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UNIVERSIDADE FEDERAL DE GOIÁS
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Abstract

In this work, we propose and analyze some methods to solve constrained optimization

problems and constrained monotone nonlinear systems of equations. Our first algorithm

is an inexact variable metric method for solving convex-constrained optimization problems.

At each iteration of the method, the search direction is obtained by inexactly minimizing a

strictly convex quadratic function over the closed convex feasible set. Here, we propose a new

inexactness criterion for the search direction subproblems. Under mild assumptions, we prove

that any accumulation point of the sequence generated by the method is a stationary point of

the problem under consideration. Our second method consists of a Gauss-Newton algorithm

with approximate projections for solving constrained nonlinear least squares problems. The

local convergence of the method including results on its rate is discussed by using a general

majorant condition. By combining the latter method and a nonmonotone line search

strategy, we also propose a global version of this algorithm and analyze its convergence

results. Our third approach corresponds to a framework, which is obtained by combining

a safeguard strategy on the search directions with a notion of approximate projections, to

solve constrained monotone nonlinear systems of equations. The global convergence of our

framework is obtained under appropriate assumptions and some examples of methods which

fall into this framework are presented. Numerical experiments illustrating the practical

behaviors of the methods are reported and comparisons with existing algorithms are also

presented.

Keywords: Convex-constrained optimization problem; Nonlinear equations; Approximate

projections; Inexact variable metric method; Gauss-Newton method; Local and global

convergence.
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Resumo

Neste trabalho, propomos e analisamos alguns métodos para resolver problemas de

otimização com restrições e sistemas de equações não lineares monótonas com restrições.

Nosso primeiro algoritmo é um método inexato de métrica variável para resolver problemas

de otimização com restrições convexas. A cada iteração deste método, a busca direcional

é obtida minimizando inexatamente uma função quadrática estritamente convexa sobre o

conjunto convexo fechado viável. Aqui, propusemos um novo critério de inexatidão para

os subproblemas de busca direcional. Sob suposições apropriadas, provamos que qualquer

ponto de acumulação da sequência gerada pelo novo método é um ponto estacionário do

problema sob consideração. Nosso segundo método consiste em um método Gauss-Newton

com projeções aproximadas para resolver problemas de quadrados mı́nimos não lineares

com restrições. A convergência local do método, incluindo resultados sobre sua taxa

de convergência, é discutida usando uma condição majorante geral. Ao combinar o

último método e uma estratégia de busca linear não monótona, também propusemos uma

versão global deste algoritmo e analisamos seus resultados de convergência. Nossa terceira

abordagem corresponde a um “framework”, o qual é obtido combinando uma estratégia de

salvaguarda na busca direcional com uma noção de projeções aproximadas, para resolver

sistemas de equações não lineares monótonas com restrições. A convergência global de nosso

“framework” é obtida sob suposições apropriadas e alguns exemplos de métodos que se

enquadram nesta estrutura são apresentados. Experimentos numéricos são relatados para

ilustrar os desempenhos dos métodos e comparações com algoritmos existentes também são

apresentadas.

Palavras-chave: Problema de otimização com restrição convexa; Equações não lineares;

Projeções aproximadas; Método inexato de métrica variável; Método de Gauss-Newton;

Convergência local e global.
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Chapter 1

Introduction

Let us first consider the following convex-constrained optimization problem

min
x∈C

f(x), (1.1)

where f : Rn → R is a continuously differentiable function and C ⊆ Rn is a nonempty convex

closed set. This is a classical problem in continuous optimization and different methods have

been proposed in the literature for solving it; see, for example, [11,12,16,64,68]. A well-known

one is the projected gradient method, which can be seen as the constrained extension of the

gradient method (also known as steepest descent) for unconstrained optimization problem.

The projected gradient method is quite simple to implement; however, it may be very slow

in some applications. In order to overcome this drawback, work [12] proposed the spectral

projected gradient (SPG) method, which has been shown an efficient approach for solving

(1.1) mainly in large-scale, owing to its low memory requirements. Given an arbitrary initial

point x0 ∈ C, the SPG method generates a sequence of iterates by the rule

xk+1 = xk + αkdk, k ≥ 0, (1.2)

where the step-size αk is obtained by the nonmonotone line search strategies proposed in [44]

and the search direction dk is defined as dk = PC(xk−(1/λk)∇f(xk))−xk, where PC denotes

the orthogonal projection on C and λk is the Barzilai-Borwein scaling [8] defined by

λ0 ∈ [λmin, λmax], λk = min {λmax,max {λmin, ak/bk}} , (1.3)

with 0 < λmin < λmax, bk := 〈xk − xk−1, xk − xk−1〉 and ak := 〈xk − xk−1,∇f(xk)−∇f(xk−1)〉.
The convergence results and/or numerical experiments illustrating the practical behavior of

the SPG method were discussed in [12] and in many subsequent works including [6, 13, 15,

17,36,46,54,60,76,81,82].
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It is well-known that depending on the geometry of C, the orthogonal projection onto

it neither has a closed-form nor can be easily computed. For this reason, [14] (see also

[4]) proposed an inexact version of the SPG method in which approximate projections are

allowed. Indeed, a more general approach, called Inexact Variable Metric method (IVM),

was proposed. It differs from the SPG method by the fact that the search direction dk in

(1.2) is computed such that xk + dk ∈ C and

Qk(dk) ≤ ηQk(d̄k), (1.4)

where η ∈ (0, 1],

d̄k := argminxk+d∈C Qk(d) :=
1

2
〈d,Bkd〉+ 〈∇f(xk), d〉, (1.5)

and Bk ∈ Rn×n is a suitable symmetric positive definite matrix. If Bk := λkI for every k ≥ 0,

where λk is as in (1.3), the inexact variable metric method corresponds to an inexact version

of the SPG method. It is not hard to verify that d̄k in (1.5) is equivalent to d̄k = ȳk − xk,

with

ȳk = argminy∈C qk(y) :=
1

2
〈Bky, y〉+ 〈∇f(xk)−Bkxk, y〉. (1.6)

In its turn, ȳk in (1.6) is equivalent to

ȳk := argminy∈C
1

2
‖y − (xk −B−1k ∇f(xk))‖2Bk

, (1.7)

where ‖ · ‖2Bk
:= 〈Bk·, ·〉. Therefore, dk in (1.4) can also be interpreted as an approximation

of the search direction d̄k of the projected (in the norm ‖ · ‖Bk
) quasi-Newton method.

At first sight, a drawback of the inexact criterion in (1.4) is that it requires the optimal

value of the problem in (1.5). It was presented in [4, 14] some applications in which it is

possible to establish a sequence of lower bounds Cl ≤ Qk(d̄k) that converges to the value

Qk(d̄k) as l goes to infinity. Hence, criterion (1.4) is satisfied when the verifiable condition

Qk(dk) ≤ ηCl holds. It is not clear, however, how the strategies in [4,14] can be employed or

even how an inexact direction satisfying (1.4) can be obtained for other complex feasible sets

(where the projection cannot be easily performed). Therefore, the first goal of this thesis is

to present an inexact variable metric method with a different inexactness criterion for the

subproblems (1.6). We present a concept of approximate solution for (1.6), which does not

require the knowledge of its optimal value. The new criterion can be verified by finding

the infimum of a linear function over the feasible set C. Such verification comes for free

when the conditional gradient method (Frank-Wolfe) [27, 32] is used to solve the problem

in (1.6). Under mild assumptions, we prove that any accumulation point of the sequence

generated by the proposed method is a stationary point of (1.1). In order to illustrate the

practical advantages of the new approach for inexact variable metric method, we report some

4



numerical experiments. In particular, we present an application where our concept of inexact

solutions is quite appealing; more details about this application are given in Subsection 3.2.2.

Our second problem of interest is a particular case of (1.1), which corresponds to the

convex-constrained nonlinear least squares problem

min
x∈C

f(x) :=
1

2
‖F (x)‖2, (1.8)

where U ⊆ Rn is an open set containing the nonempty convex closed set C and F : U→ Rm

is a continuously differentiable nonlinear function. This problem appears in many important

applications (see, e.g., [3, 5, 10, 67]). It is worth pointing out that different algorithms

have been proposed and studied in the literature for solving (1.8). Strategies based on

sequential quadratic programming, quasi-Newton and trust-region methods have been used;

see, for instance, [53, 57, 68]. Among the various approaches, one of the most popular is

the Gauss-Newton method and its variations, capable of obtaining efficient computational

results by exploring the structure of the function f (see [7, 9, 23,34,70]).

The second goal of this thesis is propose and analyze a Gauss-Newton methods with

approximate projections for solving (1.8). The method to be proposed here basically consists

of computing an approximate projection of the unconstrained Gauss-Newton step. The

approximate projection is based on the inexactness criterion for the subproblems (1.6) with

respect to the metric defined by Bk = F ′(xk)TF ′(xk), where AT denotes the transposed

matrix of A. From the theoretical viewpoint, we provide an estimate of the convergence

radius, for which well-definedness and convergence of the method are ensured. Furthermore,

results on its convergence rates are also established. Our analysis is done by using a majorant

condition, which allows us to study convergence results of Newton and Gauss-Newton

methods in a unified way; see, for example, [29, 30, 41]. Thus, our local analysis covers

two large families of nonlinear functions, namely, one satisfying a Lipschitz condition and

another one satisfying a Smale condition, which includes a substantial class of analytic

functions. However, as it is well-known, globalization strategies produce, in general, more

robust methods. Therefore, we also propose a global version of our local method. As in

our first global algorithm, the globalization technique is based on the efficient nonmonotone

line search in [44]. It is worth pointing out that the nonmonotone strategy has been shown

to be more efficient due to the fact that enforcing monotonicity of the function values may

make the method converge slower. Under suitable assumptions, this global version can be

seen as an instance of our first method. We also report some numerical experiments for

the algorithm on a set of box- and polyhedral-constrained nonlinear systems and compare

their performances with the proximal Gauss-Newton method in [70], which, applied to (1.8),

corresponds to our local method with exact projections. In the box-constrained case, we

also compare performance of our global version with the inexact Gauss-Newton trust-region

method in [68].
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Finally, our third problem corresponds to the convex-constrained monotone nonlinear

system of equations: finding x∗ ∈ C such that

F (x∗) = 0, (1.9)

where C is a nonempty closed convex set and F : Rn → Rn is a continuous and monotone

nonlinear function, not necessarily differentiable. The monotonicity of F : Rn → Rn

here means 〈F (x) − F (y), x − y〉 ≥ 0, for all x, y ∈ Rn. Problems of this nature have

many applications such as power engineering, chemical equilibrium systems and economic

equilibrium problems, see e.g., [25, 28, 61, 79]. Recently, how to solve the constrained

problem (1.9) has become an important subject of research. Due to the efficiency and low

computational costs for large values of n, different attractive methods have been proposed

in the literature. Many of them are extensions of Newton-type, spectral gradient and

conjugate gradient methods for solving the unconstrained monotone nonlinear system; see,

e.g., [55, 56,66,77,78,81,84].

The third goal of this thesis is to present a framework with approximate projections

for solving (1.9). More precisely, at each iteration, the framework imposes a safeguard

strategy on the search directions. A suitable line search procedure is considered based on

[73], which, in particular, provides a hyperplane that strictly separates the current iteration

from zeroes of the system of equations. Then, we compute an approximate projection of

a point, which belongs to the aforementioned hyperplane, onto the intersection between C

and the hyperplane (or onto the constrained set C). Under mild assumptions, we prove that

the sequence generated by the proposed framework converges to a solution of (1.9). Some

examples of methods which fall into this framework are reported. Essentially the examples

are inexact versions of methods based on spectral gradient and quasi-Newton methods for

convex-constrained monotone nonlinear equations; see, e.g., [1, 52, 78, 81, 83]. In order to

illustrate the robustness and effectiveness of the instances of the framework, we report some

preliminary numerical experiments on a set of problems in the form (1.9). Moreover, we also

applied the framework for solving the constrained absolute value equation and compare its

performance with the inexact Newton method with feasible inexact projections [65].

This thesis is organized as follows. In Chapter 2, we first establish some notations and basic

results. A concept of approximate solution to the problem similar to (1.6) and some of its

properties are discussed. In Chapter 3, we describe a modified inexact variable metric method

and present its global convergence theorem. Moreover, some numerical experiments of the

proposed method are presented. In Chapter 4, we propose the Gauss-Newton method with

approximate projections (GNM-AP) and present its main local convergence theorem. We also

present two applications of the main theorem and establish a global version of the GNM-AP.

To illustrate its performance, some numerical experiments are reported. In Chapter 5, a

framework with approximate projections for solving monotone nonlinear equations and its
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global convergence are discussed. We also present some instances of the latter framework by

means of some examples of search directions dk that satisfy the safeguard conditions. Some

preliminary numerical experiments are reported to illustrate its performance. Finally, we

conclude this thesis with some remarks in Chapter 6.

We mention that the material of this thesis originated three papers, two of them [39, 40]

are published and one is in the final stage of preparation.
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Chapter 2

Preliminaries

In this chapter, we introduce some definitions, notations and basic results used throughout

this thesis. In particular, we discuss our concept of approximate solution of a quadratic

problem and establish some properties, which will be fundamental in the course of this

work.

2.1 Notations and basic definitions

The open ball in Rn with center a and radius r is denoted by B(a, r). Denote D+f(0) as

the right-hand derivative of a convex function f : [0,∞) → R. Let B be the set of n × n
symmetric positive definite matrices such that

‖B‖ ≤ L and ‖B−1‖ ≤ L, (2.1)

where L > 1 and ‖.‖ is a sub-multiplicative matrix norm. Note that B is a compact set of

Rn×n. Consider also the inner product on Rn defined by 〈x, z〉B = 〈x,Bz〉, where B ∈ B and

〈., .〉 denotes the usual inner product. Notice that the corresponding induced norm ‖.‖B is

equivalent to the Euclidean norm on Rn, since the following inequalities hold

1

‖B−1‖
‖x‖2 ≤ ‖x‖2B ≤ ‖B‖‖x‖2. (2.2)

Let be A ∈ Rm×n with rank r ≤ min{m,n}. The Moore-Penrose inverse of A is a matrix

A† ∈ Rn×m which satisfies:

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A.

Note that, if rank(A) = n or ATA is invertible in Rn×n, then

A† = (ATA)−1AT , A†A = I = AA†, ‖A†‖2 = ‖(ATA)−1‖. (2.3)
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2.2 Approximate solutions of a quadratic problem

In this section, we will introduce our concept of inexact solutions of a subproblems of the

form in (1.6) and establish some of its useful properties. For a suitable choice of inputs, such

subproblems can be interpreted as approximate projections.

Definition 2.2.1 Given B ∈ B, w ∈ Rn, ε ≥ 0 and a nonempty closed convex set C ⊂ Rn,

we say that ỹBC (w) is an ε–approximate solution for the problem

min
y∈C

1

2
〈By, y〉 − 〈w, y〉, (2.4)

iff

ỹBC (w) ∈ C and 〈BỹBC (w)− w, y − ỹBC (w)〉 ≥ −ε, ∀ y ∈ C. (2.5)

Remark 2.2.2 Since in (2.4) we are minimizing a strictly convex quadratic function over a

convex set, condition (2.5) is a natural condition for an approximate solution. Indeed, the

optimality condition for (2.4) is

〈Bȳ − w, y − ȳ〉 ≥ 0, ∀ y ∈ C.

Hence, one could define an approximate solution as ỹ ∈ C such that 〈Bỹ − w, y − ỹ〉 ≥ −ε,
for all y ∈ C, which coincides with (2.5). Note that, if ỹBC (w) is a zero–approximate solution,

then ỹBC (w) is the unique exact solution of (2.4), which we will denote by yBC (w).

Note that, if w := Bx with x ∈ Rn, then problem (2.4) can be rewritten, ignoring constant

terms, as

min
y∈C

1

2
‖y − x‖2B. (2.6)

and (2.5) is equivalent to

〈x− ỹBC (Bx), y − ỹBC (Bx)〉B ≤ ε, ∀ y ∈ C. (2.7)

In this case, we can say that ỹBC (Bx) is an approximate projection (in the norm ‖ · ‖B) of

x onto C. It is easy to prove that the exact projection yBC (·) is nonexpansive in the norm

‖ · ‖B, i.e.

‖yBC (Bx)− yBC (Bx̂)‖B ≤ ‖x− x̂‖B, x, x̂ ∈ Rn. (2.8)

Moreover, for every B ∈ B, w := Bx ∈ Rn and ε ≥ 0, the following relationship between yBC
and ỹBC holds

‖ỹBC (Bx)− yBC (Bx)‖B ≤
√
ε. (2.9)
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Indeed, since yBC (w) ∈ C and ỹBC (w) ∈ C, it follows from Definition 2.2.1 that

〈BỹBC (Bx)−Bx, ỹBC (Bx)− yBC (Bx)〉 ≤ ε, 〈Bx−ByBC (Bx), ỹBC (Bx)− yBC (Bx)〉 ≤ 0.

By adding the last two inequalities, we obtain

‖ỹBC (Bx)− yBC (Bx)‖B ≤
√
ε. (2.10)

In Figure 2.1, an admissible approximation of yBC (Bx) with B ≡ I is depicted.

Figure 2.1: ε–approximate projection

We emphasize that criterion (2.5) can be easily checked when, for example, C is bounded

and the conditional gradient method [27] is used to solve (2.4). The conditional gradient

(CondG) method, also known as Frank-Wolfe method [32], is designed to solve the convex

optimization problem minx∈C h(x), where C is a nonempty compact convex set and h is a

differentiable convex function. Given zj−1 ∈ C, its j-th step first finds z̄j as a minimum

of the linear function 〈∇h(zj−1), ·〉 over C and then set zj = (1 − αj)zj−1 + αj z̄j for some

αj ∈ [0, 1]. Its major distinguishing feature compared to other first-order algorithms such

as the projected gradient (or accelerated gradient) method is that it replaces the usual

projection onto C by a linear oracle which computes z̄j as above. Since, for some relevant

cases of C (for example, when C is the spectrahedron; see Subsection 3.2.2), the latter

operation is considerably cheaper than the first one, the CondG method is competitive with

first-order projection methods and it has recently re-gained attention in different application

areas (see, e.g., [33,50]). If we apply the CondG method to (2.4), then z̄j is a solution of the

subproblem
min 〈Bzj−1 − w, z − zj−1〉,
s.t. z ∈ C

(2.11)

and, hence, if the CondG iterations are stopped when

〈Bzj−1 − w, z̄j − zj−1〉 ≥ −ε, (2.12)
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then condition (2.5) holds with ỹBC (w) = zj−1.

We next discuss a way to use the CondG method to obtain an approximate solution for

(2.4) when the diameter of C is very large or even when C is unbounded. Note that the

exact solution yBC (w) of (2.4), with w := Bx−∇f(x) and x ∈ C, satisfies

〈B(x− yBC (w))−∇f(x), x− yBC (w)〉 ≤ 0,

which, combined with the Cauchy-Schwarz inequality yields

‖x− yBC (w)‖2B ≤ 〈∇f(x), x− yBC (w)〉 ≤ ‖∇f(x)‖‖x− yBC (w)‖.

It follows from the last inequality and (2.2) that

‖x− yBC (w)‖ ≤ ‖B−1‖‖∇f(x)‖,

which implies that the ball B (x, ‖B−1‖‖∇f(x)‖) contains the (unknown) exact solution

yBC (w) of (2.4). Therefore, one can apply the conditional gradient method to (2.4) with C

replaced by C ∩ B (x, ‖B−1‖‖∇f(x)‖) in order to obtain a point ỹBC (w) satisfying

ỹBC (w) ∈ C, 〈B(x− ỹBC (w))−∇f(x), y − ỹBC (w)〉 ≤ ε, ∀ y ∈ C ∩ B
(
x, ‖B−1‖‖∇f(x)‖

)
.

(2.13)

It can be proven, using that the quadratic function in (2.4) is strongly convex and yBC (w) ∈
C∩B (x, ‖B−1‖‖∇f(x)‖), that if ε = 0 in the last inequality, then ỹBC (w) = yBC (w). Therefore,

we claim that the results of the algorithms proposed in this work can also be shown if (2.5)

is replaced by (2.13).

We also mention that other iterative methods can take place to obtain an ε–approximate

solution for (2.4), being enough to solve periodically, or at each iteration j, the linear

subproblem (2.11) to test our criterion: unboundness of the linear subproblem implies that

the criterion does not hold.

We next establish some useful relationships between exact and inexact solutions of (2.4)

when B varies.

Lemma 2.2.3 Let B,D ∈ B and x ∈ Rn. Then,

‖yBC (Bx)− yDC (Dx)‖B ≤ ‖B−1‖1/2‖(B −D)(yDC (Dx)− x)‖, ∀ x ∈ Rn.

Proof. Denote z = yBC (Bx) and ẑ = yDC (Dx). Hence, it follows from Definition 2.2.1 that

〈B(z − x), ẑ − z〉 ≥ 0, 〈D(ẑ − x), z − ẑ〉 ≥ 0. (2.14)

Combining the last two inequalities, we obtain

〈B(z − ẑ), z − ẑ〉 ≤ 〈(D −B)(ẑ − x), z − ẑ〉,
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which, combined with the Cauchy-Schwarz inequality, yields

‖z − ẑ‖2B ≤ ‖(B −D)(ẑ − x)‖‖z − ẑ‖ ≤ ‖B−1‖1/2‖(B −D)(ẑ − x)‖‖z − ẑ‖B.

Therefore, the desired inequality now follows from the last one. �

Lemma 2.2.4 Let B,D ∈ B. Then, for every x, x̂ ∈ Rn and ε ≥ 0, we have

‖ỹBC (Bx)− yDC (Dx̂)‖B ≤ ‖x− x̂‖B + ‖B−1‖1/2‖(B −D)(yDC (Dx̂)− x̂)‖+
√
ε.

Proof. By Lemma 2.2.3, we obtain

‖ỹBC (Bx)− yDC (Dx̂)‖B ≤ ‖ỹBC (Bx)− yBC (Bx)‖B + ‖yBC (Bx)− yBC (Bx̂)‖B + ‖yBC (Bx̂)− yDC (Dx̂)‖B
≤ ‖ỹBC (Bx)− yBC (Bx)‖B + ‖yBC (Bx)− yBC (Bx̂)‖B + ‖B−1‖1/2‖(B −D)(yDC (Dx̂)− x̂)‖.

Combining last inequality with (2.8) and (2.10), we find

‖ỹBC (Bx)− yDC (Dx̂)‖B ≤
√
ε+ ‖x− x̂‖B + ‖B−1‖1/2‖(B −D)(yDC (Dx̂)− x̂)‖,

which is equivalent to the desired inequality. �

Lemma 2.2.5 Let f : Rn → R be a continuously differentiable function. The exact solution

yBC (Bx−∇f(x)) of (2.4) is a continuous function of B ∈ B and x ∈ C.

Proof. Let w := Bx − ∇f(x), w̄ := Bz − ∇f(z) and ŵ := Dz − ∇f(z) with x, z ∈ C and

B,D ∈ B. It follows from Definition 2.2.1 that

〈B(yBC (w)− x) +∇f(x), yBC (w̄)− yBC (w)〉 ≥ 0,

〈B(z − yBC (w̄))−∇f(z), yBC (w̄)− yBC (w)〉 ≥ 0.

Summing the above inequalities

〈B(yBC (w)− yBC (w̄))−B(x− z) +∇f(x)−∇f(z), yBC (w̄)− yBC (w)〉 ≥ 0,

and after some manipulation

−‖yBC (w̄)− yBC (w)‖2B + 〈B(z − x), yBC (w̄)− yBC (w)〉+ 〈∇f(x)−∇f(z), yBC (w̄)− yBC (w)〉 ≥ 0.

Then,

1

‖B−1‖
‖yBC (w̄)− yBC (w)‖2 ≤ (‖B‖‖z − x‖+ ‖∇f(x)−∇f(z)‖) ‖yBC (w̄)− yBC (w)‖,

where in the left-hand side we used (2.2) and on the right-hand side we used the

Cauchy-Schwarz inequality and consistency of the matrix norm.
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Supposing yBC (w̄) 6= yBC (w), from the above inequality and Eq. (2.1), we arrive at

‖yBC (w̄)− yBC (w)‖ ≤ L (L‖z − x‖+ ‖∇f(x)−∇f(z)‖) . (2.15)

Since inequality (2.15) is also valid when yBC (w̄) = yBC (w), x, z and B were taken arbitrarily,

the inequality is valid for all x, z ∈ C and B ∈ B.

Now, again from Definition 2.2.1, we have in particular

〈B(yBC (w̄)− z) +∇f(z), yDC (ŵ)− yBC (w̄)〉 ≥ 0,

〈D(z − yDC (ŵ))−∇f(z), yDC (ŵ)− yBC (w̄)〉 ≥ 0.

Summing the above inequalities yields

〈ByBC (w̄)−Bz +Dz −DyDC (ŵ), yDC (ŵ)− yBC (w̄)〉 ≥ 0,

or, equivalently (after some manipulation),

〈B(yBC (w̄)− yDC (ŵ)) + (D −B)(z − yDC (ŵ)), yDC (ŵ)− yBC (w̄)〉 ≥ 0.

The above inequality leads to

‖yDC (ŵ)− yBC (w̄)‖2B ≤ 〈(D −B)(z − yDC (ŵ)), yDC (ŵ)− yBC (w̄)〉.

Assuming yDC (ŵ) 6= yBC (w̄), invoking (2.2) and the Cauchy-Schwarz inequality, we obtain

‖yDC (ŵ)− yBC (w̄)‖ ≤ ‖B−1‖‖z − yDC (ŵ)‖‖D −B‖ ≤ L‖z − yDC (ŵ)‖‖D −B‖, (2.16)

where the last inequality follows from (2.1). On the other hand, from Definition 2.2.1, we

also have

〈D(yDC (ŵ)− z) +∇f(z), z − yDC (ŵ)〉 ≥ 0,

or, equivalently,

1

‖D−1‖
‖z − yDC (ŵ)‖ ≤ ‖z − yDC (ŵ)‖D ≤ ‖∇f(z)‖ ≤ ‖∇f(x)‖+ ‖∇f(x)−∇f(z)‖.

Combining the last inequality with (2.16) and Eq. (2.1), we obtain

‖yDC (ŵ)−yBC (w̄)‖ ≤ ‖B−1‖‖z−yDC (ŵ)‖‖D−B‖ ≤ L2 (‖∇f(x)‖+ ‖∇f(x)−∇f(z)‖) ‖D−B‖,
(2.17)

Since (2.17) also holds when yDC (ŵ) = yBC (w̄), and because z, B,D were chosen arbitrarily,

we conclude that it is valid for all z ∈ C and B,D ∈ B.

Finally, using (2.15), (2.17) and the triangle inequality, we find

‖yBC (w)− yDC (ŵ)‖ ≤ ‖yBC (w)− yBC (w̄)‖+ ‖yBC (w̄)− yDC (ŵ)‖
≤ L2‖z − x‖+ L(1 + L‖D −B‖)‖∇f(x)−∇f(z)‖+ L2‖∇f(x)‖‖D −B‖,

which, combined with the fact that∇f is continuous and B is compact, implies that yBC (Bx−
∇f(x)) is continuous as a function of x ∈ C and B ∈ B. �
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Lemma 2.2.6 For every w, ŵ ∈ Rn and ε ≥ 0, we have

‖ỹIC(w)− yIC(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2ε.

Proof. Since ỹIC(w) ∈ C and yIC(ŵ) ∈ C, it follows from Definition 2.2.1 that

〈ỹIC(w)− w, ỹIC(w)− yIC(ŵ)〉 ≤ ε, 〈ŵ − yIC(ŵ), ỹIC(w)− yIC(ŵ)〉 ≤ 0. (2.18)

On the other hand, after some simple algebraic manipulations we have

‖w − ŵ‖2 = ‖ỹIC(w)− yIC(ŵ)‖2 + 2〈w − ỹIC(w)− (ŵ − yIC(ŵ)), ỹIC(w)− yIC(ŵ)〉
+ ‖(w − ỹIC(w))− (ŵ − yIC(ŵ))‖2,

which implies that

‖ỹIC(w)− yIC(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2〈ỹIC(w)− w, ỹIC(w)− yIC(ŵ)〉
+ 2〈ŵ − yIC(ŵ), ỹIC(w)− yIC(ŵ)〉.

By the last inequality, (2.18) and (2.1), yields

‖ỹIC(w)− yIC(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2ε,

which is equivalent to the desired inequality. �
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Chapter 3

A Modified inexact variable metric

method for convex-constrained

optimization problem

In this chapter, we propose a modified inexact variable metric (M-IVM) method for solving

convex-constrained optimization problems. The convergence analysis of the proposed method

is established under suitable conditions. Some numerical experiments are given in order to

illustrate the performance of the new method. The material in this chapter is published

in [40].

3.1 The method and its convergence analysis

In this section, we present and study an inexact variable metric method for solving (1.1).

Basically, the method differs from the one studied in [4, 14] by using a different inaccuracy

criterion for the search direction subproblems.

We are now able to formally describe the inexact method for solving (1.1).

Modified Inexact Variable Metric Method (M-IVM)

Step 0 (Initialization). Given x0 ∈ C, B0 ∈ B, τ ∈ (0, 1), an integer M ≥ 1 and {θk} ⊂
[0,∞). Set k = 0.

Step 1 (Inexact search direction). Set wk = Bkxk−∇f(xk). Compute dk = ỹBk
C (wk)−
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xk, where ỹBk
C (wk) ∈ C and

〈Bk(xk−ỹBk
C (wk))−∇f(xk), y−ỹBk

C (wk)〉 ≤ εk := θ2k‖ỹ
Bk
C (wk)−xk‖2Bk

, ∀ y ∈ C, (3.1)

i.e., ỹBk
C (wk) is an εk–approximate solution of (2.4).

Step 2 (Termination Criterion). If ‖dk‖ = 0, then stop.

Step 3 (Backtracking). Define fmax = max{f(xk−j); 0 ≤ j ≤ min{k,M − 1}}. Set

α← 1.

Step 3.1. If

f(xk + αdk) ≤ fmax + τα〈∇f(xk), dk〉, (3.2)

then αk = α, xk+1 = xk + αdk, and go to Step 4. Otherwise, set α← α/2 and go

to Step 3.1.

Step 4 (Update of the Hessian approximation). Form a matrix Bk+1 ∈ B.

end

Remark 3.1.1 Some comments about the M-IVM are in order.

(i) Note that the problem (2.4) can be rewritten here, with wk = Bkxk−∇f(xk) and ignoring

constant terms, as

min
y∈C

1

2
‖y − (xk −B−1k ∇f(xk))‖2Bk

, (3.3)

and, consequently, (3.1) is equivalent to

〈xk −B−1k ∇f(xk)− ỹBk
C (xk), y − ỹBk

C (xk)〉Bk
≤ εk, ∀ y ∈ C,

where ỹBk
C (xk) ∈ C. We can say that ỹBk

C (xk) is an approximate projection (in the norm

‖ · ‖Bk
) of an unconstrained quasi-Newton step.

(ii) If dk = 0, then ỹBk
C (wk) = xk. Hence, it follows from (3.1) that

〈∇f(xk), y − xk〉 ≥ 0, ∀ y ∈ C,

i.e., xk ∈ C is a stationary point of (1.1). Conversely, if xk is a stationary point of (1.1),

then it follows from (3.1) with y = xk and the optimality condition that ỹBk
C (wk) = xk.

(iii) Notice that Step 1 is well-defined because the exact solution of (2.4) clearly satisfies

(3.1). Nevertheless, iterative methods can be used to obtain an approximate solution of (2.4)
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such that condition (3.1) holds. If the conditional gradient is employed, for example, the

stopping criterion (2.12) now reads

〈Bk(zj−1 − xk) +∇f(xk), z̄j − zj−1〉 ≥ −θ2k‖zj−1 − xk‖2Bk
. (3.4)

From item (i) in this remark, we observe that if zj−1 = xk, then

∀ z ∈ C : 〈∇f(xk), z − xk〉 = 〈∇f(xk), z − zj−1〉 ≥ 〈∇f(xk), z̄j − zj−1〉 ≥ 0,

showing that zj−1 is stationary for the original problem.

(iv) If θk = 0 in (3.1), we obtain that ỹBk
C (wk) is the unique exact solution of the problem

(2.4) and then, the inexact variable metric method reduces to its exact version. Additionally,

if Bk := λkI for every k ≥ 0, where λk is as in (1.3), the inexact variable metric method

corresponds to the inexact SPG method.

(v) As it will be proven later, the search directions generated by M-IVM are descent

directions, which will imply that the backtracking process given in Step 3 is well-defined.

(vi) There are different choices for, or ways to build, the matrix Bk. For example, Bk

can be the Hessian of function f if it is positive definite or a modification of it in order to

guarantee the positive definiteness of the approximation. The approximation Bk can be a

specific multiple of the identity matrix such as the spectral choice in [12,14].

In order to investigate the global convergence of the method, we need to establish some

properties of its search directions.

Proposition 3.1.2 Assume that the sequence {θk} satisfies θk ≤ θ̄ for all k ≥ 0, where

θ̄ ∈ [0, 1). Then, for every k ≥ 0, we have

〈dk,∇f(xk)〉 ≤ −(1− θ̄2)L‖dk‖2 (3.5)

and
1

(1 + θ̄)L
‖yBk

C (wk)− xk‖ ≤ ‖dk‖ ≤
L

1− θ̄2
‖∇f(xk)‖, (3.6)

where yBk
C (wk) is the exact solution of the problem (2.4).

Proof. Since dk = ỹBk
C (wk)− xk, from (3.1) with y = xk, we have

〈∇f(xk), dk〉 ≤ (θ2k − 1)‖dk‖2Bk
, (3.7)

which, combined with the fact that θk ≤ θ̄ < 1 for all k ≥ 0, (2.1) and (2.2), yields

〈∇f(xk), dk〉 ≤ −(1− θ̄2)L‖dk‖2.
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Thus, (3.5) is proved. It follows from (3.7) and the Cauchy-Schwarz inequality that

(1− θ2k)‖dk‖2Bk
≤ −〈∇f(xk), dk〉 ≤ ‖∇f(xk)‖‖dk‖.

Hence, the second inequality in (3.6) now follows from (2.1), (2.2) and the fact that θk ≤ θ̄ < 1

for all k ≥ 0. Now, from (2.2) and the triangle inequality, we obtain

‖yBk
C (wk)− xk‖ ≤ ‖B−1k ‖

1/2‖yBk
C (wk)− xk‖Bk

≤ ‖B−1k ‖
1/2‖yBk

C (wk)− ỹBk
C (wk)‖Bk

+ ‖B−1k ‖
1/2‖ỹBk

C (wk)− xk‖Bk

≤ ‖B−1k ‖
1/2[
√
εk + ‖dk‖Bk

],

where the last inequality is due to (2.10) and dk = ỹBk
C (wk) − xk. Since εk = θ2k‖dk‖2Bk

(see

Step 1 of the M-IVM), it follows from the last inequality that

‖yBk
C (wk)− xk‖ ≤ (1 + θk)‖B−1k ‖

1/2‖dk‖Bk
.

Therefore, the first inequality in (3.6) now follows from (2.1), (2.2) and the fact that θk ≤ θ̄

for all k ≥ 0.

�

We next establish the global convergence of the M-IVM.

Theorem 3.1.3 Assume that the level set C0 := {x ∈ C : f(x) ≤ f(x0)} is bounded and the

sequence {θk} satisfies θk ≤ θ̄ for all k ≥ 0, where θ̄ ∈ [0, 1). Then, either the M-IVM stops

at some stationary point xk, or every limit point of the generated sequence is stationary.

Proof. If the M-IVM stops at a point xk, then dk = 0. Hence, ỹBk
C (wk) = xk and it follows

from (3.1) that

〈∇f(xk), y − xk〉 ≥ 0, ∀ y ∈ C,

i.e., xk is a stationary point of (1.1). If dk 6= 0, for every k ≥ 0, it follows from (3.5)

that dk is a descent direction. So, the backtracking process given in Step 3 is well-defined,

and, as a consequence, the M-IVM is also well-defined. Our goal is now to show that every

limit point of the {xk} is a stationary point of (1.1). Let l(k) be an integer such that

k −min{k,M − 1} ≤ l(k) ≤ k and

f(xl(k)) = max
0≤j≤min{k,M−1}

f(xk−j).

Using the first part of the proof of the theorem in [44] with m(k) := min{k,M − 1} (note

that this choice of m(k) satisfies the conditions of the mentioned theorem), it can be shown

that {f(xl(k))} is monotonically nonincreasing, and from the boundedness of C0 we have that

{f(xl(k))} admits a limit for k →∞. From (3.2), it follows, for k > M − 1, that

f(xl(k)) ≤ f(xl(l(k)−1)) + τα(l(k)−1)〈∇f(x(l(k)−1)), d(l(k)−1)〉. (3.8)
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Now, since α(l(k)−1) > 0 and 〈∇f(x(l(k)−1))), d(l(k)−1)〉 < 0, by taking limits in (3.8), it follows

that

lim
k→∞

α(l(k)−1)〈∇f(x(l(k)−1)), d(l(k)−1)〉 = 0.

Moreover, from (3.5) and (3.6), we conclude that

lim
k→∞

α(l(k)−1)‖y
B(l(k)−1)

C (w(l(k)−1))− x(l(k)−1)‖2 = 0,

and following the idea in the proof of the theorem of [44], we can write

lim
k→∞

αk‖yBk
C (wk)− xk‖2 = 0. (3.9)

Let x∗ ∈ C be a limit point of {xk}. Relabel {xk} a subsequence converging to x∗. From

(3.9), there exists a subsequence of indices K1 ⊂ K such that: (i) limk∈K1 ‖y
Bk
C (wk)−xk‖ = 0

or (ii) limk∈K1 αk = 0.

(i) By the compactness of B we can extract a subsequence of indices K2 ⊂ K1 such that

lim
k∈K2

Bk = B∗ ∈ B.

Hence, since yBk
C (wk) = yBk

C (Bkxk − ∇f(xk)), by continuity of yBC (w) (see Lemma 2.2.5),

we have ‖yB∗
C (w∗) − x∗‖ = 0, or equivalently, yB∗

C (w∗) = x∗, where w∗ = B∗x∗ − ∇f(x∗).

Therefore, the definition yB∗
C (w∗) (see Definition 2.2.1) implies that

〈∇f(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

i.e., x∗ is a stationary point of (1.1).

(ii) Let αk be the step chosen in the Step 3.2 such that αk = ᾱk/2, where ᾱk was the last

step that failed in (3.2), i.e.

f(xk + ᾱkdk) > max
0≤j≤min{k,M−1}

f(xk−j) + τ ᾱk〈∇f(xk), dk〉 ≥ f(xk) + τ ᾱk〈∇f(xk), dk〉.

(3.10)

Now define sk = ᾱkdk. By the mean value theorem, there exists µk ∈ [0, 1] such that the

relation in (3.10) can be written as

〈∇f(xk + µksk), sk〉 = f(xk + sk)− f(xk) > τ〈∇f(xk), sk〉. (3.11)

On the other hand, as {xk} is bounded and f has continuous derivatives, we have, by (3.6),

that {dk} is bounded. Thus, since sk = 2αkdk, and limk∈K1 αk = 0, we obtain that sk goes

to zero as k ∈ K1 goes to infinity. So, from (3.11), we have

〈∇f(xk + µksk),
sk
‖sk‖
〉 > τ〈∇f(xk),

sk
‖sk‖
〉.
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By taking limit in the last inequality as k ∈ K3 goes to infinity, where K3 ⊂ K1 is such that

limk∈K3{sk/‖sk‖} converges to s, we obtain (1 − τ)〈∇f(x∗), s〉 ≥ 0. Since (1 − τ) > 0, we

have

〈∇f(x∗), s〉 ≥ 0. (3.12)

Now, as dk is a descent direction for f at xk (see (3.5)) and sk = ᾱkdk, we find

〈∇f(xk),
sk
‖sk‖
〉 < 0.

Hence, 〈∇f(x∗), s〉 ≤ 0, which, combined with (3.12), implies that 〈∇f(x∗), s〉 = 0. Using

(3.5), (3.6) and the definition of sk, we have

〈∇f(xk),
sk
‖sk‖
〉 ≤ −(1− θ̄2)L‖dk‖ ≤ −(1− θ̄)‖yBk

C (wk)− xk‖.

By the compactness of B we can extract a subsequence of indices K4 ⊂ K3 such that

limk∈K4 Bk = B∗ ∈ B. Therefore, by taking limit in the last inequality as k ∈ K4 goes to

infinity, we have

0 = 〈∇f(x∗), s〉 ≤ −(1− θ̄)‖yB∗
C (w∗)− x∗‖.

Since θ̄ < 1, we obtain yB∗
C (w∗) = x∗, which, from the definition yB∗

C (w∗) (see Definition 2.2.1),

implies that x∗ is a stationary point of (1.1). �

3.2 Numerical experiments

We split the numerical experiments in two sets. First, in Subsection 3.2.1, where polyhedral

feasible sets C = {x ∈ Rn : Ax ≤ b} are considered, we aim to evaluate the impact of the

new inexactness criterion (3.1) of M-IVM in comparison with the criterion (1.4) used in the

Inexact SPG (ISPG) of [4]. Then, in Subsection 3.2.2, we consider a feasible set for which

the use of inexact variable metric methods is quite appealing (because the cost of an exact

solution of (2.4) is prohibitive) and we show that M-IVM achieves good results with respect

to its exact counterpart and an off-the-shelf solver.

All experiments were carried out in Matlab R2018b, in a laptop running Mac OS X 10.13.6,

with 8GB of RAM and 1.8 Ghz Intel Core i5 processor.

We implemented M-IVM with the following parameters: τ = 10−4, λmin = 10−10, λmax =

1010 and θk = θ̄ = 0.9995.
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3.2.1 Polyhedral feasible set

In order to put in perspective the new inexactness criterion (3.1) with the previously proposed

criterion (1.4), we consider a subset of the linearly constrained problems from the CUTEr

collection [43] used in [4, Table 2] and compare the results of ISPG with those obtained by

M-IVM.

Our implementation of ISPG consists in a modification of M-IVM where Step 1 is replaced

by the dual approach of [4] to inexactly solve the quadratic subproblems according to the

criterion (1.4) (see [4, Algorithm 5.1] for details). This dual approach demands an iterative

method to minimize a non-negative constrained convex quadratic. For this task, we have

used the MINQ8 solver [49] which implements an active-set method combining coordinate

searches and subspace minimization steps. Algorithm 5.1 of [4] was embedded in MINQ8 to

verify criterion (1.4) with the same parameter values as in [4, Section 8.5], namely, η = 0.8β

and β = 0.85 (β ∈ (0, 1) multiplies the maximum allowed step-size to keep the iterates

interior enough).

For both methods, the tolerance in the stopping criterion ‖dk‖ < ε was set to ε = 10−6.

For this set of experiments, we considered the variant of M-IVM with M = 10, Bk = λkI,

with λk as in (1.3) (and λ0 = 1).

Since the feasible set C = {x ∈ Rn : Ax ≤ b}, with A ∈ Rm×n, b ∈ Rm, is described

by linear inequality constraints, the M-IVM subproblems (2.4) are in fact (strictly convex)

quadratic programming problems. Bound constraints were treated as ordinary inequality

constraints. The subproblems (2.4) were solved by using a variant of the Frank-Wolfe

algorithm known as Away-Step Conditional Gradient (ASCG) [45], whose subproblems (see

Eq. (2.11)) were solved by the revised simplex method using Bland’s rule to avoid cycling [64,

Section 13.3].

In order to handle problems with unbounded C, we have included an additional constraint

corresponding to the ball of (2.13) in infinity norm, so that the subproblems (2.11) are

well-defined.

Table 3.1 presents the number of variables n, number of original inequality constraints m,

the number of outer (OUTIT) and inner (INNIT) iterations required by each method, the

CPU time in seconds and the objective value f(xk) at the last iterate. From these figures,

we observe that M-IVM requires less outer iterations than ISPG, at the cost of more inner

iterations for certain problems.

Concerning the computational cost of each inner iteration, in ISPG it is the cost of an

iteration of the non-negative constrained convex quadratic solver, whereas in each inner

iteration of M-IVM, which uses the ASCG, a linear programming problem has to be solved1.

1For MINQ8 solver, it seems that the main cost per iteration is O(|I|3) for solving a linear system of size
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ISPG M-IVM

Problem n m OUTIT INNIT time f(xk) OUTIT INNIT time f(xk)

HS24 2 3 9 22 0.24 -1.000 7 14 0.13 -1.000

HS35 3 1 16 19 0.22 0.1111 12 37 0.19 0.1111

HS35I 3 1 16 19 0.21 0.1111 12 37 0.17 0.1111

HS36 3 1 8 43 0.32 -3300. 1 4 0.07 -3300.

HS37 3 2 11 24 0.21 -3456 11 58 0.29 -3456

HS44NEW 4 6 15 79 0.31 -15 3 3 0.09 -15

HS76 4 3 12 28 0.23 -4.6818 8 101 0.29 -4.6818

HS76I 4 3 12 28 0.29 -4.6818 8 101 0.28 -4.6818

SIPOW1 2 2000 11 23 3.51 -1.0000 2 4 0.14 -1

SIPOW1M 2 2000 10 23 2.89 -1.0000 2 4 0.14 -1.0000

SIPOW2 2 2000 9 22 1.55 -1.0000 2 4 0.15 -1

SIPOW2M 2 2000 9 20 1.37 -1.0000 2 4 0.15 -1.0000

SIPOW3 4 2000 11 309 4.71 0.5347 2 7 0.76 0.5346

SIPOW4 4 2000 10 397 4.48 0.2724 2 5 1.14 0.2724

Table 3.1: Comparison of ISPG and M-IVM on CUTEr problems

Although this may suggest that the inner iteration of the latter is more expensive, CPU

times in Table 3.1 reveal that this is not always the case. Furthermore, in terms of time,

M-IVM is quite competitive with ISPG.

The results for some problems deserve a separate explanation. We remark that the

problems SIPOW (see [69] for details) are in fact linear programming problems that would

be solved in a single (outer) iteration by M-IVM if λ0 = 0. Nevertheless, we also observe

a better performance of M-IVM for problems where the solution is an extreme point of the

feasible polyhedron, as in HS24, HS36 and HS44NEW. In this latter case, what happened is

that the solution of the linear programming problem in some iteration of ASCG coincided

with the optimal solution of the original problem.

|I| ≤ m, where I is the set of inactive constraints. On the other hand, each iteration of the revised simplex

costs O(m2). If the revised simplex takes q iterations, then O(qm2) is the cost for the inner iteration of

M-IVM, which is comparable with the cost of a MINQ8 iteration when q and |I| are close to m.
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3.2.2 Least squares on the spectrahedron

In this subsection, we consider the least squares problem over the spectrahedron:

min
X∈Sn

1

2
‖AX − Z‖2F

s.t. tr(X) = 1

X � 0,

(3.13)

where A,Z ∈ Rm×n, with m > n, Sn denotes the vector space of symmetric matrices of

order n equipped with the trace inner product 〈X, Y 〉 = tr(XY ) and induced norm ‖X‖2F =

〈X,X〉, and X � 0 means that X is positive semidefinite.

Problem (3.13) is related to important applications in many areas. For example, in

nonlinear optimization, it can be used to estimate positive definite approximations for the

inverse Hessian in quasi-Newton methods, whereas in structural analysis it can be used to

estimate the compliance matrix of an elastic structure (see [80] for details).

Clearly, the feasible set C = {X ∈ Sn : tr(X) = 1, X � 0} is convex and compact

whereas the objective function of (3.13) is strictly convex, provided rank(A) = n.

We remark that, for this feasible set, the computation of the exact orthogonal projection2

of a point Y ∈ Sn onto C requires the full eigendecomposition of Y which is prohibitive

for large values of n (for details, see [37, 47]). Since the projection problem is equivalent to

(3.3) when B is a positive multiple of the identity, and (3.3) in its turn is equivalent to (2.4)

for any positive definite B, we expect that the cost of solving (2.4) exactly becomes also

prohibitive for large dimensions. Therefore, it seems reasonable to consider inexact variable

metric methods in this case.

Since C is neither polyhedral nor a finite intersection of easy convex sets, the approaches

in [4, 14] are not directly applicable.

On the other hand, if an ε-approximate solution of (2.4) is allowed (in the sense of (2.5)),

one could employ, for example, the Frank-Wolfe algorithm [32] whose iteration cost is dictated

by an extreme eigenpair computation when C is the spectrahedron (see [38] and references

therein). If only a few Frank-Wolfe iterations are required to achieve (2.5), then overall

savings, in terms of computational effort, may be considerable when running variants of

M-IVM.

To numerically investigate this claim, we consider random instances of problem (3.13) and

compare the performance of variants of M-IVM with SPG using exact projections [37] and

an interior point method [75].

2with respect to the Frobenius norm.
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The first group of problems consists of dense small problems with n < m ≤ 1000. The

matrices A were randomly generated with entries sampled from a uniform distribution in

the interval [0, 1]. Then, given a positive integer q, we build a symmetric matrix X̃ with

q eigenvalues equal to 1/q, one equal to −1, and all others equal to zero. Finally, we set

Z = AX̃. In general, this procedure results in nonzero residue problems. Note that the

construction of the Z results that the solution of the unconstrained problem is outside the

feasible set C.

For this group of problems, we consider two variants of M-IVM, namely, “Inexact Newton”

where Bk = ATA and “Inexact SPG” where Bk = λkI, with λk as in (1.3), and compare

them with the off-the-shelf solver QSDP [75] which implements an interior point method for

convex quadratic semidefinite programming problems.

Since the classic Frank-Wolfe is known for its slow O(1/ε) convergence [35], we consider a

variant of the conditional gradient proposed in [2], and further enhanced and specialized to

the spectrahedron in [24], that we shall call FW-p. FW-p exploits an estimate of the solution

with rank p and at each iteration computes p eigenpairs (rather than one eigenpair in the

classic FW). It achieves O(κ log(1/ε)) convergence rate, where κ is the condition number3

of the subproblem (2.4). This scheme fits well the Inexact SPG because Bk = λkI implies

in κ = 1. Preliminary experiments revealed that it also works fine with Inexact Newton as

long as Bk is not ill-conditioned.

In both cases, the strategy for “guessing” the solution rank p∗ is paramount for achieving

faster convergence. Since the references [2, 24] do not provide a strategy with theoretical

guarantees, here we also use a heuristic to update the rank estimate p: we start with p = 1

and increase the value of the rank estimate to p+δ whenever the decrease in the subproblem

objective function is not substantial4. For the small-dense problems in Table 3.2, δ = p and

for the large-sparse problems in Tables 3.3 and 3.4, δ = 1. We also remark that the value of

p is decreased to p− r when r of the p kept eigenvalues are close to zero.

The tolerance in the stopping criterion ‖dk‖ < ε in the variants of M-IVM was set to

ε = 10−4 for the problems in Table 3.2 and ε = 10−3 for the problems of Tables 3.3 and 3.4.

The tolerance for the duality gap in QSDP was set to 10−3.

Concerning the parameter M of the nonmonotone line search, we observed in preliminary

numerical experiments that the full-step (αk = 1) was always accepted in the “Inexact

Newton”, so we kept M = 1 for this variant. For the “Inexact SPG”, we did not observe a

pronounced improvement for M = 5 or M = 10 for this test set, thus we decided to go on

with the monotone line search (M = 1).

3Assuming that the convex function q is α-strongly convex and L-smooth, the corresponding condition

number is given by κ = L/α. See [2] for details.
4the reduction in the objective should be at least one percent of its value in the previous iterate.
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For each problem, we consider 3 starting points given by X0(γ) = (1 − γ)(1/n)I + γX̂,

where X̂ = e1e
T
1 (e1 is the first canonical vector) and γ ∈ {0, 0.5, 0.99}.

Table 3.2 brings the number of iterations, running time in seconds, and the achieved

objective value f(Xk). The smallest running time for each problem is highlighted in bold.

From these results, we observe that the variants of M-IVM provide a non-negligible speed-up

with respect to QSDP in the majority of the problems.

In the second group of problems, we consider sparse matrices with dimensions m > n ≥
1000. The matrix A was build using the command sprand(m,n,1e-4) from Matlab, and

X̃ = QDQT , where Q is the product of a few Givens rotation matrices and D is a diagonal

matrix with q entries equal to one and all others equal to zero. This ensures that Z = AX̃

is also sparse.

For this second test set, the interior point solver QSDP was left out of comparison due to

excessively high running times. We replace it by a version of SPG where the projection is

computed “exactly” as in [37]. This version is referred in Table 3.3 and 3.4 as “Exact SPG”.

From Tables 3.3 and 3.4, we observe that the Inexact SPG surpassed SPG with exact

projections in the majority of problems. Inexact Newton also shows a good performance and

becomes faster than Exact SPG as n and m increase.
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QSDP Inexact Newton Inexact SPG

n m q γ it time f(Xk) it time f(Xk) it time f(Xk)

10 100 4 0 9 1.24 9.13 3 0.24 9.13 19 0.36 9.13

0.5 9 0.67 9.13 4 0.11 9.13 23 0.27 9.13

0.99 9 0.55 9.13 4 0.09 9.13 22 0.19 9.13

50 200 4 0 16 2.54 16.51 4 0.61 16.51 50 1.04 16.51

0.5 16 1.98 16.51 4 0.33 16.51 41 0.71 16.51

0.99 16 1.54 16.51 4 0.55 16.51 50 0.74 16.51

50 200 10 0 14 1.54 16.70 4 0.41 16.70 29 0.73 16.70

0.5 14 1.43 16.70 4 0.41 16.70 49 0.92 16.70

0.99 14 1.30 16.70 5 0.47 16.70 54 0.88 16.70

100 400 5 0 18 4.11 29.07 3 0.81 29.04 50 1.32 29.04

0.5 18 3.23 29.07 4 0.59 29.04 73 1.28 29.04

0.99 18 3.07 29.07 4 1.05 29.04 72 1.56 29.04

200 800 5 0 23 11.04 53.02 4 6.54 52.98 86 3.82 52.99

0.5 23 11.31 53.02 4 6.31 52.98 79 3.03 52.99

0.99 23 11.38 53.02 4 6.05 52.98 79 2.97 52.98

200 800 20 0 20 10.53 52.60 4 17.46 52.58 53 2.79 52.59

0.5 20 8.84 52.60 4 14.79 52.58 75 4.91 52.59

0.99 20 8.83 52.60 5 18.05 52.58 91 4.02 52.60

400 1000 5 0 28 74.01 65.31 5 57.81 65.25 96 12.08 65.28

0.5 28 72.10 65.31 5 41.92 65.25 102 12.02 65.35

0.99 28 73.05 65.31 5 44.79 65.25 125 13.35 62.28

Table 3.2: Numerical results for dense small problems.
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Exact SPG Inexact Newton Inexact SPG

n m q γ it time f(Xk) it time f(Xk) it time f(Xk)

1000 2000 10 0.0 5 2.03 0.0794 4 5.96 0.0794 11 2.56 0.0794

0.5 10 3.28 0.0794 3 4.26 0.0794 9 2.25 0.0794

1.0 7 2.39 0.0794 4 6.21 0.0794 11 2.49 0.0794

1000 2000 20 0.0 6 2.34 0.2311 4 5.85 0.2311 7 2.38 0.2311

0.5 7 2.48 0.2311 4 5.37 0.2311 7 2.31 0.2311

1.0 8 2.73 0.2311 4 7.41 0.2311 10 3.38 0.2311

2000 4000 10 0.0 5 12.33 0.2304 3 8.22 0.2304 5 6.47 0.2304

0.5 6 14.83 0.2304 3 7.94 0.2304 6 7.65 0.2304

1.0 5 12.20 0.2304 3 8.06 0.2304 9 9.06 0.2304

2000 4000 20 0.0 5 12.22 0.9442 4 11.11 0.9442 5 7.94 0.9442

0.5 5 12.04 0.9442 4 10.67 0.9442 7 8.33 0.9442

1.0 6 20.92 0.9442 4 10.97 0.9442 6 7.21 0.9442

3000 6000 10 0.0 5 37.87 0.1377 3 19.14 0.1377 6 18.71 0.1377

0.5 5 37.82 0.1377 3 18.04 0.1377 6 19.11 0.1377

1.0 7 49.08 0.1377 3 18.45 0.1377 5 15.96 0.1377

Table 3.3: Numerical results for sparse medium-scale problems.
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Exact SPG Inexact Newton Inexact SPG

n m q γ it time f(Xk) it time f(Xk) it time f(Xk)

3000 6000 20 0.0 3 24.95 1.0832 4 24.68 1.0832 4 15.26 1.0832

0.5 4 30.90 1.0832 4 24.52 1.0832 6 16.98 1.0833

1.0 4 30.38 1.0832 4 24.55 1.0832 5 17.44 1.0832

4000 8000 10 0.0 5 85.50 0.6192 3 34.06 0.6192 6 33.98 0.6192

0.5 4 109 0.6192 3 32.46 0.6192 7 32.22 0.6192

1.0 5 112 0.6192 3 32.69 0.6192 6 29.55 0.6192

4000 8000 20 0.0 5 117 2.9650 5 56.92 2.9650 5 35.69 2.9650

0.5 5 116 2.9650 5 56.27 2.9650 10 54.45 2.9650

1.0 6 144 2.9650 5 58.97 2.9650 7 40.63 2.9650

5000 10000 10 0.0 6 258 0.9923 4 93.54 0.9923 8 64.68 0.9923

0.5 7 296 0.9923 4 90.46 0.9923 8 69.61 0.9923

1.0 7 300 0.9923 4 90.51 0.9923 9 77.77 0.9923

5000 10000 20 0.0 3 107 2.9388 4 89.92 2.9388 7 80.02 2.9388

0.5 4 138 2.9388 4 91.48 2.9388 6 86.28 2.9388

1.0 4 139 2.9388 4 91.86 2.9388 8 83.77 2.9388

Table 3.4: Numerical results for sparse medium-scale problems.
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Chapter 4

Gauss-Newton methods with

approximate projections for

convex-constrained nonlinear least

squares problems

In this Chapter, we present Gauss-Newton methods with approximate projections for solving

convex-constrained nonlinear least squares problems. We first propose a local method and

discuss its convergence theorem as well as results on the rate. Our analysis is done by

using a majorant condition which covers two large families of nonlinear functions, namely,

one satisfying a Lipschitz condition and another one satisfying a Smale condition. We then

propose a global Gauss-Newton method with approximate projections for solving nonlinear

least squares problems. Our global version combines the local method with the nonmonotone

line search based on [44]. Some numerical experiments of proposed methods are discussed.

The results of this chapter are published in [39].

4.1 The method and its local convergence

This section describes and investigates a Gauss-Newton method with approximate

projections (GNM-AP) for solving (1.8). Basically, the method consists of computing an

approximate projection of the unconstrained Gauss-Newton step onto the feasible set C.

The main local convergence theorem of the method and results on its rate are established,

and its proof is postponed to Subsection 4.1.1. As a result of our analysis, made using a

majorant condition, we covers two applications of such condition: one satisfying a Lipschitz
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condition and another one satisfying a Smale condition. We also present, in this section, two

examples in which all conditions of the convergence theorem hold. The convergence results

for these special cases are established in this section. The GNM-AP is formally described as

follows.

GNM-AP

Step 0 (Initialization). Let x0 ∈ C, {θk} ⊂ [0,∞) be given, and set k = 0.

Step 1 (Projected Gauss-Newton step). Define Bk = F ′(xk)TF ′(xk) and compute

wk = Bkxk − F ′(xk)TF (xk) ∈ Rn. Compute xk+1 ∈ C such that

〈wk −Bkxk+1, y − xk+1〉 ≤ εk := θ2k‖xk+1 − xk‖2Bk
, ∀ y ∈ C, (4.1)

i.e., xk+1 is an εk–approximate solution of (2.4), with B = Bk and w = wk.

Step 2 (Termination criterion and update). If xk+1 = xk, then stop; Otherwise, set

k ← k + 1 and go to Step 1.

end

Remark 4.1.1 Some comments about the GNM-AP are in order.

(i) Note that, if Bk ∈ B, then (4.1) is equivalent to

〈xk −B−1k F ′(xk)TF (xk)− xk+1, y − xk+1〉Bk
≤ εk, ∀ y ∈ C,

therefore, we can say that xk+1 is an approximate projection (in the norm ‖ · ‖Bk
) of an

Gauss-Newton step yk := xk − B−1k F ′(xk)TF (xk). Since the Gauss-Newton step yk may be

infeasible for the constraint set C, it is necessary to compute an εk–approximate projection

of it onto C. As already mentioned, such an approximate projection can be efficiently

computed, for example, by the conditional gradient method

(ii) In Step 2, if xk+1 = xk, it follows from Step 1 and definition of wk that

0 ≥ 〈wk −Bkxk+1, y − xk+1〉 = 〈−F ′(xk)TF (xk), y − xk〉Bk

for all y ∈ C, i.e. xk is a stationary point of (1.1).

(iii) The characterization of xk+1 as an approximate projection of the unconstrained

Gauss-Newton step with respect to the norm ‖ · ‖Bk
is essential in order to establish the

local convergence of the method as well as its fast convergence rate.
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In order to analyze GNM-AP, we suppose that the following assumptions hold:

(A1) The point x∗ satisfies the first-order necessary condition for (1.8), i.e.

〈F ′(x∗)TF (x∗), x− x∗〉 ≥ 0, ∀ x ∈ C,

and F ′(x∗) is injective;

(A2) The sequence {θk} satisfies θk ≤ θ̄ for all k ≥ 0, where θ̄ ∈ [0, 1).

For simplicity, let us consider the following constants

c := ‖F (x∗)‖, β := ‖F ′(x∗)†‖, κ := β
∥∥F ′(x∗)∥∥ , δ := sup {t ∈ [0, R) : B(x∗, t) ⊂ U} , (4.2)

where R > 0 is a given scalar.

We first state a local convergence theorem for GNM-AP under a majorant condition. For

technical reasons and for the convenience of the reader, the proof of the next theorem will

be given in the next subsection.

Theorem 4.1.2 Suppose that there exists a continuously differentiable function f : [0, R)→
R such that

β ‖F ′(x)− F ′(x∗ + τ(x− x∗))‖ ≤ f ′ (σ(x))− f ′ (τσ(x)) , (4.3)

where x ∈ B(x∗, δ), τ ∈ [0, 1] and σ(x) := ‖x− x∗‖, and

h1) f(0) = 0 and f ′(0) = −1;

h2) f ′ is convex and strictly increasing;

h3) cβ((1 +
√

2)κ+ 1)D+f ′(0) + κθ̄ < 1− θ̄.

Let be given positive constants ν := sup {t ∈ [0, R) : f ′(t) < 0} ,

ρ := sup

{
t ∈ (0, ν) :

[f ′(t) + 1 + κ]
[
(1− θ̄)tf ′(t)− f(t) + cβ(1 +

√
2)(f ′(t) + 1)

]
+ cβ [f ′(t) + 1]

(1− θ̄)t[f ′(t)]2
< 1

}
, (4.4)

r := min {ρ, δ} .

Then GNM-AP with starting point x0 ∈ C∩B(x∗, r)\{x∗} is well-defined, the generated {xk}
is contained in B(x∗, r) ∩ C, converges to x∗ and satisfies

‖xk+1 − x∗‖ < ‖xk − x∗‖ (4.5)
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and

‖xk+1 − x∗‖ ≤
[f ′(σ(x0)) + 1 + κ] [σ(x0)f

′(σ(x0))− f(σ(x0))]

(1− θk)[σ(x0)f ′(σ(x0))]2
‖xk − x∗‖2

+

[
(1 +

√
2)cβ [f ′(σ(x0)) + 1]− θkσ(x0)f

′(σ(x0))
]

[f ′(σ(x0)) + 1 + κ]

(1− θk)σ(x0) [f ′(σ(x0))]
2 ‖xk − x∗‖

+
cβ [f ′(σ(x0)) + 1]

(1− θk)σ(x0) [f ′(σ(x0))]
2 ‖xk − x∗‖, (4.6)

for all k = 0, 1, . . . .

Remark 4.1.3 (i) Since ‖xk − x∗‖ < σ(x0) = ‖x0 − x∗‖ (see (4.5)), it follows from (4.6)

and (A2) that

‖xk+1 − x∗‖

≤

[
[f ′(σ(x0)) + 1 + κ]

[
(1− θ̄)σ(x0)f

′(σ(x0))− f(σ(x0)) + cβ(1 +
√

2)(f ′(σ(x0)) + 1)
]

(1− θ̄)σ(x0)[f ′(σ(x0))]2

+
cβ [f ′(σ(x0)) + 1]

(1− θ̄)σ(x0)[f ′(σ(x0))]2

]
‖xk − x∗‖

which, combined with (4.4) and the fact that x0 ∈ C∩B(x∗, r)\{x∗}, implies that GNM-AP

is linearly convergent to x∗.

(ii) Note that, if c = 0 and lim supk→+∞ θk = 0, then (4.6) implies that GNM-AP converges

quadratically to x∗.

(iii) If the scalar θ̄ in (A2) is equal to zero (in particular, θk = 0 for all k ≥ 0), then iterative

xk+1 in Step 1 of GNM-AP corresponds to the exact solution of (2.4), with B = Bk and

w = wk. In this case, Theorem 4.1.2 is similar to [29, Theorem 7], which is related to the

Gauss-Newton method for solving unconstrained nonlinear least squares problems.

Before specializing Theorem 4.1.2 for two important classes of functions, we present an

example in which all conditions of Theorem 4.1.2 hold. The following result, which gives a

simpler condition to check that condition (4.3) whenever the functions under consideration

are twice continuously differentiable, is needed.

Lemma 4.1.4 Let x∗ ∈ U and R > 0 be given, and assume that F is twice continuously

differentiable on U. If there exists a function f : [0, R)→ R twice continuously differentiable

and satisfying

β‖F ′′(x)‖ 6 f ′′(‖x− x∗‖), x ∈ B(x∗, R),

then F and f satisfy (4.3).

Proof. The proof follows the same pattern as outlined in [29, Lemma 22]. �
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Example 4.1.5 Consider the constrained nonlinear least squares problem (1.1) with C =

R3
+ and

F (x) =
9

50

(
‖x‖5/3x− 64(3, 2,

√
3)
)
.

Note that x∗ = 2(3, 2,
√

3) is a stationary point of (1.1) in this case. Let us apply

Theorem 4.1.2 for this instance. First, from (4.2), we have c = 0, β = (25/1152)
√

137,

κ = (48/25)β
√

82. Moreover, since the second derivative of F is given by

F ′′(x)(v, v) =
9

50

[
−5

9
‖x‖−7/3〈x, v〉2x+

5

3
‖x‖−1/3‖v‖2x+

10

3
‖x‖−1/3〈x, v〉v

]
,

for every x, v ∈ R3 and x 6= 0, and F ′′(0) = 0, we obtain

‖F ′′(x)‖ ≤ ‖x‖2/3, x ∈ R3,

or, equivalently,

β‖F ′′(x)‖ 6 f ′′(‖x− x∗‖), x ∈ R3,

where f : [0,∞)→ R is given by

f(t) =
9

40
βt8/3 − t.

Hence, it follows from Lemma 4.1.4 that F and f satisfy (4.3). In particular, as f(0) = 0,
f ′(t) = (3β/5)t5/3 − 1, f ′(0) = −1 and f ′′(t) = βt2/3 > 0, we obtain that f satisfies h1 and
h2. Therefore, if θ̄ < [1/(1 + κ)] ≈ 0.2 (i.e., h3 holds), it follows from Theorem 4.1.2 that
GNM-AP with starting point x0 ∈ R3

+ ∩ B(x∗, r)\{x∗}, where

r =

[
5(15κ+ 48− 24θ̄(1 + κ))− 5

√
(24θ̄(1 + κ)− 15κ− 48)2 + 864(θ̄(1 + κ)− 1)

54β

]3/5
, (4.7)

is well-defined, the generated {xk} is contained in B(x∗, r)∩R3
+, converges to x∗ and satisfies

‖xk+1 − x∗‖ ≤
5

8(1− θ̄)

[
9β2σ(x0)

7/3 + 15βκσ(x0)
2/3

9β2σ(x0)10/3 + 30βσ(x0)5/3 + 5

]
‖xk − x∗‖2, k = 0, 1, . . . .

Note that, if θ̄ = 0.1, then the radius of convergence r in (4.7) is approximately equal to 1.

We next specialize Theorem 4.1.2 for two important classes of functions. In the first one,

F ′ satisfies a Lipschitz-like condition [41, 42, 48] and, in the second one, F is an analytic

function satisfying a Smale condition [71,72].

Corollary 4.1.6 Suppose that there exists a L > 0 such that

λ =
[(1 +

√
2)κ+ 1] c βL+ κθ̄

(1− θ̄)
< 1, β

∥∥F ′(x)− F ′(x∗ + τ(x− x∗))
∥∥ ≤ L(1− τ)σ(x), (4.8)

33



where x ∈ B(x∗, δ), τ ∈ [0, 1] and σ(x) = ‖x− x∗‖. Let be given the positive constant

r := min

{
µ−

√
µ2 − 8(1− λ)(1− θ̄)

2L
, δ

}
.

where µ := 4 + κ − 2θ̄(1 + κ) + 2c(1 +
√

2)βL. Then GNM-AP with starting point x0 ∈
C ∩B(x∗, r)\{x∗} is well-defined, the generated {xk} is contained in B(x∗, r)∩C, converges

to x∗ and satisfies

‖xk+1 − x∗‖ < ‖xk − x∗‖ (4.9)

and

‖xk+1 − x∗‖ ≤
κL+ L2σ(x0)

2(1− θk)[1− Lσ(x0)]2
‖xk − x∗‖2 +

θk(Lσ(x0) + k)

(1− θk)[1− Lσ(x0)]
‖xk − x∗‖

+
[(1 +

√
2)κ+ 1]cβL+ c(1 +

√
2)βL2σ(x0)

(1− θk)[1− Lσ(x0)]2
‖xk − x∗‖, ∀ k = 0, 1, . . . .

Proof. It is immediate to prove that F , x∗ and f : [0, δ) → R defined by f(t) = Lt2/2 − t,
satisfy inequality (4.3), conditions h1 and h2. Since [(1 +

√
2)κ+ 1] c βL+ κθ̄ < 1− θ̄, the

condition h3 also holds. In this case, it is easy to see that the constants ν and ρ as defined

in Theorem 4.1.2, satisfy

0 < ρ =
µ−

√
µ2 − 8(1− θ̄)(1− λ)

2L
≤ ν = 1/L.

As a consequence, 0 < r = min{δ, ρ}. Therefore, as F , r, f and x∗ satisfy all of the

hypotheses of Theorem 4.1.2, taking x0 ∈ C ∩ B(x∗, r)\{x∗} the statements of the corollary

follow from Theorem 4.1.2. �

We next specialize Theorem 4.1.2 for the class of analytic functions satisfying a Smale

condition.

Corollary 4.1.7 Suppose that

γ := sup
n>1

β

∥∥∥∥F (n)(x∗)

n!

∥∥∥∥1/(n−1) < +∞ and 2γcβ((1 +
√

2)κ+ 1) + κθ̄ < 1− θ̄.

Let constants a = γcβ, b = (1 +
√

2)γcβ,

ρ̄ := inf

{
s ∈ (

√
2/2, 1) : p(s) := ζs4 + ηs3 + ιs2 + (b− 1)s+ b < 0

}
(4.10)

where ζ := −4 + (κ+ 1)2θ̄, η := 1−κ+ a+ b(κ− 1), and ι := 3 +κ− (κ+ 1)θ̄+ a+ b(κ− 1),

and

r := min {(1− ρ̄)/γ, δ} .
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Then GNM-AP with starting point x0 ∈ C∩B(x∗, r)\{x∗} is well-defined, the generated {xk}
is contained in B(x∗, r) ∩ C, converges to x∗ and satisfies

‖xk+1 − x∗‖ < ‖xk − x∗‖ (4.11)

and

‖xk+1 − x∗‖ ≤
γ
[
1 + (κ− 1)(1− γσ(x0))

2
]

(1− θk) [1− 2(1− γσ(x0))2]
2 ‖xk − x∗‖

2

+

[[
(1 +

√
2)cβ(1− (1− γσ(x0))

2)− θkσ(x0)(1− 2(1− γσ(x0))
2)
] [

1 + (κ− 1)(1− γσ(x0))
2
]

(1− θk)σ(x0) [1− 2(1− γσ(x0))2]
2

+
cβ
[
1− (1− γσ(x0))

2
]

(1− γσ(x0))
2

(1− θk)σ(x0) [1− 2(1− γσ(x0))2]
2

]
‖xk − x∗‖, (4.12)

for all k = 0, 1, . . . .

Proof. Consider the real function f : [0, 1/γ)→ R defined by

f(t) =
t

1− γt
− 2t.

It is straightforward to show that f is analytic and that

f(0) = 0, f ′(t) = 1/(1− γt)2 − 2, f ′(0) = −1, f ′′(t) = (2γ)/(1− γt)3, fn(0) = n! γn−1,

for n ≥ 2. It follows from the last equalities that f satisfies h1 and h2. Since

2γcβ((1 +
√

2)κ+ 1) + κθ̄ < 1− θ̄,

condition h3 also holds. Now, note that

β‖F ′′(x)‖ 6 f ′′(‖x− x∗‖),

for all x ∈ B(x∗, 1/γ) ∩ C, the proof of this fact follows the same pattern as outlined

in [29, Lemma 21]. As f ′′(t) = (2γ)/(1− γt)3, we conclude, from Lemma 4.1.4, that F and

f satisfy (4.3) with R = 1/γ. In this case,

ν = (2−
√

2)/2γ < 1/γ.

Now, we will obtain the constant ρ as defined in Theorem 4.1.2. For simplicity, consider the

following change of variable s = 1 − γt, which implies that t = (1 − s)/γ. Moreover, if t

satisfies 0 < t < ν = (2 −
√

2)2γ, then
√

2/2 < s < 1. Hence, to determine the constant ρ

as defined in Theorem 4.1.2 is equivalent to determine the constant s such that

ρ̄ := inf

{
s ∈ (

√
2/2, 1) : p(s) := ζs4 + ηs3 + ιs2 + (b− 1)s+ b < 0

}
,
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where a = γcβ, b = (1 +
√

2)γcβ, ζ := −4 + (κ + 1)2θ̄, η := 1 − κ + a + b(κ − 1), and

ι := 3 + κ − (κ + 1)θ̄ + a + b(κ − 1). Thus, taking into account the change of variable, we

have ρ = (1− ρ̄)/γ and

r = min {(1− ρ̄)/γ, δ} .

Thus, as F , r, f and x∗ satisfy all hypothesis of Theorem 4.1.2, taking x0 ∈ C∩B(x∗, r)\{x∗},
the statements of the corollary follow from Theorem 4.1.2. �

We end this section by presenting a numerical example, adapted from Dedieu and Shub

[22], in which all conditions of Corollary 4.1.6 hold.

Example 4.1.8 Let F : R→ R2 such that F (x) = (x, x2 + a)T , where a ∈ R is given, and

consider

min
x∈[−2,2]

‖F (x)‖2 = x4 + (2a+ 1)x2 + a2. (4.13)

Note that x∗ = 0 is a stationary point of (4.13). Let us apply Corollary 4.1.6 for this instance.

First, from (4.2), we have c = |a|, β = 1, κ = 1. Moreover, since β ‖F ′(x)− F ′(τx)‖ =

(1 − τ)2|x|, for all x ∈ R and τ ∈ [0, 1], we obtain the Lipschitz-Like constant L is 2.

Therefore, if 2[(2 +
√

2)|a| + θ̄] < 1 (i.e., the first inequality in (4.8) holds), it follows from

Corollary 4.1.6 that GNM-AP with starting point x0 ∈ [−2, 2] ∩ B(x∗, r)\{x∗}, where

r =
5− 4θ̄ + 4|a|(1 +

√
2)−

√[
5− 4θ̄ + 4|a|(1 +

√
2)
]2 − 8(1− 2θ̄ − 2(2 +

√
2)|a|)

4
, (4.14)

is well-defined, the generated {xk} is contained in B(x∗, r) ∩ [−2, 2], converges to x∗ and

satisfies

‖xk+1 − x∗‖ ≤
1 + 2σ(x0)

(1− θ̄)[1− 2σ(x0)]2
‖xk − x∗‖2 +

θ̄(1 + 2σ(x0))

(1− θ̄)[1− 2σ(x0)]
‖xk − x∗‖

+
2|a|(2 +

√
2 + 2(1 +

√
2)σ(x0))

(1− θ̄)[1− 2σ(x0)]2
‖xk − x∗‖, ∀ k = 0, 1, . . . .

Note that, if a = 0 and θ̄ = 0.1, then the radius of convergence r in (4.14) is approximately

equal to 0.2.

4.1.1 Proof of Theorem 4.1.2

Our goal in this subsection is to prove Theorem 4.1.2. To this end, we first present some

auxiliary results, which establish positiveness of the constants δ, ν and ρ, as well as some

useful relationships between the majorant function and the nonlinear function F .

First of all, note that constant δ in (4.2) is positive, because U is an open set and x∗ ∈ U.
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Proposition 4.1.9 The constant ν as in Theorem 4.1.2 is positive and f ′(t) < 0 for all

t ∈ (0, ν). Furthermore, the following functions defined on the interval (0, ν)

t 7→ − 1

f ′(t)
, t 7→ − [f ′(t) + 1 + κ]

f ′(t)
, t 7→ [tf ′(t)− f(t)]

t2
, t 7→ f ′(t) + 1

t
, (4.15)

are positive and increasing.

Proof. First, as f ′ is continuous in (0, R) and f ′(0) = −1, there exists ε > 0 such that

f ′(t) < 0 for all t ∈ (0, ε). Hence, ν > 0. Moreover, using h2 and the definition of ν, it

follows that f ′(t) < 0 for all t ∈ (0, ν). Note now that the first two functions in (4.15) are

positive and increasing due to the facts that −1 < f ′(t) < 0, for all t ∈ [0, ν), and f ′ is

strictly increasing. Finally, for the proofs that the last two functions in (4.15) are positive

and increasing, see items ii and iii of [29, Proposition 10]. �

We next prove, in particular, that constant ρ in (4.4) is positive.

Proposition 4.1.10 The constant ρ is positive and there holds

[f ′(t) + 1 + κ]
[
(1− θ̄)tf ′(t)− f(t) + cβ(1 +

√
2)(f ′(t) + 1)

]
+ cβ [f ′(t) + 1]

(1− θ̄)t[f ′(t)]2
< 1, (4.16)

for all t ∈ (0, ρ).

Proof. Using h1 and some algebraic manipulation, we obtain

tf ′(t)− f(t)

t
=

[
f ′(t)− f(t)− f(0)

t− 0

]
,

f ′(t) + 1

t
=
f ′(t)− f ′(0)

t− 0
,

which, combined with the fact that f ′(0) = −1, yields

lim
t→0

[tf ′(t)− f(t)]/t = 0, lim
t→0

[f ′(t) + 1]/t = D+f ′(0), (4.17)

where the existence of the right derivative D+f ′(0) is guaranteed due to the fact that f ′ is

convex. Note now that equation (4.16) is equivalent to

[f ′(t) + 1 + κ] [tf ′(t)− f(t)]

(1− θ̄)[tf ′(t)]2
t− θ̄ [f ′(t) + 1 + κ]

(1− θ̄)f ′(t)
+
cβ(1 +

√
2) [f ′(t) + 1 + κ] (f ′(t) + 1)

(1− θ̄)t[f ′(t)]2

+
cβ [f ′(t) + 1]

(1− θ̄)t[f ′(t)]2
. (4.18)

Hence, using f ′(0) = −1, it follows from (4.18) and (4.17) that

lim
t→0

[
[f ′(t) + 1 + κ]

[
(1− θ̄)tf ′(t)− f(t) + cβ(1 +

√
2)(f ′(t) + 1)

]
+ cβ [f ′(t) + 1]

(1− θ̄)t[f ′(t)]2

]

=
κθ̄ + cβ(1 +

√
2)κD+f ′(0) + cβD+f ′(0)

(1− θ̄)
=
cβ
[
(1 +

√
2)κ+ 1

]
D+f ′(0) + κθ̄

(1− θ̄)
.
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Therefore, since h3 implies that [cβ[(1 +
√

2)κ+ 1]D+f ′(0) + κθ̄]/[(1− θ̄)] < 1, we conclude

that there exists an ε > 0 such that

[f ′(t) + 1 + κ]
[
(1− θ̄)tf ′(t)− f(t) + cβ(1 +

√
2)(f ′(t) + 1)

]
+ cβ [f ′(t) + 1]

(1− θ̄)t[f ′(t)]2
< 1,

for all t ∈ (0, ε). So, ε ≤ ρ, which proves the first statement.

Again, since (4.16) is equivalent to (4.18), the proof of the last part of proposition trivially

follows from definition of ρ and last part of Proposition 4.1.9. �

The next two lemmas present some useful relationships between operator F and majorant

function f .

Lemma 4.1.11 Let x ∈ U. If σ(x) < min{ν, δ}, then following statements hold:

i) β‖F (x∗) − [F (x) + F ′(x)(x∗ − x)] ‖ ≤ f(0) − [f(σ(x)) + f ′(σ(x))(0− σ(x))] :=

ef (σ(x), 0);

ii) B(x) = F ′(x)TF ′(x) is invertible and

‖F ′(x)†‖ ≤ −β
f ′(σ(x))

, ‖F ′(x)† − F ′(x∗)†‖ <
−
√

2β[f ′(σ(x)) + 1]

f ′(σ(x))
.

In particular, B(x) = F ′(x)TF ′(x) is invertible in B(x∗, r).

Proof. The proof follows the pattern of the proofs of Lemmas 13 and 14 in [29] (see also

Lemma 7 in [42]). �

Lemma 4.1.12 Let x ∈ U. If σ(x) < min{ν, δ}, then the following inequalities hold:

i) ‖B(x)‖1/2 ≤ [f ′(σ(x)) + 1 + κ]/β;

ii) ‖B(x)−1‖1/2 ≤ −β/[f ′(σ(x))];

iii) β‖(B(x)−B(x∗))F
′(x∗)

†‖ ≤ (f ′(σ(x)) + 2 + κ)(f ′(σ(x)) + 1),

where B(x) is defined as in Lemma 4.1.11(ii).

Proof. (i) Using inequality in (4.3) and definition of κ in (4.2), we have

β‖F ′(x)‖ ≤ β‖F ′(x)− F ′(x∗)‖+ β‖F ′(x∗)‖ ≤ f ′(σ(x)) + 1 + κ. (4.19)

As ‖B(x)‖1/2 = ‖F ′(x)TF ′(x)‖1/2 = ‖F ′(x)‖, the desired inequality follows.

(ii) To show item ii, use the definition of B, the last equality in (2.3) and Lemma 4.1.11(ii).

38



(iii) Note that the definition of B(x), some algebraic manipulations and (2.3) gives

β‖(B(x)−B(x∗))F
′(x∗)

†‖
= β‖F ′(x)T (F ′(x)− F ′(x∗))F ′(x∗)† + (F ′(x)− F ′(x∗))T‖
≤ (‖F ′(x)‖‖F ′(x∗)†‖+ 1)β‖F ′(x)− F ′(x∗)‖,

which, combined with definition of β in (4.2) and inequalities in (4.3) and (4.19), yields the

desired inequality. �

Lemma 4.1.11 implies that B is invertible for any x ∈ B(x∗, r) and hence F ′(x)† and ỹBC (w),

characterized as an approximate projection of a step y = x−F ′(x)†F (x), are well-defined in

this region. Therefore, since the starting point x0 ∈ C ∩B(x∗, r), we have x1 is well-defined,

but we do not show that x1 ∈ C ∩ B(x∗, r) and, therefore, if the next iteration x2 will be

well-defined. In the next lemma, we ensure that sequence {‖xk − x∗‖} is strictly decreasing

and, hence, that {xk} is well-defined and contained in C ∩ B(x∗, r).

Lemma 4.1.13 Let xk ∈ C ∩ B(x∗, r). Then, for every k ≥ 0,

‖xk+1 − x∗‖ ≤
[f ′(σ(xk)) + 1 + κ] [σ(xk)f ′(σ(xk))− f(σ(xk))]

(1− θk) [σ(xk)f ′(σ(xk))]2
‖xk − x∗‖2

+
[f ′(σ(xk)) + 1 + κ]

[
(1 +

√
2)cβ [f ′(σ(xk)) + 1]− θkσ(xk)f ′(σ(xk))

]
(1− θk)σ(xk) [f ′(σ(xk))]2

‖xk − x∗‖

+
cβ [f ′(σ(xk)) + 1]

(1− θk)σ(xk) [f ′(σ(xk))]2
‖xk − x∗‖. (4.20)

As a consequence,

‖xk+1 − x∗‖ < ‖xk − x∗‖. (4.21)

Proof. Since x∗ is a stationary point of (1.1) (see (A1)), we trivially have

yB∗
C (w∗) = x∗.

Hence, it follows from Lemma 2.2.4 with B = Bk, x = xk − F ′(xk)†F (xk), x̂ = x∗ −
F ′(x∗)

†F (x∗) and ε = θ2k‖xk − xk+1‖2Bk
that

‖ỹBk
C (wk)− x∗‖Bk

≤ ‖B−1k ‖
1/2‖(B∗ −Bk)(F ′(x∗)

†F (x∗))‖
+ ‖xk − F ′(xk)†F (xk)− x∗ + F ′(x∗)

†F (x∗)‖Bk
+ θk‖xk − xk+1‖Bk

.

For simplicity, the notation defines the following terms:

A(xk, x∗) = ‖xk − F ′(xk)†F (xk)− x∗ + F ′(x∗)
†F (x∗)‖Bk

(4.22)
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and

Ā(xk, x∗) = ‖B−1k ‖
1/2‖(Bk −B∗)F ′(x∗)†‖‖F (x∗)‖. (4.23)

So, from the three latter inequalities, we obtain

‖xk+1 − x∗‖Bk
≤ A(xk, x

∗) + Ā(xk, x
∗) + θk‖xk − xk+1‖Bk

.

Hence, since ‖xk − xk+1‖Bk
≤ ‖xk+1 − x∗‖Bk

+ ‖Bk‖1/2‖xk − x∗‖, we obtain

(1− θk)‖xk+1 − x∗‖Bk
≤ A(xk, x

∗) + Ā(xk, x
∗) + θk‖Bk‖1/2‖xk − x∗‖.

Since θk < 1, for all k ≥ 0, (see (A2)), the last inequality and (2.2) imply that

‖xk+1 − x∗‖ ≤
‖B−1k ‖1/2

(1− θk)
A(xk, x

∗) +
‖B−1k ‖1/2

(1− θk)
Ā(xk, x

∗)

+
θk
[
‖B−1k ‖‖Bk‖

]1/2
(1− θk)

‖xk − x∗‖. (4.24)

Now, we will obtain upper bounds of A(xk, x
∗) and Ā(xk, x

∗). First, some algebraic

manipulations and the second equality in (2.3) yield

‖xk − F ′(xk)†F (xk)− x∗ + F ′(x∗)
†F (x∗)‖

=‖F ′(xk)†[F ′(xk)(xk − x∗)− F (xk) + F (x∗)] + (F ′(x∗)
† − F ′(xk)†)F (x∗)‖

≤‖F ′(xk)†‖‖F (x∗)− [F (xk) + F ′(xk)(x∗ − xk)] ‖+ ‖F ′(x∗)† − F ′(xk)†‖‖F (x∗)‖.

Combining last inequality, Lemma 4.1.11 and definition of c in (4.2), we have

‖xk − F ′(xk)†F (xk)− x∗ + F ′(x∗)
†F (x∗)‖ =

ef (σ(xk), 0)

−f ′(σ(xk))
+

√
2cβ[f ′(σ(xk)) + 1]

−f ′(σ(xk))
,

which, combined with (4.22), the fact that ‖ · ‖Bk
≤ ‖Bk‖1/2‖ · ‖ and Lemma 4.1.12(i), yields

A(xk, x
∗) ≤ ‖Bk‖1/2‖xk − F ′(xk)†F (xk)− x∗ + F ′(x∗)

†F (x∗)‖

≤ (f ′(σ(xk)) + 1 + κ)

−βf ′(σ(xk))

(
ef (σ(xk), 0) +

√
2cβ[f ′(σ(xk)) + 1]

)
. (4.25)

On the other hand, from definition in (4.23) and Lemma 4.1.12(ii)–(iii), we have

Ā(xk, x∗) ≤
c

−f ′(σ(xk))
(f ′(σ(xk)) + 2 + κ)(f ′(σ(xk)) + 1). (4.26)

Hence, using (4.24)–(4.26) and Lemma 4.1.12(i)–(ii), we obtain

‖xk+1 − x∗‖ ≤
[f ′(σ(xk)) + 1 + κ] ef (σ(xk), 0) + (1 +

√
2)cβ [f ′(σ(xk)) + 1]2

(1− θk) [f ′(σ(xk))]2

+
cβ
[
(1 +

√
2)κ+ 1

]
[f ′(σ(xk)) + 1]

(1− θk) [f ′(σ(xk))]2
− θk(f ′(σ(xk)) + 1 + κ)

(1− θk)f ′(σ(xk))
σ(xk),
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which, combined with definition of ef (σ(xk), 0) in Lemmas 4.1.11(i) and h1, proves (4.20).

Now, using θk < θ̄, for all k ≥ 0, (see (A2)), we obtain that the right-hand side of (4.20)

is equivalent to[
[f ′(σ(xk)) + 1 + κ]

[
(1− θ̄)σ(xk)f ′(σ(xk))− f(σ(xk)) + cβ(1 +

√
2)(f ′(σ(xk)) + 1)

]
(1− θ̄)σ(xk) [f ′(σ(xk))]2

+
cβ [f ′(σ(xk)) + 1]

(1− θ̄)σ(xk) [f ′(σ(xk))]2

]
σ(xk).

Therefore, as xk ∈ C ∩B(x∗, r)/{x∗}, it follows from Proposition 4.1.10 with t = σ(xk) that

the quantity in the bracket above is less than one and hence (4.21) follows. �
Proof of Theorem 4.1.2: Since x0 ∈ C ∩ B(x∗, r)/{x∗}, combining Lemma 4.1.11(ii),

inequality (4.21) and an induction argument, we have that (4.5) holds and {xk} is well-defined

and remains in C ∩ B(x∗, r). Our goal is now to show that {xk} converges to x∗. Using the

second part of Lemma 4.1.13, we find

σ(xk) = ‖xk − x∗‖ < ‖x0 − x∗‖ = σ(x0), k = 1, 2 . . . . (4.27)

Hence, by combining (4.20) with last part of Proposition 4.1.9, we obtain

‖xk+1 − x∗‖ ≤
[f ′(σ(x0)) + 1 + κ] [σ(x0)f

′(σ(x0))− f(σ(x0))]

(1− θk)[σ(x0)f ′(σ(x0))]2
‖xk − x∗‖2

+
(1 +

√
2)cβ [f ′(σ(x0)) + 1 + κ] [f ′(σ(x0)) + 1] + cβ [f ′(σ(x0)) + 1]

(1− θk)σ(x0) [f ′(σ(x0))]
2 ‖xk − x∗‖

− θk(f ′(σ(x0)) + 1 + κ)

(1− θk)f ′(σ(x0))
‖xk − x∗‖, k = 0, 1, . . . ,

which is equivalent to (4.6). Combining last inequality with (4.27) and (A2), we obtain

‖xk+1 − x∗‖ ≤[
[f ′(σ(x0)) + 1 + κ]

[
(1− θ̄)σ(x0)f

′(σ(x0))− f(σ(x0)) + cβ(1 +
√

2)(f ′(σ(x0)) + 1)
]

(1− θ̄)σ(x0)[f ′(σ(x0))]2

+
cβ [f ′(σ(x0)) + 1]

(1− θ̄)σ(x0)[f ′(σ(x0))]2

]
‖xk − x∗‖,

for all k = 0, 1, . . .. Hence, applying Proposition 4.1.10 with t = σ(x0), we conclude that

{‖xk − x∗‖} converges to zero. So, {xk} converges to x∗. �

4.2 Globalized method

We now present a globalized version of GNM-AP. The globalization strategy used here is

based on the nonmonotone line search in [44]. Since the Gauss-Newton step can not be
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well-defined in some regions, our global method uses, in these cases, the projected gradient

step.

The method is formally described as follows.

Global GNM-AP (G-GNM-AP)

Step 0 (Initialization). Let x0 ∈ C, τ ∈ (0, 1), an integer M ≥ 1 and {θk} ⊂ [0,∞) be

given, and set k = 0.

Step 1 (projected Gauss-Newton or projected gradient step). If F ′(xk)TF ′(xk) is

non-singular, then Bk = F ′(xk)TF ′(xk). Otherwise, Bk = In. Compute wk = Bkxk −
F ′(xk)TF (xk) ∈ Rn and ỹBk

C (wk) ∈ C such that

〈wk −Bkỹ
Bk
C (wk), y − ỹBk

C (wk)〉 ≤ εk := θ2k‖ỹ
Bk
C (wk)− xk‖2Bk

, ∀ y ∈ C, (4.28)

i.e., ỹBk
C (wk) is an εk–approximate solution of (2.4).

Step 2 (Backtracking). Define dk = ỹBk
C (wk) − xk and fmax = max{f(xk−j); 0 ≤ j ≤

min{k,M − 1}}. Set α← 1.

Step 2.1 Set x+ = xk + αdk.

Step 2.2 If

f(x+) ≤ fmax + τα〈F ′(xk)TF (xk), dk〉, (4.29)

then αk = α, xk+1 = x+, and go to Step 3. Otherwise, set α ← α/2 and go to

Step 2.2.

Step 3 (Termination criterion and update). If xk+1 = xk, then stop; otherwise, set

k ← k + 1 and go to Step 1.

end

The following theorem, which is also an extension to the constrained case of [44,

Theorem 1], summarizes the convergence properties of the G-GNM-AP method.

Theorem 4.2.1 Assume that Bk ∈ B. Furthermore, assume that level set C0 := {x ∈
C : f(x) ≤ f(x0)} is bounded and sequence {θk} satisfies θk ≤ θ̄ for all k ≥ 0, where

θ̄ ∈ [0, 1). Then, either G-GNM-AP stops at some stationary point xk or every limit point

of the generated sequence is stationary.
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Proof. By definitions of dk and wk, and the inequality in (4.28), we have

〈−dk −B−1k F ′(xk)TF (xk), y − xk − dk〉Bk
≤ θ2k‖dk‖2Bk

, ∀ k ≥ 0. (4.30)

If G-GNM-AP stops, then xk+1 = xk, which in turn implies that dk = 0. Hence, it follows

from (4.30) that

〈−B−1k F ′(xk)TF (xk), y − xk〉Bk
≤ 0, ∀ y ∈ C,

or, equivalently,

〈F ′(xk)TF (xk), y − xk〉 ≥ 0, ∀ y ∈ C,

i.e., xk is a stationary point of (1.1). Now, under the assumption Bk ∈ B, for all k ≥ 0,

C0 := {x ∈ C : f(x) ≤ f(x0)} is bounded and that θk ≤ θ̄ for all k ≥ 0, where θ̄ ∈ [0, 1), we

conclude, from Theorem 3.1.3, that every limit point of {xk} is a stationary point of (1.8).

�

4.3 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order

to verify the effectiveness of GNM-AP and G-GNM-AP methods. The algorithms were

tested on some box- and polyhedral-constrained nonlinear least squares problems. We took

θk = 1/3, for every k, in both algorithms. Moreover, the inexactness criterion (4.1) (and

(4.28)) was computed by the conditional gradient method, which stopped when either the

stopping criterion given in Step 1 was satisfied or a maximum of 300 iterations were performed

(in this case we did not stop the outer procedure). In order to avoid an excessive number of

inner iterations, input εk was replaced by max{θ2k‖xk+1− xk‖2Bk
, 10−2}. Linear optimization

subproblems in the conditional gradient method (see (2.11)) were solved via the MATLAB

command linprog. Other initialization parameters of G-GNM-AP method were set τ =

10−4 and M = 10. Nonmonotone parameter M = 10 was the best from {1, 5, 10, 15, 20, 25}
for a preliminary small number of problems.

For a comparison purpose, we also run the proximal Gauss-Newton (Prox-GN) method of

[70], applied to (1.8), which corresponds to our GNM-AP method with exact projections (i.e.,

θk = 0 for every k). In the latter method, exact projections were computed by the MATLAB

command quadprog. In the box-constrained case, we also compare the performance of

G-GNM-AP method with the inexact Gauss-Newton trust-region method (ITREBO) of [68].

ITREBO is an algorithm designed for solving nonlinear least-squares problems with simple

bounds where, at each iteration, a trust-region subproblem is approximately solved by the

Conjugate Gradient method. For GNM-AP, G-GNM-AP and Prox-GN methods, we used

the same termination condition ‖xk+1−xk‖Bk
< 10−4, whereas in ITREBO we used ‖PC(xk−
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∇f(xk))− xk‖ < 10−4. For all algorithms, a failure was declared if the number of iterations

was greater than 300 or no progress was detected. The computational results were obtained

using MATLAB R2016a on a 2.4GHz Intel(R) i5 with 8GB of RAM and Windows 10 ultimate

system.

4.3.1 Nonlinear least squares problems with box constraints

In this subsection, our aim is to illustrate the behavior of the algorithms to solve 23 problems

of the form (1.8) with C = {x ∈ Rn; c ≤ x ≤ d}, where c, d ∈ Rn; see Table 4.1. The first

four problems were taken from [70]. The others are originally unconstrained problems for

which box constrains were added.

We firstly chose 10 initial points of the form x0(γ) = c+ (γ/11)(d− c) for γ = 1, 2, . . . , 10.

We report in Figure 4.1 the numerical results of GNM-AP, G-GNM-AP and Prox-GN

methods for solving the 23 problems using performance profiles [26]. We adopted the CPU

time as performance measurement. It is worth pointing out that the efficiency is related

to the percentage of problems for which the method was the fastest, whereas robustness

is related to the percentage of problems for which the method found a solution. In the

performance profile, efficiency and robustness can be accessed on the left and right extremes

of the graphic, respectively. We consider that a method is the most efficient if its runtime

does not exceed in 5% the CPU time of the fastest one.

From Figure 4.1, we see that GNM-AP method was more robust and efficient in terms of

time than Prox-GN method. This fact illustrates the advantages of allowing inexactness in

the calculation of projections. On the other hand, we also see, as expected, that G-GNM-AP

method was more robust than the local methods. Its robustness rate was approximately 95%,

whereas for GNM-AP (resp. Prox-GN) the robustness rate was approximately 85% (resp.

71%).

Since our schemes and ITREBO use different stopping criteria, in order to provide a

fair comparison, we report in Table 4.2 the performance of G-GNM-AP and ITREBO

with three initial point of the form x0(γ) = c + 0.25γ(d − c), where γ > 0, for solving

the 23 box-constrained nonlinear least squares problems aforementioned. As can be seen,

G-GNM-AP and ITREBO successfully ended 60 and 51 times, respectively, on a total of 69

runs. Moreover, G-GNM-AP ( resp. ITREBO) was faster in 31 (resp. 14) cases. Therefore,

we can say that our global scheme outperformed ITREBO for the instances considered.
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Problem Function(F (x)) and source n m Box

Pb 1 Rosenbrock [70, Problem 1] 2 2 As [70]

Pb 2 Osborne1 [70, Problem 3] 5 33 As [70]

Pb 3 Osborne2 [70, Problem 4] 11 65 As [70]

Pb 4 Twoeq6 [70, Problem 5] 2 2 As [70]

Pb 5 Freudenstein [63, Problem 2] 2 2 [1, 5]

Pb 6 Powell badly scaled [63, Problem 3] 2 2 [0, 9.106]

Pb 7 Brown badly scaled [63, Problem 4] 2 3 [0, 106]

Pb 8 Beale [63, Problem 5] 2 3 [0, 3]

Pb 9 Jennrich and Sampson [63, Problem 6] 2 10 [−2, 1]

Pb 10 Bard [63, Problem 8] 3 15 [−10, 1]

Pb 11 Gaussian [63, Problem 9] 3 15 [−1, 1.02]

Pb 12 Box three-dimensional [63, Problem 12] 3 100 [0, 10]

Pb 13 Powell singular [63, Problem 13] 4 4 [−3, 3]

Pb 14 Biggs EXP6 [63, Problem 18] 6 10 [−1, 10]

Pb 15 Penalty I [63, Problem 23] 4 5 [−10, 1]

Pb 16 Penalty I [63, Problem 23] 10 11 [−10, 1]

Pb 17 Variably dimensioned [63, Problem 25] 100 102 [−1, 2]

Pb 18 Variably dimensioned [63, Problem 25] 450 452 [−1, 2]

Pb 19 Trigonometric [63, Problem 26] 6 6 [−2, 3]

Pb 20 Broyden tridiagonal [63, Problem 30] 10 10 [−2, 2]

Pb 21 Broyden tridiagonal [63, Problem 30] 1000 1000 [−2, 2]

Pb 22 Example 6.1.10 [31, Chap. 6] 1 2 [−10, 20]

Pb 23 Example 10.2.4 [23, Chap. 10] 1 3 [−2, 1]

Table 4.1: Test problems

4.3.2 Nonlinear least squares problems with polyhedral constraints

In this subsection, we are interested in solving 23 test problems of the form (1.1) with

C = {x ∈ Rn; c ≤ x ≤ d, Ax ≤ b}, where c, d ∈ Rn, b ∈ Rm and A ∈ Rm×n. Our test

problems are the nonlinear least squares problems with box constraints of Subsection 4.3.1,
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Figure 4.1: Performance of G-GNM-AP, GNM-AP and Prox-GN methods

for which randomly generated constraints Ax ≤ b were added. In this application, we

considered 5 different initial points belonging to the feasible set C.

As in Subsection 4.3.1, we reported in Figure 4.2 numerical comparisons of the obtained

results using performance profiles. Illustrating again the advantages of allowing inexactness

in the calculation of projections, we observe, from Figure 4.2, that GNM-AP was more

robust and efficient in terms of saving time than Prox-GN method. Moreover, G-GNM-AP

was more robust than GNM-AP, which, on the other hand, was more robust than Prox-GN

method.

Finally, we conclude that the proposed schemes seems to be promising tools for solving

box- and polyhedral-constrained nonlinear least squares problems.
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G-GNM-AP ITREBO G-GNM-AP ITREBO

Pb γ it/time/Fnorm it/time/Fnorm Pb γ it/time/Fnorm it/time/Fnorm

1 273/5.7e+0/1.5e-1 * 1 11/1.1e-2/2.7e-5 8/1.5e-2/3.8e-4

Pb 1 2 6/4.1e-3/1.3e-1 * Pb 13 2.5 10/7.9e-3/3.5e-5 7/1.1e-2/6.0e-4

3 5/3.9e-3/1.3e-1 * 3 11/1.2e-2/4.6e-5 8/1.4e-2/3.8e-4

1 12/9.1e-2/9.0e-2 * 1 186/7.8e-1/4.4e-1 7/1.5e-2/5.4e-1

Pb 2 2 13/1.0e-1/8.8e-2 * Pb 14 2 195/6.4e-1/4.4e-1 *

3 12/9.6e-2/9.0e-2 * 3 31/1.0e-1/4.2e-1 *

1 7/2.9e-2/6.8e-1 * 1 9/6.8e-3/7.9e-3 9/1.2e-2/7.9e-3

Pb 3 2 8/3.2e-2/6.8e-1 * Pb 15 2 8/3.6e-3/7.9e-3 8/9.7e-3/7.9e-3

3 11/4.6e-2/6.8e-1 * 3 7/3.2e-3/7.9e-3 6/8.6e-3/7.9e-3

1 11/6.0e-3/7.1e-5 * 1 9/6.1e-3/1.1e-2 11/1.4e-2/1.1e-2

Pb 4 2 12/6.5e-3/7.1e-5 * Pb 16 2 9/5.2e-3/1.1e-2 9/1.3e-2/1.1e-2

3 16/1.1e-2/1.0e-5 * 3 7/4.4e-3/1.1e-2 7/7.2e-3/1.1e-2

1 6/3.5e-3/3.5e-10 7/9.0e-3/1.2e-7 1 17/4.0e-2/9.1e-6 18/4.7e-2/4.8e-9

Pb 5 2 6/2.8e-3/2.6e-10 5/6.8e-3/5.3e-8 Pb 17 2 16/3.5e-2/7.7e-8 16/4.2e-2/8.6e-12

3 2/1.9e-3/0.0e+0 3/5.0e-3/1.8e-7 3 15/3.3e-2/7.7e-8 14/3.4e-2/4.6e-7

1 11/8.6e-3/9.8e-1 11/1.2e-2/9.8e-1 1 30/5.7e-1/9.9e-6 23/3.8e-1/6.1e-7

Pb 6 2 12/8.4e-3/9.8e-1 14/1.2e-2/9.8e-1 Pb 18 2 63/1.2e+0/9.5e-5 21/3.6e-1/8.7e-10

3 12/8.9e-3/9.8e-1 15/1.2e-2/9.8e-1 3 17/3.5e-1/9.9e-6 19/3.1e-1/4.9e-8

1 18/3.3e-2/0.0e+0 36/2.8e-2/0.0e+0 1 7/3.7e-3/5.3e-8 6/7.3e-3/2.2e-7

Pb 7 2 19/3.2e-2/0.0e+0 35/2.9e-2/2.2e+0 Pb 19 2 * 14/1.6e-2/1.6e-2

3 20/3.7e-2/0.0e+0 37/2.8e-2/1.6e+0 3 * 17/1.6e-2/1.6e-2

1 5/3.6e-3/6.0e-5 7/8.7e-3/2.4e-7 1 4/3.6e-3/9.1e-5 4/6.8e-3/3.4e-8

Pb 8 2 6/3.5e-3/6.0e-5 9/1.0e-2/7.2e-7 Pb 20 2 5/2.4e-2/4.5e-5 7/1.5e-2/1.3e-7

3 11/7.3e-3/6.4e-5 10/1.0e-2/7.8e-8 3 * 26/2.8e-2/1.1e+0

1 * 10/1.4e-2/1.1e+1 1 5/4.9e-1/1.0e-9 6/4.1e-1/6.9e-6

Pb 9 2 35/5.1e-1/1.1e+1 7/1.4e-2/1.1e+1 Pb 21 2 * 189/1.7e+1/9.6e+0

3 * 5/1.3e-2/1.1e+1 3 139/1.4e+1/1.2e+0 16/1.2e+0/1.0e+0

1 * * 1 6/2.3e-2/1.4e+0 6/5.8e-2/1.4e+0

Pb 10 2 * * Pb 22 2 7/2.4e-3/1.4e+0 7/9.4e-3/1.4e+0

3 * * 3 8/4.8e-3/1.4e+0 9/1.5e-2/1.4e+0

1 9/2.1e-2/1.0e-1 51/6.7e-2/1.0e-1 1 7/8.6e-3/8.7e-6 7/1.0e-2/7.6e-8

Pb 11 2 7/6.7e-3/1.0e-1 5/1.0e-2/1.0e-1 Pb 23 2 6/4.7e-3/1.9e-7 5/1.3e-2/7.6e-8

3 4/4.1e-3/1.0e-1 3/8.4e-3/1.0e-1 3 5/2.9e-3/1.9e-7 5/6.9e-3/7.6e-8

1 2/1.2e-2/1.7e-15 *

Pb 12 2.5 4/3.1e-2/6.0e-6 4/3.9e-2/1.3e-4

3 8/3.9e-2/4.2e-7 5/3.4e-2/5.8e-12

Table 4.2: Performance of G-GNM-AP and ITREBO
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Figure 4.2: Performance of G-GNM-AP, GNM-AP and Prox-GN methods
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Chapter 5

A framework with approximate

projections for convex-constrained

monotone nonlinear equations and its

special cases

In this chapter, we propose a framework, which is obtained by combining a safeguard

strategy on the search directions with a notion of approximate projections, for solving

convex-constrained monotone nonlinear systems of equations. The global convergence of

our framework is obtained under appropriate assumptions and some examples of methods

which fall into this framework are presented.

5.1 The framework and its convergence analysis

This section describes a framework for solving (1.9) and presents its global convergence

analysis.

Formally, the framework is described as follows.

Framework 1. Framework with approximate projections for convex-constrained monotone

equations

Step 0. Let x0 ∈ C, η1, η2 > 0, γ, σ ∈ (0, 1), µ̄ ∈ [0, 1) and {µk} ⊂ [0, µ̄] be given, and set

k = 0.
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Step 1. If ‖F (xk)‖ = 0, then stop.

Step 2. Compute the direction dk in Rn such that

F (xk)Tdk ≤ −η1‖F (xk)‖2, (5.1)

‖dk‖ ≤ η2‖F (xk)‖. (5.2)

Step 3. Find zk = xk + αkdk, where αk = γmk with mk being the smallest non-negative

integer m such that

−〈F (xk + γmdk), dk〉 ≥ σγm‖dk‖2. (5.3)

Step 4. Define ξk := (〈F (zk), xk − zk〉) /‖F (zk)‖2, wk := xk − ξkF (zk) and εk :=

µ2
k‖ξkF (zk)‖2. Set

xk+1 := ỹIC∩Hk
(wk), (5.4)

where Hk := {x ∈ Rn; 〈F (zk), x− zk〉 ≤ 0}.

Step 5. Set k ← k + 1 and go to Step 1.

end

Remark 5.1.1 Some comments about Framework 1 are in order.

(i) If F is the gradient of some function f : Rn → R, then condition (5.1) implies that

dk is a sufficient descent direction for f at xk. In its turn, condition (5.2) essentially says

that the length of d(xk) should be proportional to the length of F (xk). The way to obtain

dk satisfying (5.1) and (5.2) will depend on the particular instance of the framework; see

Section 5.2 for some examples.

(ii) Note that condition (5.1) implies that there exists a non-negative number mk satisfying

(5.3), for all k ≥ 1. Indeed, suppose that there exists k0 ≥ 1 such that (5.3) is not satisfied

for any non-negative integer m, i.e.,

−〈F (xk0 + γmdk0), dk0〉 < σγm‖dk0‖2, ∀ m ≥ 1.

Let m→∞ and by continuity of F , we have

−〈F (xk0), dk0〉 ≤ 0. (5.5)

On the other hand, by (5.1), we obtain

−〈F (xk0), dk0〉 ≥ δ‖F (xk0)‖2 > 0,
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which contradicts (5.5). Therefore, the line search procedure in Step 3 is well-defined.

(iii) In Step 4, note that wk is the projection of xk in Hk (which has a closed-form) and

xk+1 is an εk–approximate solution of the problem (2.4) with B = I, w := wk and feasible

set C ∩Hk. Another choice of xk+1 in (5.4) would be

xk+1 := ỹIC(wk). (5.6)

For this choice, we mention that the Lemma 5.1.2 and Theorem 5.1.3 also holds.

iv) It will follow form (5.8) and (5.9) that the hyperplane Hk strictly separates the current

iteration from zeroes of the system of equations (1.9).

In the course of this section, we will assume that the solution set of (1.9), denoted by S∗,

is nonempty. In order to investigate the global convergence of Framework 1, the following

properties of the sequences {xk} and {zk} will be needed.

Lemma 5.1.2 The sequences {xk} and {zk} generated by Framework 1 are both bounded.

Furthermore, it holds that

lim
k→∞
‖xk − zk‖ = 0. (5.7)

Proof. From Step 3, we have

〈F (zk), xk − zk〉 = −αk〈F (zk), dk〉 ≥ σα2
k‖dk‖2 = σ‖xk − zk‖2. (5.8)

Note that ‖xk − zk‖ > 0, for all k ≥ 0. Otherwise, since (5.1) and the Cauchy-Schwartz

inequality imply that η1‖F (xk)‖ ≤ ‖dk‖, we would have F (xk) = 0. Let x∗ ∈ S∗ be given.

By the monotonicity of F and the fact that F (x∗) = 0, we obtain

〈F (zk), x∗ − zk〉 ≤ 0. (5.9)

Hence, x∗ ∈ Hk (see the definition of Hk in Step 4). Since xk+1 = ỹIC∩Hk
(wk), it follows from

the fact that x∗ ∈ C ∩Hk and Lemma 2.2.6 with x = wk and x̂ = x∗ that

‖xk+1 − x∗‖2 = ‖ỹIC∩Hk
(wk)− yIC∩Hk

(x∗)‖2 ≤ ‖wk − x∗‖2 + 2εk

= ‖xk − x∗‖2 − 2ξk〈F (zk), xk − x∗〉+ ξ2k‖F (zk)‖2 + µ2
kξ

2
k‖F (zk)‖2.

(5.10)

where we used that ε2k = (µ2
k‖ξkF (zk)‖2)/2 in the last equality. It is easy to see that (5.10)

also holds when xk+1 = ỹIC(wk). By the monotonicity of the mapping F and the fact that

x∗ ∈ S∗, we get

〈F (zk), xk − zk〉 = 〈F (x∗), zk − x∗〉+ 〈F (zk), xk − zk〉
≤ 〈F (zk), zk − x∗〉+ 〈F (zk), xk − zk〉
= 〈F (zk), xk − x∗〉.

(5.11)
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By combining (5.10) and (5.11), we find

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2ξk〈F (zk), xk − zk〉+ ξ2k‖F (zk)‖2 + µ2
kξ

2
k‖F (zk)‖2

≤ ‖xk − x∗‖2 + (µ2
k − 1)

〈F (zk), xk − zk〉2

‖F (zk)‖2

≤ ‖xk − x∗‖2 + (µ̄2 − 1)σ2‖xk − zk‖4

‖F (zk)‖2
,

(5.12)

where the second inequality follows from the definition of ξk and the last inequality is due

to the fact that µk ≤ µ̄ and (5.8). By (5.12) and the fact that µ̄ < 1, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2, k ≥ 0, (5.13)

which implies that the sequence {xk} is bounded. It follows from the Cauchy-Schwartz

inequality, the monotonicity of F and (5.8) that

‖F (xk)‖ ≥ 〈F (xk), xk − zk〉
‖xk − zk‖

≥ 〈F (zk), xk − zk〉
‖xk − zk‖

≥ σ‖xk − zk‖.

Therefore, by the continuity of F and the boundedness of {xk}, we have that {zk} is also

bounded. Since {zk} is bounded and F is continuous on Rn, there exists a constant M > 0

such that ‖F (zk)‖ ≤M for all k ≥ 0, which combined with (5.12), yields

(1− µ̄2)σ2

M2

∞∑
k=0

‖xk − zk‖4 ≤
∞∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
<∞,

which implies limk→∞ ‖xk − zk‖ = 0.

�

We are now ready to establish the global convergence of Framework 1.

Theorem 5.1.3 The sequence {xk} generated by Framework 1 converges to a solution of

(1.9).

Proof. Since zk = xk + αkdk, from Lemma 5.1.2, it holds that

lim
k→∞

αk‖dk‖ = lim
k→∞
‖xk − zk‖ = 0. (5.14)

We also have, from Lemma 5.1.2, that {xk} is bounded and therefore {F (xk)} is bounded

as well. Thus, it follows from the second inequality in (5.2) that {dk} is bounded. Consider

now two different cases: (i) lim infk→∞ ‖dk‖ = 0 or (ii) lim infk→∞ ‖dk‖ > 0.

Case (i). Note that (5.1) and the Cauchy-Schwartz inequality imply that η1‖F (xk)‖ ≤
‖dk‖. Hence, since lim infk→∞ ‖dk‖ = 0, it follows that lim infk→∞ ‖F (xk)‖ = 0. Since F
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is continuous, we have the sequence {xk} has some cluster point x̄ such that F (x̄) = 0.

Replacing x∗ by x̄ in (5.13), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2,

which implies that {‖xk−x̄‖} converges. Therefore, we can conclude that the whole sequence

{xk} converges to x̄, a solution of (1.9).

Case (ii). Since lim infk→∞ ‖dk‖ > 0, it follows from (5.14) that there exists a subsequence

of indices K ⊂ N such that limk→∞ αk = 0, where k ∈ K. By (5.3), we have

−〈F (xk + γmk−1dk), dk〉 < σγmk−1‖dk‖2.

Since {xk} and {dk} are bounded, we can choose a subsequence K1 ⊂ K such that

{(xk, dk)} K1−→ (x̄, d̄). Hence, using the continuity of F and taking the limit in the last

inequality as k →∞ with k ∈ K1, we have

−〈F (x̄), d̄〉 ≤ 0. (5.15)

On the other hand, by taking the limit in (5.1) as k →∞ with k ∈ K1, we obtain

−〈F (x̄), d̄〉 ≥ δ‖F (x̄)‖2 > 0,

where the last inequality is due to the inequality in (5.2) and the fact that lim infk→∞ ‖dk‖ >
0. Thus, the last inequality contradicts (5.15). Hence, lim infk→∞ ‖dk‖ = 0. Therefore, using

a similar argument as in the first case, we conclude that the whole sequence {xk} converges

to a solution of (1.9). This completes the proof. �

5.2 Some instances of the framework

This section presents some examples of search directions dk that satisfy the safeguard

conditions (5.1) and (5.2) and as a consequence some instances of Framework 1. These

instances of methods allow inexact projections onto C ∩ Hk, which can be advantageous

when the exact projections are difficult (where the projection cannot be easily performed).

Let us begin by presenting inexact versions of two well-known methods.

1) Steepest descent-based method with approximate projections (SDM-AP). This method

corresponds to Framework 1 with the direction dk in the Step 2 defined by dk = −F (xk), for

every k ≥ 0. It is easy to see that this choice of dk satisfies the conditions (5.1) and (5.2)

with η1 = 1 and η2 ≥ 1. Therefore, from Theorem 5.1.3, it holds that the sequence {xk}
generated by SDM-AP converges to a solution of (1.9).
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2) Newton’s method with approximate projections (NM-AP). Assume that F is continuously

differentiable. By taking dk in the Step 2 of Framework 1 as dk = −B(xk)−1F (xk) for every

k ≥ 0, where B(xk) is a positive definite matrix, we obtain a variant of Newton’s method

proposed in [78] with approximate projections. Note that B(xk) may be the Jacobian of F

at xk or an approximation of it. Assuming that there exist constants 0 < a ≤ b such that

aI ≺ B(xk) ≺ bI, for every k, then dk satisfies (5.1) and (5.2) with η1 = 1/b and η2 = 1/a.

Indeed, since Bkdk = −F (xk), we obtain

〈dk, F (xk)〉 = 〈−B−1k F (xk), F (xk)〉 = −‖F (xk)‖2
B−1

k
≤ −

(
1

b

)
‖F (xk)‖2

and

a‖dk‖2 ≤ ‖dk‖2Bk
= 〈Bkdk, dk〉 = −〈F (xk), dk〉 ≤ ‖F (xk)‖‖dk‖,

which proves the statement. Therefore, since this method can be seen as an instance of

Framework 1, we trivially have, from Theorem 5.1.3, that the sequence {xk} generated by it

converges to a solution of (1.9).

We next present two examples of methods, in the spirit of the method in example 2, for the

nonsmooth case. Here, we define F : Rn → Rn as τ -strongly monotone if there is a constant

τ > 0 such that 〈x− y, F (x)− F (y)〉 ≥ τ‖x− y‖2, for all x, y ∈ Rn. Moreover, F is defined

as L-Lipschitz continuous if there is a constant L > 0 such that ‖F (x)−F (y)‖ ≤ L‖x− y‖,
for all x, y ∈ Rn.

3) Spectral gradient-like methods with approximate projections (SGM-AP). Consider dk =

−λkF (xk) for every k ≥ 0, where λk is the spectral coefficient which is related to the

Barzilai-Borwein choice of the step-size [8]. Let us first discuss some existing choices of λk.

3.1) In [52], λk is defined by

λk =
〈sk, sk〉
〈sk, uk〉

, (5.16)

where sk := xk − xk−1 and uk := F (xk) − F (xk−1). Under the assumption that

F is τ -strongly monotone and L-Lipschitz continuous, we have that dk = −λkF (xk)

satisfies (5.1) and (5.2) with η1 = 1/L and η2 = 1/τ . Indeed, using that F is τ -strongly

monotone, we have

〈sk, uk〉 = 〈xk − xk−1, F (xk)− F (xk−1)〉 ≥ τ〈xk − xk−1, xk − xk−1〉 = τ〈sk, sk〉 > 0,

for some τ > 0, and therefore, λk ≤ 1/τ . Now, using the Cauchy-Schwarz inequality

and that F is L-Lipschitz continuous, we obtain

〈sk, uk〉 = 〈sk, F (xk)− F (xk−1)〉 ≤ ‖F (xk)− F (xk−1)‖‖sk‖ ≤ L〈sk, sk〉,

which implies 1/L ≤ λk. Thus, 1/L ≤ λk ≤ 1/τ and, as a consequence, dk = −λkF (xk)

satisfies (5.1) and (5.2) with η1 = 1/L and η2 = 1/τ .
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3.2) In [81, 82], the coefficient λk is as in (5.16) with sk := xk − xk−1 and uk := F (xk) −
F (xk−1) + rsk, where r > 0 is a given scalar. Using that F is monotone, we have

〈sk, uk〉 = 〈sk, F (xk)− F (xk−1) + rsk〉
= 〈xk − xk−1, F (xk)− F (xk−1)〉+ r〈sk, sk〉
≥ r〈sk, sk〉 > 0,

which implies that λk ≤ 1/r. Now, by assuming that F is L-Lipschitz continuous, we

obtain

〈sk, uk〉 = 〈sk, F (xk)− F (xk−1) + rsk〉
= 〈xk − xk−1, F (xk)− F (xk−1)〉+ r〈sk, sk〉
≤ (L+ r)〈sk, sk〉,

which yields 1/(L + r) ≤ λk. Therefore, as 1/(L + r) ≤ λk ≤ 1/r, we can conclude,

from the fact that dk = −λkF (xk), that dk satisfies the conditions (5.1) and (5.2) with

η1 = 1/(L+ r) and η2 = 1/r.

3.3) In the works [1, 62] the coefficient λk is a convex combination of the default spectral

coefficient in [8] and the positive spectral coefficient in [21]. More specifically, λk
defined by

λk = (1− t)θ∗k + tθ∗∗k ,

where t ∈ [0, 1], θ∗k = ‖sk‖2/〈uk, sk〉, θ∗∗k = ‖sk‖/‖uk‖, sk := xk − xk−1, uk := F (xk)−
F (xk−1) + rsk and r > 0. In [1, Lemma 2], it was shown that if F is L-Lipschitz

continuous, then dk = −λkF (xk) satisfies (5.1) and (5.2) with η1 = max{1, 1/(L+ r)}
and η2 = min{1, 1/r}.

Since the search directions in examples 3.1, 3.2 and 3.3 satisfy (5.1) and (5.2) for

specific values of η1 and η2, we can conclude, from Theorem 5.1.3, that the SGM-AP (i.e.,

Framework 1 with the above three choice of search directions) converges to a solution of

(1.9).

4) Limited memory BFGS method with approximate projections (L-BFGS-AP). Consider

the L-BFGS direction dk proposed in [83] obtained by solving the system Bkdk = −F (xk),

where the sequence {Bk} is given by B0 = I and Bk+1 is computed by the following modified

L-BFGS update process: let m > 0 be given and set m̃ = min{k+ 1,m} and B
(0)
k = B0 = I.

Choose a set of increasing integers Lk = {j0, . . . , jm̃−1} ⊂ {0, . . . , k}. Update Bk+1 using the

pairs {yjl , sjl}m̃−1l=0 , i.e., for l = 0, . . . , m̃− 1,

Bk+1 := B
(l+1)
k+1 =

 B
(l)
k −

B
(l)
k sjls

T
jl
B

(l)
k

sTjl
B

(l)
k sjl

+
yjly

T
jl

yTjl
sjl
, if

yTjl
sjl

‖sjl‖
2 ≥ ε,

B
(l)
k , otherwise,

55



where sk := xk+1 − xk and yk := F (xk+1) − F (xk). If dk in the Step 2 of Framework 1 is

defined as above, we obtain an L-BFGS method with approximate projections. Under the

assumption that F is L-Lipschitz continuous, it was proven in [83] that Bk and B−1k are

bounded for all k ≥ 0, i.e., {Bk} ⊂ B. Since Bkdk = −F (xk) and using (2.2), we obtain

〈dk, F (xk)〉 = 〈−B−1k F (xk), F (xk)〉 = −‖F (xk)‖2
B−1

k
≤ −

(
1

‖Bk‖

)
‖F (xk)‖2,

which yields 〈dk, F (xk)〉 ≤ −1/L‖F (xk)‖2. Now, from Cauchy-Schwarz inequality, we have

‖dk‖2Bk
= 〈Bkdk, dk〉 = −〈F (xk), dk〉 ≤ ‖F (xk)‖‖dk‖,

which, combined with (2.2) and ‖B−1k ‖ ≤ L, yields (1/L)‖dk‖ ≤ ‖F (xk)‖. Thus, dk satisfies

(5.1) and (5.2) with η1 = 1/L and η2 = L. Therefore, we conclude that, from Theorem 5.1.3,

the sequence {xk} generated by L-BFGS-AP (i.e., Framework 1 with the above choice of

search direction) converges to a solution of (1.9).

We end this section by proposing a new convergent method for solving (1.9), which is

an instance of Framework 1. This method is inspired by [74, Algorithm 2.1] for solving

variational inequalities. In the context that the projection operator is computationally

expensive, the latter algorithm was devised in order to minimize the total number of

performed projection operations. Let us now present our extension of [74, Algorithm 2.1] to

the convex-constrained monotone nonlinear equations context.

5) Modified Newton-like method with approximate projections (MNM-AP). Consider the

direction dk defined as follows: let η > 0, θ̄ ∈ [0, η) and {θk} ⊂ [0, θ̄] be given. Let Bk ⊂ B,

and set w1
k := Bkxk − F (xk) and ε1k := θ2k‖F (xk)‖2. Compute s1k in Rn such that

s1k = ỹBk
C (w1

k)− xk, (5.17)

where ỹBk
C (w1

k) is an ε1k–approximate solution of the problem (2.4). If η‖F (xk)‖ ≤ ‖s1k‖Bk
,

then dk := s1k. Otherwise, compute s2k in Rn such that

F (xk) +Bks
2
k = 0, (5.18)

and set dk := s2k. Note that the matrix Bk can be taken as those in the examples 3 and 4. We

will now prove that dk described above satisfies (5.1) and (5.2), for all k ≥ 0. If η‖F (xk)‖ ≤
‖s1k‖Bk

, then dk = ỹBk
C (w1

k)− xk. By (2.5) with B = Bk, w = w1
k and y = xk, we have

θ2k‖F (xk)‖2 ≥〈Bk(xk − ỹBk
C (w1

k))− F (xk), xk − ỹBk
C (w1

k)〉
=‖ỹBk

C (w1
k)− xk‖2Bk

− 〈F (xk), xk − ỹBk
C (w1

k)〉, ∀ k ≥ 0,

which, combined with the definition of dk, yields

−〈F (xk), dk〉+ θ2k‖F (xk)‖2 ≥ ‖dk‖2Bk
≥ ‖F (xk)‖2η2, ∀ k ≥ 0, (5.19)
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or, equivalently,

−〈F (xk), dk〉 ≥ ‖F (xk)‖2(η2 − θ2k), ∀ k ≥ 0.

Therefore, since θk ≤ θ̄ for all k ≥ 0 and θ̄ ∈ [0, η), we have

〈F (xk), dk〉 ≤ −(η2 − θ̄2)‖F (xk)‖2.

Hence, (5.1) holds with η1 = (η2−θ̄2). From (5.19) and using the Cauchy-Schwarz inequality,

we have

‖dk‖2Bk
≤ θ2k‖F (xk)‖2 − 〈B−1k F (xk), dk〉Bk

≤ θ2k‖F (xk)‖2 + ‖B−1k F (xk)‖Bk
‖dk‖Bk

,

which, combined with some algebraic manipulations, yields

‖dk‖2Bk
≤ θ2k‖F (xk)‖2 +

‖B−1k F (xk)‖2Bk

2
+
‖dk‖2Bk

2
.

Using the definition of scalar product 〈·, ·〉B = 〈·, B·〉 and (2.2), we obtain

‖dk‖2Bk

2
≤ θ2k‖F (xk)‖2+

‖F (xk)‖2
B−1

k

2
≤ θ2k‖F (xk)‖2+‖F (xk)‖2‖B−1k ‖

2
=

(
θ2k +

‖B−1k ‖
2

)
‖F (xk)‖2,

which implies that

‖dk‖2Bk
≤
(
2θ2k + ‖B−1k ‖

)
‖F (xk)‖2.

Therefore, by (2.2), ‖B−1k ‖ ≤ L and θk ≤ θ̄ for all k ≥ 0, we have

‖dk‖2 ≤ L
(
2θ̄2 + L

)
‖F (xk)‖2,

and hence (5.2) holds with η2 =
√
L
(
2θ̄2 + L

)
. On the other hand, if dk := s2k, then the

proof is similar to the one in example 4. Therefore, we conclude that, from Theorem 5.1.3,

the sequence {xk} generated by the MNM-AP (i.e., Framework 1 with the above choice of

search direction) converges to a solution of (1.9).

5.3 Numerical experiments

This section summarizes the numerical experiments carried out to verify the efficiency of

the instances of Framework 1. Numerical experiments are divided into two subsections.

In Subsection 5.3.1, the methods are tested for a group of convex-constrained monotone

nonlinear equations, whereas, in Subsection 5.3.2, they are tested for solving the system of

constrained absolute value equations (CAVE). The computational results are obtained using

MATLAB R2018a on a 2.4GHz Intel(R) i5 with 8GB of RAM and Windows 10 ultimate

system.
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5.3.1 Monotone nonlinear equations with polyhedral constraints

In this subsection, our aim is to illustrate the behavior of the methods to solve 52 monotone

nonlinear equations with polyhedral constraints; see Tables 5.1 and 5.2. Some of these

problems are originally unconstrained for which constrains were added. In Pb11, the matrix

A ∈ R10×n of Table 5.2 is randomly generated so that a solution of the problem 11 belongs

to the feasible set.

Problem Ref. n

Pb 1 [81, Problem 1] 1000/5000/10000

Pb 2 [81, Problem 2] 1000/5000/10000

Pb 3 [78, Problem 2] 5/5/5

Pb 4 [78, Problem 3] 10/10/10

Pb 5 [78, Problem 4] 4

Pb 6 [1, Problem 1] 1000/5000/10000

Pb 7 [1, Problem 2] 1000/5000/10000

Pb 8 [1, Problem 3] 1000/5000/10000

Pb 9 [1, Problem 5] 1000/5000/10000

Pb 10 [1, Problem 6] 1000/5000/10000

Pb 11 [51, Problem 1] 1000/5000/10000

Pb 12 [51, Problem 4] 1000/5000/10000

Pb 13 [51, Problem 7] 1000/5000/10000

Pb 14 [51, Problem 8] 1000/5000/10000

Pb 15 [51, Problem 9] 1000/5000/10000

Pb 16 [55, Problem 2] 1000/5000/10000

Pb 17 [55, Problem 3] 1000/5000/10000

Pb 18 [55, Problem 7] 1000/5000/10000

Table 5.1: Test problems

The tolerance in the stopping criterion ‖F (xk)‖ < ε was set to ε = 10−6. If the stopping

criterion is not satisfied, the method stops when a maximum of 500 iterations has been

performed. In this first group of test problems, it is taken σ = 10−4, γ = 1/2 and µk =

µ̄ = 0.25, for every k, in all algorithms. Moreover, the εk–approximate solution in (5.4)
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Problem Set C

Pb 1 [−1, n] and
∑n

i=1 xi ≤ n

Pb 2 [−1, n] and
∑n

i=1 xi ≤ n

Pb 3 [0, n] and
∑n

i=1 xi ≤ n

Pb 4 [0, n] and
∑n

i=1 xi ≤ n

Pb 5 [−1, n] and
∑n

i=1 xi ≤ 3

Pb 6 [−1, 2] and
∑n

i=1 xi ≤ n

Pb 7 [−1, 2] and
∑n

i=1 xi ≤ n

Pb 8 [0, n] and
∑n

i=1 xi ≤ n

Pb 9 [−1, 7] and
∑n

i=1 xi ≤ 1.1 · n

Pb 10 [0, e] and
∑n

i=1 xi ≤ e · n

Pb 11 [−1, 2]; Ax ≤ b, where A ∈ R10×n and b = (n, . . . , n) ∈ R10

Pb 12 [−1, n] and
∑n

i=1 xi ≤ 20 · n

Pb 13 [−1, n] and
∑n

i=1 xi ≤ n

Pb 14 [−n, 1] and
∑n

i=1 xi ≤ n

Pb 15 [−n, n] and
∑n

i=1 xi ≤ n

Pb 16 [−n, 1] and
∑n

i=1 xi ≤ 1

Pb 17 [−1, n] and
∑n

i=1 xi ≤ n

Pb 18 [−1, n] and
∑n

i=1 xi ≤ n

Table 5.2: Polyhedral feasible sets

was computed by the conditional gradient method, which stopped when either the stopping

criterion is satisfied or a maximum of 300 iterations is performed. In order to avoid an

excessive number of inner iterations, input εk was replaced by max{µ2
k‖ξkF (zk)‖2, 10−2}.

Linear optimization subproblems in the conditional gradient method (see (2.11)) were solved

via the MATLAB command linprog. We denote by SGM-AP1, SGM-AP2 and SGM-AP3,

the method SGM-AP, with the coefficient λk given in examples 3.1, 3.2 and 3.3, respectively.

In SGM-AP2, we set r = 0.01, whereas, in SGM-AP3, we set t = 1/(exp(k + 1)k+1) and

r = 1/(k + 1)2. In the L-BFGS-AP, we used m = 1. Finally, we set η = 0.5, θk = θ̄ = 0.25

in the MNM-AP.

We consider 4 different starting points (following the suggestions where the problems

59



were proposed) for each problem of Table 5.1: For problem 1, x1 = (0.1, . . . , 0.1), x2 =

(1, . . . , 1), x3 = ((n − 1)/n, 0.1, . . . , 0.1, (n − 1)/n) and x4 = (−1, . . . ,−1). For problem 2,

x1 = (0.1, . . . , 0.1), x2 = (1, . . . , 1), x3 = (0, . . . , 0) and x4 = (−1, . . . ,−1). For problem 3,

x1 = (10, 0, . . . , 0), x2 = (9, 0, . . . , 0), x3 = (3, 0, 3, 0, 3) and x4 = (0, 2, 2, 2, 2). For problem

5, x1 = (0, . . . , 0), x2 = (3, 0, 0, 0), x3 = (1, 1, 1, 0) and x4 = (0, 1, 1, 1). For problems 14

and 16, x1 = (−1, . . . ,−1), x2 = (−0.1, . . . ,−0.1), x3 = (−1/2,−1/22, . . . ,−1/2n) and

x4 = (−1,−1/2, . . . ,−1/n). For problem 17, x1 = ((n − 1)/n, 0.1, . . . , 0.1, (n − 1)/n),

x2 = (0.1, . . . , 0.1), x3 = (1/2, 1/22, . . . , 1/2n) and x4 = (1, 1/2, . . . , 1/n). For problems

4, 6 to 13, 15 and 18, x1 = (1, . . . , 1), x2 = (0.1, . . . , 0.1), x3 = (1/2, 1/22, . . . , 1/2n)

and x4 = (1, 1/2, . . . , 1/n). Figures 5.2 and 5.1 report the numerical results of SDM-AP,

SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and MNM-AP for solving the 52 problems

using performance profiles [26]. We adopted the CPU time as performance measurement.

Recall that in the performance profile, efficiency and robustness can be accessed on the left

and right extremes of the graphic, respectively. We consider that a method is the most

efficient if its runtime does not exceed in 5% the CPU time of the fastest one.

From Figures 5.1 and 5.2, we can see that all the variations of the SGM-AP achieved better

performance (in terms of efficient and robust) compared to L-BFGS-AP and MNM-AP. In

the group of SGM-AP variants, SGM-AP1 and SGM-AP2 were better than the others.

Figure 5.1: Performance of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and

MNM-AP with xk+1 as in (5.4)
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Figure 5.2: Performance of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and

MNM-AP with xk+1 as in (5.6)

5.3.2 Absolute value equations with polyhedral constraints

In this subsection, we consider the problem of finding a solution of the CAVE problem:

find x ∈ C such that Ax− |x| = b, (5.20)

where C := {x ∈ Rn;
∑n

i=1 xi ≤ d, xi ≥ −1, i = 1, . . . , n}, A ∈ Rn×n, b ∈ Rn ≡ Rn×1, and |x|
denotes the vector whose i-th component is equal to |xi|. The problem (5.20) draws attention

for its simple formulation when compared to its equivalent linear complementarity problem

(LCP) (see [18,19,59]) which in turn includes linear programs, quadratic programs, bimatrix

games and other problems. Hence, interesting algorithms relating to Newton-type methods

to solve (5.20) have been developed; see, for example, [20,58] and [65] for the unconstrained

and constrained case, respectively.

Under the assumption that ‖A−1‖ ≤ 1, it was proven in [59, Proposition 4] that the

problem (5.20), with C = Rn, is uniquely solvable for any b. Now, if A is symmetric positive

definite, then F (x) = Ax− |x| − b is monotone. In fact, for all x, y ∈ Rn, we have

〈F (x)− F (y), x− y〉 = 〈Ax− |x| − Ay + |y|, x− y〉 = ‖x− y‖2A + 〈|y| − |x|, x− y〉

≥ ‖x− y‖2 1

‖A−1‖
+ 〈|y| − |x|, x− y〉 ≥ ‖x− y‖2 + 〈|y| − |x|, x− y〉.

(5.21)

where in the second equality we use that 〈·, ·〉B = 〈·, B·〉, (2.2) and ‖A−1‖ ≤ 1. Now, note
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that |x| can be written as |x| = PRn
+

(x) + PRn
+

(−x). So, from (5.21), the Cauchy-Schwarz

inequality and the fact that PRn
+

(·) is monotone and nonexpansive, we obtain

〈F (x)− F (y), x− y〉 ≥ ‖x− y‖2 + 〈PRn
+

(y) + PRn
+

(−y)− PRn
+

(x)− PRn
+

(−x), x− y〉
=‖x− y‖2 − 〈PRn

+
(x)− PRn

+
(y), x− y〉+ 〈PRn

+
(−y)− PRn

+
(−x), x− y)〉

≥‖x− y‖2 − ‖PRn
+

(x)− PRn
+

(y)‖‖x− y‖
≥‖x− y‖2 − ‖x− y‖2 = 0,

which proves the statement. In our implementation, we used the Matlab routine sprandsym

to construct matrix A randomly, which generates a symmetric positive definite sparse matrix

with predefined dimension, density and singular values. For this process, the density of

matrix A was set to 0.003 and the vector of singular values was randomly generated from

a uniform distribution on (0, 1). In this case, as the vector of singular values (rc) is a

vector of length n, then A has eigenvalues rc. Thus, if rc is a positive (non-negative) vector

then A is a positive (non-negative) definite matrix. We chose a random solution x∗ from a

uniform distribution on (0.1, 10) and computed b = Ax∗ − |x∗| and d =
∑n

i=1(x∗)i, where

(x∗)i denotes the i-th component of the vector x∗. The initial points were defined as x0 =

(0, . . . , 0, d/2, 0, . . . , 0, d/2, 0, . . . , 0) ∈ Rn, where the two positions of d/2 were generated

randomly on the set {1, 2, . . . , n}.
For the CAVE problem, we consider only the SGM-AP2 since it was the best method in

our first class of experiment described in Subsection 5.3.1. For a comparative purpose, we

also run the inexact Newton method with feasible inexact projections (INM-InexP) of [65].

INM-InexP is an algorithm designed for solving smooth and nonsmooth equations subject

to a set of constraints. We rescale the vector of singular values to ensure that the condition

‖A−1‖ ≤ 1/3 < 1 is fulfilled and consequently ensure the good definition of INM-InexP

(see [58, Theorem 2] for more details). In INM-InexP, we set θ = θ̄ = µ̄ = 0.25 and the other

parameters were set as in [65]. For both algorithms, a failure was declared if the number

of iterations was greater than 500. The procedure to obtain inexact projections used in the

implementation of INM-InexP was also the CondG method and the procedure stopped when

either the condition as in [65, Algorithm 1] was satisfied or a maximum of 10 iterations were

performed. For our algorithms, the procedure stopped when either the stopping criterion,

i.e., 〈wk − xk+1, y− xk+1〉 ≤ εk := µ2
k‖ξkF (zk)‖2, for all y ∈ C ∩Hk(or C), was satisfied or a

maximum of 10 iterations were performed.

As in Subsection 5.3.1, Figure 5.3 reports numerical results of algorithms using

performance profiles. We generated 50 CAVEs of dimensions 1000, 5000 and 10000 and

for each of them we test the algorithm for 5 different initial points. We see, from Figure 5.3,

that the SGM-AP2-C (with xk+1 as in (5.6)) was the most robust whereas INM-InexP was

more efficient in terms of time saving than SGM-AP2-C and SGM-AP2-CH (with xk+1 as in

62



(5.4)).

Figure 5.3: Performance of SGM-AP2-C, SGM-AP2-CH and INM-InexP
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Chapter 6

Final remarks

In this thesis, we proposed and analyzed some methods to solve constrained optimization

problems and constrained monotone nonlinear systems of equations

In Chapter 3, we proposed an modified inexact variable metric method (M-IVM), with a

new inexactness criterion for its subproblems, for solving convex-constrained optimization

problems. When necessary, such inexact solutions of the subproblems can be obtained

by using suitable iterative algorithms; for example, the conditional gradient method

(Frank-Wolfe) [27, 32] and its variants. Under mild assumptions, we proved that any

accumulation point of the sequence generated by the proposed method is a stationary point

of (1.1). Preliminary numerical experiments showed that the new algorithm works well and

compares favorably with a previous IVM on linearly constrained problems, and with its exact

version and the interior point method in [75] for semidefinite least squares problems.

In Chapter 4, we proposed Gauss-Newton methods with approximate projections

(GNM-AP) for solving constrained nonlinear least squares problems. For the local method,

we were able to show, under a majorant condition, that the generated sequence converges

locally linearly. In zero-residual problems, quadratic convergence rate can be achieved with

a stronger condition on the inexactness of the projections. As special cases of the majorant

condition, convergence results for the method with F ′ satisfying a Lipschitz-like condition

and F being an analytic function satisfying a Smale condition were also discussed. For

the global method, under suitable conditions, the global convergence of the algorithm to a

stationary point of the problem was established. The numerical experiments showed that

the new algorithms work quite well and compare favorably with the proximal Gauss-Newton

method in [70] (which corresponds to an exact version of our GNM-AP) and the inexact

Gauss-Newton trust-region method in [68] for simple bounds.

In Chapter 5, we proposed a framework with approximate projections for constrained

monotone equations. Under mild assumptions, we proved that the sequence generated by
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the proposed framework converges to a solution of (1.9). Some examples of methods which

fall into this framework were presented. Preliminary numerical experiments showed that

some methods, which fall into the framework, performed well to solve constrained monotone

nonlinear equations, and they are competitive in terms of robustness with the Inexact Newton

method with feasible inexact projections in [65] for solving absolute value equations with

polyhedral constraints.
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[29] O. P. Ferreira, M. L. N. Gonçalves, and P. R. Oliveira. Local convergence analysis of

the Gauss-Newton method under a majorant condition. J. Complex., 27(1):111 – 125,

2011.
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