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Resumo

Santos, Róbson. Sistema eletrostático e fórmulas divergentes. Goiânia,
2023. 92p. Tese de Doutorado . Programa de Pós-Graduação em Matemática,
Instituto de Matemática e Estatística, Universidade Federal de Goiás.

Uma questão clássica em relatividade geral é a classificação de soluções de buracos
negros regulares estáticos das equações Eisntein-Maxwell (ou sistema eletrovácuo).
Nós provamos alguns resultados de classificação para um sistema eletrovácuo tal
que o potencial elétrico é uma função diferenciável da função lapso. Nós, partic-
ularmente, mostramos que um espaço n-dimensional eletrovácuo localmente con-
formemente plano satisfazendo algumas condições deve estar na classe Majumdar-
Papapetrou. Além disso, nós provamos que qualquer espaço eletrovácuo de dimen-
são 3 ou 4 em que algumas condições são satisfeitas deve ser localmente con-
formemente plano. Mais ainda, nós demonstramos que um espaço electrovácuo n-
dimensional satisfazendo algumas condições, sem divergência de quarta ordem do
tensor de Weyl e curvatura radial de Weyl zero tal que o potencial elétrico está na
classe Reissner-Nordström é localmente uma variedade produto torcido com fibra
Einstein de dimensão n−1. Finalmente, um espaço electrovácuo tridimensional sat-
isfazendo algumas condições, sem divergência de terceira ordem do tensor de Cot-
ton, também é classificado. Nós também provamos que variedades eletrostáticas
(ou eletrovácuos) tridimensional com constante cosmológica não nula e tensor de
Bach livre de divergência são localmente conformemente planos, desde que o campo
elétrico e o gradiente da função lapso sejam linearmente dependentes. Consequente-
mente, uma variedade eletrostática tridimensional admite uma estrutura local de
produto torcido com uma base unidimensional e fibra uma superfície de curvatura
constante.

Palavras–chave

Teoria da Relatividade, Sistema eletrostático, Variedades conformemente
planas, Fórmulas divergentes, Tensor de Bach.



Abstract

Santos, Róbson. Electrostatic system and divergence formulas. Goiânia,
2023. 92p. PhD. Thesis . Programa de Pós-Graduação em Matemática, Insti-
tuto de Matemática e Estatística, Universidade Federal de Goiás.

A classical question in general relativity is about the classification of regular static
black hole solutions of the static Einstein-Maxwell equations (or electrovacuum sys-
tem). We prove some classification results for an electrovacuum system such that the
electric potential is a smooth function of the lapse function. We particularly show
that an n-dimensional locally conformally flat electrovacuum space satisfying some
conditions must be in the Majumdar-Papapetrou class. We also prove that any three
or four-dimensional electrovacuum space that some conditions are satisfied must
be locally conformally flat. Moreover, we prove that an n-dimensional electrovac-
uum space satisfying some condition with fourth-order divergence-free Weyl ten-
sor and zero radial Weyl curvature such that the electric potential is in the Reissner-
Nordström class is locally a warped product manifold with (n−1)-dimensional Ein-
stein fibers. Finally, a three-dimensional electrovacuum space satisfying some con-
ditions with a third-order divergence-free Cotton tensor is also classified. We also
prove that three-dimensional electrostatic (or electrovacuum) manifolds with a non-
null cosmological constant and divergence-free Bach tensor are locally conformally
flat, provided that the electric field and the gradient of the lapse function are linearly
dependent. Consequently, a three-dimensional electrostatic manifold admits a local
warped product structure with a one-dimensional base and a constant curvature sur-
face fiber.

Keywords

Relativity Theory, Electrostatic System, Conformally flat manifolds, Diver-
gence formulas, Bach tensor.
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Introduction

The electrostatic system, in short, is Einstein’s Field Equation – formulated
by Albert Einstein in his studies of General Relativity – coupled to the Faraday tensor.
This system is also called Einstein-Maxwell, and it will be the research object of this
dissertation. This system has a lot of relevance to physics since it describes the rela-
tionship between Relativity and Electromagnetism. Furthermore, some well-known
solutions for the electrostatic system are standard models for electrically charged
static black holes or stars [15, 19, 22, 23]. It is also relevant because it is a set of Par-
tial Differential Equations on an abstract Riemannian manifold. It generalizes the
well-known static vacuum Einstein space system, whose most important model is
the Schwarzschild space (cf. [1], and the references in there).

There are some important works about the research object of this disser-
tation and we can quote a few: Cederbaum and Galloway [15] who established
the uniqueness of suitably defined subextremal photon spheres in an asymptoti-
cally flat electrovacuum spacetime; Chruściel and Delay [19] constructed infinite-
dimensional families of non-singular static spacetimes, solutions for the vacuum
Einstein-Maxwell equations with a negative cosmological constant; Cruz, Lima, and
Sousa [23] connected the electrostatic system with the min-max theory; Hartle and
Hawking [28] analyzed some of the stationary solutions of the electrostatic equations;
Jahns [33] showed a uniqueness result for the n-dimensional spatial electrovacuum
manifold using similar techniques used by [15]; Kunduri and Lucietti [36] proved that
any asymptotically flat static spacetime in a higher dimensional electrostatic system
must have no magnetic field; Coutinho and Leandro [22] proved that the lapse func-
tion must be identically zero at the horizon boundary of an electrostatic system with
null cosmological constant. The horizon boundary is closely related to the event hori-
zon, the edge of a black hole.

Specifically, in this work, the electrostatic system will be constructed in
Chapter 1. Moreover, we will present essential definitions, examples, and results for
our work in this chapter. Also, we will establish the notation used throughout this
dissertation. The deduction of the electrostatic system is based on Chruściel and De-
lay [19, Appendix]. A brief discussion about conformal geometry is also made in this
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chapter, along with the presentation of some models for the electrostatic system, such
as the Reissner-Nordström, Majumdar-Papapetrou, and Charged Nariai space.

We must discuss the cosmological constant briefly. Einstein introduced the
constant in his equation to solve some inconsistencies in General Relativity Theory.
The cosmological constant is fundamental to describe more precisely some astro-
nomic phenomena, for instance, the expansion of the universe discovery by Hubble
(cf. [51]). In this dissertation, the cosmological constant performs a significant role.
We will call the electrostatic system with the null cosmological constant by electrovac-
uum system, which will be studied in Chapter 2; the electrostatic system with a non-
null cosmological constant will be reviewed in Chapter 3.

More specifically, in Chapter 2, inspired by the Reissner-Nordström and Ma-
jumdar–Papapetrou solutions, some results concerning the local geometric structure
of the electrovacuum system are proved (see [3]). As a fundamental hypothesis in
this chapter, we supposed that the electric potential is a smooth function of the lapse
function. We prove a characterization of the solutions for the electrovacuum system
satisfying the above condition. Thus, one of the goals of this dissertation is to investi-
gate this class of solutions and to prove some results about their geometric structure.

It is important to highlight that the results in Chapter 2 follow from the con-
formal structure of the metric. Locally conformally flat manifolds are very important
for many research works in recent years (cf. [9, 10, 13, 32, 37, 44]). Observing this,
we can state the main question of this work: what are the curvature conditions we
need to guarantee that an electrovacuum (or electrostatic) space is locally conformally
flat? In other words, we are interested in finding some natural conditions for an n-
dimensional electrovacuum system to be locally conformally flat.

In Chapter 2, based on Andrade, Leandro, and Lousa [3], we find some suffi-
cient conditions for the electrovacuum system (with a null cosmological constant) to
be a locally conformally flat manifold. In higher dimensions, this condition is on the
nullity fourth-order divergence of the Weyl tensor. In dimension three, the condition
corresponds to the third-order divergence of the Cotton tensor being identically zero.

These studies about conformally flat manifolds are inspired by: Cao and
Chen [9], in which the authors classified n-dimensional (n > 3) complete Bach-flat
gradient shrinking Ricci solitons, showing that any 4-dimensional Bach-flat gradient
shrinking Ricci soliton is either Einstein, or locally conformally flat; Catino [12], where
the author proved a local characterization for locally conformally flat quasi-Einstein
manifolds; Catino, Mastrolia, and Maticelli [13] classified complete gradient Ricci
solitons satisfying a fourth-order vanishing condition on the Weyl tensor, making use
of the conformally flat results; Hwang and Yun [32] studied static vacuum spaces with
the complete divergence of the Bach tensor and Weyl tensor, implying in conformal
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flatness; Leandro [37], in which similar results were found for Einstein-type manifolds
with fourth-order divergence-free Weyl tensor.

In Chapter 3, we study the electrostatic system with a non-null cosmologi-
cal constant in the three-dimensional case. This chapter is based on the work of Le-
andro, and Lousa [39], where the authors found a sufficient condition for a three-
dimensional electrostatic space to be a locally conformally flat manifold. We will
prove that an electrostatic system with a divergence-free Bach tensor must be, locally,
a warped product space with a one-dimensional base and fiber being a constant cur-
vature surface. Chapter 3 is, in a sense, a continuation of Chapter 2. The most crucial
difference lies in the fact that we are considering a non-null cosmological constant
and no direct dependence on the electric function of the lapse function. We recom-
mend to the reader to see [23] as a recent and good overview of the system considered
in Chapter 3.

Furthermore, the strategies used in Chapter 3 make use of the differential
forms theory. Consequently, the condition used in Chapter 2 of the electric potential
be a function of the lapse function is not used in Chapter 3. We will assume an
analogous, however, weaker condition. The electric field and the gradient of the
lapse function must be linearly dependent. This is always true for an electrostatic
space at the horizon boundary. Also, a straightforward computation shows that this
assumption implies the assumption used in Chapter 2 about the electric potential
and the lapse function. These conditions will be presented in that chapter, along with
an in-depth discussion.

We will discuss the theme studied in each chapter, presenting the main re-
sults and demonstrations. Moreover, we will establish the connection between the
results and the standard models stated in the preliminary section (Chapter 1).



CHAPTER 1
Conformally flat manifolds and electrostatic
system

Our main goal in this chapter is to present some results about the locally
conformally flat manifolds and deduce the electrostatic system from the warped
product structure. To that end, we need first to present the definition of some tensors
that will be fundamental through this work. We also will describe other well-known
elements from differential geometry as well as some of its properties. Thus, this
chapter is important to fix our notation and remember some widely known facts and
results in the literature. Therefore, we refer to great works such as [5], [16], [26], [41],
[43], among others that will be referenced throughout the chapter, and the entire
dissertation.

An n-dimensional Riemannian manifold (Mn,g) is a smooth manifold
equipped with a Riemannian metric g. Moreover, throughout this work, Einstein’s
convention will be used. We will consider X (M) and D(M) as the sets of all C∞

vector fields on M and C∞ real functions defined on M, respectively. Let f : Mn → R
be a smooth function of M, that is, f ∈ D(M) and (x1, . . . , xn) be a local coordinate
system, then

∇i f = g i j
∂xj f ,

denotes the gradient of f . Here, ∂xj f stands for the partial derivative of f with respect
to xj . Moreover, g i j are the components of the inverse metric g−1 of the metric g, with
components gi j .

In what follows, we will remember some important well-known definitions
to fix notation. These definitions can be found in [26, Chapter 3]. Similar definitions
can be found in [5, Chapter 1], [16, Section 2.5], and [35, Section 6C].

Definition 1.1 ([26, Chapter 3]) The gradient of f ∈ D(M) in a point p ∈ M is the
vector field ∇f ∈ TpM given by

〈∇f , v〉= dfp(v),
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for all v ∈ TpM.

Definition 1.2 ([26, Chapter 3]) The Hessian tensor of a function f ∈D(M), denoted
by ∇2f , is given by

∇
2f (X ,Y ) = 〈∇X (∇f ), Y 〉 ,

for all X ,Y ∈X (M).

Definition 1.3 ([26, Chapter 3]) The Laplacian operator∆f of a smooth function f ∈
D(M) is defined by

∆f = div(∇f ),

where
divX(p) = trace of the linear application{Y (p) 7→ ∇Y X(p)}.

Here, p ∈M and X ,Y ∈X (M). Moreover, div stands for the divergence of a vector field
with respect to the metric defined over M.

1.1 Conformally flat manifolds

In this section, we discuss some properties of (locally) conformally flat man-
ifolds.

Definition 1.4 ([16, Chapter 1]) A Riemannian manifold (Mn,g) is said to be locally
conformally flat if for a point p ∈ M, there exists a local coordinate system {xi} in a
neighborhood U of p such that

gi j = g

(
∂

∂xi
,

∂

∂xj

)
= fδi j ,

for some function f ∈D(U). Here, δi j stands for the Kronecker delta.

For an important characterization of (locally) conformally flat manifolds,
we will present some special tensors that play a fundamental role in this work. The
first tensor that we will present is the Riemann (Curvature) tensor Rm. This tensor is
named in honor of G. Riemann, and it is also known as Riemann–Christoffel tensor
(see [49, 50, 51]).

From now on, we will consider a Riemannian manifold (Mn, g), n ≥ 3, with
metric tensor g = 〈·, ·〉. The Riemann curvature tensor is defined by

Rm : X (M)×X (M)×X (M)×X (M) → D(M)

(X ,Y ,Z ,W ) 7→ Rm(X ,Y ,Z ,W ) = 〈R(X ,Y )Z ,W 〉
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where R(X ,Y )Z : X (M)×X (M)×X (M)→X (M) is

R(X ,Y )Z = ∇X ∇yZ −∇Y ∇X Z +∇[X ,Y ]Z , X ,Y ,Z ∈X (M).

Here, ∇ and [·, ·] stand for the Levi-Civita connection and the Lie bracket, respectively.
In a local coordinate system (x1, . . . , xn) with associated base {e1, . . . , en} for

the tangent space of M,the Riemannian curvature tensor is Ri jk l = 〈R(ei ,ej)ek ,el〉.
Remember that this tensor has the following symmetries:

• Ri jks +Rjk is +Rkijs = 0 (First Bianchi Identity);
• Ri jks =−Rj iks =−Ri jsk = Rksji .

Moreover, the Riemannian curvature tensor can be related to f ∈ D(M) by
using the Ricci identity

∇i∇j∇k f −∇j∇i∇k f = Ri jk l∇
l f . (1-1)

Remember that we are assuming Einstein’s convention for sum. Furthermore, the
second Bianchi identity is

∇mRi jk l +∇kRi j lm +∇lRi jmk = 0. (1-2)

Contracting the curvature tensor over the first and last indices, we obtain the
Ricci tensor, Ric, which in coordinates is given by

Ri j = gklRik j l .

Taking the trace one more time, now over the remained indices, the scalar curvature
R is obtained, that is,

R = g i jRi j .

The covariant derivatives of the Ricci tensor and the scalar curvature are
related by the contracted second Bianchi identity. Note that we can contract the
second Bianchi identity (1-2) over m and i , to obtain

gmi
∇mRi jk l +∇kRj l −∇lRjk = 0.

Now over j and k , we have

gmi
∇mRi l +g jk

∇kRj l −∇lR = 0,
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reordering the indices, we get

g i j
∇iRkj =

1
2

∇kR. (1-3)

We can rewrite the above equation as

div Ric =
1
2

dR,

where dR is the differential form associated to R.
Let us now present the Weyl tensor, which is related to the Riemannian cur-

vature tensor. This tensor was first defined in the year of 1918 by the German math-
ematician Hermann Weyl in [52]. The Weyl tensor is defined, in a local coordinate
system, by

Wi jk l = Ri jk l −
1

n−2
(Rikgj l −Ri lgjk +Rj lgik −Rjkgi l) (1-4)

+
R

(n−1)(n−2)
(gikgj l −gi lgjk).

From straightforward computation (cf. [9]), it is possible to observe that the Weyl
tensor has the same symmetries of the curvature tensor, i.e.,

Wik j l =−Wkij l , Wik j l =−Wik l j , and Wik j l = Wj l ik .

Also, the Weyl tensor is totally trace-free, in other words, the trace of the Weyl tensor
vanishes over any two indices, i.e.,

gtsWi jk l = 0 ∀ t ,s ∈ {i , j , k , l} and t 6= s.

Still dealing with the Weyl tensor, we have some useful definitions for our
work. When the divergence of the Weyl tensor is identically zero, i.e.,

divW = 0,

we say that the manifold has a harmonic Weyl curvature. In a local coordinate system,
we have

divW = g lp
∇pWi jk l = ∇

lWi jk l .

It is well-known that if the scalar curvature is constant, then harmonic Weyl curvature
implies harmonic curvature, and this follows from (1-3) and (1-4). Therefore, it is
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possible to calculate the divergence of the Weyl tensor at most in its fourth order, i.e.,

div4W = ∇
i jk lWi jk l .

Moreover, a Riemannian manifold (Mn,g) has zero radial Weyl curvature if

W (·, ·, ·, ∇f ) = 0,

where ∇f is the gradient of f ∈D(M). This condition was used in [12] and [37] in the
study of Einstein-type manifolds. It is important to say that Catino [12] proved that
this condition can not be removed in the classification of quasi-Einstein manifolds
having harmonic Weyl tensor. This condition over the Weyl tensor will be important
in the classification of the Electrovacuum system having a fourth-order divergence-
free Weyl tensor, i.e., div4W = 0.

The curvature tensor is determined by the Ricci tensor in dimension three
since the Weyl tensor is identically zero (see [35, Corollary 8.25]).

Theorem 1.5 ([35, Corollary 8.25]) Let (M3, g) be an 3-dimensional Riemannian
manifold, then

W = 0.

In 1899, Émile Cotton [21] defined a third-order tensor that we will discuss
ahead, the Cotton tensor. This tensor is written as

Ci jk = ∇iRjk −∇jRik −
1

2(n−1)
(∇iRgjk −∇jRgik). (1-5)

The tensor is totally trace-free. Moreover, it is skew-symmetric under the two
first indices, i.e.,

Ci jk =−Cj ik .

Furthermore, from a straight computation, we have

∇
kCkij = ∇

kCkji .

The Cotton tensor also satisfies a Bianchi-type identity, i.e.,

Ci jk +Cjk i +Ckij = 0. (1-6)

Thus, from the contracted second Bianchi identity (1-3), and the commuta-
tion formulas, we have

∇
iCjk i = 0. (1-7)
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In [12], Catino proved that the Cotton tensor and the derivative of the Weyl
tensor are related by the identity

Ci jk =−
n−2
n−3

∇
lWi jk l , (1-8)

for n > 3. The equation (1-8) provides that the Cotton tensor vanishes if, and only if,
the Weyl tensor is harmonic.

Assuming that n ≥ 4, we can define the Bach tensor

Bi j =
1

n−3
∇

k
∇

lWik j l +
1

n−2
RklWik j l . (1-9)

It was defined in 1921 by Rudolf Bach in [4]. Combining (1-8) and (1-9), we deduce a
relationship between the previous tensors, that is,

Bi j =−
1

n−2
∇

kCik j +
1

n−2
RklWik j l . (1-10)

It is natural (see [9]) to define the 3-dimensional Bach tensor by

Bi j = ∇
kCkij . (1-11)

This definition is natural due to the identity (1-10), and the fact the Weyl tensor is
identically zero in dimension n = 3 (Theorem 1.5). We can also express the divergence
of the Bach tensor as a function of the Cotton tensor

∇
jBi j =

n−4
(n−2)2 Ci jkR jk . (1-12)

The Bach tensor appeared naturally from studies of Huyghens’s principle and
has some psychical significance mainly about wave propagation (see for instance [48]
and the references therein). It is easy to see that this tensor is also trace-free since the
Weyl tensor and the Cotton tensor are totally trace-free.

Finally, we describe the last tensor important for this dissertation. This tensor
was first defined by Schouten in 1921 [46]. The Schouten tensor can be described by

Si j =
1

n−2

(
Ri j −

R
2(n−1)

gi j

)
. (1-13)

From this definition, we obtain

(n−2)Ci jk = ∇iSjk −∇jSik .

We can rewrite the other tensors in terms of the Schouten tensor (cf. [9]).
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Taking into account these tensors, we can return to the theme under discus-
sion and characterize the locally conformally flat manifolds. The characterization is
given by Theorem 1.6 which follows below (see [16, Proposition 1.31]). Any locally
conformally flat manifold of dimension n≥ 4 is characterized by the Weyl tensor. For
dimension three, since W = 0 (Theorem 1.5), the locally conformally flat manifolds
are characterized by the Cotton tensor. For dimension n = 2, it is well-known that ev-
ery two-dimensional Riemannian metric is locally conformally flat (see [16, Chapter
2], and [35, Corollary 8.29]).

Theorem 1.6 ([16, Proposition 1.31]) A Riemannian manifold (Mn, g) is locally
conformally flat if and only if

• (for n ≥ 4) the Weyl tensor vanishes,
• (for n = 3) the Cotton tensor vanishes.

For n = 3 we can see that the result holds when the Schouten tensor S is Codazzi, i.e.,

(∇X S)(Y ,Z ) = (∇Y S)(X ,Z )

for all X ,Y ,Z ∈X (M) (see [35, Theorem 8.31]).
There are a lot of examples of conformally flat manifolds in the literature:

Sn, Rn, and Hn. Moreover, Chow, Lu, and Ni [16, Corollary 1.33] showed that if a
Riemannian manifold has constant sectional curvature, then it is locally conformally
flat. Other conditions are well-known in the literature. In the next section, we will
provide an important criterion [7, Theorem 1] showing when a warped product is
locally conformally flat. This result is very important for our work.

1.2 The electrostatic system

In this section, our goal is to deduce the electrostatic system from Einstein’s
field equation coupled to the Faraday tensor. The main ideas of this computation can
be found in [19, Appendix], see also [23] and the references therein. For this purpose,
it is fundamental to bring forward some well-known discussions about the warped
product of a Riemannian manifold. The demonstrations of these results concerning
warped product structure can be found in [5, Chapter 9] and [43, Chapter 7]. We start
with the following definition.

Definition 1.7 ([43, Definition 33]) Let (B,gB) and (F ,gF ) be Riemannian mani-
folds furnished with their respective metrics. Moreover, let f : B→Rbe a positive smooth
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mapping. A warped product manifold M = B×f F is defined by the product manifold
B×F furnished with metric tensor

g = π∗(gB)+(f ◦π)2σ∗(gF ),

where π : M→ B and σ : M→ F projections of B×F onto B and F , respectively.

Figure 1.1: Warped product [43, Page 205].

The manifolds B and F are called the base and the fiber of the warped product
manifold M, respectively. The function f is called warping function. Moreover, we can
verify quickly that if the warped function f ≡ 1, then the warped manifold is just the
standard product manifold. The functions h̃ = h ◦π ∈ D(M) and ψ̃ = ψ ◦σ ∈ D(M)

are called lifts of h ∈ D(B) and ψ ∈ D(F) to M. Also, we denote by L(B) and L(F)

the sets of all lifts X̃ and Ṽ of X ∈X (B) and of V ∈X (F). Now we can state some
well-known results about warped product manifolds.

Theorem 1.8 ([43, Chapter 7]) Let M = B×f F be a warped product manifold, h ∈
D(B) andψ ∈D(F). Then,

i) ∇g h̃ = ∇̃gB h,

ii) ∇gψ̃=
∇̃gfψ

f̃ 2
,

iii) ∆g h̃ = ∆gB h−d
gB(∇gB h,∇gB f )

f
, where d is the dimension of the fiber F ,

iv) ∆gψ̃= ∆gFψ.

Let us remember some important terms of the Ricci tensor and scalar curva-
ture for a warped product manifold that will be important for this dissertation.

Theorem 1.9 ([43, Chapter 7]) Let (M, g) = (B, gB)×f (F , gF ) be a warped product
and X ,Y ∈ L(B). Then,
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i) Ricg(X ,Y ) = RicgB(X ,Y )− d
f

∇2
gB

f (X ,Y );

ii) Rg = RgB +
RgF

f 2 −2d
∆gB f

f
−d(d−1)

|∇f |2gB

f 2 ,

where d performs the dimension of the fiber F , RgB and RgF are the scalar curvature of
B and F , respectively.

Remark 1 It is convenient to notice that [43, Corollary 43] takes the dimension of F

more than 1 in item i) of the Theorem 1.9, but the result also follows if the dimension is
equal to 1.

To relate the warped product structure with conformally flat manifolds we
have the following well-known result, see [7, Theorem 1] and the references therein.

Theorem 1.10 Let M = B×f F be a semi-Riemannian warped product.

• If dim B = 1, then M = B×f F is locally conformally flat if and only if (F ,gF ) is a
space of constant curvature;

• If dim B > 1 and dim F > 1, then M = B×f F is locally conformally flat if and
only if

– (F ,gF ) is a space of constant curvature cF .
– The function f : B→ R+ defines a global conformal deformation on B such

that (B,(1/f 2)gB) is a space of constant curvature c̃B =−cF .

• If dim F = 1, then M = B×f F is locally conformally flat if and only if the function
f : B → R+ defines a conformal deformation on B such that (B,(1/f 2)gB) is a
space of constant curvature.

To finish our considerations about the warped product structure we will
consider the following scenario (see [10] and [5, Chapter 9]). Let M be a warped
product manifold given by

(Mn, g) = (I, dr2)×φ (Nn−1, g),

where I ⊆ R is a interval and g = dr2 +φ(r)2g, and let

θ= (θ2, θ3, · · · , θn)

be a local coordinate system on Nn−1, in which (x1, x2,x3, · · · , xn) = (r , θ2, · · · , θn).
Let also a, b, c, · · · be the range from 2 to n, thus the Riemannian curvature tensor of
(Mn, g) is given by

R1a1b = φφ
′′gab, R1abc = 0
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and

Rabcd = φ2Rabcd − (φφ′)2(gacgbd −gadgbc).

Therefore, contracting the above equations, we obtain the following Ricci
tensor formulas for (Mn, g):

R11 =−(n−1)
φ′′

φ
, R1a = 0

and

Rab = Rab− [(n−2)(φ′)2 +φφ′′]gab.

Finally,

R = φ−2R− (n−1)(n−2)
(
φ′

φ

)2

−2(n−1)
φ′′

φ
.

Now, to construct the electrostatic system following the ideas in [19, Ap-
pendix], it is necessary to consider (Mn,g) an n−dimensional Riemannian manifold
with n ≥ 3, and f : M→ R a positive function. Now, let

M = M×f R

be a warped product with metric

g̃ = g+εf 2dt2

where ε = ±1. Hence, suppose that x i = (x1, · · · ,xn), x0 = t , and xµ = (x0,x1, · · · ,xn)

are ordinary vectors of M,R and M , respectively. To maintain the same notation used
by [19] the greek letters range from 0 to n.

Remember (see [26, Chapter 2]) that Christoffel’s symbols are given by

Γ̃λαβ =
1
2

g̃λm
(

∂ g̃mα

∂xβ
+

∂ g̃mβ

∂xα
−

∂ g̃αβ
∂xm

)
. (1-14)

Therefore, observe that the Christoffel’s symbols for (M n+1, g̃) are given by

Γ̃0
00 = Γ̃

0
i j = Γ̃

k
i0 = 0, Γ̃0

i0 =
∂i f
f

, Γ̃ k
00 =−εf∇k f , and Γ̃ k

ij = Γ
k
ij ,

where ∇ stands for the Levi-Civita derivative operator associated with the metric
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tensor g.
We conclude that the components of Riemann curvature of (M , g̃) are

R̃i jk l = Ri jk l , R̃0j0l =−εf∇j∇l f , and R̃i jk0 = Ri j0l = R̃0jk l = 0.

For the Ricci tensor of (M , g̃) we have

R̃ik = Rik −
∇k∇i f

f
, R̃0k = 0, and R̃00 =−εf∆f . (1-15)

Thus, from Theorem 1.9 the scalar curvature of M is

R̃ = R−2
∆f
f

. (1-16)

We point out that the Einstein field equation is given by

R̃αβ−
1
2

R̃g̃αβ+Λg̃αβ = Tαβ. (1-17)

Here, we will consider T as the Faraday tensor, i.e.,

T = F ◦F − 1
4
|F |2g̃,

where the Hadamard-Schur product is given by

(F ◦F)αβ := gµνFαµFβν,

and the Hilbert-Schmidt norm of F is given by

|F |2 = gαβgµνFαµFβν.

Moreover, we can observe that the trace of T is

Trg̃T ≡ g̃αβTαβ = |F |2−
(n+1)

4
|F |2 =−n−3

4
|F |2. (1-18)

Remark 2 Here it is important to point out that in the three-dimensional case, T is
trace-free.

Now, from the Maxwell equations (see [18] and [19, Equation 1.2]) we can
infer that

divg̃F = 0, F = d(ψdt), and ∂tψ= 0,
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whereψ ∈D(M). Here, we are assuming the existence of a hypersurface-orthogonal
globally timelike Killing vector X = ∂/∂ t such that, over g̃ (with ε=−1), we get

∂t f = ∂tg = 0.

In what follows, we will consider only ε = −1. Contracting (1-17) over g̃ we
obtain the scalar curvature of (M , g̃), given by

R̃ =
−2

n−1
(

Trg̃T − (n+1)Λ
)

. (1-19)

where Trg̃T represents the trace of T over g̃. Replacing the curvature in (1-17) we have
the following equation

R̃αβ =
2Λ−Trg̃T

n−1
g̃αβ+Tαβ. (1-20)

Now, replacing (1-20) in (1-15) we get

Ri j =
∇i∇j f

f
+

2Λ
n−1

gi j +Ti j −
Trg̃T

n−1
gi j . (1-21)

Contracting this equation over metric g, we have the scalar curvature of M, i.e.,

R =
∆f
f
+

n
n−1

(2Λ−Trg̃T )+TrgT .

Also, we can combine (1-19) with (1-16) to obtain

f∆f = f 2
(

R
2
+

Trg̃T − (n+1)Λ
n−1

)
.

Replacing the scalar curvature R in the above equation we have

f∆f = f 2
(

TαβNαNβ+
Trg̃T −2Λ

n−1

)
, (1-22)

where Nα∂α is the unit timelike normal to the level sets of t , i.e., TαβNαNβ = TrgT −
Trg̃T .

From the Maxwell equations, we get

|F |2 =−2
|∇ψ|2

f 2 ,

thus, (1-18) is given by

trg̃T =
n−3

2
|∇ψ|2

f 2 . (1-23)
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Hence, from the Faraday tensor we have

Ti j =−
∇iψ∇jψ

f 2 +
1
2
|∇ψ|2

f 2 gi j . (1-24)

Contracting (1-24) we have

g i jTi j =
(n−2)

2
|∇ψ|2

f 2 .

Considering TαβNαNβ =
|∇ψ|2

2f 2 in (1-22) gives us

f∆f =
n−2
n−1

|∇ψ|2− 2Λf 2

n−1
. (1-25)

Furthermore, combing (1-21), (1-23) and (1-24), we obtain

fRi j = ∇i∇j f +2
fΛ

n−1
gi j −

∇iψ∇jψ

f
+

1
n−1

|∇ψ|2

f
gi j . (1-26)

Since F = dψ∧dt , from the Maxwell equations (i.e., divg̃(F) = 0 and ∂tψ= 0)
and the Laplacian formula for a warped product metric (cf. Theorem 1.8) we have

∆gψ−
g(∇ψ, ∇f )

f
= 0. (1-27)

On the other hand,

div
(

∇ψ

f

)
=

1
f

[
∆gψ−

g(∇ψ, ∇f )
f

]
.

Thus, from (1-27) we obtain
div
(

∇ψ

f

)
= 0. (1-28)

Finally, takingψ :=
√

2ψ (for the convention assumed in this work) in (1-25),
(1-26), and (1-28) we obtain the electrostatic system that can be defined as follows.

Definition 1.11 Let (Mn,g) be an n-dimensional smooth Riemannian manifold with
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n ≥ 3 and f ,ψ : M→ R be smooth functions satisfying

f Ric = ∇2f − 2
f

dψ⊗dψ+2
fΛ

n−1
g+

2
(n−1)f

|∇ψ|2g,

∆f = 2
(

n−2
n−1

|∇ψ|2

f
− fΛ

n−1

)
,

0 = div
(

∇ψ

f

)
,

(1-29)

where ∇2 and ∆ stand for the Hessian tensor and the Laplacian operator with respect
to metric g, respectively. We refer (Mn, g, f ,ψ) as an electrostatic system (or space).

Moreover, the smooth functions f , ψ, and the manifold Mn are called lapse
function, electric potential, and spatial factor for the electrostatic system, respec-
tively. Furthermore, f > 0 on M, and f−1(0) = ∂M (see [3, 19, 18, 23]).

Now, note that by taking the contraction of the first equation of Definition
1.11, we obtain

fR = ∆f +2
n

n−1
fΛ+

2
(n−1)f

|∇ψ|2.

Then, combining it with the second equation in (1-29), we get a useful equation that
does not depend on the dimension of M and relates the scalar curvature R with the
lapse function and the electric potential, i.e.,

f 2R = 2
(
|∇ψ|2 + f 2Λ

)
. (1-30)

We can assume
∇ψ

f
= E .

Hence, from a straightforward computation, analogous to the deduction of Definition
1.11, the electrostatic system can be rewritten in the following form:

∇2f = f

(
Ric− 2

n−1
Λg+2E[⊗E[− 2

n−1
|E |2g

)
,

∆f = 2f

(
n−2
n−1

|E |2− 1
n−1

Λ

)
,

0 = div(E) and curl(fE) = 0,

(1-31)

where E ∈X (M) is called electric field, f ∈ C∞(M) is the lapse function, and E[ is the
one-form metrically dual to E . The above system will be considered in Chapter 3. In
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the three-dimensional case, the above system was studied in [23].
It is worth highlighting that both systems (1-29) and (1-31) are equivalent if M

is simply connected. In fact, if cur l(fE) = 0 and M is simply connected, we obtain that
the field fE is a path-independent vector field, that is, there exists a smooth function
ψ called potential function (that we called it electric potential) such that fE = ∇ψ.

The contraction of the first equation and combining it with the second equa-
tion in (1-31) we obtain

R = 2(|E |2 +Λ). (1-32)

Furthermore, we can observe that (see [23, Lemma 4]) over ∂M = f−1(0), the
electric field E and the gradient of the lapse function are linearly dependent, i.e., there
exists a smooth function ρ : M→ R such that E = ρ∇f . In fact, since cur l(fE) = 0 we
obtain

df ∧E[+ f dE[ = 0. (1-33)

Since f is identically zero over ∂M, we get

df ∧E[ = 0.

More properties of the electrostatic system will be presented in the following
chapters.

1.3 Solutions for the electrostatic system

In this section, we aim to present some well-known solutions for the electro-
static system.

Reissner-Nordström solution (RN). In 1918 G. Nordström and H. Reissner,
independently, found a class of exact solutions to the Einstein equation for the gravita-
tional field of a spherical charged mass (see [47] for a wide-ranging discussion about
this solution). The Reissner-Nordström (RN) electrostatic spacetime is one of the most
important solutions to the electrostatic system, and it can be thought of as a model
for a static black hole with electric charge q and mass m. It is called subextremal, ex-
tremal, or superextremal depending on if m2 > q2, m2 = q2 or m2 < q2, respectively.
For instance, we have the following RN solution given by the Riemannian manifold
Mn = Sn−1× (r+, +∞) with metric tensor

g =
dr2

1−2mr2−n +q2r2(2−n)
+ r2gSn−1 ,
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where r represents the radial coordinate. Here, m2 ≥ q2 are constants, and r+ > (m+√
m2−q2)1/(n−2). Moreover, the outer horizon for the Reissner-Nordström spacetime

is located at (m +
√

m2−q2)1/(n−2), which corresponds to the zero set of the lapse
function of the RN manifold. The static horizon is defined as the set where the lapse
function for a static manifold is identically zero. This set is physically related to the
event horizon, the boundary of a black hole. The RN space is locally conformally flat
(see [17, 33] for instance).

It is well-known that the lapse function f and the electric potential ψ of the
solution Reissner–Nordström satisfies the following relationship (see [15, Equation A.1]
and [36, Lemma 3]):

f 2 = 1+2
n−2
n−1

ψ2−2
m
q

√
2

n−2
n−1

ψ. (1-34)

Majumdar–Papapetrou solution (MP). Another important electrovacuum
solution is the Majumdar–Papapetrou (see [17, 28, 42]), which is related to an extremal
RN solution. The Majumdar-Papapetrou (MP) solution to the electrostatic system rep-
resents the static equilibrium of an arbitrary number of charged black holes whose mu-
tual electric repulsion exactly balances their gravitational attraction. A spacetime will
be called a standard MP spacetime if the metric tensor is given by

ĝ =−f 2dt2 + f−2/(n−2)(dx2
1 + . . .+dx2

n ),

in Cartesian coordinates x = (x1, . . . , xn) and M̂n+1 = (Rn\{ai}I
i=1)×R, for a finite set

of points ai ∈ Rn, where

1
f (x)

= 1+
I

∑
i=1

mi

rn−2
i

; ri = |x−ai |, (1-35)

for some positive constants mi , and the electric potential

±

√
2(n−2)
(n−1)

ψ= 1− f ,

(see [28, Equation 2.3] and [36, Lemma 1]).
Solution invariant by translation. In [38], the authors found a family

of examples for a non-complete n-dimensional electrostatic space distinct from the
Reissner-Nordström solution. This example is locally conformally flat and invariant
under the action of an (n−1)-dimensional translation group. Moreover, the lapse func-
tion f and the electric potentialψ are related (see more details in [38, Theorem 1.5]). It
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is not understood if this solution has any physical meaning.
The classification problem of an electrovacuum spacetime can be stated as

follows. Suppose that

qiqj ≥ 0, ∀ i , j ,

where qi is the charge of the i-th connected degenerate component of the electric-
charged black hole. Then, the black hole is either an RN black hole or an MP black
hole. There are some important and recent results in the literature concerning the
classification of electrovacuum spaces (see for instance [20, 36, 42] and their refer-
ences).

Furthermore, considering the null cosmological constant and the electric
potential constant everywhere (or electric field identically zero), we have that the
system (1-29) is a generalization of the static vacuum Einstein spacetime. The static
vacuum Einstein spacetime is broadly explored in the literature. Furthermore, the
most important solution for this system is the Schwarzschild solution.

Now we present some solutions for the system (1-31), with non-null cosmo-
logical constant and dimension 3. The following three examples can be found in [23].
These examples are locally conformally flat (see Theorem 1.10).

Unit hemisphere. The n-dimensional unit hemisphere Sn
+ ⊂ Rn+1 equipped

with the standard metric gSn ,
M = (Sn

+,gSn).

For this example, we have that the lapse function is f = xn+1, and electric potential
constant everywhere (cf. [1]). In other words, the unit hemisphere is an example of a
static metric and an electrostatic system with a non-null cosmological constant.

Charged Nariai system. The charged Nariai system is the 3-dimensional
space [

0,
π

α

]
×S2

with metric tensor g = dr2+ϕ2gS2 , whereϕ is a constant and gS2 is the standard metric
of the sphere S2 with radius 1. The electric field and the lapse function are given by

E =
q
ϕ2 ∂r and f (r(x)) = sin(αr(x)),

where r(x)2 = x2
1 + x2

2 + x2
3 such that (x1, x2, x3) are Cartesian coordinates,

α=

√
Λ− q2

ϕ4 and
1

2Λ
<ϕ2 <

1
Λ

.
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Moreover,

0 < m2 =
1

18Λ

[
1+12q2Λ+

√
(1−4q2Λ)3

]
and

0 < |q| ≤ϕ2
√
Λ.

The following two examples are pretty similar to the above one. However, there
are essential differences that we need to highlight.

Cold Black Hole. The cold black hole is the 3-dimensional space

[0, ∞)×S2

with metric tensor g = dr2+ϕ2gS2 , whereϕ is a constant and gS2 is the standard metric
of the sphere S2 with radius 1. The electric field and the lapse function are given by

E =
q
ϕ2 ∂r and f (r(x)) = sinh(βr(x)),

where r(x)2 = x2
1 + x2

2 + x2
3 ,β=

√
q2

ϕ4 −Λ and 0 <ϕ2 < 1
2Λ .

Moreover,

0 < m2 =
1

18Λ

[
1+12q2Λ+

√
(1−4q2Λ)3

]
and

ϕ2
√
Λ≤ |q|.

Ultracold Black Hole. The ultracold black hole is the 3-dimensional space

[0, ∞)×S2

with metric tensor g = dr2+ϕ2gS2 , whereϕ2 = 1
4Λ = q2. The electric field and the lapse

function are given by

E =
√
Λ∂r and f (r) = r .

Moreover,

m =
1
3

√
2
Λ

.

Our last example is a generalization of the Reissner-Nordström solution with
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a non-null cosmological constant, and we will provide the n-dimensional case.
Reissner-Nordström-de Sitter solution (RNdS). In some recent works (see

[11, 23, 24, 27, 29, 30, 34]) we can find a well-known example for the electrostatic
system in which the cosmological constant is non zero. In fact, the Reissner-Nordström-
de Sitter space is the Reissner-Nordström system with a positive cosmological constant.
Topologically, the Reissner-Nordström-de Sitter space is the product of the R with the
unit radius sphere Sn−1. The Reissner-Nordström-de Sitter spacetime with mass m and
charge q (cf. [24, Equation 2.2] and [34, Equation 1]) is given by

g =−f (r)dt2 +
dr2

f (r)
+ r2gSn−1 ,

where gSn−1 is the standard metric of Sn−1. The lapse function f (r) is

f (r) = 1− 2Λr2

n(n−1)
− 2m

rn−2 +
q2

r2(n−2)
,

the electric field is given by
E =

q
rn−1 f (r)∂ r

and the cosmological constant and the mass are positive, i.e., Λ > 0 and m > 0 (cf.
[11, 23]). Hence from (1-30) we have R > 0.



CHAPTER 2
The electrostatic system with a null
cosmological constant

In this chapter, we prove some results concerning the geometric structure
of an electrostatic system with a null cosmological constant (electrovacuum system)
such that the electric potential is a smooth function of the lapse function. We will
show that an n-dimensional locally conformally flat electrovacuum space satisfying
(2-2) with null cosmological constant must be in the Majumdar-Papapetrou class,
and we also prove that any three or four-dimensional electrovacuum space satisfying
(2-3) with null cosmological constant must be locally conformally flat.

Static electrovacuum spacetimes model exterior regions of static configura-
tions of electrically charged stars or black holes (see [15, 20, 28] and the references
therein). Equations of motion for an (n+ 1)-dimensional reduced Einstein-Maxwell
spacetime are given by

(R̂ic)i j = 2
(

Fi lF
l
j −

1
2(n−1)

|F |2ĝi j

)
; 1≤ i , j ≤ n+1,

where F represents the electromagnetic field (the Faraday tensor) and R̂ic is the Ricci
tensor for the metric ĝ.

Our main ground is the static spacetime (M̂n+1, ĝ) = Mn×f R such that

ĝ(x , t) = g(x)− f 2(x)dt2; x ∈M,

where (Mn,g) is an open, connected, and oriented Riemannian manifold, and f is a
smooth warped function [15, 17, 36]. Considering as electromagnetic field

F = dψ∧dt +B,

for some smooth functionψ on M. Here, ξ= ∂

∂ t is the static Killing field and the mag-
netic field B is a 2-tensor on M such that iξB = 0. We will be considering n-dimensional
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spatial slices, i.e., the Riemannian manifold M is orthogonal to the static Killing field.
Therefore, it is more convenient to use the dimensionally reduced Einstein-Maxwell
equations, i.e., B = 0 (see [33, Definition 6] and the references therein). If ξ is strictly
timelike in the spacetime then M is a complete manifold. If ξ is null anywhere the
above coordinate system breaks down at the level set {f = 0}. In this case, we extend
M to a manifold with a smooth boundary ∂M containing {f = 0}, which could cor-
respond to an event horizon or an ergosurface if the hypersurface is null or timeline,
respectively. We say that (M, g) is complete away from the horizon ∂M if for any se-
quence of points {pi} such that pi → p ∈ ∂M on the metric of M one has f (pi)→ 0.
Conversely, if {pi} is a bounded sequence of M such that f (pi)→ 0, then the defini-
tion of (M, g) implies that a subsequence of {pi} converges to a point p ∈ ∂M [2].

The most common assumption in the analysis and classification of an elec-
trovacuum space is to consider that such space is asymptotically flat (see [15, 17, 36,
42]). Then, we can use classical results to prove that the solution for the electrovac-
uum system is either MP or RN (cf. [17, Theorem 3.6]). Even though these asymptotic
conditions are restrictive in the topological sense, it is physically reasonable in the
study of isolated gravitational systems. Usually, in differential geometry, we often as-
sume some conditions over the curvature in the analysis and classification of a Rie-
mannian manifold. In this work, considering just a condition over the curvature for
the classification of the electrovacuum space seems to be not enough, since a priori
we do not have any additional information about the electric potential and the lapse
function.

Usually, in differential geometry, we often have some conditions over the
metric or curvature (or both) in the attempt to classify an arbitrary space. Locally
geometric conditions over the curvatures (Riemannian, Ricci, or scalar) and Weyl
tensor have been used in the study and classification of static vacuum spaces (cf.
[1, 32, 37]). For instance, it is well known that if a Riemannian manifold has constant
scalar curvature and harmonic Weyl curvature, then its curvature tensor should be
harmonic (but not necessarily flat). Clearly, the harmonic Weyl curvature condition is
weaker than the locally conformally flat condition (we refer to the reader [12, Remark
1.2]). It is interesting to remember that some classical proofs for the uniqueness
of the static Schwarzschild black holes used the conformally flat structure of the
static metric to obtain the classification result (cf. [45] and the references therein).
Naturally, we can assume weaker integrability conditions on a Riemannian manifold
to understand its geometry. Some of our main results were inspired by the idea used
by [14] to classify Ricci solitons, where the authors considered that the Weyl tensor is
free from divergence as a hypothesis, which is a weaker assumption than harmonic
Weyl curvature. These conditions will be discussed ahead.
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We remember that an asymptotically flat n-dimensional electrovacuum
space is extremal (i.e., m = |q|) if, and only if, the magnetic field is zero and

f = 1±
√

2(n−2)/(n−1)ψ,

admitting f = 0 at ∂M (see Lemma 1 in [36]). Also, in [36, Lemma 3], certain elec-
trovacuum solutions combined with an equation relating ψ and f have implications
on the non-existence of magnetic fields. It is worth saying that an extremal RN space-
time contains a unique photon sphere, on which light can be trapped and it has the
largest possible ratio of charge to mass (see [15]). The theory of extremal black holes is
very important in physics and has very interesting properties. For instance, extremal
charged black holes may be quantum mechanically stable, which is consistent with
the ideas of cosmic censorship (see [31]). There is also an important type of elec-
trovacuum solution in supergravity theory (see [42]). Moreover, there is evidence that
this type of black hole is important to understanding the no-hair theorem (see [8]).

The RN and MP solutions for the electrovacuum system suggest to us that
there exists a class of solutions where the electric potential is a smooth function of
the lapse function, i.e.,ψ=ψ(f ). We will prove that an n-dimensional electrovacuum
space with null cosmological constant, fourth-order divergence free Weyl tensor, and
zero radial Weyl curvature such that the electric potential satisfies the above condi-
tion is locally a warped product manifold with an (n−1)-dimensional Einstein fibers.
Finally, a three-dimensional electrovacuum space with no cosmological constant and
third-order divergence-free Cotton tensor is also classified.

The electrovacuum system was constructed in Section 1.2 (Chapter 1). For
the sake of completeness and to specify which system will focus on, we will state the
definition here once more.

Definition 2.1 Let (Mn,g) be an n-dimensional smooth Riemannian manifold with
n ≥ 3 and let f ,ψ : M→ R be smooth functions satisfying

f Ric = ∇2f − 2
f

dψ⊗dψ+
2

(n−1)f
|∇ψ|2g,

∆f = 2
(

n−2
n−1

)
|∇ψ|2

f
and 0 = div

(
∇ψ

f

)
.

In this chapter, we refer to (Mn,g, f ,ψ) as the electrovacuum system (or space).

Moreover, using the electrovacuum equations, we get

f 2R = 2|∇ψ|2. (2-1)
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2.1 Structural lemmas

In this section, motivated by [6, 12, 37, 44] we will obtain some structural
lemmas, which are fundamental to prove the main results of this chapter. To that
end, we will first demonstrate Theorem 2.2 which shows us how related the electric
potential and the lapse function can be.

In what follows, we will consider that the critical set of the lapse function f ,
i.e., cr it(f ) = {x ∈M, ∇f (x) = 0}, is not dense on M. Moreover, |∇f | 6= 0 at ∂M is known
as the non-degeneracy condition.

Theorem 2.2 Let (Mn,g, f ,ψ), n ≥ 3, be an electrovacuum space such that ψ = ψ(f ).
Then, the electric potential (locally) is either

2(n−2)
n−1

ψ(f )2− 4(n−2)
n−1

βψ(f )+
2(n−2)

n−1
β2 +

n−1
n−2

σ= f 2 (2-2)

or

ψ(f ) = β±

√
(n−1)

2(n−2)
f , (2-3)

where σ, β ∈ R. Moreover,σ= 0 if and only ifψ(f ) is an affine function of f .

Proof. Sinceψ=ψ(f ) we obtain

∇ψ= ψ̇(f )∇f . (2-4)

Then,

∇
2ψ = ψ̈(f )df ⊗df + ψ̇(f )∇2f ,

where⊗ is the tensor product. Now, by contracting the above equation, we obtain

∆ψ = ψ̈(f )|∇f |2 + ψ̇(f )∆f .

From the second equation of our system and (2-4), we have

∆f =
2
f

(
n−2
n−1

)
ψ̇(f )2|∇f |2.

Combining the last equations with the divergence of ∇ψ

f
and (2-4), we get

ψ̈(f )|∇f |2 +2
(

n−2
n−1

)
ψ̇(f )3|∇f |2

f
= ψ̇(f )

|∇f |2

f
.
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Notice that {∇f = 0} is not dense. By a straightforward computation, we arrive at

ḣ+2
(

n−2
n−1

)
f h3 = 0,

where
h =

ψ̇

f
.

So, by solving this ODE, we get

ψ̇(f ) =
±f√

2 (n−2)
(n−1) f

2−2σ
; σ ∈ R. (2-5)

By integration, we obtain, either

ψ(f ) = β± (n−1)
2(n−2)

√
2
(

n−2
n−1

)
f 2−2σ; σ 6= 0, β ∈ R,

or

ψ(f ) = β±

√
(n−1)

2(n−2)
f ; σ= 0 ,β ∈ R.

Moreover, from (2-5) we have the following useful identity

2ψ̇(f )2 =
(n−1)f 2

(n−2)f 2− (n−1)σ
. (2-6)

Finally, we observe that if σ = 0, then from the above equation ψ̇(f ) is a
constant, which implies thatψ(f ) is an affine function. 2

It is interesting to remark howσ andβ given by (2-2) are related with the mass
m and electric charge q for an RN solution which satisfies (1-34). A straightforward
computation shows us that

β2 =
(n−1)

2(n−2)
m2

q2 and σ=
(n−2)
(n−1)

(q2−m2)

q2 .

So, we can say that a solution satisfying Theorem 2.2 is called subextremal, extremal,
or superextremal depending on if σ< 0, σ= 0 or σ> 0, respectively.

It is worth highlighting that the completeness assumption over (Mn, g) is just
to ensure that the critical set {∇f = 0} is not dense on M. So, here, completeness can
be replaced by assuming that the critical set is not dense.
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The above theorem shows us that an electrovacuum system such that ψ =

ψ(f )has two possible solutions, which are closely related to the RN and MP solutions.
Now we will prove the first structural lemma which relates some tensors

described in Section 1.1 (Chapter 1), and to prove that we write the electrovacuum
equations in a local coordinate, i.e.,

fRjk = ∇j∇k f − 2
f

∇jψ∇kψ+
1

n−1
fRgjk ; (2-7)

∆f =
n−2
n−1

fR = 2
(

n−2
n−1

)
|∇ψ|2

f
; (2-8)

0 = ∆ψ− 1
f
〈∇f , ∇ψ〉. (2-9)

The following lemma relates the Cotton and Weyl tensors with the electrovac-
uum structure.

Lemma 2.3 Let (Mn, g, f ,ψ), n ≥ 3, be an electrovacuum system. Then,

fCi jk = Wi jk l∇
l f +

1
n−2

(Rj l∇
l f gik −Ri l∇

l f gjk)

+
R

(n−1)(n−2)
(∇i f gjk −∇j f gik)

− 2
f 2 [f (∇jψ∇i∇kψ−∇iψ∇j∇kψ)−∇i f∇jψ∇kψ+∇j f∇iψ∇kψ]

+
n−1
n−2

(Rik∇j f −Rjk∇i f )+
1

(n−1)f
(∇i |∇ψ|2gjk −∇j |∇ψ|2gik).

Proof. We take the derivative of (2-7) to obtain

Rjk∇i f + f∇iRjk = − 2
f 2 [f (∇i∇jψ∇kψ+∇jψ∇i∇kψ)−∇i f∇jψ∇kψ] (2-10)

+ ∇i∇j∇k f +
1

n−1

(
f
2

∇iR+
1
f

∇i |∇ψ|2
)

gjk

and

Rik∇j f + f∇jRik = − 2
f 2 [f (∇j∇iψ∇kψ+∇iψ∇j∇kψ)−∇j f∇iψ∇kψ] (2-11)

+ ∇j∇i∇k f +
1

n−1

(
f
2

∇jR+
1
f

∇j |∇ψ|2
)

gik .

Subtracting (2-10) from (2-11) and using that the Hessian operator is symmetric, we
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can deduce that

Rjk∇i f −Rik∇j f + f (∇iRjk −∇jRik) = ∇i∇j∇k f −∇j∇i∇k f +
f

2(n−1)
(∇iRgjk −∇jRgik)

− 2
f 2 [f (∇jψ∇i∇kψ−∇iψ∇j∇kψ)−∇i f∇jψ∇kψ+∇j f∇iψ∇kψ]

+
1

(n−1)f
(∇i |∇ψ|2gjk −∇j |∇ψ|2gik).

Then, using the Ricci identity (1-1) and the Cotton tensor (1-5), we can infer
that

fCi jk = Ri jk l∇
l f +

1
(n−1)f

(∇i |∇ψ|2gjk −∇j |∇ψ|2gik)−Rjk∇i f +Rik∇j f

− 2
f 2 [f (∇jψ∇i∇kψ−∇iψ∇j∇kψ)−∇i f∇jψ∇kψ+∇j f∇iψ∇kψ].

Now, using the Weyl formula (1-4), we have

fCi jk = Wi jk l∇
l f +

1
n−2

(Rj l∇
j f gik −Ri l∇

l f gjk)−
R

(n−1)(n−2)
(gik∇

j f −gjk∇
i f )

− 2
f 2 [f (∇jψ∇i∇kψ−∇iψ∇j∇kψ)−∇i f∇jψ∇kψ+∇j f∇iψ∇kψ]

+
n−1
n−2

(Rik∇
j f −Rjk∇

i f )+
1

(n−1)f
(∇i |∇ψ|2gjk −∇j |∇ψ|2gik).

So, the proof is finished. 2

In the sequel, we define the covariant 3-tensor Vi jk by

Vi jk =
1

n−2
(Rj l∇

l f gik −Ri l∇
l f gjk)+

R
(n−1)(n−2)

(∇i f gjk −∇j f gik)

− 2
f 2 [f (∇jψ∇i∇kψ−∇iψ∇j∇kψ)−∇i f∇jψ∇kψ+∇j f∇iψ∇kψ] (2-12)

+
n−1
n−2

(Rik∇j f −Rjk∇i f )+
1

(n−1)f
(∇i |∇ψ|2gjk −∇j |∇ψ|2gik).

The tensor Vi jk was defined similarly to Di jk in [9, Equation 1.2].
Note that from a straightforward computation, we observe that the tensor V

has the same symmetries of the Cotton tensor, C, i.e.,

Vi jk =−Vj ik and Vi jk +Vjk i +Vkij = 0.

Moreover, this tensor is totally trace-free, i.e.,

g i jVi jk = 0, g ikVi jk = 0 and g jkVi jk = 0.
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The first equality holds trivially, and the last two are similar. In fact, note that

g ikVi jk =
1

n−2
(nRj l∇

l f −Rj l∇
l f )+

R
(n−1)(n−2)

(∇j f −n∇j f )

− 2
f 2 [f (∇jψ∆ψ−∇iψ∇j∇

iψ)−∇i f∇jψ∇
iψ+∇j f |∇ψ|2]

+
n−1
n−2

(R∇j f −Rj l∇
l f )+

1
(n−1)f

(∇j |∇ψ|2−n∇j |∇ψ|2)

= − 2
f 2 [f (∇jψ∆ψ−∇iψ∇j∇

iψ)−∇i f∇jψ∇
iψ+∇j f |∇ψ|2]

+ R∇j f −
1
f

∇j |∇ψ|2.

Now, note that since |∇ψ|2 = g ik∇iψ∇kψ, then

∇j |∇ψ|2 = g ik
∇j∇iψ∇kψ+g ik

∇iψ∇j∇kψ

= 2∇iψ∇j∇iψ.

Therefore, from this equation and (2-9), we obtain

g ikVi jk = − 2
f 2 [∇jψ〈∇f , ∇ψ〉−∇jψ〈∇f , ∇ψ〉+∇j f |∇ψ|2]+R∇j f

= 0,

where we used (2-1).
The V -tensor has a fundamental importance in what follows. From Lemma

2.3, we have
fCi jk = Wi jk l∇

l f +Vi jk . (2-13)

In particular, if we suppose that ψ = ψ(f ) in the Lemma 2.3, we obtain the
following result.

Lemma 2.4 Let (Mn, g, f ,ψ), n ≥ 3, be an electrovacuum system such that ψ = ψ(f ).
Then,

Vi jk = P(Ri l∇
l f gjk −Rj l∇

l f gik)+Q(Rik∇j f −Rjk∇i f )+U(∇i f gjk −∇j f gik), (2-14)

where

P =
2ψ̇(f )2

n−1
− 1

n−2
, Q =

n−1
n−2

−2ψ̇(f )2

and

U =
R

n−1

[
1

(n−2)
− 2ψ̇(f )2

(n−1)
+

f ψ̈(f )

ψ̇(f )

]
.
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Proof. In fact, since ψ = ψ(f ), the equation (2-4) is satisfied. Now, using (2-7) we
obtain

∇k∇iψ = ψ̈(f )∇k f∇i f + ψ̇(f )∇k∇i f

= ψ̈(f )∇k f∇i f + f ψ̇(f )Rki +
2
f
ψ̇(f )3

∇k f∇i f −
1

n−1
f ψ̇(f )Rgki .

Replacing the above equation in (2-12) we can rewrite the V -tensor in the following
form:

Vi jk =
1

n−2
(Rj l∇

l f gik −Ri l∇
l f gjk)+

[
R

(n−1)(n−2)
− 2

n−1
ψ̇(f )2R

]
(∇i f gjk −∇j f gik)

+

[
n−1
n−2

−2ψ̇(f )2
]
(Rik∇j f −Rjk∇i f )+

1
(n−1)f

(∇i |∇ψ|2gjk −∇j |∇ψ|2gik).(2-15)

Now, by taking the derivative of (2-1) and using (2-4) we deduce that

4ψ̈(f )ψ̇(f )∇i f |∇f |2 +2ψ̇(f )2
∇i |∇f |2 = 2fR∇i f + f 2

∇iR.

Combining (2-7) and (2-4), we obtain

4ψ̈(f )ψ̇(f )∇i f |∇f |2 +4ψ̇(f )2
(

fRi l∇l f +
2
f
ψ̇(f )2

∇i f |∇f |2− 1
n−1

fR∇i f

)
= 2fR∇i f + f 2

∇iR,

which implies that

f 2
∇iR = 4ψ̈(f )ψ̇(f )∇i f |∇f |2 +4ψ̇(f )2

(
fRi l∇l f +

2
f
ψ̇(f )2

∇i f |∇f |2− 1
n−1

fR∇i f

)
− 2fR∇i f

= 2fR

(
f ψ̈(f )

ψ̇(f )
+

2(n−2)
n−1

ψ̇(f )2−1
)

∇i f +4f ψ̇(f )2Ri l∇l f . (2-16)

Then, using (2-1) and (2-16), we get

∇i |∇ψ|2 = fR∇i f +
f 2

2
∇iR

= fR

(
f ψ̈(f )

ψ̇(f )
+

2(n−2)
n−1

ψ̇(f )2
)

∇i f +2f ψ̇(f )2Ri l∇l f .

Thus, replacing the above equation in (2-15) the result follows. 2

On the other hand, by a conformal change of the metric, we get our next
lemma.
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Lemma 2.5 Let (Mn,g, f ,ψ), n ≥ 3, be an electrovacuum system such thatψ= ψ(f ) is
given by (2-3). Then, the Cotton tensor satisfies

(n−2)2fCi jk = Wi jk l∇
l f . (2-17)

In particular, when n = 3, then (M3, g) is locally conformally flat, i.e, C = 0.

Proof. We consider the conformal change of the metric

g̃ = f
2

n−2 g.

From [12, Appendix] the Cotton tensor for g̃ is given by

(n−2)C̃i jk = (n−2)Ci jk −
1

(n−2)f
Wi jk l∇

l f . (2-18)

Moreover, for g̃ (see [5, page 58]) we obtain

R̃ic = Ric− 1
f

∇
2f +

(n−1)
(n−2)f 2 df ⊗df − ∆f

(n−2)f
g

= Ric− 1
f

∇
2f +

(n−1)
(n−2)f 2 df ⊗df − R

(n−1)
g, (2-19)

where in the last equation we used (2-8).
Consideringψ=ψ(f ), from (1-29), we get

R̃ic =
1
f 2
(n−1)
(n−2)

df ⊗df − 2
f 2 dψ⊗dψ+

1
(n−2)f

[
2
(n−2)
(n−1)

|∇ψ|2

f
−∆f

]
f
−2

n−2 g̃

=
1
f 2
(n−1)
(n−2)

df ⊗df − 2
f 2 dψ⊗dψ=

1
f 2

[
(n−1)
(n−2)

−2ψ̇2
]

df ⊗df . (2-20)

Moreover,

R̃ =
1
f 2

[
(n−1)
(n−2)

−2ψ̇2
]
|∇̃f |2.

By hypothesis,ψ=ψ(f ) satisfies (2-3). So,

2ψ̇2 =
(n−1)
(n−2)

. (2-21)

Consequently, from (2-20) and (2-21), we conclude that (Mn, g̃) is Ricci-flat. In this
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case, the Schouten tensor (1-13) for g̃ is given by

S̃ =
1

n−2

(
R̃ic− 1

2(n−1)
R̃g̃

)

=

[
(n−1)
(n−2) −2ψ̇2

]
(n−2)f 2

(
df ⊗df − |∇̃f |2

2(n−1)
g̃

)
= 0.

This shows that S̃ is Codazzi, i.e., (∇̃X S̃)(Y ) = (∇̃Y S̃)(X) for all X , Y ∈ TM. Therefore,
the Cotton tensor for the metric g̃ is identically zero. So, from (2-18) we have

(n−2)2fCi jk = Wi jk l∇
l f .

Thus, we conclude our proof. 2

Now our goal is to obtain a useful formula for the norm of the Cotton tensor
involving the divergence of the tensor V .

Lemma 2.6 Let (Mn,g, f ,ψ), n ≥ 4, be an electrovacuum system. Then,

(n−2)Bi j =−∇
k
(

Vik j

f

)
+

n−3
n−2

Cjk i∇
k f

f
+

1
f 2 Wik j l(∇

k f∇l f −2∇
kψ∇

lψ). (2-22)

Proof. In fact, from (1-10) and (2-13), we can deduce that

(n−2)Bi j = −∇
kCik j +RklWik j l

= −∇
k
(

Vik j

f
+

Wik j l∇
l f

f

)
+RklWik j l

= −∇
k
(

Vik j

f

)
− ∇kWik j l∇

l f
f

+
Wik j l∇

k f∇l f
f 2 −Wik j l∇

k∇l f
f

+RklWik j l .

Now, using (2-7), we obtain

(n−2)Bi j = −∇
k
(

Vik j

f

)
− ∇kWik j l∇

l f
f

+
Wik j l∇

k f∇l f
f 2

− Wik j l

f

(
fRkl +

2
f

∇
kψ∇

lψ− 1
n−1

fRgkl
)
+RklWik j l .

Since the Weyl tensor is trace-free we have

(n−2)Bi j =−∇
k
(

Vik j

f

)
− ∇kWik j l∇

l f
f

+
1
f 2 Wik j l(∇

k f∇l f −2∇
kψ∇

lψ).
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From (1-8), we get the result. 2

Proceeding, we can use the previous lemma to obtain the following result.

Lemma 2.7 Let (Mn, g, f ,ψ), n ≥ 4, be an electrovacuum system. Then,

Cjk iR
ik = (n−2)∇i

∇
k
(

Vik j

f

)
− (n−2)

1
f

Wik j lR
i l
∇

k f (2-23)

+ 2(n−2)
Wik j l

f 2 ∇
kψ∇

i
∇

lψ−2(n−2)
Wik j l

f 3 ∇
i f∇kψ∇

lψ.

Proof. Taking the divergence of (2-22) and using (1-7), we can infer that

(n−2)∇iBi j = −∇
i
∇

k
(

Vik j

f

)
+

n−3
n−2

Cjk i

f 2 (f∇i
∇

k f −∇
k f∇i f )

+
1
f 2 Wik j l

(
∇

i
∇

k f∇l f +∇
k f∇i

∇
l f −2∇

i
∇

kψ∇
lψ−2∇

kψ∇
i
∇

lψ
)

(2-24)

+
1
f 2 ∇

iWik j l
(
∇

k f∇l f −2∇
kψ∇

lψ
)
− 2

f 3 Wik j l
(
∇

i f∇k f∇l f −2∇
i f∇kψ∇

lψ
)

.

Since the Hessian is symmetric, renaming indices and using the symmetries of the
Weyl tensor we get

2∇
i
∇

kψWik j l = ∇
i
∇

kψWik j l +∇
k
∇

iψWkij l = ∇
i
∇

kψ(Wik j l +Wkij l) = 0. (2-25)

Analogously, we have the same expression for the lapse function f , i.e.,

∇
i
∇

k fWik j l = 0.

Combining (2-24) and (2-25), we obtain

(n−2)∇iBi j = −∇
i
∇

k
(

Vik j

f

)
+

n−3
n−2

Cjk i

f 2 (f∇i
∇

k f −∇
k f∇i f )

+
4
f 3 Wik j l∇

i f∇kψ∇
lψ− 1

f 2 ∇
iWj lk i

(
∇

k f∇l f −2∇
kψ∇

lψ
)

+
1
f 2 Wik j l

(
∇

k f∇i
∇

l f −2∇
kψ∇

i
∇

lψ
)

.

Since the Cotton and Weyl tensors are trace-free, using the symmetries of the
Weyl tensor, (1-8) and (2-7) we get

(n−2)∇iBi j = −∇
i
∇

k
(

Vik j

f

)
+

n−3
n−2

Cjk iR
ik +

1
f

Wik j lR
i l
∇

k f

− 2
f 2 Wik j l∇

kψ∇
i
∇

lψ+
2
f 3 Wik j l∇

i f∇kψ∇
lψ. (2-26)
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Now, we need to remember some facts. Firstly, Bi j =Bj i , R i j =R j i and the Cotton tensor
is skew-symmetric, then an analogous computation as the one made in (2-25) gives
us

Cik jR
ik = 0. (2-27)

Secondly, using (1-6), we infer can that Cj ik = Cjk i +Ckij , this implies that Cj ikR ik =

Cjk iR ik . Thus, from (1-12) and using these observations, after renaming the indices,
we obtain

∇
iBi j =

n−4
(n−2)2 Cj ikR ik =

n−4
(n−2)2 Cjk iR

ik .

Finally, using the above equation in (2-26) the result holds. 2

Now, we will prove the last structural lemma of this section.

Lemma 2.8 Let (Mn,g, f ,ψ), n ≥ 4, be an electrovacuum system. Then,

1
2
|C|2 +R ik

∇
jCjk i = (n−2)∇j

∇
i
∇

k
(

Vik j

f

)
− (n−2)∇j

[
1
f

Wik j lR
i l
∇

k f

]
− 2(n−2)∇j

[
Wik j l

f 3 ∇
i f∇kψ∇

lψ

]
+2(n−2)∇j

[
Wik j l

f 2 ∇
kψ∇

i
∇

lψ

]
.

Proof. Taking the divergence of (2-23), we have

Cjk i∇
jR ik +R ik

∇
jCjk i = (n−2)∇j

∇
i
∇

k
(

Vik j

f

)
− (n−2)∇j

[
1
f

Wik j lR
i l
∇

k f

]
−2(n−2)∇j

[
Wik j l

f 3 ∇
i f∇kψ∇

lψ

]
(2-28)

+2(n−2)∇j
[

Wik j l

f 2 ∇
kψ∇

i
∇

lψ

]
.

Hence, from the symmetries of the Cotton tensor and renaming indices,

2Cjk i∇
jR ik = Cjk i∇

jR ik +Ckji∇
kR i j = Cjk i(∇

jR ik −∇
kR i j). (2-29)

Then, combining (2-28) and (2-29), we can infer that

1
2

Cjk i(∇
jR ik −∇

kR i j)+R ik
∇

jCjk i = (n−2)∇j
∇

i
∇

k
(

Vik j

f

)
−(n−2)∇j

[
1
f

Wik j lR
i l
∇

k f

]
−2(n−2)∇j

[
Wik j l

f 3 ∇
i f∇kψ∇

lψ

]
+2(n−2)∇j

[
Wik j l

f 2 ∇
kψ∇

i
∇

lψ

]
.
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From (1-5) and using that the Cotton tensor is trace-free, we obtain the result.
2

2.2 Classification Results

Now we are ready to present and prove the main results of this chapter. In
what follows, we demonstrate that an electrovacuum space, under specific hypothe-
ses, necessarily must be in the Majumdar-Papapetrou class, i.e., (Mn, g̃) is Ricci-flat
(see Lemma 2.5) with respect to the metric g̃ = f 2/(n−2)g, the inverse of the electric
potential 1

ψ(f ) given by (2-3) is harmonic with respect to g̃, [36, Remark 1]. Then, if we
consider asymptotic conditions, by the positive mass theorem, (Mn, g̃) is isometric to
the Euclidean space minus a compact set. These facts are important for the classifica-
tion of electrovacuum solutions. For n = 3, the space (Mn, g̃) is trivially flat, and this is
a direct consequence of (Mn, g̃) being Ricci-flat; however, in higher dimensions, this
need not be the case.

As pointed out in [36, Remark 1] and [42], any suitably regular asymptotically
flat black hole solution in the Majumdar-Papapetrou class must have a space isomet-
ric to Euclidean space (minus a point for each horizon) and a harmonic function of
the form (1-35). In this case, the spacetime is in the class of Majumdar–Papapetrou
multi-centered black hole solution (see [42]). We need to emphasize that we are not
considering any asymptotic condition, so the positive mass theorem is not necessar-
ily valid here.

Theorem 2.9 Let (Mn, g, f ,ψ),n≥ 3, be an electrovacuum space satisfying (2-3). Then,
the Schouten tensor for the metric g is Codazzi. If (Mn, g) is locally conformally flat,
then the space must be in the Majumdar–Papapetrou class, i.e., the static spacetime
(M̂n+1, ĝ) = Mn×f R must have (locally) metric tensor given by

ĝ(x , t) = f−2/(n−2)(dx2
1 + . . .+dx2

n )− f 2dt2.

Moreover, any four or five-dimensional electrovacuum spacetime such that the spatial
factor (M, g, f ,ψ) satisfies (2-3) must have (locally) the above geometric structure.

Proof. The proof follows from the previous section. In fact, remember that when ψ
is an affine function of f , we have equation (2-21). Then, from (2-14) we conclude
that P = Q = U = 0, so the V -tensor is identically zero. Thus, from (2-13) we obtain
fCi jk = Wi jk l∇

l f . Immediately, for n = 3 the Cotton tensor is identically zero which
means that (M3, g, f ,ψ) is locally conformally flat.
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Considering n > 3, from the proof of Lemma 2.5 we obtain that the Ricci
tensor, R̃ic, for the conformal change of the metric g̃ = f 2/(n−2) is identically zero, and
so the Cotton tensor C̃i jk . At the same time, using (2-17), we can infer that

(n−2)2fCi jk = Wi jk l∇
l f ,

which combined with (2-13) gives us

[(n−2)2−1]fCi jk = 0.

Consequently, the Schouten tensor (1-13) is Codazzi, i.e., (∇X S)(Y ) = (∇Y S)(X) for
all X , Y ∈X (M). Furthermore, since R̃ic is identically zero, we conclude (M3, g̃) is
isometric to R3.

Using again the conformal change of the metric g̃ = f 2/(n−2)g (see [5, page
58]), we have

R̃i jk l = f 2/(n−2)
[
Ri jk l − (gikTj l +gj lTik −gi lTjk −gjkTi l)

]
, (2-30)

where

Ti j =
1

n−2

(
1
f

∇i∇j f −
n−1

(n−2)f 2 ∇i f∇j f +
1

2(n−2)f 2 |∇f |2gi j

)
=

1
(n−2)

(
1
f

∇i∇j f −
(n−1)
(n−2)f 2 ∇i f∇j f +

R
2(n−1)

gi j

)
.

In the last equality, we have used (2-8) and (2-21). Then, from (2-19), we get

Ri j =
1
f

∇i∇j f −
(n−1)
(n−2)f 2 ∇i f∇j f +

R
(n−1)

gi j .

Combining these two last identities, we obtain

Ti j =
1

n−2

(
Ri j −

R
2(n−1)

gi j

)
.

Note that the tensor T coincides with the Schouten tensor S given by (1-13). If the
Weyl tensor for g is identically zero, then from (1-4) we have

gikTj l +gj lTik −gi lTjk −gjkTi l = Ri jk l ,

see [9, Remark 2.1]. Therefore, replacing the above formula in (2-30), we can conclude
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that

R̃i jk l = 0.

Thus, we can say that (locally) g̃ = δ, where δ is standard Euclidean metric. Hence, we
can infer that g = f−2/(n−2)δ.

We finish the proof considering the four-dimensional case (see [9, Lemma
4.3]). First, remember that in any open set of the level set Σ= {f = c}, where c is any
regular value for f , and using the local coordinates system

(x1, x2, x3, x4) = (f , θ2, θ3, θ4),

we can always express the metric g in the form

gi j =
1
|∇f |2

df 2 +gab(f , θ)dθadθb,

where gab(f ,θ)dθadθb is the induced metric and (θ2, θ3, θ4) is any local coordinate
system on Σ (see [9, Comment 3.4]). We use a, b, c to represent indices on the level
sets that range from 2 to 4. While i , j , k are used to represent indices ranging from 1 to
4. Next, consider that ν= −∇f

|∇f | is the normal vector field to Σ. Consider the referential
{e1, e2, e3, e4}, where e1 is normal and ea are tangent toΣ. Since the Schouten tensor
is Codazzi and the V -tensor is identically zero, from (2-13) we have Wi jk1 = 0. Hence,
we only need to show that

Wabcd = 0; ∀a, b, c, d ∈ {2, 3, 4}.

The Weyl tensor has all the symmetries of the curvature tensor and is trace-free in any
two indices. Thus,

W2121 +W2222 +W2323 +W2424 = 0,

this implies that
W2323 =−W2424.

Thus, from
W2424 =−W3434 = W2323,

we conclude that W2323 = 0. Moreover,

W1314 +W2324 +W3334 +W4344 = 0,

which implies that W2324 = 0. This shows that Wabcd = 0, unless a, b, c, d are all
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distinct. But there are only three choices for the indices since they range from 2 to
4. Then, the Weyl tensor Wi jk l is identically zero. Therefore, (M4, g) is locally confor-
mally flat. 2

As an interesting consequence of the above theorem, we get the following
corollary.

Corollary 2.10 Any five-dimensional electrovacuum spacetime satisfying (2-3) must
be in the Majumdar–Papapetrou class.

Remark 3 Lucietti [42, Theorem 1] proved that an asymptotically flat higher dimen-
sional (n > 3) extremal electrovacuum space is in the MP class, by requiring a mild
extension of the positive mass theorem to manifolds with conical singularities. Fur-
thermore, the author was able to prove that f must be given by (1-35). Remembering
that we are not assuming any asymptotic condition.

Next, we prove Theorem 2.11 concerning the classification of an electrovac-
uum space without any asymptotic condition as a hypothesis. To that end, it is con-
venient to remember that we say that a Riemannian manifold has a harmonic Weyl
curvature when

divW = 0

and a Riemannian manifold also has radial Weyl curvature if

W (·, ·, ·,∇f ) = 0.

A straightforward computation from (1-8) shows us that the harmonic Weyl
tensor condition is equivalent to the Schouten tensor being Codazzi when n > 3. For
the sake of simplicity of the next results, we will now adopt this new definition of
harmonic Weyl tensor as the terminology whenever necessary.

Now, we are ready to announce our next classification result.

Theorem 2.11 Let (Mn,g, f ,ψ), n≥ 3, be an electrovacuum space with harmonic Weyl
curvature and zero radial Weyl curvature such that ψ is in the Reissner-Nordström
class, i.e., such thatψ is given by (2-2) and σ< 0. Then, around any regular point of f ,
the manifold is locally a warped product with (n−1)-dimensional Einstein fibers.

Proof. We consider an orthonormal frame {e1,e2, . . . ,en} diagonalizing the Ricci ten-
sor Ric at a regular point p ∈ Σ= f−1(c), with associated eigenvalues Rkk , k = 1, . . . ,n,
respectively. That is, Ri j(p) = Ri iδi j(p). From Lemma 2.4, we infer

∇j f [PRj j +QRi i −U] = 0, ∀i 6= j , (2-31)
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where P, Q and U are given by (2-14). Without lost of generality, consider ∇i f 6= 0 and
∇j f = 0 for all i 6= j . Observe that Ric(∇f ) = Ri i∇f , i.e., ∇f is an eigenvector for Ric.
From (2-31), we obtain that λ = Ri i and µ = Rj j , j 6= i , have multiplicity 1 and n− 1,
respectively. Moreover, if ∇i f 6= 0 for at least two distinct directions, then we have that
µ=R11 = . . .=Rnn and we also obtain that ∇f is an eigenvector for Ric. It is important
to point out that for the above discussion, the solutions satisfy P 6= 0, Q 6= 0, and U 6= 0.

Therefore, in any case, we have that ∇f is an eigenvector for Ric. From the
above discussion we can take {e1 = −∇f

|∇f | ,e2, . . . ,en} as an orthonormal frame for Σ
diagonalizing the Ricci tensor Ric for the metric g.

Now, from (2-7) we obtain

fRa`∇
`f =

1
2

∇a|∇f |2− 2ψ̇2

f
|∇f |2∇af +

Rf
(n−1)

∇af ; a ∈ {2, . . . ,n}. (2-32)

Hence, equation (2-32) gives us |∇f | is a constant inΣ. Thus, we can express the metric
g in the form

gi j =
1
|∇f |2

df 2 +gab(f ,θ)dθadθb,

where gab(f ,θ)dθadθb is the induced metric and (θ2, . . . , θn) is any local coordinate
system on Σ. We can find a good overview of the level set structure in [9, 37].

Observe that there is no open subset Ω of Mn where {∇f = 0} is dense. In
fact, if f is constant in Ω since Mn is complete, we have that f is analytic, which
implies f is constant everywhere. Thus, we considerΣ a connected component of the
level set f−1(c) (possibly disconnected) where c is any regular value of the function
f . Suppose that I is an open interval containing c such that f has no critical points in
the open neighborhood UI = f−1(I) of Σ. For sake of simplicity, let UI ⊂M\{f = 0} be
a connected component of f−1(I). Then, we can make a change to the variables

r(x) =
∫

df
|∇f |

such that the metric g in UI can be expressed by

gi j = dr2 +gab(r ,θ)dθadθb.

Let ∇r = ∂

∂ r , then |∇r | = 1 and ∇f = f ′(r) ∂

∂ r on UI . Note that f ′(r) does not
change sign on UI . Moreover, we have ∇∂ r ∂ r = 0.
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From (2-7), i.e.,

fRjk = ∇j∇k f − 2
f

∇jψ∇kψ+
1

n−1
fRgjk

and the fact that ∇f is an eigenvector of Ric, the second fundamental form on Σ is
given by

hab = −〈e1, ∇aeb〉=
∇a∇bf
|∇f |

=
1
|∇f |

(
fRab−

Rf
n−1

gab

)
=

f
|∇f |

(
µ− R

n−1

)
gab =

H
n−1

gab,

whereµ is the eigenfunction associated to Ric atΣ. Moreover, contracting the Codazzi
equation

R1cab = ∇ahbc−∇bhac

over c and b, it gives

R1a = ∇a(H)− 1
n−1

∇a(H) =
n−2
n−1

∇a(H).

On the other hand, since R1a = 0, we conclude that H is constant in Σ.
In what follows, we fix a local coordinate system

(x1, . . . , xn) = (r , . . . , θn)

in UI , where (θ2, . . . ,θn) is any local coordinate system on the level surfaceΣ. Consid-
ering a,b,c, · · · ∈ {2, . . . ,n}, we have

hab =−g(∂r , ∇a∂b) =−g(∂r ,Γ l
ab∂l) =−Γ1

ab.

Now, by definition of Christoffel’s symbols (1-14) we have

Γ1
ab =

1
2

g11
(
− ∂

∂ r
gab

)
=−1

2
∂

∂ r
gab.

Then,

2
n−1

H(r)gab =
∂

∂ r
gab.
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Hence, we can infer that

gab(r ,θ) =ϕ(r)2gab(r0,θ),

whereϕ(r) = e
1

n−1

(∫ r
r0

H(s)ds
)

and the level set {r = r0} corresponds to the connected
component Σ of f−1(c).

Now, we can apply the warped product structure (see [5, Chapter 9] and
Section 1.2 of Chapter 1). Hence, considering

(Mn, g) = (I, dr2)×ϕ (Nn−1, g); g = dr2 +ϕ2g,

we deduce that

W1a1b =
1

n−2
Rab−

R
(n−2)(n−1)

gab.

Note that if W (·, ·, ·, ∇f ) = 0 we obtain that N is an Einstein manifold.
Since

(Mn, g) = (I, dr2)×ϕ (Nn−1, g),

applying the warped product formulas discussed in Section 1.2 of Chapter 1, the Ricci
tensor of (M3, g) is

R11 =−(n−1)
ϕ′′

ϕ
, R1a = 0 (2-33)

and

Rab = Rab−
[
(n−2)(ϕ′)2 +ϕϕ′′

]
gab (a, b ∈ {2, 3}).

On the other hand, since

R =ϕ−2R− (n−1)(n−2)
(
ϕ′

ϕ

)2

−2(n−1)
ϕ′′

ϕ
,

we get

R =ϕ2R+(n−1)(n−2)(ϕ′)2 +2(n−1)ϕϕ′′.

Since R = 2
ψ̇2

f 2 |∇f |2 and |∇f | is constant at Σwe get

R = 2ϕ2 ψ̇(f )
2

f 2 |∇f |2 +(n−1)(n−2)(ϕ′)2 +2(n−1)ϕϕ′′.
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We can conclude that R does not depend on θ. Therefore, R is a constant. 2

2.3 Fourth-order divergence-free Weyl tensor

In this section, we prove some integral theorems in dimension n ≥ 4 with a
fourth-order divergence-free Weyl tensor for an electrovacuum space in the RN class.
To that end, we use the lemmas provided in the previous section. We are considering
Riemannian manifolds satisfying (2-2) with the zero radial Weyl curvature is consid-
ered in our results. Indeed, the fact that electrovacuum space can not satisfies (2-3)
appears naturally in the following theorem.

Theorem 2.12 Let (Mn,g, f ,ψ), n ≥ 4, be an electrovacuum space satisfying (1-29),
(2-2) and (1.1). For every φ : R→ R, C2 function with φ(f ) having compact support
K ⊆M. Then,

1
2(n−1)2σ

∫
M
|C|2φ(f )

[
(n−1)σ− (n−2)f 2] = −n−2

n−3

∫
M

φ(f )
f

∇
k f∇i

∇
j
∇

lWjk i l ,

where σ is a non-null constant.

Remark 4 It is important to point out that the choice ofφ in the above theorem should

be made in such a way that terms like
φ(f )
f m , where m = 1, 2 or 3, will be integrable at

K .

Now, let us prove Theorem 2.12.
Proof. From Lemma 2.8, we have

1
2
|C|2φ(f )+φ(f )R ik

∇
jCjk i = (n−2)φ(f )∇j

∇
i
∇

k
(

Vik j

f

)
− (n−2)φ(f )∇j

[
1
f

Wik j lR
i l
∇

k f

]
− 2(n−2)φ(f )∇j

[
Wik j l

f 3 ∇
i f∇kψ∇

lψ

]
+ 2(n−2)φ(f )∇j

[
Wik j l

f 2 ∇
kψ∇

i
∇

lψ

]
.
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Now, integration by parts leads us to

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i = − (n−2)

∫
M
φ̇(f )∇j f∇i

∇
k
(

Vik j

f

)
+ (n−2)

∫
M
φ̇(f )∇j f

[
1
f

Wik j lR
i l
∇

k f

]
− 2(n−2)

∫
M
φ̇(f )∇j f

[
Wik j l

f 2 ∇
kψ∇

i
∇

lψ

]
+ 2(n−2)

∫
M
φ̇(f )∇j f

[
Wik j l

f 3 ∇
i f∇kψ∇

lψ

]
.

From Lemma 2.7, we obtain

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i =−

∫
M
φ̇(f )∇j fCjk iR

ik .

Using (2-7), we deduce that

1
2

∫
M
|C|2φ(f ) +

∫
M

φ(f )
f

(
∇

i
∇

k f − 2
f

∇
iψ∇

kψ+
1

n−1
fRgik

)
∇

jCjk i

= −
∫

M

φ̇(f )
f

∇
j f

(
∇

k
∇

i f − 2
f

∇
iψ∇

kψ+
1

n−1
fRgik

)
Cjk i .

Since the Cotton tensor is totally trace-free, we can infer that

1
2

∫
M
|C|2φ(f ) +

∫
M

φ(f )
f

∇
i
∇

k f∇jCjk i −2
∫

M

φ(f )
f 2 ∇

iψ∇
kψ∇

jCjk i

= −
∫

M

φ̇(f )
f

∇
j f∇k

∇
i fCjk i +2

∫
M

φ̇(f )
f 2 ∇

j f∇iψ∇
kψCjk i . (2-34)

Analogously to (2-25), we have the following equation

2∇
j
∇

kψCjk i = ∇
k
∇

jψCjk i +∇
j
∇

kψCkji = ∇
k
∇

jψ(Cjk i +Ckji) = 0. (2-35)

Then, using this, we get

−2
∫

M

φ(f )
f 2 ∇

iψ∇
kψ∇

jCjk i = 2
∫

M

(
φ̇(f )

f 2 −
2φ(f )

f 3

)
∇

j f∇iψ∇
kψCjk i

+ 2
∫

M

φ(f )
f 2 ∇

j
∇

iψ∇
kψCjk i .

Replacing this equation in (2-34), since the Cotton tensor is skew-symmetric, and
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renaming indices we obtain

1
2

∫
M
|C|2φ(f ) +

∫
M

φ(f )
f

∇
i
∇

k f∇jCjk i −4
∫

M

φ(f )
f 3 ∇

j f∇iψ∇
kψCjk i

+ 2
∫

M

φ(f )
f 2 ∇

j
∇

iψ∇
kψCjk i

= −
∫

M

φ̇(f )
f

∇
j f∇k

∇
i fCjk i

=
∫

M

φ̇(f )
f

∇
j f∇i f∇kCjk i +

∫
M

(
φ̈(f )

f
− φ̇(f )

f 2

)
Cjk i∇

i f∇k f∇j f

+
∫

M

φ̇(f )
f

∇
k
∇

j f∇i fCjk i

=
∫

M

φ̇(f )
f

∇
j f∇i f∇kCjk i

= −
∫

M

φ̇(f )
f

∇
i f∇k f∇jCjk i =−

∫
M

∇iφ(f )
f

∇
k f∇jCjk i

=
∫

M

φ(f )
f

∇
i
∇

k f∇jCjk i −
∫

M

φ(f )
f 2 ∇

i f∇k f∇jCjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

Hence, from (1-7), i.e.,
∇

iCjk i = 0,

and the symmetries of the Cotton tensor, by integration we have

1
2

∫
M
|C|2φ(f ) +

∫
M

φ(f )
f 2 ∇

i f∇k f∇jCjk i

=
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i +4

∫
M

φ(f )
f 3 ∇

j f∇iψ∇
kψCjk i

− 2
∫

M

φ(f )
f 2 ∇

j
∇

iψ∇
kψCjk i =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i (2-36)

+ 2
∫

M

φ(f )
f 3 (f∇jψ∇

k
∇

iψ+2∇
j f∇kψ∇

iψ)Cjk i .

Now, considering thatψ=ψ(f ), we deduce
∫

M

φ(f )
f 3 (f∇jψ∇

k
∇

iψ+2∇
j f∇kψ∇

iψ)Cjk i

=
∫

M

φ(f )
f 3 [f ψ̇∇

j f (ψ̇∇
k
∇

i f + ψ̈∇
i f∇k f )+2ψ̇2

∇
j f∇k f∇i f ]Cjk i

=
∫

M

φ(f )
f 2 ψ̇2

∇
j f∇k

∇
i fCjk i .
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Again from the symmetries of the Cotton tensor and renaming indices we obtain
∫

M

φ(f )
f 3 (f∇jψ∇

k
∇

iψ+2∇
j f∇kψ∇

iψ)Cjk i =
∫

M

φ(f )
f 2 ψ̇2

∇
j f∇k

∇
i fCjk i

=
∫

M

φ(f )
f 2 ψ̇(f )2

∇
k f∇i f∇jCjk i .

Thus, replacing the above equation in (2-36), we get

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i . (2-37)

From now on, we will analyze just one part of the above equation. Since the
Cotton tensor is trace-free and skew-symmetric, another integration by parts gives us
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i = 4

∫
M

φ(f )
f 2 ψ̇(f )ψ̈(f )∇k f∇j f∇i fCjk i

−
∫

M

(
˙φ(f )
f 2 −

2φ(f )
f 3

)
(1−2ψ̇(f )2)∇k f∇j f∇i fCjk i

−
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇j

∇
k f∇i fCjk i

−
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇j

∇
i fCjk i

=
∫

M

φ(f )
f

(1−2ψ̇(f )2)R j i
∇

k fCkji .

In the last equality, we used (2-7) and renamed indices. Now, since Mn has zero radial
Weyl curvature and the Cotton tensor is totally trace-free, from (2-13) and (2-14), we
can infer that

R j i
∇

k fCkji =
1
2

Ckji(R
j i
∇

k f −Rki
∇

j f )

= − 1
2Q

CkjiV
kji

= − 1
2Q

f |C|2,

where Q is the same as given in Lemma 2.4, i.e., Q = n−1
n−2−2ψ̇(f )2. Therefore, we have

∫
M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i = −1

2

∫
M

φ(f )
Q

(1−2ψ̇(f )2)|C|2

= −1
2

∫
M
|C|2φ(f )

[
(n−2)(1−2ψ̇(f )2)

n−1−2(n−2)ψ̇(f )2

]
.
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Now, from (2-6) we can conclude that
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i = − n−2

2(n−1)2σ

∫
M
φ(f )

[
f 2 +(n−1)σ

]
|C|2.

Replacing it in (2-37), we obtain

1
2(n−1)2σ

∫
M
|C|2φ(f )

[
(n−1)σ− (n−2)f 2]= ∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

Using (1-8), the result holds. 2

Next, we will take an appropriateφ(f ) satisfying the conditions of integrabil-
ity in Theorem 2.12 to obtain an important result concerning the geometric structure
of electrovacuum space.

For our next result, remember the following definition [41, Page 372].

Definition 2.13 [41, Page 372] Let M and N be two topological spaces. A map f : M −→
N is said to be proper if for each compact subset K ⊂ N, the preimage f−1(K ) ⊂ M is
compact.

Now we can demonstrate the next theorem.

Theorem 2.14 Let (Mn, g, f ,ψ), n ≥ 4, be an electrovacuum space satisfying (1-29),
(2-2) and (1.1) with fourth-order divergence-free Weyl tensor, i.e., div4W = 0. If f is a
proper function, then the Weyl tensor is harmonic, i.e., divW = 0.

Proof. Let s > 0 be a real number fixed, so we take χ ∈ C3(R) a real non-negative
function defined by χ = 1 in [0,s], χ̇ ≤ 0 in [s,2s] and χ = 0 in [2s,+∞] (see Figure
2.1). Since f is a proper function, we have that φ(f ) = f 4χ(f ) has compact support in

Figure 2.1: An example for χ.
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M for s > 0. From Theorem 2.12, we get

1
2(n−1)2σ

∫
M
|C|2f 4χ(f )

[
(n−1)σ− (n−2)f 2] = −n−2

n−3

∫
M

f 3χ(f )∇k f∇i
∇

j
∇

lWjk i l

= − n−2
4(n−3)

∫
M
χ(f )∇k f 4

∇
i
∇

j
∇

lWjk i l

=
n−2

4(n−3)

∫
M
χ(f )f 4

∇
k
∇

i
∇

j
∇

lWjk i l

+
n−2

4(n−3)

∫
M
χ̇(f )f 4

∇
k f∇i

∇
j
∇

lWjk i l .

In the last equality, we use integration by parts. Now, we takeφ(f ) = f 5χ̇(f ) in
the Theorem 2.12 and since div4W = 0, we obtain

1
2(n−1)2σ

∫
M
|C|2f 4χ(f )

[
(n−1)σ− (n−2)f 2]=

−1
8(n−1)2σ

∫
M
|C|2f 5χ̇(f )

[
(n−1)σ− (n−2)f 2] .

Hence, ∫
M

f 4|C|2[χ(f )+ 1
4

f χ̇(f )]
[
(n−1)σ− (n−2)f 2]= 0.

Define Ms = {x ∈M; f (x)≤ s}. We have, by definition ofχ thatχ(f )+ 1
4 f χ̇(f ) =

1 on the compact set Ms. Thus, on Ms, since σ< 0,

0≤
∫

Ms

f 4|C|2
[
(n−2)f 2− (n−1)σ

]
= 0,

i.e., C = 0 in Ms. Taking s→+∞, we obtain that C = 0 on M. 2

In conclusion, we have the main result of this section which follows from
Theorem 2.11 and Theorem 2.14.

Corollary 2.15 Let (Mn,g, f ,ψ), n > 3, be an electrovacuum space with fourth-order
divergence free Weyl curvature and zero radial Weyl curvature such that the electric
potentialψ is in the Reissner-Nordström class (i.e., satisfying Equation (2-2)). Around
any regular point of f , if f is a proper function, then the manifold is locally a warped
product with (n−1)-dimensional Einstein fibers.

2.4 Third-order divergence-free Cotton tensor

We will return to the previous results of the last section and study them in
dimension n = 3. Firstly, it is essential to point out that Lemma 2.6, Lemma 2.7, and
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Lemma 2.8 are not valid in the three-dimensional case due to (1-8), which was used
in the proofs. However, we can prove another version of those lemmas conveniently
when n = 3. Another point is that Theorem 2.12 is not valid in dimension n = 3, but
the main issue here is that the Weyl tensor vanishes in dimension three. Therefore, for
n = 3 the radial Weyl curvature condition is not necessary anymore. Nonetheless, the
computations for the three-dimensional case are very similar to the previous results.
We will prove all those results for n = 3 in this section for completeness.

After these considerations, we can proceed with our results. To that end, since
the Weyl tensor vanishes identically in dimension n = 3, from (2-13) we can observe
that

fCi jk = Vi jk . (2-38)

Consequently, we have the following lemma.

Lemma 2.16 Let (M3, g, f ,ψ) be an electrovacuum space. Then,

CkjiR
ik = ∇

i
∇

k
(

Vkij

f

)
.

Proof. In fact, from (1-11) and (2-38) we obtain

Bi j = ∇
kCkij = ∇

k
(

Vkij

f

)
.

Taking the derivative over i , we have

∇
iBi j = ∇

i
∇

k
(

Vkij

f

)
.

Since n = 3, from (1-12), using (1-6) and (2-27) after renamed the indices, we have

∇
iBi j =−Cj ikR ik =−Cjk iR

ik = CkjiR
ik .

Thus, combing these two last relations the result holds. 2

Lemma 2.17 Let (M3, g, f ,ψ) be an electrovacuum space. Then,

1
2
|C|2 +R ik

∇
jCjk i =−∇

j
∇

i
∇

k
(

Vkij

f

)
.

Proof. Taking the divergence in Lemma 2.16, we get

Ckji∇
jR ik +R ik

∇
jCkji = ∇

j
∇

i
∇

k
(

Vkij

f

)
.
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Use (2-29) to obtain

1
2

Ckji(∇
jR ik −∇

kR i j)+R ik
∇

jCkji = ∇
j
∇

i
∇

k
(

Vkij

f

)
.

Now, since the Cotton tensor is trace-free, from (1-5) and renaming the indices we
obtain

−1
2

CkjiC
kji −R ik

∇
jCjk i = ∇

j
∇

i
∇

k
(

Vkij

f

)
.

Therefore, the result holds. 2

Theorem 2.18 Let (M3, g, f ,ψ) be an electrovacuum space satisfying (2-2). For every
φ : R→ R, C2 function withφ(f ) having compact support K ⊆M. Then,

1
8σ

∫
M
|C|2φ(f )[2σ− f 2] =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i .

where σ is a non-null constant.

Proof. The idea is to proceed as in Theorem 2.12. From Lemma 2.17, we obtain

1
2
|C|2φ(f )+φ(f )R ik

∇
jCjk i =−φ(f )∇j

∇
i
∇

k
(

Vkij

f

)
.

Hence, upon integrating this expression we get

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i =

∫
M
φ̇(f )∇j f∇i

∇
k
(

Vkij

f

)
.

Then, from Lemma 2.16 and the symmetries of Ci jk , we have

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i =−

∫
M
φ̇(f )∇j fCjk iR

ik .

Now, from (2-7) and the fact that Ci jk is trace-free and skew-symmetric we
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obtain the following identity

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f

(∇i
∇

k f − 2
f
ψ̇(f )2

∇
i f∇k f )∇jCjk i

=−
∫

M

φ̇(f )
f

∇
j f (∇k

∇
i f − 2

f
ψ̇(f )2

∇
i f∇k f )Cjk i

=−
∫

M

φ̇(f )
f

∇
j f∇k

∇
i fCjk i

=
∫

M

(
φ̈(f )

f
− φ̇(f )

f 2

)
∇

j f∇k f∇i fCjk i

+
∫

M

φ̇(f )
f

∇
k
∇

j f∇i fCjk i +
∫

M

φ̇(f )
f

∇
j f∇i f∇kCjk i

=
∫

M

φ̇(f )
f

∇
j f∇i f∇kCjk i .

Note that in the last equality, we have used (2-35). From now, we rename the
indices and, integrating by parts again, we infer

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f

∇
i
∇

k f∇jCjk i −2
∫

M

φ(f )
f 2 ψ̇(f )2

∇
i f∇k f∇jCjk i

=−
∫

M

φ̇(f )
f

∇
k f∇i f∇jCjk i =−

∫
M

∇iφ(f )
f

∇
k f∇jCjk i

=
∫

M

φ(f )
f

∇
k
∇

i f∇jCjk i −
∫

M

φ(f )
f 2 ∇

k f∇i f∇jCjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

Thus,

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i . (2-39)

Furthermore, from the proof of Theorem 2.12 (Equation 2-38), we get
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i =

∫
M

φ(f )
f

(1−2ψ̇(f )2)R j i
∇

k fCkji .

As we did in Theorem 2.12, from (2-14) and (2-38), we have

R j i
∇

k fCkji =−
1

2Q
f |C|2.

Note that for n = 3, from Lemma 2.4 and (2-6), we obtain, respectively,

Q = 2(1− ψ̇(f )2)
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and

ψ̇(f )2 =
f 2

f 2−2σ
; where σ 6= 0.

Finally,
∫

M

φ(f )
f 2 (1−2ψ̇(f )2)∇k f∇i f∇jCjk i = − 1

8σ

∫
M
|C|2φ(f )

[
f 2 +2σ

]
.

Therefore, replacing the above equation in (2-39) the result holds. 2

Theorem 2.19 Let (M3, g, f ,ψ) be an electrovacuum space satisfying (2-2) with σ< 0
and third-order divergence-free Cotton tensor, i.e., div3C = 0. If f is a proper function,
then the Cotton tensor is identically zero, i.e., (M3, g) is locally conformally flat.

Proof. Let s > 0 be a real number fixed, and so we take χ ∈ C3 a real non-negative
function defined by χ = 1 in [0,s], χ′ ≤ 0 in [s,2s] and χ = 0 in [2s,+∞] (see Figure
2.1). Since f is a proper function, we have that φ(f ) = f 4χ(f ) has compact support in
M for s > 0. From Theorem 2.12, we get

1
8σ

∫
M
|C|2f 4χ(f )

[
2σ− f 2] =

∫
M

f 3χ(f )∇k f∇i
∇

jCjk i

=
1
4

∫
M
χ(f )∇i f 4

∇
k
∇

jCjk i

= −1
4

∫
M
χ(f )f 4

∇
i
∇

k
∇

jCjk i

+
1
4

∫
M
χ̇(f )f 4

∇
i f∇k

∇
jCjk i .

In the last equality, we used integration by parts. Now, since div3C = 0 we
takeφ(f ) = f 5χ̇(f ) in Theorem 2.12 one more time to obtain

1
8σ

∫
M
|C|2f 4χ(f )

[
2σ− f 2] = − 1

32σ

∫
M
|C|2f 5 ˙χ(f )

[
4σ− f 2] ,

i.e., ∫
M

f 4|C|2[χ(f )+ 1
4

f χ̇(f )]
[
2σ− f 2]= 0.

Let be Ms defined as in Theorem 2.14, i.e., Ms = {x ∈ M; f (x) ≤ s}. We have,
by definition, χ(f )+ 1

4 f χ̇(f ) = 1 on the compact set Ms. Thus, on Ms, since σ< 0,

0≤
∫

Ms

f 4|C|2
[
f 2−2σ

]
= 0.
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Therefore, C = 0 in Ms. Taking s→+∞, we obtain that C = 0 on M. 2

We can finish this chapter by announcing the following result concerning the
local geometric structure of three-dimensional electrovacuum spaces.

Corollary 2.20 Let (M3,g, f ,ψ)be an electrovacuum space with third-order divergence
free Cotton tensor such that ψ satisfies (2-2) with σ < 0. Around any regular point of
f , if f is a proper function, then the manifold is locally a warped product with a one-
dimensional base and a constant curvature surface fiber.

Proof. This result is a consequence of Theorem 2.11 and Theorem 2.19. 2



CHAPTER 3
The electrostatic system with a non-null
cosmological constant

The main goal of this chapter is to show that an electrostatic system with
divergence-free Bach tensor, i.e., div2B = 0, must be locally conformally flat. It is im-
portant to say that div2B = 0 is less restrictive (topologically speaking) than asymp-
totically flat conditions. The focus of this chapter is the electrostatic system with a
non-null cosmological constant in dimension three. Even though the idea is to prove
similar results as we did in the previous chapter, important differences arise in the
present chapter. This will become clear in the discussion that follows.

In the three-dimensional case, the Cotton tensor is associated with the Bach
tensor, B, accordingly to B = divC. The Bach tensor was defined in 1921 by Rudolf
Bach and it is connected to general relativity and conformal geometry. This tensor
appeared naturally from studies of Huyghens’s principle and has some psychical
significance mainly about wave propagation (see for instance [48] and the references
therein). Let us start by remembering the definition provided by (1-31).

Definition 3.1 Let (M3,g) be a Riemannian manifold with E a tangent vector field on
M and f ∈ C∞(M) satisfying

∇2f = f (Ric−Λg+2E[⊗E[−|E |2g),

∆f = (|E |2−Λ)f , 0 = div(E) and 0 = curl(fE).

Here, Ric,∇2, div and∆ stand for the Ricci tensor, Hessian tensor, divergence, and Lapla-
cian operator concerning the metric g, respectively. Moreover, E[ is the one-form metri-
cally dual to E . We refer to the above equations as electrostatic system with cosmological
constantΛ for the electrostatic spacetime associated to (M3,g, f ,E).

Remember the curl stands for an operator that describes the circulation (or
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rotation) of a vector field (Section 1.2). Thus, we have curl(fE) = 0 if, and only if,

df ∧E[+ f dE[ = 0.

Moreover, the smooth function f is called the lapse function, the field E is known as
the electric field, and M3 is the spatial factor for the electrostatic spacetime. Further-
more, f > 0 on M. If M has boundary ∂M, we assume in addition that f−1(0) = ∂M (cf.
[18, 19, 23, 36]).

It is also important to remember that with the contraction of the first equa-
tion and combining it with the Laplacian of f given by Definition 3.1, we obtain (1-32),
i.e.,

R = 2(|E |2 +Λ).

Furthermore, since curl(fE) = 0 we have that the electric field and the gradient of
the lapse function are linearly dependent on ∂M = f−1(0) (Section 3.3 of Chapter 1).
Thus, from the electrostatic solutions presented in Section 1.3, we see that the electric
field and the lapse function are related.

There are some well-known classification results of some important geo-
metric structures like static vacuum manifolds and Ricci solitons carrying a metric
such that the Bach tensor is free from divergence (cf. [9, 13, 32, 37, 44]). Any three-
dimensional Riemannian manifold is locally conformally flat if, and only if, its Cot-
ton tensor C is identically zero. In what follows we will present a classification result
for the electrostatic space carrying this geometric condition over the Bach tensor. We
must remember Section 1.3, where explicit solutions for the electrostatic system with
a non-null cosmological constant were given.

3.1 Structural lemmas

In this section, our aim is to prove some preliminary results. We will discuss
briefly some properties of differential forms based on [25, Chapter 1] and [40, Chapter
2].

Definition 3.2 [25, Definition 3] An exterior k-form in Mn is a mapω that associates
to each p ∈ Mn an element ω(p) ∈

∧k(Mn
p )
∗, that is, a k-linear and alternate map at

p ∈Mn.

Following the notation used in [25, Chapter 1], let

ω(p) = ∑
i1<...<in

ai1...in(p)(dxi1 ∧ . . .∧dxin)p



3.1 Structural lemmas 70

be a k-form in Mn. Here, aI : M → R are smooth functions and I is the k-upla
(i1, i2, · · · , ik) with i1 < i2 < · · ·< ik , ij ∈ {1,2, · · · ,n}. The exterior differential dω ofω is
the (k +1)-form defined by

dω= ∑
I

daI ∧dxI ,

where ∧ performs the wedge product. Considering {ei}n
i=1 as a base for the tangent

space of M, we are considering dxi(ej) = δi j . We know that

(ϕ1∧ϕ2∧·· ·∧ϕk)(e1,e2, · · · ,ek) = det(ϕi(ej)),

hereϕi are 1-forms. In general, if byω= ∑I aIdxI andφ= ∑J bJdxJ , then

ω∧φ= ∑
I,J

aIbJdxI ∧dxJ ,

where I = (i1, . . . , ik), i1 < .. . < ik , and J = (i1, . . . , is), i1 < .. . < is. Moreover, if I = J

we can define the sum of forms:

ω+φ= ∑
I
(aI +bI)dxI .

It is important to highlight some facts about differential forms. For instance,
since dxi ∧ dxj = −dxj ∧ dxi , then dxi ∧ dxi = 0. Other facts are described in the
following proposition.

Proposition 3.3 [25, Chapter 1] Letω ∈
∧k(Mn)∗ andϕ ∈

∧s(Mn)∗. Then,

a) (ω∧ϕ) = (−1)ks(ϕ∧ω);
b) d(ω∧ϕ) = dω∧ϕ+(−1)kω∧dϕ;
c) d(dω) = d2ω= 0.

Now we will construct a covariant V-tensor similar to (2-12) defined in Chap-
ter 2. First of all, we note that by combining the first equation of Definition 3.1 with
(1-32) we get

∇
2f = f

(
Ric+2E[⊗E[− R

2
g

)
. (3-1)

On the other hand, since the Hessian operator is symmetric, taking the co-
variant derivative of Equation (3-1) over i and j and using the Ricci identity (1-1), we
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get

Ri jk l∇
l f = ∇i∇j∇k f −∇j∇i∇k f

= f (∇iRjk −∇jRik)−
f
2
(∇iRgjk −∇jRgik)

−R
2
(∇i f gjk −∇j f gik)+(Rjk∇i f −Rik∇j f )

+2f (E[j ∇iE
[k −E[i ∇jE

[k +∇iE
[j E[k −∇jE

[i E[k )

+2(∇i fE
[j E[k −∇j fE

[i E[k ).

Here, we are considering {ei}3
i=1 as a base for the tangent space of M. Moreover, we

define
E[i = E[(ei),

i.e.,

E[ =
3

∑
i=1

E[i dxi .

Note that the Cotton tensor (1-5) over a three-dimensional Riemannian manifold is
defined by

Ci jk = ∇iRjk −∇jRik −
1
4
(∇iRgjk −∇jRgik). (3-2)

Furthermore, since the Weyl tensor (1-4) in dimension 3 is identically null, the Rie-
mann curvature tensor is given by

Ri jk l = Rikgj l −Ri lgjk +Rj lgik −Rjkgi l −
R
2
(gikgj l −gi lgjk).

Therefore, by combining these equations we get

fCi jk = (Rj l∇
l f gik −Ri l∇

l f gjk)+R(∇i f gjk −∇j f gik)+2(Rik∇j f −Rjk∇i f )

−2f (E[j ∇iE
[k −E[i ∇jE

[k +∇iE
[j E[k −∇jE

[i E[k ) (3-3)

−2E[k (E[j ∇i f −E[i ∇j f )+
f
4
(∇iRgjk −∇jRgik).

Now, using curl(fE)= 0, from the definition of the wedge product of differential forms
we can infer that

f dE[(ei , ej) =−(df ∧E[)(ei , ej) = E[(ei)df (ej)−E[(ej)df (ei)

= E[i ∇j f −E[j ∇i f .

Denoting
dE[(ei , ej) = E[i j ,
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from the above equation, we have

fE[i j = E[i ∇j f −E[j ∇i f .

On the other hand, let E[ = ∑
3
i=1 aidxi , where ai = E[(ei) = E[i . Then,

E[i j = dE[(ei ,ej)

=

(
3

∑
`=1

da`∧dx`

)
(ei ,ej)

= daj(ei)−dai(ej)

= (dE[j )(ei)− (dE[i )(ej).

Therefore,

E[i j = ∇iE
[j −∇jE

[i , (3-4)

Further, we can see that

f (∇iE
[j −∇jE

[i ) = E[i ∇j f −E[j ∇i f . (3-5)

We can rewrite (3-3) using the above discussion about differential forms and
curl(fE) = 0. So,

fCi jk = (Rj l∇
l f gik −Ri l∇

l f gjk)+2(Rik∇j f −Rjk∇i f )+R(∇i f gjk −∇j f gik)

+
f
4
(∇iRgjk −∇jRgik)−2f (E[j ∇iE

[k −E[i ∇jE
[k ). (3-6)

Thus, we define the covariant 3-tensor Vi jk by

Vi jk = 2f (E[i ∇jE
[k −E[j ∇iE

[k )+
f
4
(∇iRgjk −∇jRgik)+R(∇i f gjk −∇j f gik)

−(Ri l∇
l f gjk −Rj l∇

l f gik)−2(∇i fRjk −∇j fRik), (3-7)

where E[i = E[(ei). The V -tensor has the same symmetries as the Cotton tensor C,
i.e.,

Vi jk =−Vj ik and Vi jk +Vjk i +Vkij = 0.

This tensor is totally trace-free, and the proof follows from the same ideas of the
previous chapter.

From (3-6) and (3-7) we can conclude our next result.
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Lemma 3.4 Let (M3, g, f , E) be an electrostatic system. Then,

fCi jk = Vi jk . (3-8)

Consequently, we have the following lemmas concerning the divergence of
the V -tensor.

Lemma 3.5 Let (M3, g, f , E) be an electrostatic system. Then,

CkjiR
ik = ∇

i
∇

k
(

Vkij

f

)
.

Proof. In dimension n = 3, the Bach tensor is defined as in (1-11). Thus,

Bi j = ∇
kCkij = ∇

k
(

Vkij

f

)
.

Taking the derivative over i , we have

∇
iBi j = ∇

i
∇

k
(

Vkij

f

)
.

On the other hand, remember (1-12) and the properties of the Cotton tensor, i.e.,

∇
jBi j =−Ci jkR jk , Ci jk =−Cj ik , ∇

kCkij = ∇
kCkji ,

and
Ci jk +Ckij +Cjk i = 0.

Then, from a straightforward computation, we obtain

∇
i
∇

k
(

Vkij

f

)
= ∇

iBi j =−Cj ikR ik =−Cjk iR
ik = CkjiR

ik ,

which is the expected result. 2

Lemma 3.6 Let (M3, g, f , E) be an electrostatic system. Then,

1
2
|C|2 +R ik

∇
jCjk i =−∇

j
∇

i
∇

k
(

Vkij

f

)
.

Proof. Taking the divergence in Lemma 3.5, we get

Ckji∇
jR ik +R ik

∇
jCkji = ∇

j
∇

i
∇

k
(

Vkij

f

)
.
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Note that from the symmetries of the Cotton tensor and renaming indices, we have

2Cjk i∇
jR ik = Cjk i∇

jR ik +Ckji∇
kR i j = Cjk i(∇

jR ik −∇
kR i j).

Hence,
1
2

Ckji(∇
jR ik −∇

kR i j)+R ik
∇

jCkji = ∇
j
∇

i
∇

k
(

Vkij

f

)
.

Now, since the Cotton tensor is trace-free, from (3-2) and renaming the indices, we
obtain

−1
2

CkjiC
kji −R ik

∇
jCjk i = ∇

j
∇

i
∇

k
(

Vkij

f

)
.

2

It is important to notice that in Chapter 2 we demonstrated Theorem 2.2,
which is true for a null cosmological constant and assuming thatψ=ψ(f ). Since we
are dealing with a more general framework, we cannot apply this result. Nonetheless,
we proved a similar result.

Theorem 3.7 Let (M3, g, f , E)be an electrostatic system.For every C2-functionφ :R→
R, withφ(f ) having compact support K ⊆M such that K ∩∂M = /0 we have

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i +

∫
M
φ(f )E[j ∇

kE[i Cjk i .

Proof. From Lemma 3.6, we obtain

1
2
|C|2φ(f )+φ(f )R ik

∇
jCjk i =−φ(f )∇j

∇
i
∇

k
(

Vkij

f

)
.

Integrating this expression, we get

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i =

∫
M
φ̇(f )∇j f∇i

∇
k
(

Vkij

f

)
.

Thus, from Lemma 3.5, we have

1
2

∫
M
|C|2φ(f )+

∫
M
φ(f )R ik

∇
jCjk i =−

∫
M
φ̇(f )R ik

∇
j fCjk i .

We will perform integration in some parts of the above equation, separately, using
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Definition 3.1 and the fact that Ci jk is trace-free and skew-symmetric. First,
∫

M
φ(f )R ik

∇
jCjk i =

∫
M

φ(f )
f

∇
i
∇

k f∇jCjk i −2
∫

M
φ(f )E[i E[k ∇

jCjk i

=
∫

M

φ(f )
f

∇
i
∇

k f∇jCjk i +2
∫

M
φ̇(f )∇j fE[i E[k Cjk i

+2
∫

M
φ(f )∇j(E[i E[k )Cjk i .

On the other hand,
∫

M
φ̇(f )R ik

∇
j fCjk i =

∫
M

φ̇(f )
f

∇
j f∇i

∇
k fCjk i −2

∫
M
φ̇(f )∇j fE[i E[k Cjk i .

Note that, since the Hessian tensor is symmetric

2∇
j
∇

k fCjk i = ∇
k
∇

j fCjk i +∇
j
∇

k fCkji = ∇
k
∇

j f (Cjk i +Ckji) = 0.

Hence,

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f

∇
i
∇

k f∇jCjk i +2
∫

M
φ(f )∇j(E[i E[k )Cjk i

=−
∫

M

φ̇(f )
f

∇
j f∇i

∇
k fCjk i =

∫
M

φ̇(f )
f

∇
j f∇i f∇kCjk i

=−
∫

M

φ̇(f )
f

∇
i f∇k f∇jCjk i =−

∫
M

∇iφ(f )
f

∇
k f∇jCjk i

=−
∫

M

φ(f )
f 2 ∇

i f∇k f∇jCjk i +
∫

M

φ(f )
f

∇
i
∇

k f∇jCjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

Therefore, we get
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i =

1
2

∫
M
|C|2φ(f )+

∫
M

φ(f )
f 2 ∇

i f∇k f∇jCjk i

+2
∫

M
φ(f )∇j(E[i E[k )Cjk i . (3-9)

Then, since the Cotton tensor is trace-free and skew-symmetric, another
integration by parts gives us

∫
M

φ(f )
f 2 ∇

i f∇k f∇jCjk i =
∫

M

φ(f )
f 2 ∇

j
∇

i f∇k fCkji

=
∫

M

φ(f )
f

(R i j +2E[i E[j )∇k fCkji .



3.1 Structural lemmas 76

We used Definition 3.1 in the last equality. Thus, (3-9) can be rewritten in the following
form: ∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i =

1
2

∫
M
|C|2φ(f )+2

∫
M
φ(f )∇j(E[i E[k )Cjk i

−2
∫

M

φ(f )
f

E[i E[j ∇
k fCjk i +

∫
M

φ(f )
f

R i j
∇

k fCkji .

Now, from (3-7) and (3-8), we have

R i j
∇

k fCkji =
1
2

Ckji(∇
k fR j i −∇

j fRki)

= −1
2

fCkji

[
1
2

Ckji +(E[j ∇
kE[i −E[k ∇

jE[i )

]
= −1

4
f |C|2− 1

2
f
(

E[j ∇
kE[i −E[k ∇

jE[i

)
Ckji .

So,

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i

+2
∫

M

φ(f )
f

[
E[j E[i ∇

k f − f∇j(E[i E[k )+
f
4

(
E[k ∇

jE[i −E[j ∇
kE[i

)]
Cjk i .

Furthermore, from (3-5) we have

E[i ∇
k f −E[k ∇

i f = f (∇iE[k −∇
kE[i ).

Combining the last two equations and the fact that the Cotton tensor is skew-
symmetric, yields to

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i

+2
∫

M
φ(f )

[
E[j (∇iE[k −∇

kE[i )−∇
j(E[i E[k )+

1
4

(
E[k ∇

jE[i −E[j ∇
kE[i

)]
Cjk i ,

i.e.,

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i

+2
∫

M
φ(f )

[
E[j ∇

iE[k −E[i ∇
jE[k − 3

4
E[k ∇

jE[i − 5
4

E[j ∇
kE[i

]
Cjk i .
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Note that

E[j ∇
iE[k Cjk i =−E[k ∇

iE[j Cjk i , E[i ∇
jE[k Cjk i =−E[i ∇

kE[j Cjk i ,

E[k ∇
jE[i Cjk i =−E[j ∇

kE[i Cjk i and E[j ∇
kE[i Cjk i =−E[k ∇

jE[i Cjk i .

Then,

1
4

∫
M
φ(f )|C|2 =

∫
M
φ(f )

[
2E[j ∇

iE[k −2E[i ∇
jE[k +E[k ∇

jE[i

]
Cjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

From (3-4), since
∇

jE[k Cjk i =−∇
kE[j Cjk i ,

hence
2E[i ∇

jE[k Cjk i = E[i (∇jE[k −∇
kE[j )Cjk i = E[i E[jk Cjk i ,

we can infer that

1
4

∫
M
φ(f )|C|2 =

∫
M
φ(f )

[
−2E[k ∇

iE[j −E[i E[jk +E[k ∇
jE[i

]
Cjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i

=
∫

M
φ(f )

[
−E[k ∇

iE[j +E[i E[kj +E[k E[j i

]
Cjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i

=
∫

M
φ(f )

[
E[k E[j i +E[j ∇

iE[k +E[i E[kj

]
Cjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i

=
∫

M
φ(f )

[
E[k E[j i +E[j E[ik +E[i E[kj +E[j ∇

kE[i

]
Cjk i

+
∫

M

φ(f )
f

∇
k f∇i

∇
jCjk i .

On the other hand, from (3-5), we get

f (E[k E[j i +E[j E[ik +E[i E[kj ) = E[k E[j ∇
i f −E[k E[i ∇

j f +E[j E[i ∇
k f

−E[j E[k ∇
i f +E[i E[k ∇

j f −E[i E[j ∇
k f

= 0.
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Finally,

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i +

∫
M
φ(f )E[j ∇

kE[i Cjk i .

2

3.2 Divergence-free Bach tensor

It is well-known that in ∂M = f−1(0), the electric field and the gradient of the
lapse function are linearly dependent (LD). Motivated by the Reissner-Nordström-de
Sitter solution, the charged Nariai solution, and the (ultra)cold black hole system as
presented in Section 1.3, we assume that both fields are linearly dependent on M, that
is, there exists a smooth function ρ : M→ R such that E = ρ∇f . Thus, we can rewrite
the V -tensor (3-7) as follows.

Lemma 3.8 Let (M3, g, f , E) be an electrostatic system in which E = ρ∇f . Then, the
V -tensor is given by

Vi jk = fρ|∇f |2(∇iρgjk −∇jρgik)+

(
R− 1

2
Rf 2ρ2− f 2ρ2Λ

)
(∇i f gjk −∇j f gik)

+2(f 2ρ2−1)(∇i fRjk −∇j fRik)+(f 2ρ2−1)(Ri l∇
l f gjk −Rj l∇

l f gik).

Proof. Since the electric field and the lapse function are linearly dependent (LD), a
smooth function ρ exists such that E = ρ∇f . Using (3-1) we get

∇iE
[j = ∇i(ρ∇j f )

= ∇iρ∇j f +ρ∇i∇j f

= ∇iρ∇j f +2fρ3
∇j f∇i f + fρRi j −

f
2
ρRgi j .

In opposite side, from (1-32), we get

∇iR = 2∇i |E |2

= 4ρ|∇f |2∇iρ+2ρ2
∇i |∇f |2.

From (3-1), we know that

∇i |∇f |2 = 2f

(
Ri l∇

l f +2ρ2|∇f |2∇i f −
R
2

∇i f

)
.
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Combining the last two equations and using Definition 3.1, we have

∇iR = 4ρ|∇f |2∇iρ+4fρ2
(

Ri l∇
l f +2ρ2|∇f |2∇i f −

R
2

∇i f

)
.

Then, from (3-7) it follows that

Vi jk = 2fρ(∇i f∇jρ∇k f −∇j f∇iρ∇k f )+ fρ|∇f |2(∇iρgjk −∇jρgik)

+2(f 2ρ2−1)(∇i fRjk −∇j fRik)+(f 2ρ2−1)(Ri l∇
l f gjk −Rj l∇

l f gik)

+

[(
1− 3

2
f 2ρ2

)
R+2f 2ρ4|∇f |2

]
(∇i f gjk −∇j f gik).

Note that curl(fE) = 0 implies that df ∧E[+ f dE[ = 0, since we are considering E and
∇f linearly dependent, we get that E[i j = 0, then ∇iE[j = ∇jE[i (cf. Equation (3-4) and
Equation (3-5)). So,

∇iρ∇j f = ∇jρ∇i f .

The above identity plays a vital role in the following results. We recommend the
reader’s attention to this identity.

Finally, the result follows by combining Definition 3.1 with the last two iden-
tities. 2

We define the following function that appears in the Lemma 3.8,

Q = 1− f 2ρ2.

Remark 5 It is important to point out that Q > 0 at the boundary ∂M. Moreover, since
Λ 6= 0, there is no open setΩ⊆M such that Q = 0, and E = ρ∇f . Otherwise, taking the
derivative of f 2ρ2 = 1 we can see that

fρ2
∇f + f 2ρ∇ρ= 0.

So, we have |E |2 + fρ〈∇ρ, ∇f 〉= 〈(fρ2∇f + f 2ρ∇ρ), ∇f 〉= 0.
On the other hand, 0 = div(E) = ρ∆f + 〈∇ρ, ∇f 〉 = ρf (|E |2−Λ)+ 〈∇ρ, ∇f 〉,

i.e., fρ〈∇ρ, ∇f 〉= f 2ρ2(Λ−|E |2) =Λ−|E |2.
Combining these equations we getΛ= 0 onΩ, which is a contradiction.

Moreover, from Theorem 3.7 we obtain the following corollary.

Corollary 3.9 Let (M3, g, f , E) be an electrostatic system where the electric field and
gradient of the lapse function are linearly dependent. For everyφ : R→R, C2 function
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withφ(f ) having compact support K ⊆M such that K ∩∂M = /0 we have

1
4

∫
M

1
Q
|C|2φ(f ) =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i ,

where we are assuming Q = 1− f 2ρ2 6= 0.

Proof. Taking into account that E = ρ∇f in Theorem 3.7, since the Cotton tensor is
skew-symmetric and trace-free we obtain

1
4

∫
M
φ(f )|C|2 =

∫
M

φ(f )
f

∇
k f∇i

∇
jCjk i +

∫
M
φ(f )fρ2

∇
j fRkiCjk i ,

where we used that curl(fE) = 0, i.e.,

∇
kρ∇

i f = ∇
iρ∇

k f .

By contrast, from Lemma 3.8 we have

∇
j fRkiCjk i =

1
2

Cjk i(∇
j fRki −∇

k fR j i)

= − 1
4Q

Cjk iV
jk i

= − 1
4Q

f |C|2.

Therefore, replacing this equality in the integral, the result holds. 2

Now, from this corollary and considering div3C = 0, we can prove our next
theorem.

Theorem 3.10 Let (M3, g, f , E) be a compact electrostatic system such that the electric
field and the gradient of the lapse function are linearly dependent. Suppose that the
Bach tensor is divergence-free and Q > 0 (or Q < 0). Then,(M3, g) is locally conformally
flat.

Proof. Considering that M is compact, f−1(0) = ∂M, and φ(f ) = f , from Corollary 3.9
and

∇
kCkij = ∇

kCkji ,

we obtain

1
4

∫
M

1
Q
|C|2f =

∫
M

∇
k f∇i

∇
jCjk i

= −
∫

M
f∇i

∇
k
∇

jCjk i .
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Since div2B = 0 (i.e., div3C = 0), then the right-hand side is identically zero, i.e.,∫
M

f
Q
|C|2 = 0.

Since f > 0 on M and Q > 0 (or Q < 0) we notice that the function f
Q
|C|2

has a defined sign everywhere on M, then the above integral shows us that the Cotton
tensor C must be identically zero, i.e., (M3,g) is a locally conformally flat manifold.

2

Now we can prove the non-compact case of the previous theorem.

Theorem 3.11 Let (M3, g, f , E) be an electrostatic system such that the electric field
and the gradient of the lapse function are linearly dependent. Suppose that the Bach
tensor is divergence-free and Q > 0 (or Q < 0). If f is a proper function, then (M3, g) is
locally conformally flat.

Proof. Let s > 0 be a real number fixed, and so we take χ ∈ C3 a real non-negative
function defined by χ(s) = 1 in [0,s], χ′(s) ≤ 0 in [s,2s] and χ(s) = 0 in [2s,+∞]

(see Figure 2.1). Since f is a proper function, we have that φ(f ) = fχ(f ) has compact
support in M for s > 0. From Corollary 3.9 and

∇
kCkij = ∇

kCkji ,

we get

1
4

∫
M

1
Q
|C|2fχ(f ) =

∫
M
χ(f )∇k f∇i

∇
jCjk i

= −
∫

M
χ(f )f∇i

∇
k
∇

jCjk i

+
∫

M
χ̇(f )f∇i f∇k

∇
jCjk i .

In the last equality, we used integration by parts. Now, since div2B = 0 and taking
φ(f ) = f 2χ̇(f ) in Corollary 3.9 one more time, we obtain

1
4

∫
M

1
Q
|C|2fχ(f ) =

1
4

∫
M

1
Q
|C|2f 2χ̇(f ),

i.e., ∫
M

1
Q

f |C|2[χ(f )− f χ̇(f )] = 0.
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Let be Ms = {x ∈ M; f (x) ≤ s}. Thus, by the definition of χ, χ(f )− f χ̇(f ) = 1
on Ms. Thus, on Ms, ∫

Ms

1
Q

f |C|2 = 0.

Therefore, since Q > 0 (or Q < 0) and f is positive, C = 0 in Ms. Taking s→ +∞, we
obtain that C = 0 on M. 2

3.3 The Warped Product Structure

In this section, we will provide once more for the sake of completeness the
warped product structure of a 3−dimensional locally conformally flat electrostatic
system following the ideas of [9, 10].

We consider an orthonormal frame {e1,e2,e3} diagonalizing the Ricci tensor
Ric at a regular point p ∈ Σ = f−1(c), with associated eigenvalues Rkk , k = 1, 2, 3,
respectively. That is, Ri j(p) = Ri iδi j(p). Now, from Theorem 2.19 we can infer that
Vi jk = 0 (since (M, g) is locally conformally flat). Then, from Lemma 3.8, for all i 6= j

we get

0 = Vi j j = fρ|∇f |2∇iρ+(f 2ρ2−1)(2Rj j +Ri i)∇i f

+

(
R− 1

2
Rf 2ρ2− f 2ρ2Λ

)
∇i f . (3-10)

Without loss of generalization, consider ∇1f 6= 0 and ∇j f = 0 for all 1 6= j .
Observe that Ric(∇f ) =R11∇f , i.e., ∇f is an eigenvector for Ric. From (3-10), we obtain
that R11 and Rj j , j 6= 1, have multiplicity 1 and 2, respectively. In fact,

−fρ|∇f |2 ∇1ρ

∇1f
−
(

R− 1
2

Rf 2ρ2− f 2ρ2Λ

)
− (f 2ρ2−1)R11 = 2(f 2ρ2−1)Rj j ,

for j = 2, 3. The left-hand side of the above identity does not depend on j .
Moreover, suppose that ∇i f 6= 0 for at least two distinct directions. Assume

∇1f 6= 0, ∇2f 6= 0 and ∇3f = 0. So, for instance, we have

−fρ|∇f |2 ∇1ρ

∇1f
−
(

R− 1
2

Rf 2ρ2− f 2ρ2Λ

)
− (f 2ρ2−1)R11 = 2(f 2ρ2−1)R33

and

−fρ|∇f |2 ∇2ρ

∇2f
−
(

R− 1
2

Rf 2ρ2− f 2ρ2Λ

)
− (f 2ρ2−1)R22 = 2(f 2ρ2−1)R33.
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Then, using that curl(fE) = 0 and E = ρ∇f , we already know that

∇
kρ∇

i f = ∇
iρ∇

k f .

We can conclude that
∇1ρ

∇1f
=

∇2ρ

∇2f
.

Thus, R11 = R22. Analogously, if ∇i f 6= 0 for all i ∈ {1, 2, 3}. Then, R11 = R22 = R33.
So, we can conclude that Ric has at most two distinct eigenvalues λ and µwith one of
them having multiplicity 2, let us say µ.

Therefore, in any case, we have that ∇f is an eigenvector for Ric. From the
above discussion we can take {e1 =

∇f
|∇f | ,e2, e3} as an orthonormal frame for Σ diag-

onalizing the Ricci tensor for the metric g.
Now, we have

∇a|∇f |2 = 2f

(
Ral∇

l f +2ρ2|∇f |2∇af − R
2

∇af

)
; a ∈ {2, 3}.

Hence, |∇f | is a constant in Σ. Thus, we can express locally the metric g in the form

gi j =
1
|∇f |2

df 2 +gab(f ,θ)dθadθb,

where gab(f ,θ)dθadθb is the induced metric and (θ2, θ3) is any local coordinate sys-
tem on Σ. We can find a good overview of the level set structure in [9, 37].

Observe that there is no open subset Ω of Mn where {∇f = 0} is dense. In
fact, if f is constant inΩ and Mn is complete, we have that f is analytic, which implies
f is constant everywhere. Thus, we consider Σ a connected component of the level
surface f−1(c) (possibly disconnected) where c is any regular value of the function f .
Suppose that I is an open interval containing c such that f has no critical points in the
open neighborhood UI = f−1(I) of Σ. For sake of simplicity, let UI ⊂ M\{f = 0} be a
connected component of f−1(I). Then, we can make a change to the variables

r(x) =
∫

df
|∇f |

such that the metric g in UI can be expressed by

gi j = dr2 +gab(r ,θ)dθadθb.

Let ∇r = ∂

∂ r , then |∇r | = 1 and ∇f = f ′(r) ∂

∂ r on UI . Note that f ′(r) does not
change sign on UI . Thus, we may assume I = (−ε, ε) with f ′(r)> 0 for r ∈ I. Moreover,
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we have ∇∂ r ∂ r = 0.
The second fundamental form on Σ is given by

hab = −〈e1, ∇aeb〉=
∇a∇bf
|∇f |

=
1
|∇f |

(
fRab−

Rf
2

gab

)
=

f
|∇f |

(
µ− R

2

)
gab =

H
2

gab, (3-11)

where H = H(r), since H is constant in Σ. So, Σ is totally umbilic. In fact, contracting
the Codazzi equation

R1cab = ∇ahbc−∇bhac

over c and b, it gives

R1a = ∇a(H)− 1
2

∇a(H) =
1
2

∇a(H).

On the other hand, since R1a = 0, we conclude that H is constant in Σ.
For what follows, we fix a local coordinate system

(x1, x2, x3) = (r , θ2, θ3)

in UI , where (θ2,θ3) is any local coordinate system on the level surfaceΣc . Considering
that a,b,c, · · · ∈ {2,3}, we have

hab =−g(∂r , ∇a∂b) =−g(∂r ,Γ1
ab∂r ) =−Γ1

ab.

Now, by definition

Γ1
ab =

1
2

g11
(
− ∂

∂ r
gab

)
=
−1
2

∂

∂ r
gab.

Then,

∂

∂ r
gab = H(r)gab

implies that

gab(r ,θ) =ϕ(r)2gab(r0,θ),

where ϕ(r) = e

(∫ r
r0

H(s)ds
)

and the level set {r = r0} corresponds to the connected
component Σ of f−1(c).
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Now, we can apply the warped product structure (see [5] and Section 1.2).
Hence, considering

(M3, g) = (I, dr2)×ϕ (N2, g),

where g = dr2 +ϕ2g. The Ricci tensor of (M3, g) is

R11 =−2
ϕ′′

ϕ
, R1a = 0 (3-12)

and

Rab = Rab−
[
(ϕ′)2 +ϕϕ′′

]
ḡab (a, b ∈ {2, 3}).

Since Rab =
R
2 gab,

Rab =

[
R
2
− (ϕ′)2−ϕϕ′′

]
gab.

On the other hand, since

R =ϕ−2R−2
(
ϕ′

ϕ

)2

−4
ϕ′′

ϕ
,

we get

R =ϕ2R+2(ϕ′)2 +4ϕϕ′′.

From R = 2(ρ2|∇f |2 +Λ) we get

R = 2ϕ2ρ2(f ′)2 +2(ϕ′)2 +4ϕϕ′′+2ϕ2Λ. (3-13)

Moreover, from the electrostatic system, we know that

1
|∇f |2

〈∇|∇f |2, ∇f 〉= 2f

(
R11 +2ρ2|∇f |2− R

2

)
.

That is, from (1-30) and (3-12), we get

〈∇|∇f |2, ∇f 〉= 2f (f ′)2
[
ρ2(f ′)2−2

ϕ′′

ϕ
−Λ

]
.

Hence, using that ∇f = f ′∂r , we obtain

2(f ′)2f ′′ = 2f (f ′)2
[
ρ2(f ′)2−2

ϕ′′

ϕ
−Λ

]
.
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So,

ρ2 =
1

(f ′)2

[
f ′′

f
+2

ϕ′′

ϕ
+Λ

]
.

Combining the above identity with (3-13) we can conclude that R does not
depend on θ. Therefore, R is a constant. Furthermore, from (3-11) we have

1
2
|∇f |Hgab = ∇a∇bf = f

(
Rab +2ρ2

∇af∇bf − R
2

gab

)
.

Thus, (
1
2
|∇f |H +

Rf
2

)
ϕ2gab = fRab.

On the other hand,

fRab = f

[
R
2
− (ϕ′)2−ϕϕ′′

]
gab.

Then,

f

[
1
2
ϕ2R+ϕϕ′′

]
=

(
1
2

f ′H +
Rf
2

)
ϕ2,

i.e.,

H = 2
f
f ′
ϕ′′

ϕ
.

Sinceϕ= e
∫ r

r0
H(s)ds, we have

ϕ′−2
f
f ′
ϕ′′ = 0

which implies that

ϕ′(r) = c1f (r)1/2,

where c1 ∈ R.
Therefore, we can conclude the next results of this dissertation.

Theorem 3.12 Let (M3, g, f , E) be an electrostatic system such that the electric field
and the gradient of the lapse function are linearly dependent. Suppose that the Bach
tensor is divergence-free and Q > 0 (or Q < 0). If f is a proper function, around any
regular point of f the manifold is locally a warped product with a one-dimensional



3.3 The Warped Product Structure 87

base and fiber (N2, g) of constant curvature, i.e.,

(M3, g) = (I, dr2)×ϕ (N2, g),

where I ⊂ R andϕ(r) = c1
∫√

f (r)dr + c2; c1 and c2 are constants.

It is important to point out that if M3 is compact in Theorem 3.12, it is not
necessary to ask for f to be a proper function.

Theorem 3.13 Let (M3, g, f , E) be a compact electrostatic system such that the electric
field and the gradient of the lapse function are linearly dependent. Suppose that the
Bach tensor is divergence-free and Q > 0 (or Q < 0). Then, around any regular point
of f the manifold is locally a warped product with a one-dimensional base and fiber
(N2, g) of constant curvature, i.e.,

(M3, g) = (I, dr2)×ϕ (N2, g),

where I ⊂ R andϕ(r) = c1
∫√

f (r)dr + c2; c1 and c2 are constants.
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