 —yr) | € | d9(yr) — B*Fk (5.30)
35 (k-1 — 1) AZy, + Byp — b

and there exist o € (0,1) and i < k such that

1 1 \/_ (1+0)+4u
<E||37z‘—1’z‘—1||2+ lyi — Yi1llfu s sme5) +@||%‘ —%'—1||2) \/ o
where dy and p are as in (5.9) and (5.22), respectively.
Proof. This result follows by combining Theorem 5.2.4 and Theorem 2.2.4. |

Remark 5.2.6 For a given tolerance p > 0, Theorem 5.2.5 ensures that in at most
O(1/p?) iterations, Algorithm 3 provides an approximate solution (Z,7,4) of the Lagrangian

system (1.7) together with a residual r := (r,, r,,7,) in the sense that

1
Gre €0F(@) =A™ (H+ BB B)ry € 99(3) — B, 59 r, = A + Bj — b,

and ||(r4,7y,7)||m < p, where M is as in (5.8). Note that, for a given tolerance p > 0, the
above relations are equivalent to (1.8) with (vz, vy, v5) = Mr, p := p/+/Au, where Ay is
the largest eigenvalue of M, and the fact that ||M(-)|| < v/Aum|| - ||as. Therefore, Algorithm 3

provides a p-approximate solution of (1.7) in at most O(1/p?) iterations.

Theorem 5.2.7 Let the sequences {(xx, yx, i)} and {(Zx, Jx)} be generated by Algorithm 3.

Consider the ergodic sequences {(x¢,ys, v}, {(Z¢, 38}, {(r,‘;m,r,‘;’y,rgﬁ)} and {(52@,6%&)}
defined by

k
Z Tza:arzyarzw (531)

=1

(xkv yka ’ykvwkv ’Yk

wl»—‘

k
E xzayivviaxiavi)7 (’rk;xarkya
=1

NI»—k

k
1 * ~ ~ ~Q * * a
(5kx7 ky = EZ sz/ﬁ—i—A Viami_xk>v<(H+/BB B)Tiyy—i_B ’Viayi_yk»v (532)
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where
(Tz‘,mﬂ“i,y, 7“1‘,7) = (371'71 — Ty, Yi—1 — Yi, Yi-1 — %‘)- (5-33)

Then, for every k > 1, we have €, ., &%, > 0,

5 O f(E7) — A*Ag
(H+ BBy, | €| 0 o) — B3 |- (5-34)
oTh AT + By — b,

and there exists o € (0,1) such that

1 a a 1 a 2 2 (1 + /,L)do
(Sl + It + gl l?) < AR as)

and
3(3—20)(1+ u)dy

2(1 — o)k ’ (5.36)

Eha T Ehy <
where dy and v are as in (5.9) and (5.22), respectively.

Proof. By combining Theorem 5.2.4, the definition of 7y in (5.22), and Theorem 2.2.7, we
conclude that inequality (5.35) holds, and

3(3 — 20)(1 + p)do

a - )
&k = 2(1— o)k ; (5.37)
where
1 [
= [Z (et 8. = #5) + ((H + BB B) 1y = 98) + (rin/ 08), 5 — ) )] (5.3%)
i=1
On the other hand, (5.12), (5.31) and (5.33) yield
~ 1 ~a a 1 a
Az + By, = %rm +b, Az + By, = %rm + 0.
Additionally, it follows from definitions of r;, and rf , that
1o 1o 1
z Z(%Tm —Th,) = z Z(% — Vs Tiy = Thn) = z Zﬁz — Vs Tiy)-
i=1 i=1 i=1
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Hence, combining the identity in (5.38) with the last two equations, we have

Ep =

({71 B.7= 38 + (4 B B) vy =) ) + 1 3 (3 (1 = 72, / (09)

> =

| =

M- 11

<<ri7x/5a T, — Ty) + ((H + BB*B) 1iy,yi — Up) + (i, AT, — AT}, + By, — Byi$>>
1

)

k
(ria/B+ A%, 8 — B + 7 Y _((H+ BB*B)riy + B %, 4 — i) = €4, +&fy
=1

T =

Il
> =
-

1

7

where the last equality is due to the definitions of e} , and ef , in (5.32). Therefore, the
inequality in (5.36) follows trivially from the last equality and (5.37).

To finish the proof of the theorem, note that direct use of Proposition 2.1.1(b) (for f and
9), (5.30)~(5.33) give €} ,, €f, > 0 and the inclusion in (5.34). |

Remark 5.2.8 For a given tolerance p > 0, Theorem 5.2.7 ensures that in at most O(1/p)
iterations, Algorithm 3 provides, in the ergodic sense, an approximate solution (Z,%,7) of
the Lagrangian system (1.7) together with residues 7 := (rz, 75, 75) and (€, ;) such that

1

57”5 S 35jf(a_:) — A*_, (H + BB*B)T:Q € aagg(g) — B*/77

and max {||(rz, 75, 75) || m €z, €5} < p, where M is as in (5.8). For a given tolerance p > 0, the

1 _ _
@m:AJ:—FBy—b,

above relations are equivalent to (1.9) with (vz, vy, v5) :== MT, p := p/v/Au, where Ay is the
largest eigenvalue of M, and the fact that || M(-)|| < v/ A ||ar. Hence, Algorithm 3 provides
a relaxed p-approximate solution of (1.7) in at most O(1/p) iterations. The above ergodic
complexity bound is better than the pointwise one by a factor of O(1/p); however, the above
inclusion is, in general, weaker than that of the pointwise case due to the e-subdifferentials

of f and ¢ instead of subdifferentials.
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Chapter 6
Numerical experiments

In this chapter we report some numerical experiments to illustrate the performance of the
ADMM variants analyzed in Chapters 3, 4, and 5. All experiments were performed on
MATLAB R2015a using an Intel(R) Core i7 2.4GHz computer with 8GB of RAM.

We considered two classes of problems, namely, LASSO and /¢;-regularized logistic
regression. We are more interested in showing the efficiency of the proposed inexact
ADMM variants. For this, we considered some randomly generated problems and we
also collected non-simulated data sets, namely, six biomedical data sets from the Elvira
biomedical repository [16] representing different types of cancer and one artificial “Madelon”
data set from the ICU Machine Learning Repository [22]. Each one of them is associated
with a matrix D € R™ ™ and a vector d € R™ and are listed in more detail in Table 6.1

below.

Table 6.1: List of non-simulated data sets

Data sets m n

Colon tumor gene expression [4] 62 2000
Central nervous system (CNS) [63] 60 7129
Leukemia cancer-ALLMLL [38] 38 7129
Lung cancer-Michigan [8] 9 7129
Lymphoma-Harvard [69] 7T 7129
Prostate cancer [70] 102 12600
Madelon [44] 2000 500
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6.1 Strategies

In this section, we define the initial parameters and the strategies used to present some
comparisons among the considered ADMM variants. Initially, it is important to note that in
all our implementations and for all algorithms, we set the initial point (xg, yo,70) = (0,0, 0),
and the penalty parameter § = 1. In the following, we specify some details regarding the

implementation of each tested algorithms:

Algorithm 1: In our implementation of Algorithm 1, we chose different values of o, namely
a€{1.0,1.3,1.5,1.7,1.9}. We set (G, H) = (0,0), and used the following condition as

a stopping criterion
1M (2 = 2 )l < 1072, (6.1)

where zj, := (g, Yk, 7&) is the sequence generated by Algorithm 1 and M is as in (3.4).

Algorithm 2: We report the numerical performance of Algorithm 2 to solve the two classes

of problems, LASSO and /¢;-regularized logistic regression.

Different values of the relaxation parameter o were considered in order to illustrate
its effect and show that, similarly to the exact generalized ADMM, the performance
of the algorithm improves considerably when o > 1, specially @ ~ 1.9. Algorithm 2
was compared with its “exact” version, namely, the generalized ADMM considered in
Chapter 3. The latter method corresponds to Algorithm 1 with (G, H) = (0,0) and

x) being such that there exists a residue vy, satisfying
vy € Of (xx) — A" [ye—1 + B (Azg + Byx—1 — b)], [[og]] < 1075,

Note that the above inclusion with v, = 0 is the one derived from the first-order
optimality condition for (3.1) with G = 0. It should be mentioned that the applications
considered here are such that the solution of the second subproblem of the three

analyzed algorithms can be explicitly computed.

For the first test problem, the algorithms were tested using six non-simulated data sets
reported in Table 6.1. In addition, for the second class of problems, we select all data
sets from Table 6.1.

For all tests, we used the same overall termination condition (6.1), with M and z
given in (4.7) and (4.9), respectively. In Algorithm 2, the remaining initialization data
were 71 = 0.99(2 — ), 7, =1 —107% and H = 0, and a hybrid inner stopping criterion

was used; specifically, the inner-loop terminates when v, satisfies either the inequality
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in (4.1) or |lug|]| < 1078 The latter strategy was also used in [29, 30, 80] and it is
motivated by the fact that, close to a solution, the former condition seems to be more

restrictive than the latter.

Algorithm 3: We also report some numerical tests to illustrate the performance of
Algorithm 3 in the two classes of problems, LASSO and /;-regularized logistic
regression. Our main goal is to show that, in some applications, the method performs
better with a stepsize parameter # > 1 instead of the choice § = 1 as considered in the
related literature. Similarly to the strategy use in Algorithm 2, we also used a hybrid
inner stopping criterion for Algorithm 3, i.e., the inner-loop terminates when vy, satisfies
either the inequality in (5.2) or |lvg|| < 1078, We set 7, = 0.99(1 + 6 — 62)/(0(2 — 0)),
75 =1—10"% and H = 0. For a comparison purpose, we also run [29, Algorithm 2],
denoted here by relerr-ADMM; see Remark 5.1.1(d) for more details on the relationship
between Algorithm 3 and the relerr-rADMM. As suggested in [29], the error tolerance
parameter 71 in (5.7) was taken equal to 0.99. For all tests, both algorithms stopped
when the condition (6.1) was satisfied, where M is as in (5.8) and zj, := (2, Yk, V&) 18

the sequence generated by the respective algorithms.

6.2 LASSO problem

We consider the following LASSO problem [77,78]
1 2
min o Dz — d||* + pllzs, (6.2)

where D € ™" d € R™, u > 0 is a regularization parameter, and ||-||; denotes the ¢;-norm.
In our experiment, we scaled d and the columns of D in order to have unit f,-norm. The
regularization parameter p was set equal to 0.1||D*d||~, where || - ||c denotes the maximum

norm. By introducing a new variable, the above problem is usually rewritten as
min {%HDm —dP+pllyl: y—2=0, z€R"yc §R”} : (6.3)
Obviously, (6.3) is an instance of (1.1) with
f@) = 0Dz —dl*, o) =plyl, A=—-I B=I and b=0.  (6.4)

First, we verify the performance of Algorithm 1, for solving problem (6.2). Note that,
with the specifications in (6.4), the subproblems (3.1) and (3.2) have closed-form solutions

1
1= (DD + 51)_1(D*d + BYr—1 — Vi-1), Yk = 5% (04931: + (1= a)yp-1+ 3%—1) )
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where, for a scalar k > 0, S, : R" — R" is the shrinkage operator [7] defined as
S'(w) = sign(w") max(0, |w'| — k) i=1,2,...,n, (6.5)

with sign(-) denotes the sign function. In our experiments of Algorithm 1, the matrix D was
randomly generated and the vector d € R™ was chosen as d = Dx + v/0.001y, where the

(100/n)-sparse vector x € R"™ and the noisy vector y € R™ were also randomly generated.

Table 6.2: Performance of Algorithm 1 to solve three randomly generated LASSO problems

Dim. of D a=1.0 a=1.3 a=1.5 a=1.7 a=19

mXxn Iter Time | Iter Time | Iter Time | Iter Time | [ter Time
900 x 3000 | 27 7.2 21 5.6 19 5.0 19 5.0 47  12.6
1200 x 4000 | 26  14.8 | 23 13.1 | 21 125 | 20 124 | 49 32.1
1500 x 5000 | 26  26.6 | 21 245 | 20 27.1 | 20 24.0 | 46 58.1

The performance of Algorithm 1 to solve the three randomly generated LASSO problem
instances is reported in Table 6.2, in which “Iter” and “Time” denote the number of iterations
and the CPU time in seconds, respectively. From this table, we can see that, in all considered
instances of (6.3), Algorithm 1 with o € {1.3,1.5,1.7} performed better than Algorithm 1
with a € {1,1.9}. Moreover, Algorithm 1 with o = 1.7 presented the best performance.
Therefore, we can conclude that Algorithm 1 with a suitable relaxation factor @ > 1
outperformed the standard ADMM (which corresponds to Algorithm 1 with @ = 1) in
our numerical experiments.

We also tested Algorithm 2 for the problem (6.2). In view of (6.4), the pair (Zy,vx) in
(4.1) can be obtained by computing an approximate solution zj with a residual vy of the

following linear system

For approximately solving the above linear system, we used the conjugate gradient method
[60] with starting point D*d + Sy,_1 — Yx—1. Similarly to the previous case, the subproblem

(4.3) has a closed-form solution
~ 1
yr = S (ozxk + (1 = a)yp—1 + B’Yk—l) :
where S is as in (6.5).
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Table 6.3: Performance of Algorithms 1 and 2 for six instances of the LASSO problem

a=1.0 a=13 a=1.>5 a=1.7 a=19

Data set Alg. 1 Alg.2 Alg.1 Alg.2 Alg. 1 Alg.2 Alg.1 Alg.2 Alg.1 Alg 2

Number of outer iterations

Colon 114 116 89 88 7 78 69 69 63 63
CNS 321 319 249 248 217 217 194 194 182 182
Leukemia 600 600 431 431 370 370 330 329 320 320
Lung 935 935 412 412 357 357 315 315 282 282
Lymphoma 331 331 255 255 222 222 196 196 176 176
Prostate 430 431 331 331 287 287 254 254 227 227

Total number of inner iterations

Colon 4656 2136 3639 1607 3149 1450 2822 1308 2576 1216
CNS 16064 10060 12466 7818 10862 6871 9712 6203 9108 6024
Leukemia 17365 11351 12478 8033 10715 6909 9556 6196 9263 6195
Lung 22836 12516 17588 9622 15240 8373 13451 7475 12048 6881

Lymphoma 15182 8619 11703 6522 10180 5850 8998 5208 8072 4796
Prostate 35002 19562 26944 15083 23374 13088 20700 11906 18478 11003

CPU time in seconds

Colon 23.3 16.4 18.2 12.3 17.0 10.9 14.4 9.7 13.1 9.2
CNS 9444 7544 7434 5846 643.1 515.6 576.7 4729  538.7  449.0
Leukemia  1290.4 1119.2 9278 789.0 797.0 6794 710.5 606.1 689.4 600.4
Lung 1470.9 1114.7 1159.5 8723 9985 7625 880.5 670.9 788.8 607.6

Lymphoma 931.0 769.7 728.1 601.8 634.6 489.0 564.1 433.3 504.1 393.1
Prostate 5926.5 4325.1 4494.2 3509.2 3900.2 3083.7 3438.1 2664.4 3103.0 2343.7

Table 6.3 displays the numerical results obtained. In order to compare the algorithms, we
consider the number of outer iterations, the total number of accumulated inner iterations
and the CPU time in seconds. In Figure 6.1, we plot the arithmetic mean of the latter
three comparisons criteria for each algorithm for solving the six LASSO problem instances.
From these results, one can see that the number of outer iterations of Algorithm 2 and

Algorithm 1 are basically the same for every considered relaxation parameter .. In particular,
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the numerical advantage of using a > 1, specially a ~ 1.9, is also verified for Algorithm 2.
Algorithm 2 performed at least 33% less inner iterations than Algorithm 1, reaching, in some
instances, 50% less inner iterations. Note that this performance improvement also reflected

favorably in terms of CPU time.
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Figure 6.1: Arithmetic mean of the LASSO problem results given in Table 6.3

Now, let us discuss the performance of Algorithm 3 for approximately solving problem
(6.2). In this case, the pair (Zg,vx) in (5.2) was obtained using the same strategy as in
Algorithm 2, i.e., we applied the conjugate gradient method [60] with starting point D*d +
BYr—1 — Yr—1 in order to obtain an approximate solution Z, with residual vy of the linear

system (6.6). Note that subproblem (5.4) also has a closed-form solution

N 1
Y = 5% (!L’k + 3%—1) ,

where S is the shrinkage operator defined in (6.5).

We tested the relerr-ADMM and Algorithm 3 for solving 3 randomly generated LASSO
problem instances. For a given dimension m X n, we generated a random matrix D and
choose vector d € R™ as d = Dz + +/0.001y, where the (100/n)—sparse vector x € R" and
the noisy vector y € R™ were also generated randomly. We also tested the relerr-rADMM
and Algorithm 3 on six standard cancer data sets given in Table 6.1. Their performances
are listed in Tables 6.4 and 6.5, in which “Out” and “Inner” denote the number of iterations

and the total number of inner iterations of the methods, respectively, whereas “Time” is the
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CPU time in seconds. From these tables, we see that the relerr-rADMM and Algorithm 3
with § = 1 presented similar performances. However, Algorithm 3 with § = 1.3 and 6 = 1.6
clearly outperformed the relerr-ADMM.

Table 6.4: Performance of the relerr-rADMM and Algorithm 3 to solve three randomly
generated LASSO problems

Dim. of D relerr-ADMM Alg. 3 (0=1) Alg. 3 (6 =1.3) Alg. 3 (6 = 1.6)

mXxn Out Inner Time | Out Inner Time | Out Inner Time | Out Inner Time

900 x 3000 | 27 206 123 | 27¥ 206 119 | 23 183 104 | 21 202 9.6
1200 x 4000 | 27 207  26.2 | 27 207 25.6 | 24 191 222 | 21 197 19.9
1500 x 5000 | 25 186 42.2 | 25 186 42.2 | 22 169  39.1 | 20 190  35.8

Table 6.5: Performance of the relerr-rADMM and Algorithm 3 for six instances of the LASSO
problem

relerr-ADMM Alg. 3 (0=1) Alg. 3 (6 =1.3) Alg. 3 (0 =1.6)
Data set
Out Inner Time | Out Inner Time | Out Inner Time | Out Inner Time
Colon 116 2298 18.3 116 2136 17.4 107 1977 16.0 99 1990 15.3
CNS 319 10077 823.5 | 319 10060 793.4 | 315 10292 &817.1 | 312 11029 &31.1

Leukemia 600 11390 1216.5 | 600 11351 1172.6 | 427 7948 845.5 | 362 7068 741.3
Lung 535 12499 13214 | 535 12516 1218.4 | 404 9332 9248 | 338 8426  777.6
Lymphoma | 331 8737 769.2 | 331 8619 765.0 | 264 6901 610.3 | 216 6038 5214

Prostate 430 19400 4559.3 | 431 19562 4303.1 | 358 16465 3592.9 | 328 16989 3536.1

Figures 6.2, 6.3, and 6.4 summarize the results presented in Tables 6.3 and 6.5 for
the following inexact versions: Algorithm 2 with o = 1.3,1.5,1.7,1.9, relerr-rADMM and
Algorithm 3 with § = 1.3,1.6. We omit the results related to Algorithm 2 with o« = 1.0 and
Algorithm 3 with # = 1.0, because they are identical and, basically, the same as those of the
relerr-ADMM. In these figures we can easily verify the superiority of Algorithm 2, especially
with a = 1.9.
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6.3 /;-Regularized logistic regression problem

Consider the ¢;-regularized logistic regression problem [51]

. 1
min —
teR,UER™ M

Zlog <1+exp(—di(<Di,u)+t))> + o |u, (6.7)

where D; € R" are the rows of a matrix D € R™*" d' € {—1,+1} are the coordinates of a
vector d € R™ and p > 0 is a regularization parameter. In our experiment, the matrix D
and the vector d were chosen as described in the beginning of this chapter (see Table 6.1).
We scaled the columns of D in order to have unit fo-norm and set p = 0.5 Amax, where Amax
is as defined in [51, Subsection 2.1].

By defining 2% := (2%,...,27) € ! for j > i, problem (6.7) can be rewritten as an

instance of (1.1) in which

£@) = = S log (1bexp (=@ (D) +4%)). () = 1]

B=1, and b=0.

(6.8)

First we apply Algorithm 2 to solve problem (6.7). In order to compute a pair (Z, vx) as in
(4.1), we implemented the limited-memory BFGS method [60, Algorithm 7.5] with starting
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point equal to (0, ...,0). The subproblem (4.3) has a closed-form solution y; == (y;,y7"™")

given by

~ 1 m ~2:n m 1 n
yp =aZi+ (1—a)y,, + 5%1_17 gt = Su (Ozmi' T (L= )y + 3%3'1“) :

where S is the shrinkage operator as defined in (6.5).

Table 6.6 displays the numerical results obtained. As in Subsection 6.2, the methods were
compared in terms of the number of outer iterations, the total number of inner iterations
and the CPU time in seconds. In Figure 6.5, we plot the arithmetic mean of the latter three
comparison criteria for each method for solving the seven ¢;-regularized logistic regression
problem instances. By analyzing Table 6.6 and Figure 6.5, one can see that Algorithm 2
performed, basically, the same number of outer iterations than Algorithm 1. Regarding the
total number of inner iterations, Algorithm 2 performed at least 41% less than Algorithm 1,
reaching, in some instances, 60% less inner iterations. Note that the saving with respect
to CPU times was very expressive. Specifically, Algorithm 2 was at least 48% faster than
Algorithm 1. The reason lies in the difficulty to solve (3.1) for the ¢;-regularized logistic

regression problem.
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Figure 6.5: Arithmetic mean of the ¢;-regularized logistic regression problem results given
in Table 6.6

We also tested Algorithm 3 applied for solving seven f¢;-regularized logistic regression

problem (6.7) using the data sets given in Table 6.1. The pair (&, vx) in (5.2) also was
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Table 6.6: Performance of Algorithms 1 and 2 for seven instances of the ¢;-regularized logistic

regression problem

a=1.0 a=1.3 a=1.5 a=1.7 a=19

Data set Alg. 1 Alg. 2 Alg.1 Alg.2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg 2

Number of outer iterations

Colon 337 370 259 253 224 216 197 196 176 175
CNS 278 278 213 216 185 186 163 163 145 144
Leukemia 624 625 480 481 416 416 367 367 328 328
Lung 013 551 400 435 347 375 380 378 528 048
Lymphoma 375 375 287 289 248 251 219 223 195 197
Prostate 879 882 676 678 985 585 516 512 462 457
Madelon 1953 1935 1502 1480 1302 1269 1148 1105 1027 975

Total number of inner iterations

Colon 18645 9912 14460 7033 12334 5784 10949 5515 9688 4883
CNS 15515 8758 11881 6781 10259 5969 9068 5086 8077 4528
Leukemia 27859 15402 21486 11763 18560 10354 16271 8951 14538 7925
Lung 28487 15744 22329 13005 18813 10642 20320 10559 28931 16208

Lymphoma 21638 11191 16485 8666 14248 7443 12590 6546 11228 5826
Prostate 68770 37327 52865 28419 45705 24842 40480 22902 36160 21267
Madelon 38698 19857 29584 14859 25871 11898 22601 9806 20371 8159

CPU time in seconds

Colon 48.3 21.8 37.4 13.5 31.8 10.3 28.3 9.8 24.7 8.7
CNS 302.0 1079 2322 88.9 199.0 79.0 1774 68.9 159.2 61.5
Leukemia 4171  168.6 3374 131.8 279.7 110.1 243.0 93.4 2158 91.4
Lung 844.1  352.2 6384 2925 539.1 239.8 5725 2429 822.8 363.72

Lymphoma  527.5 190.0 4025 156.3 351.9 134.3 308.7 121.8 276.0 108.1
Prostate 3844.6 1246.5 2950.4 918.9 2562.0 807.8 2271.1 761.8 2036.8 782.1
Madelon 1589.2 8176 1205.2 605.6 1065.1 461.3 887.6 390.6 809.4 332.2

obtained with the aid of the limited-memory BFGS method [60, Algorithm 7.5], being the

starting point the origin. Again, the subproblem (5.4) has a closed-form solution y, =
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(y,i, yimﬂ) given by

bt gk, =Sy (B0 )
B ’ B
where § is the shrinkage operator given in (6.5).

Tables 6.7 reports the performances of the relerr-rADMM and Algorithm 3 for solving
the aforementioned seven instances of the problem (6.7). In Table 6.7, “Out” and “Inner”
are the number of iterations and the total of inner iterations of the methods, respectively,
whereas “Time” is the CPU time in seconds. Similarly to the numerical results of Section 6.2,
we observe that the relerr-rADMM and Algorithm 3 with # = 1 had similar performances,
whereas Algorithm 3 with § = 1.3 and 6 = 1.6 outperformed the relerr-rADMM. Therefore,

the efficiency of the inexact proximal ADMM for solving real-life applications is illustrated.

Table 6.7: Performance of the relerr-rADMM and Algorithm 3 for seven instances of the

(1-regularized logistic regression problem

relerr-ADMM Alg. 3 (0=1) Alg. 3 (6 =1.3) Alg. 3 (0 =1.6)
Data set
Out Inner Time | Out Inner Time | Out Inner Time | Out Inner Time
Colon 335 11621 26.0 370 9912 22.7 276 7694 15.6 234 6903 13.9
CNS 278 10116 1725 | 278 8768 151.4 | 245 7836 1352 | 229 7286 123.8

Leukemia 624 17788 237.5 | 625 15402 221.7 | 601 14825 211.5 | 592 14987 201.7
Lung 519 19715 568.1 | 551 15744 428.8 | 539 16235 482.5 | 547 15948 442.1
Lymphoma | 374 14358 324.8 | 375 11191 226.6 | 356 10773 2284 | 353 10811 237.5
Prostate 879 41145 1720.1 | 882 37327 14639 | 688 29367 1183.7 | 560 28239 1384.3
Madelon 1957 22830 890.7 | 1935 19857 923.8 | 1938 19790 929.8 | 1961 26553 1131.3

Figures 6.6, 6.7, and 6.8 were constructed with the numerical values contained in Tables
6.6 and 6.7 of the following inexact methods: Algorithm 2 with o = 1.3,1.5,1.7,1.9,
relerr-ADMM and Algorithm 3 with § = 1.3,1.6. It can be easily seen that, in most tests,
Algorithm 2, especially with o = 1.9, obtained the best numerical performance.

We end this section by making some remarks. First, Algorithm 3 was tested with other
values of  different from the ones presented in tables 6.4, 6.5 and 6.7, and we observed
the following: (i) if @ € [0.1,1.6], then the performance of Algorithm 3 improved as 6
was increased; (ii) if 6 € (1.6, (v/5 + 1)/2), then Algorithm 3 performed similarly to its
exact version, since the relative error condition (5.2) became stringent. Second, the classical

proximal gradient method and its accelerated versions such as FISTA can also be applied
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to solve LASSO and /;-regularized logistic regression problems. Numerical comparisons
showing that the relerr-rADMM is competitive with FISTA for solving the aforementioned
problems were reported in [29]. Therefore, since Algorithm 3 performed better than the
relerr-ADMM for these applications, we can conclude that Algorithm 3 is also competitive
with FISTA.
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Chapter 7
Final remarks

In this thesis, we proposed and analyzed some variants of the alternating direction method
of multipliers (ADMM) for computing approximate solutions of linearly constrained convex
optimization problems. Initially, we studied iteration-complexity results for a proximal
generalized ADMM. Specifically, for a given tolerance p > 0, we established O(1/p?)
pointwise and O(1/p) ergodic iteration-complexity bounds for the proximal generalized
ADMM to obtain an approximate solution of the Lagrangian system associated to the
aforementioned optimization problem. We also proposed and analyzed two inexact variants
of the (generalized) proximal ADMM. These variants are such that their first partial
subproblems are approximately solved using relative error conditions based on the works of
Solodov and Svaiter [71-74]. It was shown that from a theoretical view point, the proposed
inexact schemes have pointwise and ergodic iteration-complexity bounds similar to their
exact versions, whereas from a computational viewpoint the proposed schemes are relatively
cheaper and more efficient. Our analysis is essentially based on showing that these considered
schemes can be seen as special instances of a hybrid proximal extragradient framework for
solving monotone inclusion problems. Some numerical experiments were carried out in order
to illustrate the numerical behavior of the methods. They confirm that appropriately chosen
parameters can improve the performance of the methods and indicate that the proposed
inexact versions represents an useful tool for solving some real-life applications that can
be formulated as linearly constrained convex optimization problems. Finally, a possible
direction for future research would be to analyze inexact variants of the regularized ADMMs
due to their improved iteration-complexity bounds. This would be interesting also to improve
the applicability of these methods. Another direction, would be to explore the proximal terms
of the inexact proximal ADMM in order to enlarge the region in which one can choose the

relaxation parameter included in the Lagrange multipliers update rule.
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