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Resumo
Resumo A primeira identificação de um sistema quântico aberto como um modelo para
um motor térmico quântico data de 1959. Desde então, a física não tem um conjunto
concreto de fórmulas para definir, com precisão, como lidar com o calor e trabalhar no
contexto de conjuntos quânticos . Uma das propostas mais proeminentes, que foi afirmada
pelo artigo de R. Alicki de 1979, tem um regime de validade limitado e pode levar a
algumas inconsistências com relação à primeira lei da termodinâmica. Várias abordagens
para o problema foram propostas, levando a um novo conjunto de definições para calor
e trabalho em termodinâmica quântica. Particularmente, novas redefinições para calor e
trabalho foram introduzidas, as quais são baseadas na entropia de von Neumann. Nosso
objetivo aqui é apresentar essa nova formulação, bem como sua motivação e investigar as
consequências dessas fórmulas. Estudamos alguns modelos simples que empregam esse novo
conjunto de definições. Nossa análise mostra um comportamento peculiar dos sistemas
quânticos quando esse novo formalismo é dado como certo, possivelmente indicando uma
inadequação dessas novas definições.

Palavras-chave: sistemas quânticos abertos. termidinâmica quântica. definições para
calor e trabalho.



Abstract
The first identification of an open quantum system as a model for a quantum thermal
engine dates back to 1959. Since then physics doesn’t have a concrete set of formulas to
define, precisely, how to address heat and work in the context of quantum ensembles. One
of the most prominent proposals, which was stated by R. Alicki 1979’s paper, has a limited
regime of validity and can lead to some inconsistencies with regards to the first law of
thermodynamics. Several approaches to the problem have been proposed, leading to some
new set of definitions for heat and work in quantum thermodynamics. Particularly, new
redefinitions for heat and work have been introduced, which are based on von Neumann
entropy. Our goal here is to present this new formulation as well as its motivation and to
investigate the consequences of these formulas. We study some simple models employing
this new set of definitions. Our analysis shows a peculiar behavior of quantum systems
when this new formalism is taken for granted, possibly indicating an inadequacy of these
new definitions.

Keywords: open quantum system. quantum thermodynamics . definitions for heat and
work.
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1 Introduction

Quantum Thermodynamics is concerned, among other things, with the study of
energy exchange between quantum ensembles. With the aid of the formalism by John
von Neumann (1) one can describe such ensembles of quantum states, thus enabling
thermodynamics ideas to be applicable on any scale.

The first quantum heat engine was presented in the paper by H.E.D Scovil and O.
Schulz-DuBois (2), where they identified the three level system as the working substance
of the machine acting between two baths at different temperatures. In maser regime, they
found that the thermodynamic efficiency was smaller than the Carnot’s. One could ask
how small can a heat machine be. Linden et al. (3) investigated this matter and proposed
to characterize the “size” of the machine as the number of dimensions of the Hilbert space
used to characterize the system employed as the working substance and found that there
is no difficulty in constructing, for example, an refrigerator constituted by two qubits.

Quantum heat machines are not the only goal of quantum thermodynamics investi-
gations. In fact, the scope of this theory also embraces non-equilibrium phenomena. We
can summarize some of the branches of investigations concerned with quantum thermody-
namics: quantum heat machines (4, 5, 6), fluctuation relations (7), autonomous quantum
clocks, one-shot statistical mechanics (8), algorithmic cooling (9, 10), applications of
contextuality (11), non-markovianity (finite-size baths) (12), thermodynamics uncertainty
relations (13), resource theories for thermodynamics (14, 15), etc.

In this work we are most concerned about the investigation of the definitions of
heat and work in quantum thermodynamics. The importance to have a consistent theory to
define these quantities in quantum domain is of fundamental and also practical character,
once it is closely related to the first law of thermodynamics and intimately related to
quantum engines applications.

In 1979 the seminal paper of Alicki (16) set the first definitions of heat and work
for quantum thermodynamics:

EA(t) =< HA(t) > ≡ Tr {ρA(t)HA(t)} , (1.1)

d < QA(t) > ≡ Tr{dρA(t)HA(t)}, (1.2)

d < WA(t) > ≡ Tr{ρA(t)dHA(t)}. (1.3)

Notice that it came naturally from the identification of the internal energy of the system
as the expected value of the Hamiltonian operator over the state of the system.

R. Alicki set one of the first correspondences between an open quantum system
and a model of quantum heat engine. The physical context of his work is situated in the
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limiting case where the system of interest is weakly coupled with the environment and is
subjected by slowly varying external conditions.

In fact these definitions can lead to physical inconsistencies when applied indiscri-
minately, such as violation of the first law of thermodynamics. We will discus this matter
in the example of the dephasing interaction between two qubits in Section 4.0.1.

After Alicki’s work, appeared some new proposals for generalizing the concepts of
heat and work in quantum thermodynamics. Bera et al. (17) proposed a formalism based
on the information-theoretic approach that can also deal with strong quantum correlations
between the system and the bath.

Another recent proposal from Ahmadi et al. (18) and, independently, by Alipour
et.al (19), pointed out that Alicki’s formulation is not very precise because it does not
consider the portion of work that can be transferred to the system via interaction with the
environment. They proposed a new set of definitions based on the “trajectory” taken by
the density operator of the system of interest, identifying, for short, as heat the portion of
energy transferred that accounts for entropy (von Neumann’s) change. In chapter 4 we are
going to investigate in details this proposal via some applications in two simple examples.
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2 Fundamental concepts and relevant mathe-
matical tools

This chapter was designed to present a short introduction to some key concepts
and mathematical foundations that we are going to use throughout this work. This chapter
was not intended to exhaust the subjects, but rather to give some cohesive character to
the present work.

2.1 The von Neumann Entropy
In the core of the formulation that we are just going to present lies the von Neumann

entropy. Among other things, it is a measure of how mixed an ensemble is, and thus it is
a function of the density operator. We are going to present, or justify, the form of this
entropy and it will become clear why the majority of works on quantum thermodynamics
consider this as the relevant entropy.

We are interested in finding an entropy functional S(ρ) that can quantify how
mixed a state is. We demand that this mathematical object satisfies some requirements:

i)S(ρ) = 0↔ ρ is pure;

ii)S(U †ρU) = S(ρ)→ S(ρ) = Tr{F (ρ)}: S(ρ) is invariant under similarity transformation;

iii)S(ρAB) = S(ρA) + S(ρB) for A and B being independent.

In the above statements, (i) is saying that a pure ensemble has no uncertainty, once one
knows ρ exactly; (ii) implies that the functional S should be independent of the choice of
basis, therefore depending only on the eigenvalues of ρ, so S can be written as the trace
of some function of ρ; (iii) states that for an uncorrelated system, ρAB = ρA ⊗ ρB, the
entropy of the combined system is equal to the sum of the entropy of the individuals, so it
is extensive.

From the property (ii) we can write,

S = Tr{F (ρ)}. (2.1)

Calling F = ρg(ρ) where g(ρ) is an hermitian operator, we find

S = Tr{ρg(ρ)} ≡< g(ρ) >, (2.2)

i.e., the entropy is the expected value of an hermitian operator which is a function of the
state of the system. Now, from the property (iii) we can write:

< g(ρA ⊗ ρB) >=< g(ρA) > + < g(ρB) >, (2.3)
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g(ρ) should have the form of the logarithmic function, once the expected value of the
composite system is equal to the sum (just remember that the log of a multiplication is
the sum of the logs). Therefore we end-up with the following formula

S = −Tr{ρ ln ρ}, (2.4)

where the minus sign was inserted to guarantee the non-negativity of S; the above formula
is the well-known von Neumann entropy.

Some natural questions arises: what is the relationship between the above formula
with thermodynamics? Which density matrix has the largest entropy given that we fixed
< H >? In other words, we want to maximize S(ρ) given that E =< H >= Tr{ρH} =
constant and Tr{ρ} = 1. A very useful method to solve this kind of problem is the
Lagrange Multipliers (20). To this end we define a new function S ′ to which we add two
unknowns coefficients that multiplies the constraints:

S ′ = −Tr{ρ ln ρ} − β(Tr{ρH} − E)− γ(Tr{ρ} − 1)

by varying ρ→ ρ+ δρ we can expand the above expression and make the term linear in
δρ equal to zero:

0 = Tr{−δρ ln ρ− ρ1
ρ
δρ− βHδρ− γδρ}

in order for this expression to be true, we need

ln ρ = −βH − γ − 1

ρ = e−βHe−γ−1

ρ = e−βH

Z(β) (2.5)

where Z(β) = e−γ−1 = Tr{e−βH} is the partition function; β is fixed by < H >=
Z(β)−1Tr{He−βH = E}; the coefficient β can be shown to be 1

kBT
, where kB is the

Boltzmann constant.

So, by maximizing the entropy given by Eq. (2.4) with the constraints of fixed total
energy and that of trace-preserving, we ended-up with a ρ that is the quantum version of
Boltzmann distribution, characterizing an quantum ensemble with finite temperature, i.e.
in thermal equilibrium with a bath characterized by β = 1

kBT
.

2.2 Markovian Quantum Master Equation
In the real physical situations nothing is perfectly hermetic. So, quantum physical

states are always interacting with its environment. Then one would ask how does this
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system, which is an open system, evolves in time? In this section we are going to present
the fundamental theory that deals with this problem.

We are going to present a derivation of the master equation from first principles to
treat the system-environment interaction (21, 22). The total Hamiltonian reads

Ĥ = ĤS + ĤE + αĤint, (2.6)

where α is the parameter of interaction and ĤS, ĤE, Ĥint are the system, environment and
interaction Hamiltonians, respectively. In the interaction picture, the evolution of the total
system density operator is given by the Liouville-von Neumann equation:

d

dt
ρ̂Total = − i

~
α
[
Ĥint(t), ρ̂T (t)

]
, (2.7)

where ~ is the reduced Planck’s constant. By integrating the above formula,

ρ̂T (t) = ρ̂T (0)− i

~
α
∫ t

0
ds
[
Ĥint(s), ρ̂T (s)

]
. (2.8)

Now, iterating two times, i.e. substituting Eq. (2.8) into Eq. (2.7). We find:

d

dt
ρ̂T (t) = −iα

[
Ĥint(t), ρ̂T (0)− i

~
α
∫ t

0
ds[Ĥint(s), ρ̂(s)]

]
, (2.9)

= − i
~
α[Ĥint(t), ρ̂T (0)]− α2

~

∫ t

0
ds[Ĥint(t), [Ĥint(s), ρ̂(s)]], (2.10)

= − i
~
α[Ĥint(t), ρ̂T (0)]− α2

~

∫ t

0
ds[Ĥint(t), [Ĥint(s), ρ̂(t)]] +O(α3) + ... (2.11)

Here we are going to truncate to the second order on alpha. This is our first approximation,
i.e. we are considering alpha, the interaction strength, a small number.

We are interested in obtaining the equation of motion for the system of interest.
Tracing out the degrees of freedom of the environment, we obtain the following equation:

d

dt
ρ̂S(t) = TrE{

d

dt
ρ̂T (t)}

= − i
~
αTrE{[Ĥint(t), ρ̂T (0)]} − α2

~

∫ t

0
dsTrE{[Ĥint(t), [Ĥint(s), ρ̂(t)]]}. (2.12)

In fact this formula describes all the exchange of information between the system (from
now on we refer to the system of interest as simply by “system”) and the environment
between 0 and t. So, in the most general form, by realizing the trace over E, the integrand
can be written as ∫ t

0
dsκ(s−s′)[ρ̂S], (2.13)

where the term κ(s−s′) is called the memory kernel, which is effectively a map acting on the
state of the system which can account for the system-environment exchange of information,
although it may be very complicated. Fortunately, to our purposes, in most cases we are
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going to deal with memory-less scenarios where this kernel turns out to be a delta function.
This is the case for the so-called Markov approximation. And we can set the upper limit
of integration as infinity without any loss.

In order to obtain the equation of motion for the system, we have to look at the
physical problem and propose some approximations and to state some mathematical facts:
i) Here we are going to make the following approximation: ρ̂T (t) = ρ̂S(t) ⊗ ρ̂E(t). Note
that this procedure is suggesting that there is no correlation between the system and the
reservoir, which is not true. Since this approach greatly simplifies the calculations and
leads to the same results, we will do it;
ii) ρ̂E(0) = ρ̂E(t) = e−βĤE

Z(β) , i.e. the bath starts at the thermal state and remains there. It
happens because the characteristic time scale for the relaxation of the bath is way faster
than the typical time in which the system changes ;
iii) ĤI = ∑

i Ŝi⊗ Êi: one can represent, without loss of generality, the interaction Hamilto-
nian as the sum of the tensor product of system’s and environment’s operators.

With the aid of the above statements, the first term of Eq. (2.12) can be written
as:

= − i
~
αTrE{[ĤI(t), ρ̂T (0)]},

= − i
~
αTrE{

∑
i

Ŝi ⊗ Êi, ρ̂S(0)⊗ ρ̂E(0)},

= − i
~
α
∑
i

(
Ŝi(t)ρ̂S(0)⊗ TrE{Êiρ̂E(0)} − ρ̂S(0)Ŝi(t)⊗ TrE{ρ̂E(0)Êi(t)}

)
,

where < Ei >0= TrE{Êiρ̂E(0)} = 0.

So far our equation of motion for the system S reads
d

dt
ρ̂S(t) = −α

2

~

∫ ∞
0

dsTrE{[Ĥint(t), [Ĥint(s), ρ̂(t)]]}. (2.14)

But the above equation can lead to some physical inconsistencies, i.e. it is not a completely
positive dynamics. To deal with that we employ a superoperator Ĥ that has a complete
set of eigenoperators in which we can expand the system’s operators:

Ŝi =
∑
ν

Ŝi(ν). (2.15)

These eigenoperators respects the following commutation relations:

[Ĥ, Ŝi(ν)] = −νŜi(ν), (2.16)

[Ĥ, Ŝ†i(ν)] = νŜ†i(ν). (2.17)

By rewriting the interaction Hamiltonian in the Schrodinger picture and using the spectral
decomposition of the superoperator Ĥ:

Ĥint =
∑
k,ω

e−iωtŜk(ω)⊗ Êk(t) =
∑
k,ω

eiωtŜ†k(ω)⊗ Ê†k(t). (2.18)
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Expanding the commutators of Eq. 2.14:

d

dt
ρ̂S(t) = −α

2

~

∫ ∞
0

dsTrE{[Ĥint(t), [Ĥint(s), ρ̂(t)]]},

= −α
2

~
Tr{

∫ ∞
0

dsĤint(t)Ĥint(s)ρ̂S ⊗ ρ̂E −
∫ ∞

0
Ĥint(s)ρ̂S(t)⊗ ρ̂E(0)Ĥint(t)−,

−
∫ ∞

0
Ĥint(t)ρ̂S(t)⊗ ρ̂E(0)−

∫ ∞
0

ρ̂S(t)⊗ ρ̂E(0)Ĥint(s)Ĥint(t)}, (2.19)

now applying the spectral decomposition on the eigenoperators and after some algebra we
end-up with the following:

d

dt
ρ̂S(t) =

∑
ω,k,l

(
Γ̂kl(ω)

[
Ŝlρ̂(t), Ŝ†k(ω)

]
+ Γ̂†lk(ω)

[
Ŝl(ω), ρ̂(t)Ŝ†ω

])
(2.20)

where Γ̂kl(ω) ≡
∫∞
0 dseiωsTrE

[
Ê†k(t)Êl(s)ρ̂E(0)

]
contains the effect of the bath. We also

proceed to divide the dynamics into Hamiltonian and non-Hamiltonian by decomposing
the operators Γ̂:

πkl(ω) ≡ − i2
(
Γ̂kl(ω)− Γ̂†kl(ω)

)
; (2.21)

γ̂ ≡ Γ̂kl(ω) + Γ̂†kl(ω). (2.22)

Now we can separate the dynamics into the Hermitian and the non-Hermitian
parts. By going back to the Schrodinger picture, we can write

d

dt
ρ̂S(t) = − i

~
[
Ĥ + ĤLs, ρ̂(t)

]
+
∑
ω,k,l

γ̂kl

(
Ŝlρ̂(t)Ŝ†(ω)− 1

2{Ŝ
†
kŜl(ω), ρ̂(t)

)
, (2.23)

where the ĤLs is called the Lamb shift which has the role to renormalize the system energy
levels. The operator γ̂(ω) can be diagonalized, the Lindblad form is the diagonal form
when the operation Ôγ̂(ω)Ô† is made.

So, the Lindblad form of the quantum master equation is the most general type of
Markovian and time-homogeneous master equation describing the time evolution of the
density operator that preserves the trace and being completely positive (both are required
for physical systems) and we can write:

d

dt
ρ̂(t) = L̂(t)ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)] +

∑
µ

(
−1

2 L̂
†
µ(t)L̂µ(t)ρ̂(t)− 1

2 ρ̂(t)L̂†µ(t)L̂µ(t) + L̂µ(t)ρ̂(t)L̂†µ(t)
)

(2.24)

The first term of the right hand side is the well-known Liouville-von Neumann
equation, which describes the unitary evolution of the quantum system. The other term is
referred as the dissipative part of the dynamics. The operators L̂µ is called the “Lindblad
operators” or “jump operators”. In order to appreciate the physical significance of these
operators, let us consider the following scenario:
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i) Writing the density operator in its spectral decomposition, ρ̂ = ∑
i pi(t) |i〉 〈i|;

ii) Ĥ = 0.

Then we are investigating how the occupations changes solely by the dissipative
part:

〈k| ρ̂ |k〉 =
∑
i

pi(t) 〈k|i〉 〈i|k〉 = pk(t),

ṗk(t) = 〈k| d
dt
ρ̂(t) |k〉 ,

ṗk(t) = 0 + 〈k|
[∑
µ

(
−1

2 L̂
†
µ(t)L̂µ(t)ρ̂(t)− 1

2 ρ̂(t)L̂†µ(t)L̂µ(t) + L̂µ(t)ρ̂(t)L̂†µ(t)
)]
|k〉 ,

ṗk(t) =
(
−1

2pk(t)
)∑

µ

(
〈k| L̂†µ(t)L̂µ(t) + 〈k| L̂†µ(t)L̂µ(t) |k〉

)
+
∑
µ,i

〈k| L̂µ(t)pi(t) |i〉 〈i| L̂†µ(t) |k〉 ,

ṗk(t) = −pk(t)
∑
µ

〈k| L̂†µ(t)L̂µ(t) |k〉+
∑
µ,i

〈k| L̂µ(t) |i〉 〈i| L̂†µ(t) |k〉 pi(t),

ṗk(t) = −γkpk(t) +
∑
i

γk←ipi(t), (2.25)

where γk ≡
∑
µ 〈k| L̂†µ(t)L̂µ(t) |k〉 = ∑

i

∑
µ | 〈i| L̂µ |k〉 |2 and γk←i = ∑

µ | 〈k| L̂µ(t) |i〉 |2,
which represents the rate of transitions between the quantum states, and that is why the
operators {L̂µ} are called “jump” operators.

We can rewrite the Eq. (2.25) as

ṗk(t) = −pk(t)
∑
i

γi←k +
∑
i

γk←ipi(t).

This equation is quite revealing: the first term tells us about the decay of the level k into
the possible i other levels; the second term is related to the re-feeding of level k by all the
other i levels. Notice that in both terms there will be γk←k, and they cancel each other.
This is physically reasonable, because there would not make sense to talk about the state
of the system making a transition from level k to itself.

Let us apply the above to a case that we are going to explore later in this work: the
two-level atom in contact with the vacuum. The transition rates for this example reads:

γe←g = 0, (2.26)

γg←e = Einstein A coefficient = Γ = | 〈g| |L̂ |e〉 |2 → L̂ =
√

Γσ̂−. (2.27)

The first rate is just saying that the atom cannot make the transition from the ground
state to the excited one when in contact with the vacuum; the second is saying that the
rate is equal to the Einstein A coefficient that gives the rate at which spontaneous emission
occurs. If the system makes a transition from |e〉 to |g〉, the operator that do this is σ̂−
hence we can imply the form of the Lindblad operator, accompanied by the square root of
the rate Γ.
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The master equation for the two-level system in contact with the vacuum reservoir
reads:

d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)]− Γ

2 (σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂−) + Γσ̂−ρ̂σ̂+. (2.28)

From now on we will solve the above master equation to obtain the equations of
motion for the elements of the density matrix of the two-level system interacting with the
vacuum reservoir. These formulas will be used in Section 4.0.2. The Hamiltonian and the
density operator for the two-level system can be written as:

Ĥ = ~ω0

2 σ̂z = ~ω0

2

1 0
0 −1

 , (2.29)

ρ̂ =
ρee(t) ρeg(t)
ρge(t) ρgg(t)

 . (2.30)

Also we are going to use the following relations to the raising and lowering operators:

σ̂+ = |e〉 〈g| ; (2.31)

σ̂− = |g〉 〈e| ; (2.32)

σ̂+σ̂− = |e〉 〈g|g〉 〈e| = |e〉 〈e| =
1 0

0 0

 . (2.33)

Using Eqs. (2.31-33) and substituting in Eq. 2.28, we find:

d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)]− Γ

2 (σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂−) + σ̂−ρ̂σ̂+

= − i
~
(
Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)

)
− Γ

2 (|e〉 〈e| ρ̂(t) + ρ̂(t) |e〉 〈e|) + |g〉 〈e| ρ̂(t) |e〉 〈g| .

(2.34)

Now using Eqs. (2.29-30) we can write the first term of the above equation as

= − i
~

~ω0
2 0
0 −~ω0

2

ρee(t) ρeg(t)
ρge(t) ρgg(t)

−
ρee(t) ρeg(t)
ρge(t) ρgg(t)

~ω0
2 0
0 −~ω0

2

 ,
= − i

~

 ~ω0
2 ρee(t) ~ω0

2 ρeg(t)
−~ω0

2 ρge(t) −~ω0
2 ρgg(t)

−
 ~ω0

2 ρee(t) −~ω0
2 ρeg(t)

~ω0
2 ρge(t) −~ω0

2 ρgg(t)

 ,
=
 0 −iω0ρeg(t)

iω0ρge(t) 0

 . (2.35)

Notice that this first term of Eq. 2.28 corresponds to the unitary part of the dynamics.
Thus, it does not change the populations, since only the off-diagonal terms changes.
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In the same manner, we can write the second term of Eq. 2.28 as:

= −Γ
2

1 0
0 0

ρee(t) ρeg(t)
ρge(t) ρgg(t)

+
ρee(t) ρeg(t)
ρge(t) ρgg(t)

1 0
0 0


= −Γ

2

ρee(t) ρeg(t)
0 0

+
ρee(t) 0
ρge(t) 0


=
−Γρee(t) −Γ

2ρeg

−Γ
2ρge(t) 0

 . (2.36)

Similarly, the third term of Eq. 2.28 reads:

= ρee(t) |g〉 〈g| ,

=
0 0

0 Γρee(t)

 . (2.37)

Adding Eq. (2.35-37) together we obtain the equation of motion for the elements
of the density matrix:ρ̇ee(t) ρ̇ge(t)

ρ̇ge(t) ρ̇gg(t)

 =
 −Γρee(t) −ρeg(t)(iω0 + Γ

2 )
ρge(t)

(
iω0 − Γ

2

)
Γρee(t)

 . (2.38)

From the above matrix equation we obtain the following system of equations:

ρ̇ee(t) = −Γρee(t), (2.39)

ρ̇ge(t) = −ρeg(t)
(
iω0 + Γ

2

)
, (2.40)

ρ̇ge(t) = ρge(t)
(
iω0 −

Γ
2

)
, (2.41)

ρ̇gg(t) = Γρee(t). (2.42)

By solving the above system of equations we obtain the following solutions:

dρee(t)
ρee

= −Γdt→ ρee(t) = ρee(0)e−Γt; (2.43)

dρeg
ρeg

=
(
−iω0 −

Γ
2

)
dt→ ρeg(t) = ρeg(0)e(−iω0−Γ

2 )t = ρ∗ge(t); (2.44)

ρgg(t) + ρee(t) = 1→ ρgg(t) = 1− ρee(0)e−Γt. (2.45)

These equations of motion are going to be used later. They describe, considering the
Markov approximation and weak interaction, how the two level atom evolves in time when
in contact with a zero temperature bath (vacuum).
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2.3 Density operator
The density operator allows one describe the theory of measurements in general

ensembles, pure or mixed. It is, one may not have complete information about the system
that is being subjected to a measurement. As in classical mechanics, one employ a concept
of a density function in the phase space. Under quantization, we have the density operator,
which carries information about the occupation probability of each possible ket that
compose the ensemble. Therefore enabling one to calculate the expectation values, over
a general ensemble, of quantum mechanical observables where both the quantum and
statistical expectation values are considered.

The density operator is defined as (23):

ρ ≡
∑
i

wi |αi〉 〈αi| , (2.46)

where wi are the probabilities weights of finding the states |αi〉 of the ensemble. The
number of states (i) may exceed the dimensionality of the Hilbert space, thus {|αi〉} does
not form a complete orthonormal basis.

One could also write the density operator in its spectral decomposition, once ρ is
an Hermitian operator:

ρA(t) =
∑
i

pi(t) |ψi(t)〉 〈ψi(t)| , (2.47)

where pi(t) refers to the instantaneous probability occupation of the instantaneous eigenkets
|ψi(t)〉.





21

3 Proposal for “refined” or “unambiguous”
heat and work definitions in quantum ther-
modynamics

When two thermodynamic systems interact they exchange energy until all the
fluxes ceases and new equilibrium states are reached. To address precisely which portion of
that energy exchanged is of the form of heat or work turns out to be a non-trivial problem
when we are dealing with systems as quantum ensembles.

The proposal for heat and work definitions in quantum thermodynamics that we
are going to present and further investigate are found in the papers by Ahmadi et al. (18)
and, independently, Alipour et al. (19). The core physical reasoning for these definitions
are due to Clausius: heat is defined as the energy in transit which is associated with an
entropy change of the system and work is the energy exchanged that does not cause any
change in the entropy.

First of all let us consider the classical apparatus showed in figure 1: A and B are
classical gases, the total system A+B is enclosed by some rigid and adiabatic wall; the
wall that separates A and B are made diathermal and movable so they can exchange both
heat and work. If we choose to look at system A, all the possible energy transfers can be
summarized as:

dWA = dWA,external + dWA,exchanged,

dQA = dQA,exchanged

as the work is mechanical, it is related to the volume variation of the system. So in classical
setups it is trivial to distinguish heat from the work by employing some kind of walls. But
for quantum setups its not that trivial. The fundamental question then arises: how can
one come up with some unambiguously definitions of heat and work in quantum regime?

Examining the internal energy of a quantum statistical system and how it changes
in time,

EA(t) =< HA(t) >≡ Tr {ρA(t)HA(t)}

dEA(t) = Tr{d [ρA(t)HA(t)]}

dEA(t) = Tr{dρA(t)HA(t)}+ Tr{ρA(t)dHA(t)} (3.1)

notice that the above formula is actually the first law of thermodynamics but stated for a
quantum statistical system in the formalism by von Neumann (1). It is somehow intuitive
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thermodynamics

Figura 1 – A and B are classical gases. They are set apart by a movable and diathermal
wall, hence they can exchange energy in the form of heat and work. Figure
from (18).

to associate the variation of the local Hamiltonian as having something to do with work,
once it represents an external change (it can be manipulated); and a variation on the
system (populations) as related to heat as can be seen in Alicki’s definitions:

d < QA(t) >≡ Tr[dρA(t)HA(t)],

d < WA(t) >≡ Tr[ρA(t)dHA(t)].

Notice that according to the above definitions, the work is related only to the external
contribution. Taking the hypothesis of the existence of some other source of work transfer
being true, i.e. energy as work being transferred via the interaction, how could one describe
this energy?

As mentioned before, the approach taken by Ahmadi et al. and Alipour et al. is
that the variation in entropy is associated with heat, while work is not. To this end, it is
worth to take a look at the entropy of these systems. An important fact that has to be
made clear is that for all that matters, one is taking as the thermodynamical entropy the
von Neumann’s entropy,

S(ρA(t)) ≡ −Tr[ρA(t) ln ρA(t)]. (3.2)

One can decompose the density matrix in its diagonal form, once ρ is an Hermitian
operator:

ρA(t) =
d∑
i

pi(t) |ψi(t)〉 〈ψi(t)| , (3.3)

so, the entropy of a system defined by ρ can be written as:

S(ρA(t)) = −
d∑
i

〈ψi(t)| ρA(t) ln ρA(t) |ψi(t)〉 ,

S(ρA(t)) = −
d∑
i

pi(t) ln pi(t). (3.4)
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By differentiating the above equation we find:

dS(ρA(t)) = d

[
−

d∑
i

pi(t) ln pi(t)
]
,

= −
d∑
i

d [pi(t) ln pi(t)] ,

= −
d∑
i

[dpi(t) ln pi(t) + dpi(t)] ,

= −
d∑
i

dpi(t) ln pi(t)− d
d∑
i

pi(t),

= −
d∑
i

dpi(t) ln pi(t).

Notice that the variation of the entropy is related to the change in the occupation
probabilities of the states that compose the ensemble.

So far we know that the heat expression should come with a term dpi(t). Let us
just look at how the system evolves in time (using ρA(t) = ∑d

i pi(t) |ψi(t)〉 〈ψi(t)|):

dρA(t) =
d∑
i

d [pi(t) |ψi(t)〉 〈ψi(t)|] ,

=
d∑
i

[dpi(t) |ψi(t)〉 〈ψi(t)|+ pi(t)d (|ψi(t)〉 〈ψi(t)|)] ,

=
d∑
i

dpi(t) |ψi(t)〉 〈ψi(t)|+
d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|) . (3.5)

The first term on the right hand side (rhs) of the above equation has the term dpi(t) which
is related to the non-unitary part of the evolution; the second term is the unitary part of
the evolution, therefore it is not associated with any entropy change.

To couple the above result with the first law they simply used Eq.(3.5) in the first
term of the rhs of eq.(3.1):

dEA(t) = Tr{dρA(t)HA(t)}+ Tr{ρA(t)dHA(t)},

= Tr
{[

d∑
i

dpi(t) |ψi(t)〉 〈ψi(t)|+
d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|)
]
HA(t) + ρA(t)dHA(t)

}
,

= Tr
{

d∑
i

dpi(t) |ψi(t)〉 〈ψi(t)|HA(t)
}

+ Tr
{

d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|)
}

+ Tr {ρAdHA(t)} .

Therefore they ended-up with the following definitions:

dQA,exchanged ≡Tr
{

d∑
i

dpi(t) |ψi(t)〉 〈ψi(t)|HA(t)
}
, (3.6)

dWA,exchanged ≡Tr
{

d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|)HA(t)
}
, (3.7)

dWA,external ≡Tr {ρAdHA(t)} . (3.8)
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The term of exchanged work can be written in a more insightful way, by noticing
that:

d (|ψi(t)〉 〈ψi(t)|) = |ψi(t+ dt)〉 〈ψi(t+ dt)| − |ψi(t)〉 〈ψi(t)| ,

= U(dt) |ψi(t)〉 〈ψi(t)|U †(dt)− |ψi(t)〉 〈ψi(t)| .

Hence,

d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|)HA =
d∑
i

pi(t)
[
U(dt) |ψi(t)〉 〈ψi(t)|U †(dt)− |ψi(t)〉 〈ψi(t)|

]
HA,

=
[
U(dt)ρA(t)U †(dt)− ρA(t)

]
HA ≡ dρUAHA.

Using the above results, we can rewrite Eq. (3.7) as

dWA,exchanged = Tr
{

d∑
i

pi(t)d (|ψi(t)〉 〈ψi(t)|)HA(t)
}

= Tr
{
dρUA(t)HA(t)

}
,

which shows that this portion of the work is only related to the unitary evolution of the
system density operator.

The formulas (3.6-8) are the ones that we are going to use in the next chapter to
study the energy exchange between quantum systems while they interact. The authors
claim that these new formulas defines unambiguously heat and work in the quantum
thermodynamical context. This statement is exactly what we are going to investigate in
chapter 4.
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4 Results and Discussions

We want to analyse two problems that the open quantum system theory covers:
the dephasing interaction between two qubits and the two level atom in contact with the
vacuum reservoir. We are interested in applying the formal definitions of heat and work
that we presented in the last chapter (3) to one of the subsystems as the global system
evolves in time. Our main goal is to understand and investigate the implications of these
definitions, contrasting with first principles of Thermodynamics and Statistical Quantum
Mechanics.

4.0.1 Two Qubits dephasing interaction

We are dealing with a two qbits system interacting according to the following
Hamiltonian:

Hint = ~χσAz ⊗ σBz ,

where χ is the strength of the interaction. For simplicity, in the following we will consider
χ = 1 and ~ = 1. For the system A and B we have:

HA = ω0

2 σ
A
z , HB = ω0

2 σ
B
z .

We are going to investigate the initial states:

ρA(0) =
p c

c̄ 1− p

 ; ρB(0) =
1/2 0

0 1/2

 .

Using:

|+〉 =
1

0

 ; |−〉 =
0

1

 ,
we can also write the initial states in the form:

ρA(0) = p |+〉A 〈+|+ c |+〉A 〈−|+ c̄ |−〉A 〈+|+ (1− p) |−〉A 〈−| ; (4.1)

ρB(0) = 1
2 |+〉B 〈+|+ 0 |+〉B 〈−|+ 0 |−〉B 〈+|+

1
2 |−〉B 〈−| . (4.2)
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Hence, the composite system is given by the tensor product:

ρAB(0) = ρA(0)⊗ ρB(0), (4.3)

= p

2 |+〉A 〈+| ⊗ |+〉B 〈+|+
p

2 |+〉A 〈+| ⊗ |−〉B 〈−|+

+ c

2 |+〉A 〈−| ⊗ |+〉B 〈+|+
c

2 |+〉A 〈−| ⊗ |−〉B 〈−|+

+ c̄

2 |−〉A 〈+| ⊗ |+〉B 〈+|+
c̄

2 |−〉A 〈+| ⊗ |−〉B 〈−|+

+ (1− p)
2 |−〉A 〈−| ⊗ |+〉B 〈+|+

(1− p)
2 |−〉A 〈−| ⊗ |−〉B 〈−| ,

ρAB(0) = p

2 |++〉 〈++|+ p

2 |+−〉 〈+−|+
(1− p)

2 |−+〉 〈−+|+ (1− p)
2 |−−〉 〈−−|+

+ c

2 |++〉 〈−+|+ c

2 |+−〉 〈−−|+
c̄

2 |−+〉 〈++|+ c̄

2 |−−〉 〈+−| . (4.4)

Notice that we shortened the notation for the tensor product: the first and second
entry refers to the kets belonging to the Hilbert space of system A and B, respectively
(|+〉A ⊗ |+〉B = |++〉).

The total evolution is unitary, all Hamiltonians are time independent and they
commute. We can write the global time evolution operator as follows:

U = e−iHAte−iHBte−iHintt,

U = e−i
ω0
2 σ

A
z e−i

ω0
2 σ

B
z e−iσ

A
z ⊗σBz t, (4.5)

and

U † = e+iω0
2 σ

A
z e+iω0

2 σ
B
z e+iσAz ⊗σBz t. (4.6)

For the time evolution of the composed density operator:

ρAB(t) = UρAB(0)U † (4.7)

plugging Eq. 4.4 in the the above expression and using:
i)e(σ̂z) |+〉 = e1 |+〉;
ii)e(σ̂z) |−〉 = e−1 |−〉;
one would eventually end-up with the following density matrix:

ρAB(t) =



p
2 0 c

2e
−iω0te−2it 0

0 p
2 0 c

2e
−iω0te2it

c̄
2e
iω0te2it 0 (1−p)

2 0
0 c̄

2e
iω0te−2it 0 (1−p)

2

 ,

notice that the sum over the diagonal terms equals to one, as should be.

Now, we are going to apply the formalism that we presented in section 3. Let us
look to the system A, i.e. tracing over the degrees of freedom of system B:

ρA(t) = TrB{ρAB(t)}. (4.8)
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Computing the trace over each member of the system B:

TrB{|++〉 〈++|} = |+〉A 〈+| ;

TrB{|++〉 〈+−|} = 0;

TrB{|++〉 〈−+|} = |+〉A 〈−| ;

TrB{|++〉 〈−−|} = 0;

TrB{|+−〉 〈++|} = 0;

TrB{|+−〉 〈+−|} = |+〉A 〈+| ;

TrB{|+−〉 〈−+|} = 0;

TrB{|+−〉 〈−−|} = |+〉A 〈−| ;

TrB{|−+〉 〈++|} = |−〉A 〈+| ;

TrB{|−+〉 〈+−|} = 0;

TrB{|−+〉 〈−+|} = |−〉A 〈−| ;

TrB{|−+〉 〈−−|} = 0;

TrB{|−−〉 〈++|} = 0;

TrB{|−−〉 〈+−|} = |−〉A 〈+| ;

TrB{|−−〉 〈−+|} = 0;

TrB{|−−〉 〈−−|} = |−〉A 〈−| .

Therefore,

ρA(t) = p

2 |+〉A 〈+|+
c

2e
−iω0te−2it |+〉A 〈−|+

p

2 |+〉A 〈−|+

+ c

2e
−iω0te2it |+〉A 〈−|+

c̄

2e
iω0te2it |−〉A 〈+|+

+ (1− p)
2 |−〉A 〈−|+

c̄

2e
iω0te−2it |−〉A 〈+|+

(1− p)
2 |−〉A 〈−| ;

ρA(t) = p |+〉 〈+|+ c

2e
−iω0t

(
e−2it + e+2it

)
|+〉 〈−|+

+ c̄

2e
iω0t

(
e+2it + e−2it

)
|−〉 〈+|+ (1− p) |−〉 〈−| .

Notice that the terms in parenthesis can be recast as 2 cos 2t = ei2t + e−i2t with ~ = 1;
applying this and rewriting ρA(t) in the interaction picture,

ρA,int(t) = e+iω0
2 σ

A
z [p |+〉 〈+|+ c. cos 2te−iω0t |+〉 〈−|+ (4.9)

+ c̄ cos 2teiω0t + (1− p) |−〉 〈−|]e−i
ω0
2 σ

A
z ;

ρA,int(t) = p |+〉 〈+|+ c cos 2t |+〉 〈−|+ c̄ cos 2t |−〉 〈+|+ (1− p) |−〉 〈−| ,

(4.10)

in the matrix form:

ρA(t) =
 p c cos 2t
c̄ cos 2t 1− p

 . (4.11)
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Notice that the internal energy of the subsystem A is invariant during the dynamics:

E0 = Tr{ρA(0)HA} = ω0

2 (2p− 1); (4.12)

Et = Tr{ρA(t)HA} = ω0

2 (2p− 1); (4.13)

→ ∆E = 0. (4.14)

If we apply the standard formalism, i.e. Eqs. (1.2,1.3), as the Hamiltonian HA does not
depend on time, we get dWA = 0. Hence, the first law of thermodynamics:

∆E =
∫ t

0
dQA(t′) +

∫ t

0
dWA(t′), (4.15)

0 =
∫ t

0
dQA(t′) + 0 (4.16)

→ dQA = 0. (4.17)

As pointed out in reference (18), the above result is an inconsistency of the standard
formulation: the system is interacting and neither work nor heat is being exchanged. As
we should have guessed, once the Alicki’s formulation was developed to describe a system
in contact with a reservoir, taken as having infinite degrees of freedom.

Let us examine what we get by applying the new set of definitions (3.6,3.7,3.8). In
order to do it, we proceed to diagonalize the matrix ρA(t), Eq. (4.11). The expression for
the instantaneous eigenvalues have the form

p1(t) = 1
2 +

√
1 + 4c2 cos 2t2 + 4p2 − 4p

2 , (4.18)

p2(t) = 1
2 −

√
1 + 4c2 cos 2t2 + 4p2 − 4p

2 , (4.19)

and the (unnormalized) eigenstates read

|ψ1(t)〉 =


2c cos 2t

1+
√

4c2 cos 2t2+4(p− 1
2)2
−2p

1

 , (4.20)

|ψ2(t)〉 =


−2c cos 2t

−1+
√

4c2 cos 2t2+4(p− 1
2)2

+2p

1

 . (4.21)

Using the new proposed equations for heat and work that was presented in Chapter
3:

d

dt
< QA >=

2∑
i=1

dpi(t)
dt
〈ψi(t)|HA(t)|ψi(t)〉 ; (4.22)

d

dt
< dWA >=

2∑
i=1

pi(t)
d

dt
[〈ψi(t)|HA(t) |ψi(t)〉] . (4.23)
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Using Eqs. (4.18-19) and the normalized version of Eqs. (4.20-21), we can rewrite
Eqs. (4.21 and 4.22) as:

d

dt
< QA >= −

8
(
p− 1

2

)
sin 2tc2 cos 2tω0

4c2 cos 2t2 + 4
(
p− 1

2

)2 ; (4.24)

d

dt
< dWA >=

8
(
p− 1

2

)
sin 2tc2 cos 2tω0

4c2 cos 2t2 + 4
(
p− 1

2

)2 . (4.25)

Notice from Eq. (4.24,4.25) that dQA = −dWA, and therefore the first law is satisfied.
Thus, in some cases the standard formalism can not differentiate the energy exchanged in
the form of work, but apparently the new set can.

We can ask if this result is general or not. Let us investigate the following specific
case using p = 1

2 and c = c̄ = 1
2 :

ρA(t) =
 1

2
1
2 cos 2t

1
2 cos 2t 1

2

 .
Our goal now is to diagonalize this matrix in order to obtain its eigenvalues and eigenvectors.
Thus,

det{(ρA(t)− λ1)} = 0,

λ2 − λ+ 1
4
(
1− cos2 2t

)
= 0.

This is a typical second order equation with solutions:

λ1(t) = p1(t) = 1− cos 2t
2 = sin2 t, (4.26)

λ2(t) = p2(t) = 1 + cos 2t
2 = cos2 t, (4.27)

where we identified λi(t) = pi(t) for i = 1, 2; pi(t) are the eigenvalues of the density
operator that represents the system A evolved in time.

Now for the eigenvectors

 1
2

1
2 cos 2t

1
2 cos 2t 1

2

x
y

 = sin2 t

x
y

 , (4.28)

which leads us to the following system of equations:

x

2 + y cos 2t
2 = x sin2 t (4.29)

x cos 2t
2 + y

2 = y sin2 t. (4.30)
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Working with Eqs. (4.28, 4.29),

x
(1

2 − sin2 t
)

= −y cos 2t
2

x = −cos 2t
2

2y
(1− 2 sin2 t)

x = −y. (4.31)

Hence choosing x = 1 we get y = −1 and we can write the first eigenvector as

|ψ1〉 = 1√
2

[|0〉 − |1〉] . (4.32)

For the second eigenvector we follow the same procedure and write: 1
2

1
2 cos 2t

1
2 cos 2t 1

2

x′
y′

 = cos2 t

x′
y′

 , (4.33)

from which we can write the following system of equations:

x′

2 + y′ cos 2t
2 = x′ cos2 t, (4.34)

x′ cos2 2t
2 + y′

2 = y′ cos2 t. (4.35)

Solving the above system of equations we obtain:

x′
(1

2 − cos2 t
)

= −y
′ cos 2t

2 ,

x′ = −cos 2t
2

2y′
(1− 2 cos2 t) ,

x′ = y′, (4.36)

allowing us to write to the second eigenvector:

|ψ2〉 = 1√
2

[|0〉+ |1〉] . (4.37)

Note that these states are orthonormal, i.e. 〈ψi|ψj〉 = δi,j.

We can now rewrite the density operator for the system A in its diagonal form:

ρA(t) =
2∑
i=1

pi |ψi〉 〈ψi| ,

ρA(t) = sin2 t |ψ1〉 〈ψ1|+ cos2 t |ψ2〉 〈ψ2| .

Recalling 4.22:

d

dt
< QA >=

2∑
i=1

dpi(t)
dt
〈ψi(t)|HA(t)|ψi(t)〉 (4.38)

d

dt
< QA >= dp1(t)

dt
〈ψ1(t)|ω0σ

A
z

2 |ψ1(t)〉+ dp2(t)
dt
〈ψ2(t)|ω0σ

A
z

2 |ψ2(t)〉 . (4.39)
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The above equations for the heat can be written as

d

dt
< QA >= dp1(t)

dt

ω0

2 〈ψ1(t)|ψ2(t)〉+ dp2(t)
dt

ω0

2 〈ψ2(t)|ψ1(t)〉 = 0,

Where we have used:

σz |ψ1〉 = |ψ2〉 , (4.40)

σz |ψ2〉 = |ψ1〉 , (4.41)

〈ψ1|ψ2〉 = 0. (4.42)

Now for the external work:

d

dt
< WA(ext) >= Tr

{
ρA

d

dt
HA(t)

}
= 0,

since HA does not depend on time.

For the exchanged work, we use Eq. (4.23):

d

dt
< WA(exc) >= Tr

{
d∑
i

pi(t)
d

dt
(|ψi(t)〉 〈ψi(t)|)HA(t)

}
= 0,

because (|ψi〉 〈ψi|) also does not depend on time.

In this specific example we spotted the same lack in satisfying the first law that we
witnessed before with the standard formalism. Therefore, the same criticism also applies
for this new formalism when dealing with only two systems interacting. This seems to
suggest that this new proposal is not general as the authors claim.

In the next section we are going to use the Markov Master Equation formalism that
we presented in 2.2 to deal with the problem of a two level system in contact with a zero
temperature bath, also called “vacuum”. We are going to show that these new formulas
can lead to some unusual behaviors with regards to the energy exchanged between the
two systems.

4.0.2 Two level atom in contact with a heat bath at zero temperature

The system that we are dealing with consists of a two level atom interacting with
a thermal reservoir. The total Hamiltonian of the problem is

H =HS +HB +HSB,

H =~ω0

2 σz +
∑
i

~ωia†(ωi)a(ωi) +
∑
i

g(ωi)(σ−a(ωi)† + σ+a(ωi)).
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The dynamics is memoryless and the coupling between the system and the envi-
ronment is weak. The equations of motion for the state of the system in contact with the
vacuum were deduced Eqs. (2.43,2.44,2.45):

ρee(t) =ρee(0)e−Γt,

ρeg(t) =ρge(t) = ρeg(0)e− 1
2 Γt,

ρgg(t) =1− ρee(0)e−Γt.

Where Γ is the Einstein A coefficient for spontaneous emission that represents the decay
of the atomic excited levels; notice that we absorbed the global phase that appeared in
Eq. (2.44), once its a global phase and won’t affect our description.

In general we can construct the following time dependent density operator for the
system of interest with the aid of the above solutions of the master equation,

ρ(t) =
 ρee(0)e−Γt ρeg(0)e− 1

2 Γt

ρeg(0)e− 1
2 Γt 1− ρee(0)e−Γt

 .

By the diagonalization process of a two by two matrix one gets the following time
dependent expression for the eigenvalues, the instantaneous populations:

p1(t) =
1 +

√
4ρ2

ee + 4ρ2
eg − 4ρee + 1

2

 ; (4.43)

p2(t) =
1−

√
4ρ2

ee + 4ρ2
eg − 4ρee + 1

2

 . (4.44)

and for the instantaneous (unnormalized) eigenkets:

|ψ1(t)〉 =

−
ρeg

− 1
2−

√
4ρ2ee+4ρ2eg−4ρee+1

2 +ρee

1

 ; (4.45)

|ψ2(t)〉 =

−
ρeg

− 1
2 +

√
4ρ2ee+4ρ2eg−4ρee+1

2 +ρee

1

 ; (4.46)

Now we use the definitions of heat and work fluxes Eqs. (4.22,4.23)

d

dt
< QS >=

2∑
i=1

d

dt
(pi(t)) 〈ψi(t)|HS|ψi(t)〉 ,

d

dt
< WS >=

2∑
i=1

pi(t)
d

dt
(〈ψi(t)|HS|ψi(t)〉) ,
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Figura 2 – Population variations with time. On the left we have the variation of p1(t).
Notice that these variations are negligible.

for the case where the initial state is the following unpolarized beam (incoherent mixture):

ρ(0) =
1/2 0

0 1/2

 .
In the following numerical calculations we use Γ = 0.2s−1. As can be seen in figure

2, the variations on the populations p1(t) and p2(t) are very small hence justifying the
“noisy” aspect of the heat flux in figure 3. The system has no coherence, which means that
the state won’t change in time, i.e. it doesn’t show any instantaneous eigenkets, therefore
the work flux is also zero. Notice that, effectively, the heat and the work fluxes are zero
for this state.

It happens because this ensemble has no coherence. In fact we can generalize that
for any incoherent state there will be no work whatsoever, once the expressions (4.45,4.46)
depends on the off-diagonal element of the density matrix. Thus there is no information,
hence energy, being exchanged about the phase relation of the members of the ensemble.
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Figura 3 – Heat and work fluxes versus time for the incoherent mixture in contact with
the vacuum. The heat flux presents a negligible fluctuation and the work flux
is exactly zero, it happens because the states are not changing with time.

Now if we take initially the coherent mixed state, which is a linear superposition of
the kets in the computational basis,

ρ(0) =
1/2 1/2

1/2 1/2

 .
In order to understand this ensemble is worthwhile to take a look at the formulas for the
eigenprobabilities, Eqs. 4.43 and 4.44. At time t = 0, p1(0) = 1 and p2(0) = 0, it means
that, initially, the ensemble can be exactly characterized by |ψ1(0)〉 = 1√

2 (|+〉+ |−〉),
which can be seen by the normalized version of Eqs. (4.45, 4.46) at t = 0. In figure 4, we
plotted a graph that tracks how the eigenprobabilities given by Eqs. (4.43,4.44) change in
time. The behavior for the heat flux and the total heat for the system are presented in
figure 5; the work and work flux is presented in fig. 6.

From Figure 4, we can observe that the eigenprobabitilies p1(t) and p2(t) present
peaks, although the variations is very small. These peaks in the instantaneous popula-
tions account for the heat flux behavior, since this flux depends on the variation of the
eigenpopulations.

As we are analysing the system’s dynamics, positive flux means that the system
is being pumped by some external energy transfer; while negative flux means that the
system is giving energy to its environment.

As can be seen, in figure 5, the system is initially receiving heat from vacuum. As
the system evolves in time it starts to lose heat and eventually come to a steady state,
where the heat flux ceases, around the mark of 35 seconds.
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Figura 4 – Eigenprobabilities versus time.

Figura 5 – In the first graph, on the left, we have the heat flux versus time for the qubit.
As can be seen, the flux is initially positive, which means that the system is
receiving energy in the form of heat from the environment. On the right we
have the total heat exchanged, i.e. the integral of the heat flux.
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Figura 6 – Work flux from the qubit to the vacuum reservoir versus time; on the right,
the total work exchanged.

The system also exchange energy in the form of work with the heat reservoir.
This process occurs simultaneously with the heat exchange. The flux of work is negative,
meaning that the system is losing energy to the bath. This behavior can be seen in figure
6. Note that in Alicki’s formalism there is no work exchanged between the system and the
reservoir. However, in the new definitions, the work is not null and comes from the initial
coherence of the system.

To conclude this chapter, note that the general definition of heat is energy in transit.
However, if we interpret the results presented in Fig. 5 as truly accounting for heat, as it
was proposed by Ahmadi et al. and Alipour et al., we face a contradiction: the system is
getting heat from the zero temperature bath. This possibly is indicating some inadequacy
of the formalism.
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5 Conclusions

The key idea of these new definitions for heat and work, from (18, 19) are based,
according to the authors, on the Clausius reasoning, which defines heat as the portion of
energy exchanged that accounts for entropy change and work as the energy exchanged
that does not causes entropy change. With this in mind, the authors suggested that by
differentiating the density operator in its spectral decomposition one should be able to
acknowledge for two variations: one related to kets and bras evolution (unitary) and the
other that is concerned with the variation of the instantaneous populations (non-unitary).
With the aid of the von Neumann entropy, which varies as a function of the eigenvalues
of ρ, the authors could identify the non-unitary part that arose from the tracking of the
density operator, over time, as heat, while the part related to the kets and bras evolution
were identified as work.

The fundamental difference between these new set of formulas for heat and work
and the one used in Alicki’s paper, is that the former splits the variation of the density
operator into two parts, accounting for the so called “exchanged work”. Therefore the new
approach has one more term of work, which is not related to the contributions of external
fields.

One of the main goals of these new proposals is to shed light into some inconsistencies
that the standard formalism presents when applied to some cases, as in the example of
the two qubits interacting. Although these formulas appeared, at first, to overcome the
lack of consistency with the first law of thermodynamics, they failed when applied to a
specific scenario, therefore suggesting that this new formalism is not general.

When we analysed the case of the two level atom interacting with the vacuum
using the new definitions of heat and work, we obtained a very unusual behavior: the
system absorbed energy from the vacuum reservoir. This fact seems to imply a possibly
inadequacy of the formalism, since the vacuum reservoir should not be able to transfer
energy to the system.
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