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Abstract

In this work, we propose and analyze some methods to solve constrained optimization
problems and constrained monotone nonlinear systems of equations. Our first algorithm
is an inexact variable metric method for solving convex-constrained optimization problems.
At each iteration of the method, the search direction is obtained by inexactly minimizing a
strictly convex quadratic function over the closed convex feasible set. Here, we propose a new
inexactness criterion for the search direction subproblems. Under mild assumptions, we prove
that any accumulation point of the sequence generated by the method is a stationary point of
the problem under consideration. Our second method consists of a Gauss-Newton algorithm
with approximate projections for solving constrained nonlinear least squares problems. The
local convergence of the method including results on its rate is discussed by using a general
majorant condition. By combining the latter method and a nonmonotone line search
strategy, we also propose a global version of this algorithm and analyze its convergence
results. Our third approach corresponds to a framework, which is obtained by combining
a safeguard strategy on the search directions with a notion of approximate projections, to
solve constrained monotone nonlinear systems of equations. The global convergence of our
framework is obtained under appropriate assumptions and some examples of methods which
fall into this framework are presented. Numerical experiments illustrating the practical
behaviors of the methods are reported and comparisons with existing algorithms are also
presented.

Keywords: Convex-constrained optimization problem; Nonlinear equations; Approximate
projections; Inexact variable metric method; Gauss-Newton method; Local and global
convergence.



Resumo

Neste trabalho, propomos e analisamos alguns métodos para resolver problemas de
otimizacao com restricoes e sistemas de equagoes nao lineares mondtonas com restrigoes.
Nosso primeiro algoritmo é um método inexato de métrica variavel para resolver problemas
de otimizacdo com restricoes convexas. A cada iteracao deste método, a busca direcional
¢ obtida minimizando inexatamente uma fungao quadratica estritamente convexa sobre o
conjunto convexo fechado vidvel. Aqui, propusemos um novo critério de inexatidao para
os subproblemas de busca direcional. Sob suposicoes apropriadas, provamos que qualquer
ponto de acumulacao da sequéncia gerada pelo novo método é um ponto estacionario do
problema sob consideracao. Nosso segundo método consiste em um método Gauss-Newton
com projecoes aproximadas para resolver problemas de quadrados minimos nao lineares
com restrigoes. A convergéncia local do método, incluindo resultados sobre sua taxa
de convergéncia, € discutida usando uma condicao majorante geral. Ao combinar o
ultimo método e uma estratégia de busca linear nao mondtona, também propusemos uma
versao global deste algoritmo e analisamos seus resultados de convergéncia. Nossa terceira
abordagem corresponde a um “framework”, o qual é obtido combinando uma estratégia de
salvaguarda na busca direcional com uma nocao de projecoes aproximadas, para resolver
sistemas de equagoes nao lineares monétonas com restrigoes. A convergéncia global de nosso
“framework” é obtida sob suposicoes apropriadas e alguns exemplos de métodos que se
enquadram nesta estrutura sao apresentados. Experimentos numéricos sao relatados para
ilustrar os desempenhos dos métodos e comparagoes com algoritmos existentes também sao
apresentadas.

Palavras-chave: Problema de otimizacao com restricao convexa; Equagoes nao lineares;

Projecoes aproximadas; Método inexato de métrica variavel; Método de Gauss-Newton;
Convergéncia local e global.
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Chapter 1

Introduction

Let us first consider the following convex-constrained optimization problem

min f(z), (1.1)
where f : R" — R is a continuously differentiable function and C' C R" is a nonempty convex
closed set. This is a classical problem in continuous optimization and different methods have
been proposed in the literature for solving it; see, for example, [11,12,16,64,68]. A well-known
one is the projected gradient method, which can be seen as the constrained extension of the
gradient method (also known as steepest descent) for unconstrained optimization problem.
The projected gradient method is quite simple to implement; however, it may be very slow
in some applications. In order to overcome this drawback, work [12] proposed the spectral
projected gradient (SPG) method, which has been shown an efficient approach for solving
(1.1) mainly in large-scale, owing to its low memory requirements. Given an arbitrary initial
point z¢ € C', the SPG method generates a sequence of iterates by the rule

Thy1 = Tk + Oékdk, k > 0, (12)

where the step-size oy, is obtained by the nonmonotone line search strategies proposed in [44]
and the search direction dj, is defined as dy, = Po(xy — (1/\;)V f(x)) — 2k, where P denotes
the orthogonal projection on C' and )y is the Barzilai-Borwein scaling [8] defined by

)\0 S [)\mzna )\max]a >\k = min {)\maxa max {)\mlna &k/bk}} ) (13)

with 0 < AMpin < Amazs bk = (X — 21,2 — x_1) and ay := (xp — 21, V(xg) — Vf(xp_1))-
The convergence results and/or numerical experiments illustrating the practical behavior of
the SPG method were discussed in [12] and in many subsequent works including [6,13, 15,
17,36,46,54,60,76,81,82].



It is well-known that depending on the geometry of C, the orthogonal projection onto
it neither has a closed-form nor can be easily computed. For this reason, [14] (see also
[4]) proposed an inexact version of the SPG method in which approximate projections are
allowed. Indeed, a more general approach, called Inexact Variable Metric method (IVM),
was proposed. It differs from the SPG method by the fact that the search direction dj, in
(1.2) is computed such that zy + dy € C and

Qr(dr) < 1Qx(dy), (1.4)

where n € (0, 1],

dj := argmin,,_, yee Qr(d) == %(d, Bid) + (V f(xy),d), (1.5)

and By € R " is a suitable symmetric positive definite matrix. If By := A\I for every k > 0,
where A is as in (1.3), the inexact variable metric method corresponds to an inexact version
of the SPG method. It is not hard to verify that dj, in (1.5) is equivalent to dy = ¥y — 2y,
with 1

U = argming, .o qi(y) = §<Bky,y) + (Vf(xr) — Brxy, y). (1.6)

In its turn, g, in (1.6) is equivalent to

) 1 _
i = argmin o L1y — (x — By V(o)) 3, (1.7)

where || - |3, := (B, ). Therefore, dj, in (1.4) can also be interpreted as an approximation
of the search direction dj, of the projected (in the norm || - ||5,) quasi-Newton method.

At first sight, a drawback of the inexact criterion in (1.4) is that it requires the optimal
value of the problem in (1.5). It was presented in [4,14] some applications in which it is
possible to establish a sequence of lower bounds C; < Qg (dy) that converges to the value
Qr(dy) as [ goes to infinity. Hence, criterion (1.4) is satisfied when the verifiable condition
Qr(dx) < nCj holds. It is not clear, however, how the strategies in [4,14] can be employed or
even how an inexact direction satisfying (1.4) can be obtained for other complex feasible sets
(where the projection cannot be easily performed). Therefore, the first goal of this thesis is
to present an inexact variable metric method with a different inexactness criterion for the
subproblems (1.6). We present a concept of approximate solution for (1.6), which does not
require the knowledge of its optimal value. The new criterion can be verified by finding
the infimum of a linear function over the feasible set C'. Such verification comes for free
when the conditional gradient method (Frank-Wolfe) [27,32] is used to solve the problem
in (1.6). Under mild assumptions, we prove that any accumulation point of the sequence
generated by the proposed method is a stationary point of (1.1). In order to illustrate the
practical advantages of the new approach for inexact variable metric method, we report some
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numerical experiments. In particular, we present an application where our concept of inexact
solutions is quite appealing; more details about this application are given in Subsection 3.2.2.

Our second problem of interest is a particular case of (1.1), which corresponds to the
convex-constrained nonlinear least squares problem
min f(x) = | F@), (18)
where U C R” is an open set containing the nonempty convex closed set C' and F : U — R™
is a continuously differentiable nonlinear function. This problem appears in many important
applications (see, e.g., [3,5,10,67]). It is worth pointing out that different algorithms
have been proposed and studied in the literature for solving (1.8). Strategies based on
sequential quadratic programming, quasi-Newton and trust-region methods have been used;
see, for instance, [53,57,68]. Among the various approaches, one of the most popular is
the Gauss-Newton method and its variations, capable of obtaining efficient computational
results by exploring the structure of the function f (see [7,9,23,34,70]).

The second goal of this thesis is propose and analyze a Gauss-Newton methods with
approximate projections for solving (1.8). The method to be proposed here basically consists
of computing an approximate projection of the unconstrained Gauss-Newton step. The
approximate projection is based on the inexactness criterion for the subproblems (1.6) with
respect to the metric defined by By, = F'(x3)" F'(z)), where AT denotes the transposed
matrix of A. From the theoretical viewpoint, we provide an estimate of the convergence
radius, for which well-definedness and convergence of the method are ensured. Furthermore,
results on its convergence rates are also established. Our analysis is done by using a majorant
condition, which allows us to study convergence results of Newton and Gauss-Newton
methods in a unified way; see, for example, [29,30,41]. Thus, our local analysis covers
two large families of nonlinear functions, namely, one satisfying a Lipschitz condition and
another one satisfying a Smale condition, which includes a substantial class of analytic
functions. However, as it is well-known, globalization strategies produce, in general, more
robust methods. Therefore, we also propose a global version of our local method. As in
our first global algorithm, the globalization technique is based on the efficient nonmonotone
line search in [44]. Tt is worth pointing out that the nonmonotone strategy has been shown
to be more efficient due to the fact that enforcing monotonicity of the function values may
make the method converge slower. Under suitable assumptions, this global version can be
seen as an instance of our first method. We also report some numerical experiments for
the algorithm on a set of box- and polyhedral-constrained nonlinear systems and compare
their performances with the proximal Gauss-Newton method in [70], which, applied to (1.8),
corresponds to our local method with exact projections. In the box-constrained case, we
also compare performance of our global version with the inexact Gauss-Newton trust-region
method in [68].



Finally, our third problem corresponds to the convex-constrained monotone nonlinear
system of equations: finding x, € C' such that

F(z,) =0, (1.9)

where C' is a nonempty closed convex set and F' : R" — R” is a continuous and monotone
nonlinear function, not necessarily differentiable. The monotonicity of F' : R* — R"
here means ( F(x) — F(y),z —y) > 0, for all x,y € R™ Problems of this nature have
many applications such as power engineering, chemical equilibrium systems and economic
equilibrium problems, see e.g., [25,28, 61, 79]. Recently, how to solve the constrained
problem (1.9) has become an important subject of research. Due to the efficiency and low
computational costs for large values of n, different attractive methods have been proposed
in the literature. Many of them are extensions of Newton-type, spectral gradient and
conjugate gradient methods for solving the unconstrained monotone nonlinear system; see,
e.g., [55,56,66,77,78,81,84].

The third goal of this thesis is to present a framework with approximate projections
for solving (1.9). More precisely, at each iteration, the framework imposes a safeguard
strategy on the search directions. A suitable line search procedure is considered based on
[73], which, in particular, provides a hyperplane that strictly separates the current iteration
from zeroes of the system of equations. Then, we compute an approximate projection of
a point, which belongs to the aforementioned hyperplane, onto the intersection between C'
and the hyperplane (or onto the constrained set C'). Under mild assumptions, we prove that
the sequence generated by the proposed framework converges to a solution of (1.9). Some
examples of methods which fall into this framework are reported. Essentially the examples
are inexact versions of methods based on spectral gradient and quasi-Newton methods for
convex-constrained monotone nonlinear equations; see, e.g., [1,52,78,81,83]. In order to
illustrate the robustness and effectiveness of the instances of the framework, we report some
preliminary numerical experiments on a set of problems in the form (1.9). Moreover, we also
applied the framework for solving the constrained absolute value equation and compare its
performance with the inexact Newton method with feasible inexact projections [65].

This thesis is organized as follows. In Chapter 2, we first establish some notations and basic
results. A concept of approximate solution to the problem similar to (1.6) and some of its
properties are discussed. In Chapter 3, we describe a modified inexact variable metric method
and present its global convergence theorem. Moreover, some numerical experiments of the
proposed method are presented. In Chapter 4, we propose the Gauss-Newton method with
approximate projections (GNM-AP) and present its main local convergence theorem. We also
present two applications of the main theorem and establish a global version of the GNM-AP.
To illustrate its performance, some numerical experiments are reported. In Chapter 5, a
framework with approximate projections for solving monotone nonlinear equations and its



global convergence are discussed. We also present some instances of the latter framework by
means of some examples of search directions dj, that satisfy the safeguard conditions. Some
preliminary numerical experiments are reported to illustrate its performance. Finally, we
conclude this thesis with some remarks in Chapter 6.

We mention that the material of this thesis originated three papers, two of them [39,40]
are published and one is in the final stage of preparation.



Chapter 2

Preliminaries

In this chapter, we introduce some definitions, notations and basic results used throughout
this thesis. In particular, we discuss our concept of approximate solution of a quadratic
problem and establish some properties, which will be fundamental in the course of this
work.

2.1 Notations and basic definitions

The open ball in R™ with center a and radius r is denoted by B(a,r). Denote DT f(0) as
the right-hand derivative of a convex function f : [0,00) — R. Let B be the set of n x n
symmetric positive definite matrices such that

IBl<L and BT <L, (2.1)

where L > 1 and ||.|| is a sub-multiplicative matrix norm. Note that B is a compact set of
R™™. Consider also the inner product on R™ defined by (x, z) 5 = (z, Bz), where B € B and
(.,.) denotes the usual inner product. Notice that the corresponding induced norm ||.||5 is
equivalent to the Euclidean norm on R", since the following inequalities hold

1
1B~

l(1* < ll=llE < I BIlll=]f*. (2:2)
Let be A € R™*" with rank r < min{m,n}. The Moore-Penrose inverse of A is a matrix
AT € R™™ which satisfies:

AATA=A, ATAAT = AT, (AANT = AAT, (ATA)T = ATA.
Note that, if rank(A) = n or AT A is invertible in R™*" then

At = (ATA)TIAT, ATA=T=A4T, AT = [(A"A)7. (2:3)
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2.2 Approximate solutions of a quadratic problem

In this section, we will introduce our concept of inexact solutions of a subproblems of the
form in (1.6) and establish some of its useful properties. For a suitable choice of inputs, such
subproblems can be interpreted as approximate projections.

Definition 2.2.1 Given B € B, w € R", ¢ > 0 and a nonempty closed convex set C C R",
we say that g8 (w) is an e—approzimate solution for the problem

min 3 (By,0) = (1,3), (2.4)
iff
78 (w) € C and (Bys(w) —w,y — go(w)) > —&, VyeC. (2.5)

Remark 2.2.2 Since in (2.4) we are minimizing a strictly convex quadratic function over a
convex set, condition (2.5) is a natural condition for an approximate solution. Indeed, the
optimality condition for (2.4) is

(By—w,y—7)>0, VyeC.

Hence, one could define an approximate solution as y € C' such that (By —w,y — ) > —¢,
for all y € C, which coincides with (2.5). Note that, if §5(w) is a zero—approximate solution,
then 78 (w) is the unique exact solution of (2.4), which we will denote by y5(w).

Note that, if w := Bz with = € R", then problem (2.4) can be rewritten, ignoring constant

terms, as
min >y — o3 (2:6)
and (2.5) is equivalent to
(x — §8(Bx),y — j8(Bx))p <e, VyecC. (2.7)
In this case, we can say that g5 (Bx) is an approximate projection (in the norm || - ||5) of

x onto C. Tt is easy to prove that the exact projection y5(-) is nonexpansive in the norm
|- |5, i-e.
lye (Bz) = yo(Ba)||p < |lo - @lls, @@ €R" (2.8)
Moreover, for every B € B, w := Bx € R" and € > 0, the following relationship between y5
and g5 holds
192 (Bx) — ye (Bo)|ls < ve. (2.9)
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Indeed, since y&(w) € C and g8 (w) € C, it follows from Definition 2.2.1 that
(Byé(Bz) — B, je(Bx) —yd(Br)) <e,  (Bx — Byg(Bz), je(Br) — yé(Br)) < 0.
By adding the last two inequalities, we obtain
152 (Bx) — y& (Bx)lls < Ve. (2.10)

In Figure 2.1, an admissible approximation of y&(Bz) with B = I is depicted.

Figure 2.1: c—approximate projection

We emphasize that criterion (2.5) can be easily checked when, for example, C' is bounded
and the conditional gradient method [27] is used to solve (2.4). The conditional gradient
(CondG) method, also known as Frank-Wolfe method [32], is designed to solve the convex
optimization problem min,cc h(z), where C' is a nonempty compact convex set and h is a
differentiable convex function. Given z;_; € C, its j-th step first finds z; as a minimum
of the linear function (Vh(z;_1),-) over C' and then set z; = (1 — a;)z;_1 + «;Z; for some
a; € [0,1]. Its major distinguishing feature compared to other first-order algorithms such
as the projected gradient (or accelerated gradient) method is that it replaces the usual
projection onto C' by a linear oracle which computes z; as above. Since, for some relevant
cases of C (for example, when C is the spectrahedron; see Subsection 3.2.2), the latter
operation is considerably cheaper than the first one, the CondG method is competitive with
first-order projection methods and it has recently re-gained attention in different application
areas (see, e.g., [33,50]). If we apply the CondG method to (2.4), then Z; is a solution of the

subproblem
min <BZ]',1 —w,z — Zj,1>,

2.11
st. zel 211)

and, hence, if the CondG iterations are stopped when
<BZJ',1 — w, Ej - Zj,1> > —¢, (212)
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then condition (2.5) holds with §&(w) = z;_1.

We next discuss a way to use the CondG method to obtain an approximate solution for
(2.4) when the diameter of C is very large or even when C' is unbounded. Note that the
exact solution yZ(w) of (2.4), with w := Bx — Vf(z) and x € C, satisfies

(B(z — yé(w)) = Vf(x),z —ye(w)) <0,

which, combined with the Cauchy-Schwarz inequality yields

lz —ye (W)l < (VF(@),2 —yo(w)) < [IVF(@)llllz —ye ().

It follows from the last inequality and (2.2) that

lz = ye ()l < BV @),

which implies that the ball B (x,||B7!|||Vf(z)||) contains the (unknown) exact solution
y&(w) of (2.4). Therefore, one can apply the conditional gradient method to (2.4) with C
replaced by C' N B (z, ||B7!|||V f(z)|]) in order to obtain a point g5 (w) satisfying

go(w) € G, (B(x —gé(w)) = Vf(x),y —gé(w)) <e, Vye CNB(z, |[BH[VF()]).

(2.13)
It can be proven, using that the quadratic function in (2.4) is strongly convex and y5(w) €
CNB (z, | B7|||Vf(x)|), that if e = 0 in the last inequality, then 75 (w) = yB(w). Therefore,
we claim that the results of the algorithms proposed in this work can also be shown if (2.5)
is replaced by (2.13).

We also mention that other iterative methods can take place to obtain an e-approximate
solution for (2.4), being enough to solve periodically, or at each iteration j, the linear
subproblem (2.11) to test our criterion: unboundness of the linear subproblem implies that
the criterion does not hold.

We next establish some useful relationships between exact and inexact solutions of (2.4)
when B varies.

Lemma 2.2.3 Let B,D € B and v € R". Then,
lye (Bz) — y& (D) || s < [|B~H"2|(B = D)(y& (Dx) —x)||, ¥ eR"
Proof. Denote z = y5(Bz) and 2 = y&(Dz). Hence, it follows from Definition 2.2.1 that
(B(z—x),2—2) >0, (D(z2—1z),z—2) > 0. (2.14)
Combining the last two inequalities, we obtain
(B(z—2),z—2) <{((D—-B)(2—1x),z— %),

11



which, combined with the Cauchy-Schwarz inequality, yields

Iz = 2l < I(B = D) =)l — 2 < |B7H"21(B — D)(2 = 2|l — 2| p-
Therefore, the desired inequality now follows from the last one. [ |
Lemma 2.2.4 Let B,D € B. Then, for every x,z € R" and € > 0, we have

156 (Bx) — y& (D2)lls < llz — 2|5 + [|1B~2[(B — D)(ye (Dz) — &)l + Ve.
Proof. By Lemma 2.2.3, we obtain

152 (Bz) — y& (D)5 < |56 (Bx) — yé(Bx)||s + |y (Bx) — yo (Bi)| s + llye (Bi) — ye (D) 5
< ||gé(Bx) — y&(Ba)lls + lyé (Bz) — yé(Ba) |5 + B VII(B — D)(yé (D) — ).

Combining last inequality with (2.8) and (2.10), we find
156 (Bx) — y& (D2)lls < Ve + llo —&lls + | B7HV2|(B — D)(ye (D) — ),
which is equivalent to the desired inequality. [ |

Lemma 2.2.5 Let f : R" — R be a continuously differentiable function. The exact solution
y5(Bx — Vf(z)) of (2.4) is a continuous function of B € B and x € C.

Proof. Let w := Bx — V f(x), w := Bz — Vf(z) and w := Dz — Vf(z) with z,z € C and
B, D € B. It follows from Definition 2.2.1 that

(Blyc(w) —z) + Vf(2),ye(
(B(z —yc(w)) = Vf(2),y0 (@) — y& (w))

Summing the above inequalities
(Blye(w) —yo(w)) — Bl — 2) + Vf(z) = Vf(2),yé (@) — ye(w)) > 0,
and after some manipulation
~llyé (@) = yé(w)||f + (B(z — ),y (@) -y (w)) + (Vf(2) = Vf(2),y6 (@) — y&(w)) = 0.

Then,

=
|
<
Qw
g
VoIV

ﬁ”yg(w) —ye@)* < (IBllllz = «ll + |V () = VF(2)ID Iy (@) = ye (w)ll,

where in the left-hand side we used (2.2) and on the right-hand side we used the
Cauchy-Schwarz inequality and consistency of the matrix norm.
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Supposing y5 () # y5(w), from the above inequality and Eq. (2.1), we arrive at
lye (@) — yé(w)ll < L(L|lz = || + IV f(z) = VF(2)]) . (2.15)

Since inequality (2.15) is also valid when y&(w) = y&(w), x, z and B were taken arbitrarily,
the inequality is valid for all x, 2z € C' and B € B.
Now, again from Definition 2.2.1, we have in particular
(Blyc (@) — 2) + V f(2),ye () — yé(w))
(D(z = ye (@) = Vf(2),ye (@) — ye(w))
Summing the above inequalities yields

(By&(w) — Bz + Dz — DyE (), y5 () — yG(w)) > 0,

g
AVAAVS

or, equivalently (after some manipulation),
(B(yé(w) — ye () + (D = B)(2 — y£ (), ye (@) — yg (@) = 0.
The above inequality leads to
lye () = ye (@)||5 < (D = B)(z — ye (w)), ye (@) — yé(w)).
Assuming yZ () # yB(w), invoking (2.2) and the Cauchy-Schwarz inequality, we obtain
lye (@) = ye (@) < 1B llz —ye @)D - Bl < Lllz —ye@)|1D — B, (2.16)

where the last inequality follows from (2.1). On the other hand, from Definition 2.2.1, we
also have

(D(ye (w) = 2) + Vf(2),z = yg () = 0,

or, equivalently,
1 . .
o iE yo @) < |z —ye(@)llp < IVF@)I < V(@) + 1V f(z) = V()]
Combining the last inequality with (2.16) and Eq. (2.1), we obtain

lye (@) —yé (@) < B~ lz—ye (@)1 D-B|l < L* (IV f(2)]| + [V f(z) = V() ) [ D-BI,

(2.17)
Since (2.17) also holds when yZ () = y5(w), and because z, B, D were chosen arbitrarily,
we conclude that it is valid for all z € C' and B, D € B.

Finally, using (2.15), (2.17) and the triangle inequality, we find

lye (w) = ye (@) < lye (w) = ye (@) + llye (@) — ye (b)]
< Lz =zl + LA+ LID = BV f(z) = V()| + L*|IV f () || D — Bll,

which, combined with the fact that V f is continuous and B is compact, implies that y& (Bx —
V f(x)) is continuous as a function of z € C' and B € B. [
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Lemma 2.2.6 For every w,w € R™ and € > 0, we have
196 (w) = ye(@)|* < flw —w||* + 2¢.

Proof. Since g5(w) € C and yL(w) € C, it follows from Definition 2.2.1 that

~1

(o (w) —w,jo(w) —yo(@) <&, (b —yo(), jo(w) — yo (b)) < 0. (2.18)

S5

On the other hand, after some simple algebraic manipulations we have

lw — @] = (|6 (w) — ye(@)[* + 2(w — go(w) — (b =y (@), Go(w) — yo(w))
+l(w = ge(w) — (@ = ye ()|,
which implies that

15 (w) = y&(@)I° < llw = @]* + 2{Ge (w) — w, go(w) — ye(w))
+2( =y (), go(w) — yo(w)).
By the last inequality, (2.18) and (2.1), yields
15 (w) = yo(@)I* < flw —w]* + 2,

which is equivalent to the desired inequality. [ |
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Chapter 3

A Modified inexact variable metric
method for convex-constrained
optimization problem

In this chapter, we propose a modified inexact variable metric (M-IVM) method for solving
convex-constrained optimization problems. The convergence analysis of the proposed method
is established under suitable conditions. Some numerical experiments are given in order to
illustrate the performance of the new method. The material in this chapter is published
in [40].

3.1 The method and its convergence analysis

In this section, we present and study an inexact variable metric method for solving (1.1).
Basically, the method differs from the one studied in [4,14] by using a different inaccuracy
criterion for the search direction subproblems.

We are now able to formally describe the inexact method for solving (1.1).

Modified Inexact Variable Metric Method (M-IVM)

Step 0 (Initialization). Given ¢ € C, By € B, 7 € (0,1), an integer M > 1 and {6} C
[0,00). Set k = 0.

Step 1 (Inexact search direction). Set wy, = Byry — V f(2;). Compute dj, = §5* (wy,) —
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1., where 5% (wy) € C and
(Belan— (w) ~V (), y—8 (0n) < e 1= BNG8 (w)—alld,, Yy e, (1)
i.c., JoF (wg) is an e,-approximate solution of (2.4).
Step 2 (Termination Criterion). If ||dx|| = 0, then stop.

Step 3 (Backtracking). Define f4, = max{f(zs_;); 0 < j < min{k, M — 1}}. Set

a <+ 1.
Step 3.1. If
f(mk + adk) S fmaw + 7'0(<Vf(l‘k), dk>7 (32)
then oy = o, xp11 = o1 + ady, and go to Step 4. Otherwise, set o < /2 and go
to Step 3.1.

Step 4 (Update of the Hessian approximation). Form a matrix By, € B.

end

Remark 3.1.1 Some comments about the M-IVM are in order.

(i) Note that the problem (2.4) can be rewritten here, with wy, = By, —V f(2) and ignoring

constant terms, as
1 1 2
min o ly — (zx — By V. (@), (3:3)

and, consequently, (3.1) is equivalent to
(z, — By 'V f (z1) — 965 (), y — Gt (xn))p, < en, Yy €C,

where §5(z) € C. We can say that §io*(z) is an approximate projection (in the norm
| - |l5,) of an unconstrained quasi-Newton step.

(ii) If di = 0, then 5" (wy) = x1. Hence, it follows from (3.1) that

i.e., z € C is a stationary point of (1.1). Conversely, if z is a stationary point of (1.1),
then it follows from (3.1) with y = z;, and the optimality condition that §5* (wy) = .

(iii) Notice that Step 1 is well-defined because the exact solution of (2.4) clearly satisfies
(3.1). Nevertheless, iterative methods can be used to obtain an approximate solution of (2.4)
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such that condition (3.1) holds. If the conditional gradient is employed, for example, the
stopping criterion (2.12) now reads

(Bi(zj—1 — k) + Vf(2r), 2 — zjo1) = =0l 251 — 2B, - (3.4)
From item (i) in this remark, we observe that if z;_; = x, then
VzeC:(Vf(r),z— ) = (Vf(xr),z — zj-1) = (Vf(2r), zj — zj-1) > 0,

showing that z;_; is stationary for the original problem.

(iv) If 6, = 0 in (3.1), we obtain that §5*(wy) is the unique exact solution of the problem
(2.4) and then, the inexact variable metric method reduces to its exact version. Additionally,
if By, := A\l for every k > 0, where )\ is as in (1.3), the inexact variable metric method
corresponds to the inexact SPG method.

(v) As it will be proven later, the search directions generated by M-IVM are descent
directions, which will imply that the backtracking process given in Step 3 is well-defined.

(vi) There are different choices for, or ways to build, the matrix By. For example, B
can be the Hessian of function f if it is positive definite or a modification of it in order to
guarantee the positive definiteness of the approximation. The approximation B, can be a
specific multiple of the identity matrix such as the spectral choice in [12,14].

In order to investigate the global convergence of the method, we need to establish some
properties of its search directions.

Proposition 3.1.2 Assume that the sequence {0} satisfies 0, < 0 for all k > 0, where
0 €[0,1). Then, for every k > 0, we have

(i, Vf(zr)) < —(1 = 0°)L]|d]* (3:5)

and
1

(1+6)L

L
lye* (wi) = well < lldil| < =

SV, 36)
where yo* (wy,) is the exact solution of the problem (2.4).
Proof. Since dj, = §o* (wg) — T, from (3.1) with y = x5, we have

(Vf(zx), di) < (65 = DlldelB,, (3.7)
which, combined with the fact that 6, < 0 <1 for all k > 0, (2.1) and (2.2), yields

(Vf(an),di) < —(1—0%)L|dk||".
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Thus, (3.5) is proved. It follows from (3.7) and the Cauchy-Schwarz inequality that
(1 = O0)lldull, < —(Vf(zp), di) < [V (@) lldrll-

Hence, the second inequality in (3.6) now follows from (2.1), (2.2) and the fact that 6, < < 1
for all £ > 0. Now, from (2.2) and the triangle inequality, we obtain

lye* (wi) = well < 1B 12 llye* (we) — 2ill s,
< B Y lyet (wi) = et (wi)ll s, + 1B 121150 (wn) — 2|5,
< 1B 12 [vEk + lldxlls, ),

where the last inequality is due to (2.10) and dj, = §o* (wy) — zx. Since e, = 07|\ di||%, (see
Step 1 of the M-IVM), it follows from the last inequality that

lye* (wi) = well < (1+ 001 B; 12 il 5,

Therefore, the first inequality in (3.6) now follows from (2.1), (2.2) and the fact that 6, <
for all £ > 0.

[ |
We next establish the global convergence of the M-IVM.

Theorem 3.1.3 Assume that the level set Cy := {x € C': f(x) < f(xo)} is bounded and the
sequence {0y} satisfies O, < 0 for all k > 0, where § € [0,1). Then, either the M-IVM stops
at some stationary point xy, or every limit point of the generated sequence is stationary.

Proof. If the M-IVM stops at a point zy, then d, = 0. Hence, @gk(wk) = xj, and it follows
from (3.1) that
(Vf(xr),y —xr) 20, Vyel,

i.e., zx is a stationary point of (1.1). If dy # 0, for every k > 0, it follows from (3.5)
that dj, is a descent direction. So, the backtracking process given in Step 3 is well-defined,
and, as a consequence, the M-IVM is also well-defined. Our goal is now to show that every
limit point of the {z;} is a stationary point of (1.1). Let I(k) be an integer such that
k —min{k, M — 1} < (k) < k and

Flagy) = _max =~ f(2r-).

Using the first part of the proof of the theorem in [44] with m(k) := min{k, M — 1} (note
that this choice of m(k) satisfies the conditions of the mentioned theorem), it can be shown
that { f(z))} is monotonically nonincreasing, and from the boundedness of Cj we have that
{f(zyx))} admits a limit for £ — oco. From (3.2), it follows, for &k > M — 1, that

@) < flmiam-1) + Taam -0V (@aw-1), dag)-1))- (3.8)
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Now, since ox)—1) > 0 and (V f(xuw)-1))), dar)-1)) < 0, by taking limits in (3.8), it follows
that
lim vy -1) (VI (Zaw-1), dagy-1) = 0.

k—o00

Moreover, from (3.5) and (3.6), we conclude that

Bay-1)

Jim aqay - llye"™ ™ (waw-n) = zaw-nl* =0,

and following the idea in the proof of the theorem of [44], we can write
: By 2
lim oyl|yo® (wi) — x||* = 0. (3.9)
k—oo

Let z, € C be a limit point of {x;}. Relabel {z;} a subsequence converging to z.. From
(3.9), there exists a subsequence of indices K; C K such that: (i) limgeg, ||[yo* (wr) —ax = 0
or (11) limkeKl ap — 0.
(i) By the compactness of B we can extract a subsequence of indices Ky C K; such that
lim By = B, € B.
keKo
Hence, since y5* (wy) = yof (Byry — Vf(2x)), by continuity of y&(w) (see Lemma 2.2.5),
we have |ly5* (w,) — z.|| = 0, or equivalently, y5*(w.) = ., where w, = B.x, — Vf(z.).
Therefore, the definition y2*(w,) (see Definition 2.2.1) implies that

(Vf(zs),y—mz) >0, VyeC,

i.e., x, is a stationary point of (1.1).
(i) Let ay be the step chosen in the Step 3.2 such that ap = /2, where @; was the last
step that failed in (3.2), i.e.

fzr +ardy) > max (i) + TV f(wp), di) > f(or) + 70wV f(21), di)-
0<j<min{k,M—1}
(3.10)

Now define s = agdi. By the mean value theorem, there exists p; € [0, 1] such that the
relation in (3.10) can be written as

(Vf(xg + prsk), sk) = flag + sp) — f(zr) > 7(Vf(xk), k). (3.11)

On the other hand, as {x}} is bounded and f has continuous derivatives, we have, by (3.6),
that {dy} is bounded. Thus, since s, = 2aydy, and limgeg, ag, = 0, we obtain that s, goes

to zero as k € K goes to infinity. So, from (3.11), we have
Sk Sk

(V [z + pask), m> > 7(V f (1), m>-
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By taking limit in the last inequality as k € K3 goes to infinity, where K35 C K is such that
limper, {sk/||sk||} converges to s, we obtain (1 — 7)(V f(z,),s) > 0. Since (1 —7) > 0, we
have

(Vf(z.),s)>0. (3.12)

Now, as dj, is a descent direction for f at zy (see (3.5)) and s, = agdy, we find

s
(Vf (), =) <0.
sl
Hence, (Vf(z.),s) < 0, which, combined with (3.12), implies that (V f(z.),s) = 0. Using
(3.5), (3.6) and the definition of sj, we have
Sk

m> < —(1=)Llldull < —(1 = O)llyc" (wr) — wl.

(Vf(zr),

By the compactness of B we can extract a subsequence of indices K; C Kj3 such that
limgeg, Br = B. € B. Therefore, by taking limit in the last inequality as k € K, goes to
infinity, we have

0= (Vf(x.)s) < =(1=0)llye (w.) — a.]l.

Since < 1, we obtain y5* (w.) = ., which, from the definition y5" (w.) (see Definition 2.2.1),
implies that x, is a stationary point of (1.1). [ |

3.2 Numerical experiments

We split the numerical experiments in two sets. First, in Subsection 3.2.1, where polyhedral
feasible sets C'= {z € R™ : Az < b} are considered, we aim to evaluate the impact of the
new inexactness criterion (3.1) of M-IVM in comparison with the criterion (1.4) used in the
Inexact SPG (ISPG) of [4]. Then, in Subsection 3.2.2, we consider a feasible set for which
the use of inexact variable metric methods is quite appealing (because the cost of an exact
solution of (2.4) is prohibitive) and we show that M-IVM achieves good results with respect
to its exact counterpart and an off-the-shelf solver.

All experiments were carried out in Matlab R2018b, in a laptop running Mac OS X 10.13.6,
with 8GB of RAM and 1.8 Ghz Intel Core i5 processor.

We implemented M-IVM with the following parameters: 7 = 107*, A\pin = 1070, A\pax =
10'° and ), = 6 = 0.9995.
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3.2.1 Polyhedral feasible set

In order to put in perspective the new inexactness criterion (3.1) with the previously proposed
criterion (1.4), we consider a subset of the linearly constrained problems from the CUTEr
collection [43] used in [4, Table 2] and compare the results of ISPG with those obtained by
M-IVM.

Our implementation of ISPG consists in a modification of M-IVM where Step 1 is replaced
by the dual approach of [4] to inexactly solve the quadratic subproblems according to the
criterion (1.4) (see [4, Algorithm 5.1] for details). This dual approach demands an iterative
method to minimize a non-negative constrained convex quadratic. For this task, we have
used the MINQS8 solver [49] which implements an active-set method combining coordinate
searches and subspace minimization steps. Algorithm 5.1 of [4] was embedded in MINQS to
verify criterion (1.4) with the same parameter values as in [4, Section 8.5], namely, n = 0.8
and = 0.85 (8 € (0,1) multiplies the maximum allowed step-size to keep the iterates
interior enough).

For both methods, the tolerance in the stopping criterion ||dx|| < € was set to e = 1075.
For this set of experiments, we considered the variant of M-IVM with M = 10, By, = A1,
with Ay as in (1.3) (and Ao = 1).

Since the feasible set C' = {x € R" : Az < b}, with A € R™*" b € R™, is described
by linear inequality constraints, the M-IVM subproblems (2.4) are in fact (strictly convex)
quadratic programming problems. Bound constraints were treated as ordinary inequality
constraints. The subproblems (2.4) were solved by using a variant of the Frank-Wolfe
algorithm known as Away-Step Conditional Gradient (ASCG) [45], whose subproblems (see
Eq. (2.11)) were solved by the revised simplex method using Bland’s rule to avoid cycling [64,
Section 13.3].

In order to handle problems with unbounded C', we have included an additional constraint
corresponding to the ball of (2.13) in infinity norm, so that the subproblems (2.11) are
well-defined.

Table 3.1 presents the number of variables n, number of original inequality constraints m,
the number of outer (OUTIT) and inner (INNIT) iterations required by each method, the
CPU time in seconds and the objective value f(zj) at the last iterate. From these figures,
we observe that M-IVM requires less outer iterations than ISPG, at the cost of more inner
iterations for certain problems.

Concerning the computational cost of each inner iteration, in ISPG it is the cost of an
iteration of the non-negative constrained convex quadratic solver, whereas in each inner
iteration of M-IVM, which uses the ASCG, a linear programming problem has to be solved!.

IFor MINQS solver, it seems that the main cost per iteration is O(|I|?) for solving a linear system of size
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ISPG M-IVM

Problem n  m OUTIT INNIT time f(x;) OUTIT INNIT time f(xy)
HS24 2 3 9 22 024 -1.000 7 14 0.13 -1.000
HS35 3 1 16 19 022 0.1111 12 37 019 0.1111
HS351 3 1 16 19 021 0.1111 12 37 017 0.1111
HS36 3 1 8 43 0.32  -3300. 1 4 0.07  -3300.
HS37 3 2 11 24 021  -3456 11 28  0.29  -3456
HS44NEW 4 6 15 79 031 -15 3 3 0.09 -15
HS76 4 3 12 28 0.23 -4.6818 8 101 0.29 -4.6818
HS761 4 3 12 28 0.29 -4.6818 8 101 0.28 -4.6818
SIPOW1 2 2000 11 23 3.51 -1.0000 2 4 0.14 -1
SIPOWIM 2 2000 10 23 2.89 -1.0000 2 4 0.14 -1.0000
SIPOW2 2 2000 9 22 1.55 -1.0000 2 4 015 -1
SIPOW2M 2 2000 9 20  1.37 -1.0000 2 4 0.15 -1.0000
SIPOW3 4 2000 11 309 471 0.5347 2 7 0.76  0.5346
SIPOW4 4 2000 10 397 448 0.2724 2 3 1.14 0.2724

Table 3.1: Comparison of ISPG and M-IVM on CUTEr problems

Although this may suggest that the inner iteration of the latter is more expensive, CPU
times in Table 3.1 reveal that this is not always the case. Furthermore, in terms of time,
M-IVM is quite competitive with ISPG.

The results for some problems deserve a separate explanation. We remark that the
problems SIPOW (see [69] for details) are in fact linear programming problems that would
be solved in a single (outer) iteration by M-IVM if Ay = 0. Nevertheless, we also observe
a better performance of M-IVM for problems where the solution is an extreme point of the
feasible polyhedron, as in HS24, HS36 and HS44NEW. In this latter case, what happened is
that the solution of the linear programming problem in some iteration of ASCG coincided
with the optimal solution of the original problem.

|[I] < m, where I is the set of inactive constraints. On the other hand, each iteration of the revised simplex
costs O(m?). If the revised simplex takes g iterations, then O(gm?) is the cost for the inner iteration of
M-IVM, which is comparable with the cost of a MINQS iteration when ¢ and |I| are close to m.
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3.2.2 Least squares on the spectrahedron

In this subsection, we consider the least squares problem over the spectrahedron:

1 )
min S[[AX — Z|[7

st tr(X) =1 (3.13)
X =0,

where A, Z € R"™*" with m > n, S denotes the vector space of symmetric matrices of
order n equipped with the trace inner product (X,Y) = tr(XY) and induced norm || X||% =
(X, X), and X > 0 means that X is positive semidefinite.

Problem (3.13) is related to important applications in many areas. For example, in
nonlinear optimization, it can be used to estimate positive definite approximations for the
inverse Hessian in quasi-Newton methods, whereas in structural analysis it can be used to
estimate the compliance matrix of an elastic structure (see [80] for details).

Clearly, the feasible set C' = {X € S : tr(X) = 1, X > 0} is convex and compact
whereas the objective function of (3.13) is strictly convex, provided rank(A4) = n.

We remark that, for this feasible set, the computation of the exact orthogonal projection?
of a point Y € S” onto C requires the full eigendecomposition of Y which is prohibitive
for large values of n (for details, see [37,47]). Since the projection problem is equivalent to
(3.3) when B is a positive multiple of the identity, and (3.3) in its turn is equivalent to (2.4)
for any positive definite B, we expect that the cost of solving (2.4) ezactly becomes also
prohibitive for large dimensions. Therefore, it seems reasonable to consider inexact variable
metric methods in this case.

Since C' is neither polyhedral nor a finite intersection of easy convex sets, the approaches
in [4,14] are not directly applicable.

On the other hand, if an e-approximate solution of (2.4) is allowed (in the sense of (2.5)),
one could employ, for example, the Frank-Wolfe algorithm [32] whose iteration cost is dictated
by an extreme eigenpair computation when C' is the spectrahedron (see [38] and references
therein). If only a few Frank-Wolfe iterations are required to achieve (2.5), then overall
savings, in terms of computational effort, may be considerable when running variants of

M-IVM.

To numerically investigate this claim, we consider random instances of problem (3.13) and
compare the performance of variants of M-IVM with SPG using exact projections [37] and
an interior point method [75].

2with respect to the Frobenius norm.
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The first group of problems consists of dense small problems with n < m < 1000. The
matrices A were randomly generated with entries sampled from a uniform distribution in
the interval [0,1]. Then, given a positive integer ¢, we build a symmetric matrix X with
q eigenvalues equal to 1/q, one equal to —1, and all others equal to zero. Finally, we set
Z = AX. In general, this procedure results in nonzero residue problems. Note that the
construction of the Z results that the solution of the unconstrained problem is outside the
feasible set C.

For this group of problems, we consider two variants of M-IVM, namely, “Inexact Newton”
where B, = AT A and “Inexact SPG” where By = A\iI, with A\ as in (1.3), and compare
them with the off-the-shelf solver QSDP [75] which implements an interior point method for
convex quadratic semidefinite programming problems.

Since the classic Frank-Wolfe is known for its slow O(1/¢) convergence [35], we consider a
variant of the conditional gradient proposed in [2], and further enhanced and specialized to
the spectrahedron in [24], that we shall call FW-p. FW-p exploits an estimate of the solution
with rank p and at each iteration computes p eigenpairs (rather than one eigenpair in the
classic FW). It achieves O(klog(1/¢)) convergence rate, where k is the condition number®
of the subproblem (2.4). This scheme fits well the Inexact SPG because By = A/ implies
in kK = 1. Preliminary experiments revealed that it also works fine with Inexact Newton as
long as By is not ill-conditioned.

In both cases, the strategy for “guessing” the solution rank p, is paramount for achieving
faster convergence. Since the references [2,24] do not provide a strategy with theoretical
guarantees, here we also use a heuristic to update the rank estimate p: we start with p =1
and increase the value of the rank estimate to p+ 6 whenever the decrease in the subproblem
objective function is not substantial?. For the small-dense problems in Table 3.2, § = p and
for the large-sparse problems in Tables 3.3 and 3.4, 6 = 1. We also remark that the value of
p is decreased to p — r when r of the p kept eigenvalues are close to zero.

The tolerance in the stopping criterion ||dg|| < € in the variants of M-IVM was set to
€ = 10~ for the problems in Table 3.2 and ¢ = 1072 for the problems of Tables 3.3 and 3.4.
The tolerance for the duality gap in QSDP was set to 1072,

Concerning the parameter M of the nonmonotone line search, we observed in preliminary
numerical experiments that the full-step (o, = 1) was always accepted in the “Inexact
Newton”, so we kept M = 1 for this variant. For the “Inexact SPG”, we did not observe a
pronounced improvement for M = 5 or M = 10 for this test set, thus we decided to go on
with the monotone line search (M = 1).

3 Assuming that the convex function ¢ is a-strongly convex and L-smooth, the corresponding condition
number is given by x = L/a. See [2] for details.
4the reduction in the objective should be at least one percent of its value in the previous iterate.
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For each problem, we consider 3 starting points given by Xo(v) = (1 —v)(1/n)I + X,
where X = ejeT (e, is the first canonical vector) and ~ € {0,0.5,0.99}.

Table 3.2 brings the number of iterations, running time in seconds, and the achieved
objective value f(Xj). The smallest running time for each problem is highlighted in bold.
From these results, we observe that the variants of M-IVM provide a non-negligible speed-up
with respect to QSDP in the majority of the problems.

In the second group of problems, we consider sparse matrices with dimensions m > n >
1000. The matrix A was build using the command sprand(m,n,le-4) from Matlab, and
X = QDQT, where Q is the product of a few Givens rotation matrices and D is a diagonal
matrix with ¢ entries equal to one and all others equal to zero. This ensures that Z = AX
is also sparse.

For this second test set, the interior point solver QSDP was left out of comparison due to
excessively high running times. We replace it by a version of SPG where the projection is
computed “exactly” as in [37]. This version is referred in Table 3.3 and 3.4 as “Exact SPG”.

From Tables 3.3 and 3.4, we observe that the Inexact SPG surpassed SPG with exact
projections in the majority of problems. Inexact Newton also shows a good performance and
becomes faster than Exact SPG as n and m increase.
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QSDP Inexact Newton Inexact SPG
n m  q v it time  f(Xy) it time f(Xy) it time  f(Xk)
10 100 4 0 9 124 913 3 024 913 19 0.36 9.13
05 9 067 913 4 0.11 913 23 027 9.13
099 9 055 913 4 0.09 913 22 0.19 9.13
50 200 4 0 16 254 1651 4 0.61 1651 50 1.04 16.51
05 16 198 1651 4 0.33 1651 41 0.71 16.51
099 16 154 1651 4 0.55 16.51 50 0.74  16.51
50 200 10 0 14 154 1670 4 0.41 1670 29 0.73 16.70
05 14 143 1670 4 0.41 16.70 49 0.92 16.70
099 14 130 16.70 5 0.47 1670 54 088 16.70
100 400 5 0 18 411 29.07 3 0.81 29.04 50 1.32 29.04
0.5 18 3.23 29.07 4 0.59 29.04 73 128 29.04
099 18 3.07 29.07 4 1.05 2904 72 156 29.04
200 800 5 0 23 11.04 53.02 4 654 5298 8 3.82 5299
0.5 23 11.31 53.02 4 631 5298 79 3.03 5299
099 23 11.38 53.02 4 6.0 5298 79 297 5298
200 800 20 0 20 10.53 52.60 4 1746 52.58 H3 2.79 5259
0.5 20 884 52,60 4 1479 5258 75 4.91 5259
099 20 883 5260 5 18.05 5258 91 4.02 52.60
400 1000 5 0 28 7401 6531 5 57.81 6525 96 12.08 65.28
0.5 28 7210 6531 5 41.92 65.25 102 12.02 65.35
099 28 73.05 6531 5 4479 6525 125 13.35 62.28

Table 3.2: Numerical results for dense small problems.
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Exact SPG

Inexact Newton

Inexact SPG

n m g v it time f(Xy) it time f(Xy) it time f(Xj)
1000 2000 10 0.0 5 2.03 0.0794 4 596 0.0794 11 256 0.0794
0.5 10 3.28 0.0794 3 426 0.0794 9 2.25 0.0794

1.0 7 239 00794 4 6.21 0.0794 11 249 0.0794

1000 2000 20 00 6 2.34 0.2311 4 58 0.2311 7 238 0.2311
05 7 248 0.2311 4 537 02311 7 231 0.2311

1.0 8 2.73 0.2311 4 741 0.2311 10 3.38 0.2311

2000 4000 10 0.0 5 1233 0.2304 3 822 02304 5 6.47 0.2304
05 6 1483 02304 3 794 02304 6 7.65 0.2304

1.0 5 1220 0.2304 3 8.06 0.2304 9 9.06 0.2304

2000 4000 20 0.0 5 12.22 09442 4 11.11 0.9442 5 7.94 0.9442
0.5 5 12.04 09442 4 10.67 09442 7 8.33 0.9442

1.0 6 2092 09442 4 1097 09442 6 7.21 0.9442

3000 6000 10 0.0 &5 3787 0.1377 3 19.14 0.1377 6 18.71 0.1377
05 5 3782 01377 3 18.04 0.1377 6 19.11 0.1377

1.0 7 49.08 0.1377 3 1845 0.1377 5 15.96 0.1377

Table 3.3: Numerical results for sparse medium-scale problems.
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Exact SPG

Inexact Newton

Inexact SPG

n m g vy it time f(X;) it time f(Xy) it time  f(Xy)
3000 6000 20 0.0 3 2495 1.0832 4 2468 10832 4 15.26 1.0832
0.5 4 3090 1.0832 4 2452 10832 6 16.98 1.0833

1.0 4 3038 1.0832 4 2455 1.0832 5 17.44 1.0832

4000 8000 10 0.0 5 &5.50 0.6192 3 34.06 0.6192 6 33.98 0.6192
05 4 109 0.6192 3 3246 0.6192 7 32.22 0.6192

1.0 5 112 0.6192 3 32.69 0.6192 6 29.55 0.6192

4000 8000 20 0.0 5 117 29650 5 56.92 29650 5 35.69 2.9650
0.5 5 116 29650 5 56.27 29650 10 54.45 2.9650

1.0 6 144 29650 5 5897 29650 7 40.63 2.9650

5000 10000 10 0.0 6 258 0.9923 4 9354 0.9923 8 64.68 0.9923
05 7 296 09923 4 9046 09923 8 69.61 0.9923

1.0 7 300 0.9923 4 90.51 09923 9 77.77 0.9923

5000 10000 20 0.0 3 107 29388 4 89.92 29388 7 80.02 2.9388
05 4 138 29388 4 9148 2938 6 86.28 2.9388

1.0 4 139 29388 4 91.86 29388 8 83.77 2.9388

Table 3.4: Numerical results for sparse medium-scale problems.
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Chapter 4

Gauss-Newton methods with
approximate projections for
convex-constrained nonlinear least
squares problems

In this Chapter, we present Gauss-Newton methods with approximate projections for solving
convex-constrained nonlinear least squares problems. We first propose a local method and
discuss its convergence theorem as well as results on the rate. Our analysis is done by
using a majorant condition which covers two large families of nonlinear functions, namely,
one satisfying a Lipschitz condition and another one satisfying a Smale condition. We then
propose a global Gauss-Newton method with approximate projections for solving nonlinear
least squares problems. Our global version combines the local method with the nonmonotone
line search based on [44]. Some numerical experiments of proposed methods are discussed.
The results of this chapter are published in [39].

4.1 The method and its local convergence

This section describes and investigates a Gauss-Newton method with approximate
projections (GNM-AP) for solving (1.8). Basically, the method consists of computing an
approximate projection of the unconstrained Gauss-Newton step onto the feasible set C.
The main local convergence theorem of the method and results on its rate are established,
and its proof is postponed to Subsection 4.1.1. As a result of our analysis, made using a
majorant condition, we covers two applications of such condition: one satisfying a Lipschitz
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condition and another one satisfying a Smale condition. We also present, in this section, two
examples in which all conditions of the convergence theorem hold. The convergence results
for these special cases are established in this section. The GNM-AP is formally described as
follows.

GNM-AP

Step 0 (Initialization). Let zy € C, {0} C [0, 00) be given, and set k = 0.

Step 1 (Projected Gauss-Newton step). Define B, = F'(z;)"F'(x;) and compute
wy, = Byay — F'(z)T F(2) € R™. Compute 2., € C such that

(wy, = Brrpyr,y — o) < e = Oillon —allf,, Yy el (4.1)
i.e., Ty 1S an gx—approximate solution of (2.4), with B = By and w = wy.

Step 2 (Termination criterion and update). If z;,1 = xy, then stop; Otherwise, set
k < k+ 1 and go to Step 1.

end

Remark 4.1.1 Some comments about the GNM-AP are in order.
(i) Note that, if By, € B, then (4.1) is equivalent to

(z, — By 'F'(x1) T F(z) — Tpp1, ¥ — Tr1) B, < ek, Vy€eC,

therefore, we can say that x4, is an approximate projection (in the norm || - ||p,) of an
Gauss-Newton step yy, := x5, — B 'F'(21,)T F (). Since the Gauss-Newton step y; may be
infeasible for the constraint set C', it is necessary to compute an ¢,—approximate projection
of it onto C. As already mentioned, such an approximate projection can be efficiently
computed, for example, by the conditional gradient method

(ii) In Step 2, if x4 = x, it follows from Step 1 and definition of wy that

0> (wg — BrTgs1, Y — Tpy1) = <—F/($Uk)TF($k), Y — Tk) B,

for all y € C, i.e. zy is a stationary point of (1.1).

(iii) The characterization of x,,; as an approximate projection of the unconstrained
Gauss-Newton step with respect to the norm || - ||, is essential in order to establish the
local convergence of the method as well as its fast convergence rate.
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In order to analyze GNM-AP, we suppose that the following assumptions hold:

(A1) The point z, satisfies the first-order necessary condition for (1.8), i.e.
(Fl(z,)'F(z,),z —2,) >0, VY&,
and F'(z,) is injective;
(A2) The sequence {6;} satisfies 0, < @ for all k > 0, where § € [0, 1).
For simplicity, let us consider the following constants
c=|F(zs)l, B:=F' (e, w:= B||F'(z.)], 6 :==sup{t € [0,R) : Blx.,t) C U},  (4.2)

where R > 0 is a given scalar.

We first state a local convergence theorem for GNM-AP under a majorant condition. For
technical reasons and for the convenience of the reader, the proof of the next theorem will
be given in the next subsection.

Theorem 4.1.2 Suppose that there exists a continuously differentiable function f : [0, R) —
R such that

BIF (z) = F'(ze + 7(z — 2.))l| < f'(0(2) = [ (70(2)), (4.3)

where © € B(x,,d), 7 € [0,1] and o(z) := ||z — x.||, and
h1l) f(0) =0 and f'(0) = —1;

h2) [’ is convex and strictly increasing;

h3) cB((1+V2)k +1)D*f(0) + k0 <1 — 0.

Let be given positive constants v :=sup {t € [0, R) : f'(t) < 0},

p = sup {t € (0,v):

0 + 146 [0 )~ 1) + B0 VAW + D] 48O +1 ),
(=0 P S

r:=min{p, 6}.

Then GNM-AP with starting point xg € CNB(x., 7)\{:} is well-defined, the generated {xy}
is contained in B(x,,r) N C, converges to x, and satisfies

[2pr = @l < [lox — .| (4.5)
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and
[f'(a(20)) + 1+ &] [0(20) ['(0(0)) — f(o(20))]
(1 = Op)[o(z0) f'(0(20))]?
, [0+ VDB [ (o(an)) + 1] = oz (o (ao))] [f (o@) + 1+
(1 — Or)o (o) [f/(o(20))]

+

ek — .

[2h41 — | <

[z —

cB [f'(o(x0)) +1]
(1= Ok)o(xo) [f'(o(x0))]

slze — ., (4.6)
forallk=0,1,....

Remark 4.1.3 (i) Since ||z — z.|| < o(xg) = ||xro — .|| (see (4.5)), it follows from (4.6)
and (A2) that

[2h41 — 2]

[f'(a(w0)) + 1+ K] [(1 — O)a(wo) f'(o(w0)) — f(o(x0)) + cB(1+ v2)(f'(o(w0)) +1)]

< .

(1 =0)a(xo)[f'(o(x0)))?

cB [f'(o(x0)) +1]

+ - [

(1 = 0)o(xo)[f(o(20))]?
which, combined with (4.4) and the fact that xy € CNB(z,,7)\{z.}, implies that GNM-AP
is linearly convergent to z.,.

(ii) Note that, if ¢ = 0 and limsup,_,, .. 6x = 0, then (4.6) implies that GNM-AP converges
quadratically to z,.

(iii) If the scalar 6 in (A2) is equal to zero (in particular, 8, = 0 for all & > 0), then iterative
Zpy1 in Step 1 of GNM-AP corresponds to the exact solution of (2.4), with B = By and
w = wg. In this case, Theorem 4.1.2 is similar to [29, Theorem 7|, which is related to the
Gauss-Newton method for solving unconstrained nonlinear least squares problems.

Before specializing Theorem 4.1.2 for two important classes of functions, we present an
example in which all conditions of Theorem 4.1.2 hold. The following result, which gives a
simpler condition to check that condition (4.3) whenever the functions under consideration
are twice continuously differentiable, is needed.

Lemma 4.1.4 Let z, € U and R > 0 be given, and assume that F' is twice continuously
differentiable on U. If there exists a function f : [0, R) — R twice continuously differentiable
and satisfying

BIF @) < f'(llz = =), = € B(aw, R),

then F' and f satisfy (4.3).

Proof. The proof follows the same pattern as outlined in [29, Lemma 22]. [ |
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Example 4.1.5 Consider the constrained nonlinear least squares problem (1.1) with C' =
R? and .
Fe) = = (Jlal*z — 64(3,2,V3)) .

Note that =, = 2(3,2,/3) is a stationary point of (1.1) in this case. Let us apply
Theorem 4.1.2 for this instance. First, from (4.2), we have ¢ = 0, § = (25/1152)y/137,

Kk = (48/25)8+/82. Moreover, since the second derivative of F' is given by

9

F'@)(v,0) =

S ST 10,
[—gllﬂfll P o)e Sl olPe 4 e T v

for every z,v € R® and x # 0, and F”(0) = 0, we obtain
IF" (@) < =)*?, =€ R,

or, equivalently,
BIF" (@) < f'(lz —z.l)), = €R,

where f:[0,00) — R is given by

9
t) = —pt3 —t.
()= =5
Hence, it follows from Lemma 4.1.4 that F' and f satisfy (4.3). In particular, as f(0) = 0,
f'(t) = (38/5)t>% — 1, /(0) = —1 and f”(t) = Bt?/* > 0, we obtain that f satisfies h1 and
h2. Therefore, if § < [1/(1 + k)] =~ 0.2 (i.e., h3 holds), it follows from Theorem 4.1.2 that
GNM-AP with starting point zy € R} N B(z.,7)\{z.}, where

3/5

(4.7)

[5(155 +48 — 240(1 + 1)) — 5/(240(1 + 1) — 15k — 48)2 + 864(0(1 + 1) — 1)
548 ’

is well-defined, the generated {x} is contained in B(z.,7)NR3 , converges to ., and satisfies

5 932 7/3 15 2/3
s =2l < o [ o) "+ RO T gy —a?, k=0,

(1 —0) | 9820 (x0)19/3 + 3080 (x0)%/> + 5

Note that, if # = 0.1, then the radius of convergence r in (4.7) is approximately equal to 1.

We next specialize Theorem 4.1.2 for two important classes of functions. In the first one,
F’ satisfies a Lipschitz-like condition [41,42,48] and, in the second one, F is an analytic
function satisfying a Smale condition [71,72].

Corollary 4.1.6 Suppose that there exists a L > 0 such that

[(1+V2)k +1]cBL+ KO

A= (1—0)

<1, B||F'(z) = F(zi+7(x —zy))|| < LA = 7)o(x), (4.8)
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where x € B(x,,0), 7 € [0,1] and o(x) = ||z — z.||. Let be given the positive constant

W:mm{u—Vﬁ—Sﬂ—Mﬂ—Q(ﬁ'

2L ’

where 1 := 4+ Kk — 20(1 + k) + 2¢(1 + V/2)BL. Then GNM-AP with starting point zy €
CNB(xy,r)\{z.} is well-defined, the generated {x\} is contained in B(x.,r) N C, converges
to x, and satisfies
[k r1 = 2| <l — 2] (4.9)
and
kL + L0 ()
1 —0p)[1 — Lo(xo)]?

N (14 v2)k 4+ 1]eBL + (1 +/2)BL20(20)
(1 — 9k>[1 — EO’(.I(])]Q

ek(ﬁ(f(l'o) + k)

[ 21 = 2| < 2 g — a.|” + [z — 2|

ley — x|, YEk=0,1,....

Proof. Tt is immediate to prove that F', z, and f : [0,5) — R defined by f(t) = Lt?/2 —t,
satisfy inequality (4.3), conditions h1 and h2. Since [(1 + v/2)x + 1] ¢ 3L + kf < 1 — 0, the
condition h3 also holds. In this case, it is easy to see that the constants v and p as defined
in Theorem 4.1.2, satisfy

VP8 -0—N)
2L

As a consequence, 0 < r = min{d, p}. Therefore, as F, r, f and z, satisfy all of the
hypotheses of Theorem 4.1.2, taking xo € C'N B(x,,r)\{z.} the statements of the corollary
follow from Theorem 4.1.2. [ |

0<p

<v=1/L.

We next specialize Theorem 4.1.2 for the class of analytic functions satisfying a Smale
condition.

Corollary 4.1.7 Suppose that

1/(n—1)
< +oo and 2yeB((1+V2)k+1)+x0 <1—0.

F™)(x,)
n!

V= SHPBH

n>1

Let constants a = vcf3, b= (1 + v/2)ycp,
p = inf {s € (V2/2,1) :p(s) :==Cs* + s + 15 + (b—1)s+b < 0} (4.10)

where ¢ :== —4+ (k+1)20, n:=1—rk+a+b(k—1), and 1 :=3+r— (k+1)0+a+b(k—1),
and
ro=min{(1 = p)/v, 0} .
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Then GNM-AP with starting point xg € CNB(x.,7)\{:} is well-defined, the generated {xy}
is contained in B(x,,r) N C, converges to x, and satisfies

[2p1 = @l < [log = ] (4.11)

and

v [+ (k= 1)1 = yo(z0))?]
(1= 0k) [1 =201 —vo(x0))]
[(1+v2)eB(1 = (1 =70 (20))?) — Oro(wo) (1 — 2(1 — yo(x0))*)] [1 4 (v — 1)(1 — yo(20))?]
(1 = Or)o (o) [1 — 2(1 — yo(z0))?)?
B [1— (1 —~o(x0))?] (1 —~o(20))?
(1= Or)o (o) [1 — 2(1 — yo(0))?)?

2

[ i1 — 2| < 5llek — 24

[z — @l (4.12)

forallk=0,1,....

Proof. Consider the real function f :[0,1/v) — R defined by

=

— 2t.

It is straightforward to show that f is analytic and that
F0)=0,f'(t) = 1/(1 =t)* = 2, f'(0) = =1, f"(t) = (27)/(1 = 1), f"(0) = i7",
for n > 2. It follows from the last equalities that f satisfies h1l and h2. Since
2veB((1+V2)k +1) +kf < 1 —6,
condition h3 also holds. Now, note that
BIF" (@)l < f(le = ),

for all € B(z,,1/7) N C, the proof of this fact follows the same pattern as outlined
in [29, Lemma 21]. As f”(t) = (27)/(1 — ~t)3, we conclude, from Lemma 4.1.4, that I and
f satisfy (4.3) with R = 1/~. In this case,

v=(2-2)/2y < 1/n.

Now, we will obtain the constant p as defined in Theorem 4.1.2. For simplicity, consider the
following change of variable s = 1 — ~¢, which implies that ¢t = (1 — s)/v. Moreover, if ¢
satisfies 0 < t < v = (2 — v/2)27, then v/2/2 < s < 1. Hence, to determine the constant p
as defined in Theorem 4.1.2 is equivalent to determine the constant s such that

pi= inf{s € (V2/2,1) i p(s) i=Cs* +0s° + 18+ (b—1)s + b < 0},

35



where a = vef, b = (1 +V2)yefB, ¢ == =4+ (s +1)20, n == 1 —k +a + b(k — 1), and
t:=3+kK—(k+1)0+a+b(k—1). Thus, taking into account the change of variable, we
have p = (1 — p)/~ and

r = min {(1 - )/, }.

Thus, as F', r, f and z, satisfy all hypothesis of Theorem 4.1.2, taking xg € CNB(x,, r)\{z.},
the statements of the corollary follow from Theorem 4.1.2. [

We end this section by presenting a numerical example, adapted from Dedieu and Shub
[22], in which all conditions of Corollary 4.1.6 hold.

Example 4.1.8 Let F : R — R? such that F(z) = (z,2% + a)”, where a € R is given, and
consider

gli;lm |F(@)))? = 2* + (2a + 1)2* + a*. (4.13)
Note that z, = 0 is a stationary point of (4.13). Let us apply Corollary 4.1.6 for this instance.
First, from (4.2), we have ¢ = |a|, 8 = 1, kK = 1. Moreover, since | F'(x) — F'(tz)| =
(1 — 7)2|x|, for all x € R and 7 € [0, 1], we obtain the Lipschitz-Like constant £ is 2.
Therefore, if 2[(2 + v/2)|a| + 0] < 1 (i.e., the first inequality in (4.8) holds), it follows from
Corollary 4.1.6 that GNM-AP with starting point xy € [—2,2] N B(x., r)\{z.}, where

5— 40+ 4lal(1 4+ v2) — / [5— 40 + dla|(1 + V2)]” — 8(1 — 20— 2(2 + VD)al)
r= 1 ,

(4.14)

is well-defined, the generated {x)} is contained in B(z,,r) N [—2,2], converges to z, and
satisfies

1+ 20(z0) 0(1 + 20(x0))
(1= 0)[1 — 20()] (1= 0)[1 — 20(x0)
L 2al2+ V2 +2(1+V2)a(x0))

- —nl, Vk=0,1,....
(1= 0)[1 — 20(x0)? o =@l ¥k =0

[k — 2| < gl —z]|* + ]Ilwk—w*ll

Note that, if @ = 0 and § = 0.1, then the radius of convergence r in (4.14) is approximately
equal to 0.2.

4.1.1 Proof of Theorem 4.1.2

Our goal in this subsection is to prove Theorem 4.1.2. To this end, we first present some
auxiliary results, which establish positiveness of the constants §, v and p, as well as some
useful relationships between the majorant function and the nonlinear function F.

First of all, note that constant § in (4.2) is positive, because U is an open set and z, € U.
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Proposition 4.1.9 The constant v as in Theorem 4.1.2 is positive and f'(t) < 0 for all
t € (0,v). Furthermore, the following functions defined on the interval (0, v)

"t 1 tf'(t) — f(t "t 1
PO SR () B o NN (7 1) Y U L SR
f'(t) /(@) 2 t
are positive and increasing.
Proof. First, as f’ is continuous in (0, R) and f'(0) = —1, there exists ¢ > 0 such that

f'(t) < 0 for all t € (0,¢). Hence, v > 0. Moreover, using h2 and the definition of v, it
follows that f'(t) < 0 for all t € (0,v). Note now that the first two functions in (4.15) are
positive and increasing due to the facts that —1 < f'(t) < 0, for all ¢t € [0,v), and f’ is
strictly increasing. Finally, for the proofs that the last two functions in (4.15) are positive
and increasing, see items ii and iii of [29, Proposition 10]. [ |

We next prove, in particular, that constant p in (4.4) is positive.

Proposition 4.1.10 The constant p is positive and there holds

[F'(t) + 1+ &] [(1 = 0)tf'(t) = f(t) + B+ V2)(F'(t) +1)] + cB[f'(¢) +1]
(L= 0)elf'(1))2

<1, (4.16)

for allt € (0, p).

Proof. Using h1 and some algebraic manipulation, we obtain

tf'(t) — f() ft) = f(0) f+1_ ft) = f0)

_ / _
t = |70 t—0 |’ t t—0 7
which, combined with the fact that f'(0) = —1, yields
lim [tf'(t) — f(8)]/t =0,  lm[f'(¢) + 1]/t = D" f(0), (4.17)
t—0 t—0

where the existence of the right derivative DT f’(0) is guaranteed due to the fact that f’ is
convex. Note now that equation (4.16) is equivalent to

SO +1+ AN - FO], OO +1+6 | BA+V)F(H) +1+6](f(H)+1)

(1= O)[tf () (1= 0)f'(t) (1= O)t[f'(t))?
B (1) +1]
(1= O (O (4.18)
Hence, using f'(0) = —1, it follows from (4.18) and (4.17) that
10+ 14w [0 0L — £(0) + B+ VA + ] + B L) + 1
0 (1 =0)lf ()]
K0+ cB(1+ V2)kD* f/(0) + eBDTf/(0) B [(1+V2)k+ 1] DT f'(0) + k0

(1—6) (1-0)
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Therefore, since h3 implies that [c¢B[(1 + v/2)x + 1]D* f/(0) + x0]/[(1 — )] < 1, we conclude
that there exists an € > 0 such that

[f/() + 1+ K] [(1 = 0)tf'(t) = f(t) + cBA+ V2)(f'(t) + 1)] + B[ (t) +1]
(1= Otf/ (1))

for all t € (0,¢). So, e < p, which proves the first statement.

<1,

Again, since (4.16) is equivalent to (4.18), the proof of the last part of proposition trivially
follows from definition of p and last part of Proposition 4.1.9. [ |

The next two lemmas present some useful relationships between operator F' and majorant
function f.

Lemma 4.1.11 Let x € U. If o(x) < min{v,d}, then following statements hold:
i) BIF(z) = [F(z) + F(z)(z. —2)][| < f0) = [flo(x) + f'(o(x)(0—o(z))] =
es(o(x),0);

ii) B(x) = F'(x)TF'() is invertible and

P (@) < ﬁé)) |F/(2)! — P <

In particular, B(z) = F'(x)TF'(x) is invertible in B(x.,,r).

Proof. The proof follows the pattern of the proofs of Lemmas 13 and 14 in [29] (see also
Lemma 7 in [42]). |

Lemma 4.1.12 Let 2 € U. If o(z) < min{v, 8}, then the following inequalities hold:
i) |B(@)|V? < [f'(o(x) + 1 +]/8;
i) [|B(x)~"* < =B/[f (o(2))];
i) Bl|(B(z) — B(z:))F'(z)']| < (f'(o(@)) + 2+ &) (f'(0(x)) + 1),
where B(x) is defined as in Lemma 4.1.11(ii).
Proof. (i) Using inequality in (4.3) and definition of  in (4.2), we have
BIIF (@) < BIIF (x) — F'(w)|| + BIF (@) < f'(o(x)) + 1+ 5. (4.19)

As | B(2)||'? = ||F'(z)TF'(2)||'/? = || F'(z)]|, the desired inequality follows.
(i) To show item ii, use the definition of B, the last equality in (2.3) and Lemma 4.1.11(ii).
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(iii) Note that the definition of B(x), some algebraic manipulations and (2.3) gives

BII(B(x) — B(x.))F' ()|
= BIF' ()" (F'(x) — F'(2.))F'(2.)" + (F'(2) = F'(x.))"]|
< (IF' @) F ()] + 1)BIF (x) = F'(x.)],

which, combined with definition of # in (4.2) and inequalities in (4.3) and (4.19), yields the
desired inequality. [

Lemma 4.1.11 implies that B is invertible for any x € B(x,,r) and hence F'(x)! and g5 (w),
characterized as an approximate projection of a step y = x — F'(z)"F(x), are well-defined in
this region. Therefore, since the starting point zy € C'N B(z,,r), we have z; is well-defined,
but we do not show that z; € C N B(x,,r) and, therefore, if the next iteration xs will be
well-defined. In the next lemma, we ensure that sequence {||xy — x.||} is strictly decreasing
and, hence, that {x}} is well-defined and contained in C' N B(z,, 7).

Lemma 4.1.13 Let x;, € C N B(xy,r). Then, for every k >0,

[f(o(zr) +1 + K] [o(z) f(a(2) = flo ()]
(1= 6k) [o(r) f (o (1))
L Flo@) +1+ 4 (1 +V2)eB[f'(o(xr) + 1] — Oko(xx) ' (0 (xx))]
[

o — 2.

[2k41 — 2]l <

(1 = Op)o(x) [ (o(zn)))? (B |
B+,
= ot Pl ™ 420
As a consequence,
|Tkr1 — | < ||k — 24| (4.21)

Proof. Since z, is a stationary point of (1.1) (see (A1)), we trivially have

Hence, it follows from Lemma 2.2.4 with B = By, © = xp — F'(x) F(x1), & = 2, —
F'(2.)TF(x,) and & = 07 ||z, — w4413, that

G0 (wi) — 2.5, < | B 1M (By — By)(F' () F(2.))|
+ o, — F'(xp) ' F () — 20+ F'(2) F(22) || B, + Okllzr — Tia 5,

For simplicity, the notation defines the following terms:
Alzy, 2,) = ||op — F'(2) F(21) — 20 + F'(2) F () || 5, (4.22)

39



and
Alzy, ) = | B 2By — B F ()| F (). (4.23)
So, from the three latter inequalities, we obtain
lzkt1 — 2B, < Alwr,27) + Alzr, @) + Oullzr — 241l B,
Hence, since ||z, — Tp41]l5, < l|lZri1 — ||, + | BrllV/?||zr — 2.||, we obtain
(1= O | 2nsr — @ulls, < Alze, ) + Alwg, @) + Ol Byl |2x — ..
Since 0 < 1, for all k£ > 0, (see (A2)), the last inequality and (2.2) imply that
B-1||1/2 B2 _
I3 [
(1—6y) (1—6)
- 1/2
Ok [11 By, 1| B
(1—0k)

|zh1 — 2| < Az, ") +

| ek — ]| (4.24)

Now, we will obtain upper bounds of A(zy,z*) and A(wg,z*). First, some algebraic
manipulations and the second equality in (2.3) yield
2y — F' () F (ar) — o 4 F'(2.) F ()|

= (| F" () T[F" () (0 — 22) = F ) + F@.)] + (F'(2.)" = F'(a) ) F (@) |

< F' (@) MI1F(2.) = [F(ar) + F' (@) (@ — 2] ||+ | F (@) = F' @)1 F ()]
Combining last inequality, Lemma 4.1.11 and definition of ¢ in (4.2), we have
er(o(@k),0) V2eB[f' (o (xy)) + 1]
—f'(o(xr)) —f'o(zr)

which, combined with (4.22), the fact that || -||5, < || Bxl|*/?||- || and Lemma 4.1.12(i), yields

low — F' (@) F2r) = 2+ F'(2,) F ()| =

Alzy, @*) < | Bill2llar — F'(22) F(ax) — w0+ F'(2.) F ()

(f'(o(zk) + 1+ K) '
= —Bf'(o(zx)) (ef(a(xk), 0) + \/§Cﬁ[f (o(zx)) + 1]) (4.25)
On the other hand, from definition in (4.23) and Lemma 4.1.12(ii)—(iii), we have
A(zg, ) C (f(ola) + 2+ k) (f (o(xr)) + 1). (4.26)

< -
- —f'(o(x))
Hence, using (4.24)—(4.26) and Lemma 4.1.12(i)—(ii), we obtain

[f'(o(xx)) + 1+ K] ep(o (), 0) + (1 + V2)cB [f' (o (zx)) + 1)°
(1= 00) [f'(o (i)

+65 (1 +V2)s + 1] [f(o(ar) + 1] Ou(f'(o(z1) + 1+ k)

(1= 6y) [/ (o)) (1 —0k) f'(o(xr))

[z — 2l <

J(:Ek)7
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which, combined with definition of ef(c(zy),0) in Lemmas 4.1.11(i) and h1, proves (4.20).

Now, using 6, < 0, for all k > 0, (see (A2)), we obtain that the right-hand side of (4.20)
is equivalent to

[f'(o(zx)) + 1+ ] [(1 = O)o(zx) f'(0(x1)) — f(o(x1) + cB(1+ V2)(f (0(x1)) +1)]
(1= 0)a(zx) [f/(o(xp)))

cB[f'(o(er)) + 1

(1 =)o (ar) [f(o ()]
Therefore, as x, € CNB(xy,r)/{x.}, it follows from Proposition 4.1.10 with ¢ = o(zy) that
the quantity in the bracket above is less than one and hence (4.21) follows. |
Proof of Theorem 4.1.2: Since zy € C N B(x,7)/{x.}, combining Lemma 4.1.11(ii),
inequality (4.21) and an induction argument, we have that (4.5) holds and {z}} is well-defined
and remains in C'N B(x,,r). Our goal is now to show that {z;} converges to z,. Using the
second part of Lemma 4.1.13, we find

o(xg).

o(x) = ||lzr — x| < ||xo — 24]| = o(20), k=1,2.... (4.27)

Hence, by combining (4.20) with last part of Proposition 4.1.9, we obtain

[f"(a(20)) + 1+ &][0(20) ["((x0)) = f(o(20))]
(1= 6k)[o (o) f"(o(0))?
L 0+ V2)eBf"(0(w0) + 1+ k] [f'(0(x0)) + 1] + B[ (o (o)) + 1]
(1 — bi)o(zo) [f'(0(x0))]’
_ Ok(f'(o(x0)) + 1+ K)
(1= 0x)f"(0(20))
which is equivalent to (4.6). Combining last inequality with (4.27) and (AZ2), we obtain

lzrsr — 2| < g — 2. )”

[

oy — x|, k=0,1,...,

[zk+1 — 2| <

[f'(e(x0)) + 1+ 4] [(1 — B)o(z0) f'(0(x0)) — f(o(w0)) + cB(L+ vV2)(f'(o(0)) +1)]

(1 =0)o(zo)[f' (o (z0))]?

L Bl + 1]
(1= 0)o(wo) /(o (o))

for all k = 0,1,.... Hence, applying Proposition 4.1.10 with ¢ = o(z), we conclude that

2 ||.Z'k» - .’L'*”,

{l|zx — .||} converges to zero. So, {z\} converges to x,. [

4.2 Globalized method

We now present a globalized version of GNM-AP. The globalization strategy used here is
based on the nonmonotone line search in [44]. Since the Gauss-Newton step can not be
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well-defined in some regions, our global method uses, in these cases, the projected gradient
step.

The method is formally described as follows.

Global GNM-AP (G-GNM-AP)

Step 0 (Initialization). Let zy € C, 7 € (0,1), an integer M > 1 and {6} C [0,00) be
given, and set k = 0.

Step 1 (projected Gauss-Newton or projected gradient step). If F'(x;)TF'(zy) is
non-singular, then By = F'(z3)" F'(x,). Otherwise, B, = I,,. Compute wy, = Bpx), —
F'(z)T F(z),) € R® and §5* (wy,) € C such that

(wy = Bigia" (wr),y — G0t (wy)) < e = Gpl|ge" (wi) — aill,, YyeC,  (4.28)
i.e., JoF (wy) is an e,-approximate solution of (2.4).

Step 2 (Backtracking). Define d;, = Qg’“(wk) — 2 and fee = max{f(z_;); 0 < j <
min{k, M — 1}}. Set a + 1.

Step 2.1 Set x, = xp + ady.

Step 2.2 If
f(@4) < finax + Ta<F,($k)TF($k)> d), (4.29)
then oy, = o, xx11 = =4, and go to Step 3. Otherwise, set a <— «/2 and go to
Step 2.2.

Step 3 (Termination criterion and update). If x;,; = xi, then stop; otherwise, set
k < k+ 1 and go to Step 1.

end

The following theorem, which is also an extension to the constrained case of [44,
Theorem 1], summarizes the convergence properties of the G-GNM-AP method.

Theorem 4.2.1 Assume that By, € B. Furthermore, assume that level set Cy = {x €
C : f(x) < f(x0)} is bounded and sequence {0y} satisfies 0, < 0 for all k > 0, where
0 €[0,1). Then, either G-GNM-AP stops at some stationary point xy or every limit point
of the generated sequence is stationary.
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Proof. By definitions of dj and wy, and the inequality in (4.28), we have
(=dy — By F' ()T Fag),y — ap — dy) g, < Glldil3,, ¥k >0. (4.30)

If G-GNM-AP stops, then xp,1 = x, which in turn implies that d, = 0. Hence, it follows
from (4.30) that
(=B 'F'(xx)" F(ar),y — x)p, <0, VyeC,

or, equivalently,
<F,(xk)TF(:L'k)7y - i[fk> 2 Oa v Yy e Ca

i.e., xp is a stationary point of (1.1). Now, under the assumption B € B, for all & > 0,
Co:={r€C: f(x) < f(xo)} is bounded and that 6, < @ for all k > 0, where § € [0, 1), we
conclude, from Theorem 3.1.3, that every limit point of {z;} is a stationary point of (1.8).

4.3 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order
to verify the effectiveness of GNM-AP and G-GNM-AP methods. The algorithms were
tested on some box- and polyhedral-constrained nonlinear least squares problems. We took
0, = 1/3, for every k, in both algorithms. Moreover, the inexactness criterion (4.1) (and
(4.28)) was computed by the conditional gradient method, which stopped when either the
stopping criterion given in Step 1 was satisfied or a maximum of 300 iterations were performed
(in this case we did not stop the outer procedure). In order to avoid an excessive number of
inner iterations, input e, was replaced by max{6||zy+1 — z||%, , 107*}. Linear optimization
subproblems in the conditional gradient method (see (2.11)) were solved via the MATLAB
command linprog. Other initialization parameters of G-GNM-AP method were set 7 =
10~* and M = 10. Nonmonotone parameter M = 10 was the best from {1, 5,10, 15,20, 25}
for a preliminary small number of problems.

For a comparison purpose, we also run the proximal Gauss-Newton (Prox-GN) method of
[70], applied to (1.8), which corresponds to our GNM-AP method with exact projections (i.e.,
0 = 0 for every k). In the latter method, exact projections were computed by the MATLAB
command quadprog. In the box-constrained case, we also compare the performance of
G-GNM-AP method with the inexact Gauss-Newton trust-region method (ITREBO) of [68].
ITREBO is an algorithm designed for solving nonlinear least-squares problems with simple
bounds where, at each iteration, a trust-region subproblem is approximately solved by the
Conjugate Gradient method. For GNM-AP, G-GNM-AP and Prox-GN methods, we used
the same termination condition ||z 1 —¢| g, < 107*, whereas in ITREBO we used || Po (x5 —
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Vf(x1)) — x1]| < 107 For all algorithms, a failure was declared if the number of iterations
was greater than 300 or no progress was detected. The computational results were obtained
using MATLAB R2016a on a 2.4GHz Intel(R) i5 with 8GB of RAM and Windows 10 ultimate
system.

4.3.1 Nonlinear least squares problems with box constraints

In this subsection, our aim is to illustrate the behavior of the algorithms to solve 23 problems
of the form (1.8) with C' = {z € R"; ¢ <z < d}, where ¢,d € R"; see Table 4.1. The first
four problems were taken from [70]. The others are originally unconstrained problems for
which box constrains were added.

We firstly chose 10 initial points of the form z¢(y) = ¢+ (v/11)(d —¢) for v =1,2,...,10.
We report in Figure 4.1 the numerical results of GNM-AP, G-GNM-AP and Prox-GN
methods for solving the 23 problems using performance profiles [26]. We adopted the CPU
time as performance measurement. It is worth pointing out that the efficiency is related
to the percentage of problems for which the method was the fastest, whereas robustness
is related to the percentage of problems for which the method found a solution. In the
performance profile, efficiency and robustness can be accessed on the left and right extremes
of the graphic, respectively. We consider that a method is the most efficient if its runtime
does not exceed in 5% the CPU time of the fastest one.

From Figure 4.1, we see that GNM-AP method was more robust and efficient in terms of
time than Prox-GN method. This fact illustrates the advantages of allowing inexactness in
the calculation of projections. On the other hand, we also see, as expected, that G-GNM-AP
method was more robust than the local methods. Its robustness rate was approximately 95%,
whereas for GNM-AP (resp. Prox-GN) the robustness rate was approximately 85% (resp.
71%).

Since our schemes and ITREBO use different stopping criteria, in order to provide a
fair comparison, we report in Table 4.2 the performance of G-GNM-AP and ITREBO
with three initial point of the form z¢(y) = ¢ + 0.25v(d — ¢), where v > 0, for solving
the 23 box-constrained nonlinear least squares problems aforementioned. As can be seen,
G-GNM-AP and ITREBO successfully ended 60 and 51 times, respectively, on a total of 69
runs. Moreover, G-GNM-AP ( resp. ITREBO) was faster in 31 (resp. 14) cases. Therefore,
we can say that our global scheme outperformed ITREBO for the instances considered.
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Problem Function(F'(z)) and source n m Box
Pb 1 Rosenbrock [70, Problem 1] 2 2 As [70]
Pb 2 Osbornel [70, Problem 3] 5 33 As [70]
Pb 3 Osborne2 [70, Problem 4] 11 65 As [70]
Pb 4 Twoeq6 [70, Problem 5] 2 2 As [70]
Pb 5 Freudenstein [63, Problem 2] 2 2 1, 5]
Pb 6 Powell badly scaled [63, Problem 3] 2 2 [0,9.106]
Pb 7 Brown badly scaled [63, Problem 4] 2 3 [0,10°]
Pb 8 Beale [63, Problem 5] 2 3 [0, 3]
Pb 9 Jennrich and Sampson [63, Problem 6] 2 10 [—2,1]
Pb 10 Bard [63, Problem 8] 3 15 [—10, 1]
Pb 11 Gaussian [63, Problem 9] 3 15 | [-1,1.02]
Pb 12 | Box three-dimensional [63, Problem 12] | 3 100 [0, 10]
Pb 13 Powell singular [63, Problem 13] 4 4 [—3, 3]
Pb 14 Biggs EXP6 [63, Problem 18] 6 | 10 | [~1,10]
Pb 15 Penalty I [63, Problem 23] 4 | 5 | [-10,1]
Pb 16 Penalty I [63, Problem 23] 10 11 [—10,1]
Pb 17 | Variably dimensioned [63, Problem 25| | 100 | 102 [—1,2]
Pb 18 | Variably dimensioned [63, Problem 25] | 450 | 452 [—1,2]
Pb 19 Trigonometric [63, Problem 26] 6 6 [—2, 3]
Pb 20 Broyden tridiagonal [63, Problem 30| 10 10 [—2, 2]
Pb 21 Broyden tridiagonal [63, Problem 30] | 1000 | 1000 | [—2,2]
Pb 22 Example 6.1.10 [31, Chap. 6] 1 2 [—10,20]
Pb 23 Example 10.2.4 [23, Chap. 10] 1 3 [—2,1]

Table 4.1: Test problems
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4.3.2 Nonlinear least squares problems with polyhedral constraints

In this subsection, we are interested in solving 23 test problems of the form (1.1) with
C={zxeR" ¢c<z<d Az < b}, where ¢,d € R", b € R™ and A € R™*".
problems are the nonlinear least squares problems with box constraints of Subsection 4.3.1,
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Figure 4.1: Performance of G-GNM-AP, GNM-AP and Prox-GN methods

for which randomly generated constraints Ax < b were added. In this application, we
considered 5 different initial points belonging to the feasible set C.

As in Subsection 4.3.1, we reported in Figure 4.2 numerical comparisons of the obtained
results using performance profiles. Illustrating again the advantages of allowing inexactness
in the calculation of projections, we observe, from Figure 4.2, that GNM-AP was more
robust and efficient in terms of saving time than Prox-GN method. Moreover, G-GNM-AP
was more robust than GNM-AP, which, on the other hand, was more robust than Prox-GN
method.

Finally, we conclude that the proposed schemes seems to be promising tools for solving
box- and polyhedral-constrained nonlinear least squares problems.
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| conmap | 1TREBO | | coNMAP | ITREBO
Pb |~ | it/time/Fnorm | it/time/Fnorm | Pb || it/time/Fnorm it /time/Fnorm
1 |273/5.7e+0/1.5¢-1 * 1| 11/1.1e2/2.7¢5 | 8/1.5e-2/3.8¢-4
Pb1|2| 6/4.1e-3/1.3¢-1 * Pb 13(2.5 10/7.9e-3/3.5¢-5 | 7/1.1e-2/6.0c-4
3| 5/3.9¢-3/1.3¢-1 * 3] 11/1.2¢2/4.6e5 | 8/1.4e-2/3.8¢-4
1| 12/9.1e-2/9.0e-2 * 1| 186/7.8e-1/4.4e-1 | 7/1.5e-2/5.4e-1
Pb2| 2| 13/1.0e-1/8.8¢-2 * Pb 14| 2 | 195/6.4e-1/4.4e-1 *
3 | 12/9.6e-2/9.0e-2 * 3| 31/1.0e-1/4.2e-1 *
1| 7/2.9¢-2/6.8e-1 * 1| 9/6.8e-3/7.9e-3 | 9/1.2e-2/7.9¢-3
Pb3| 2| 8/3.2¢-2/6.8¢-1 * Pb 15| 2| 8/3.6e-3/7.9¢-3 | 8/9.7¢-3/7.9e-3
3| 11/4.6e-2/6.8¢-1 * 3| 7/3.2¢-3/7.9¢-3 | 6/8.6e-3/7.9e-3
1| 11/6.0e-3/7.1e-5 * 1| 9/6.1e-3/1.1e-2 | 11/1.4e-2/1.1e-2
Pb 4|2 | 12/6.5¢-3/7.1e-5 * Pb 16| 2 | 9/5.2e-3/1.1e-2 | 9/1.3e-2/1.1e-2
3| 16/1.1¢-2/1.0e-5 * 3| 7/44e-3/1.0e2 | 7/7.20-3/1.1e-2
1| 6/3.50-3/3.5¢-10 | 7/9.0e-3/1.2¢-7 1| 17/4.0e-2/9.1e-6 | 18/4.7¢-2/4.8¢-9
Pb 5| 2| 6/2.8e-3/2.6e-10 | 5/6.8¢-3/5.3¢-8 |Pb 17| 2 | 16/3.5e-2/7.7e-8 | 16/4.2e-2/8.6e-12
3| 2/1.9¢-3/0.0e+0 | 3/5.00-3/1.8¢-7 3| 15/3.30-2/7.7e-8 | 14/3.40-2/4.6e-7
1| 11/8.6e-3/9.8e-1 | 11/1.2e-2/9.8¢-1 1| 30/5.7¢-1/9.9e-6 | 23/3.8e-1/6.1e-7
Pb 6|2 | 12/8.4e-3/9.8e-1 | 14/1.2e-2/9.8e-1 |Pb 18| 2 | 63/1.2e4+0/9.5e-5 | 21/3.6e-1/8.7e-10
3| 12/8.9e-3/9.8e-1 | 15/1.2e-2/9.8e-1 3| 17/3.5e-1/9.9e-6 19/3.1e-1/4.9e-8
1 |18/3.3¢-2/0.0e+0 |36/2.8¢-2/0.0e+0 1| 7/3.7e-3/5.3e-8 | 6/7.3e-3/2.2e-7
Pb 7| 2 | 19/3.2¢-2/0.0e+0 |35/2.9¢-2/2.2e+0|Pb 19| 2 * 14/1.6-2/1.6e-2
3 | 20/3.7¢-2/0.0e+0 |37/2.8¢-2/1.6e+0 3 * 17/1.6e-2/1.6e-2
1| 5/3.6e-3/6.0e-5 | 7/8.7e-3/2.4e-7 1| 4/3.6e-3/9.1e-5 | 4/6.8¢-3/3.4e-8
Pb 8|2 | 6/3.5e-3/6.0e-5 | 9/1.0e-2/7.2e-7 |Pb 20| 2 | 5/2.4e-2/4.5e-5 7/1.5e-2/1.3e-7
3| 11/7.3¢-3/6.4¢-5 | 10/1.0e-2/7.8¢-8 3 * 26/2.8¢-2/1.1¢-+0
1 * 10/1.4e-2/1.1e+1 1| 5/4.9¢1/1.0e9 | 6/4.1e-1/6.9¢-6
Pb 9|2 |35/5.1e-1/1.1e+1 | 7/1.4e-2/1.1e+1 Pb 21| 2 * 189/1.7e+1/9.6e+0
3 * 5/1.3e-2/1.1e+1 3 |139/1.4e+1/1.2e+0| 16/1.2e+0/1.0e+0
1 * * 1| 6/2.3¢-2/1.4e+0 | 6/5.8¢-2/1.4e-+0
Pb 10| 2 * * Pb 22| 2| 7/2.4e-3/1.4e+0 | 7/9.4e-3/1.4e+0
3 * * 3| 8/4.8¢:3/1.4e+0 | 9/1.5¢-2/1.4e+0
1| 9/2.1e-2/1.0e-1 |51/6.7e-2/1.0e-1 1| 7/86e-3/87e-6 | 7/1.0e-2/7.6e-8
Pb 11| 2| 7/6.7e-3/1.0e-1 | 5/1.0e-2/1.0e-1 |Pb 23| 2| 6/4.7e-3/1.9e-7 | 5/1.3¢-2/7.6e-8
3| 4/4.1e-3/1.0e-1 | 3/8.4e-3/1.0e-1 3| 5/2.9¢-3/1.9¢7 | 5/6.9¢-3/7.6e-8
1| 2/1.2e-2/1.7e-15 *
Pb 12(2.5| 4/3.1¢-2/6.0e-6 | 4/3.9¢-2/1.3¢-4

8/3.9e-2/4.2e-7

5/3.4¢-2/5.8¢-12

Table 4.2: Performance of G-GNM-AP and ITREBO
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Figure 4.2: Performance of G-GNM-AP, GNM-AP and Prox-GN methods
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Chapter 5

A framework with approximate
projections for convex-constrained
monotone nonlinear equations and its
special cases

In this chapter, we propose a framework, which is obtained by combining a safeguard
strategy on the search directions with a notion of approximate projections, for solving
convex-constrained monotone nonlinear systems of equations. The global convergence of
our framework is obtained under appropriate assumptions and some examples of methods
which fall into this framework are presented.

5.1 The framework and its convergence analysis

This section describes a framework for solving (1.9) and presents its global convergence
analysis.

Formally, the framework is described as follows.

Framework 1. Framework with approximate projections for convex-constrained monotone

equations

Step 0. Let o € C, 1, 12 > 0, v,0 € (0,1), g € [0,1) and {ux} C [0, 7] be given, and set
k=0.
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Step 1. If ||[F(xy)|| = 0, then stop.
Step 2. Compute the direction dj in R™ such that
F(a)"dy < —m||F (@)%, (5.1)
il < ol F (). (5.2)

Step 3. Find z, = x + agdy, where o = ~™F with m; being the smallest non-negative
integer m such that
—(F(xy, +7"dy), di) > oy™[|di . (5.3)

Step 4. Define & = ((F(zi), ox — &) /|| F(z)||?, wr = xp — &F(21,) and g :=
pill€e F (z)|1?. Set
Thi1 = Yo, (W), (5.4)

where Hy, := {z € R"; (F(2x),r — 2z) < 0}.

Step 5. Set k <k + 1 and go to Step 1.

end

Remark 5.1.1 Some comments about Framework 1 are in order.

(i) If F is the gradient of some function f : R" — R, then condition (5.1) implies that
dy is a sufficient descent direction for f at xj. In its turn, condition (5.2) essentially says
that the length of d(z) should be proportional to the length of F'(x). The way to obtain
dy. satisfying (5.1) and (5.2) will depend on the particular instance of the framework; see
Section 5.2 for some examples.

(ii) Note that condition (5.1) implies that there exists a non-negative number m;, satisfying
(5.3), for all £ > 1. Indeed, suppose that there exists ko > 1 such that (5.3) is not satisfied
for any non-negative integer m, i.e.,

—(F(xg, +Y"dyy)s dig) < o™ |dio||?, ¥ m > 1.
Let m — oo and by continuity of F', we have
—(F(xp,), di) < 0. (5.5)
On the other hand, by (5.1), we obtain

_<F(xko)7 dko) > 5HF('T’€0)H2 > 07
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which contradicts (5.5). Therefore, the line search procedure in Step 3 is well-defined.

(iii) In Step 4, note that wy is the projection of x) in Hj (which has a closed-form) and
Tpy1 I8 an gp—approximate solution of the problem (2.4) with B = I, w := wy, and feasible
set C'N Hy. Another choice of x4 in (5.4) would be

Tr41 = @é(wk) (5.6)

For this choice, we mention that the Lemma 5.1.2 and Theorem 5.1.3 also holds.

iv) It will follow form (5.8) and (5.9) that the hyperplane Hj, strictly separates the current
iteration from zeroes of the system of equations (1.9).

In the course of this section, we will assume that the solution set of (1.9), denoted by S*,
is nonempty. In order to investigate the global convergence of Framework 1, the following
properties of the sequences {z;} and {z;} will be needed.

Lemma 5.1.2 The sequences {x} and {z} generated by Framework 1 are both bounded.
Furthermore, it holds that

lim ||z — 2| = 0. (5.7)
k—o00
Proof. From Step 3, we have
(F(zt), ap — z) = —opl(F(2), di) > 00@]|dp]|* = o|xy, — 2> (5.8)

Note that ||z — zx|| > 0, for all & > 0. Otherwise, since (5.1) and the Cauchy-Schwartz
inequality imply that ;|| F(zx)|| < ||dk||, we would have F(x;) = 0. Let z. € S* be given.
By the monotonicity of F' and the fact that F'(x,) = 0, we obtain

(F(2k), T« — 2Ky <0. (5.9)

Hence, z, € Hy, (see the definition of Hy in Step 4). Since 11 = §iny, (W), it follows from
the fact that z* € C' N Hy, and Lemma 2.2.6 with = w;, and £ = z, that

k1 = 2l = 19¢nm, (i) = Yonm, (217 < ok — 2.* + 264
= [z — @l* = 26:(F (20), 2 — ) + GIF (2)II” + k1 F (2) |1

where we used that €2 = (u2||&:F(21)]|?)/2 in the last equality. It is easy to see that (5.10)
also holds when x;,; = gL (wg). By the monotonicity of the mapping F and the fact that

(5.10)

T, € 5™, we get

(F(z1), 1, — 2p) = (F(x.), 25 — Ts)
(F(zk), 2k — 2x)
= (F(zk), Tp — Ts).

<F(Zk)7 Ty — Zk>
(F(zk), o — 21) (5.11)

IN
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By combining (5.10) and (5.11), we find

[Zrp1 = 2l < lwn = | = 26(F (2), 21— 20) + G F ()P + &R F (2) [
(F(2), ox — 2)*
| £ (212 (5.12)
oIk — 2zl
[F(ze) 1>

< lla = @2+ (u — 1)
< Jla = @ ? + (7 D)o

where the second inequality follows from the definition of &, and the last inequality is due
to the fact that p, < g and (5.8). By (5.12) and the fact that g < 1, we have

st — a2 < o — 2% k>0, (5.13)

which implies that the sequence {x;} is bounded. It follows from the Cauchy-Schwartz
inequality, the monotonicity of F' and (5.8) that

(F(xr), o —2e)  (F(2k), 21 — 21)
2k — 2| 2k — 2|

1F ()] > > > ol — 2.

Therefore, by the continuity of F' and the boundedness of {z}}, we have that {z;} is also
bounded. Since {zx} is bounded and F' is continuous on R", there exists a constant M > 0
such that || F(z)|| < M for all k£ > 0, which combined with (5.12), yields

(1 _ﬁ2)02 S 4 - 2 2
ST S = allt < 3 (=l = s = ) < oo,
k=0 k=0

which implies limy_,o ||2x — 21| = 0.

We are now ready to establish the global convergence of Framework 1.

Theorem 5.1.3 The sequence {x} generated by Framework 1 converges to a solution of
(1.9).

Proof. Since z, = x}, + agdy, from Lemma 5.1.2, it holds that
lim ag||di|| = lim ||z — 2] = 0. (5.14)
k—o0 k—oo

We also have, from Lemma 5.1.2, that {z;} is bounded and therefore {F(x))} is bounded
as well. Thus, it follows from the second inequality in (5.2) that {dx} is bounded. Consider
now two different cases: (i) iminfy_, ||dg|| = 0 or (ii) liminf,_, ||dk|| > O.

Case (i). Note that (5.1) and the Cauchy-Schwartz inequality imply that n||F(zg)| <
|dk||. Hence, since liminfy_, ||dx|| = 0, it follows that liminfy . |[|[F(zg)|| = 0. Since F
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is continuous, we have the sequence {z;} has some cluster point Z such that F(z) = 0.
Replacing z. by Z in (5.13), we obtain

|zri1 — Z|1* < |Jow — 2|7,

which implies that {||z;—Z||} converges. Therefore, we can conclude that the whole sequence
{zx} converges to Z, a solution of (1.9).

Case (ii). Since liminfy,o ||dx|| > 0, it follows from (5.14) that there exists a subsequence
of indices K C N such that limy_,o, ax = 0, where k& € K. By (5.3), we have

—(F(ar + 9™ ), di) < oy™ | dil)”.

Since {z} and {dy} are bounded, we can choose a subsequence K; C K such that
{(zg, dr)} RN (z,d). Hence, using the continuity of F' and taking the limit in the last
inequality as k — oo with k& € K, we have

—(F(z), d)y <O0. (5.15)
On the other hand, by taking the limit in (5.1) as k — oo with k& € K, we obtain
—(F(z), d) 2 3| F(@)|I* > 0,

where the last inequality is due to the inequality in (5.2) and the fact that lim infy_,. ||dg|| >
0. Thus, the last inequality contradicts (5.15). Hence, liminfy_, ||dk|| = 0. Therefore, using
a similar argument as in the first case, we conclude that the whole sequence {x)} converges
to a solution of (1.9). This completes the proof. |

5.2 Some instances of the framework

This section presents some examples of search directions d, that satisfy the safeguard
conditions (5.1) and (5.2) and as a consequence some instances of Framework 1. These
instances of methods allow inexact projections onto C' N Hy, which can be advantageous
when the exact projections are difficult (where the projection cannot be easily performed).

Let us begin by presenting inexact versions of two well-known methods.
1) Steepest descent-based method with approximate projections (SDM-AP). This method
corresponds to Framework 1 with the direction dj, in the Step 2 defined by dj, = —F(xy), for
every k > 0. It is easy to see that this choice of dj satisfies the conditions (5.1) and (5.2)

with 77 = 1 and 7 > 1. Therefore, from Theorem 5.1.3, it holds that the sequence {xj}
generated by SDM-AP converges to a solution of (1.9).
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2) Newton’s method with approzimate projections (NM-AP). Assume that F' is continuously
differentiable. By taking dj, in the Step 2 of Framework 1 as dy = —B(xy) ' F(x},) for every
k > 0, where B(zy) is a positive definite matrix, we obtain a variant of Newton’s method
proposed in [78] with approximate projections. Note that B(z;) may be the Jacobian of F
at xp or an approximation of it. Assuming that there exist constants 0 < a < b such that
al < B(zy) < b, for every k, then dj satisfies (5.1) and (5.2) with 5, = 1/b and n, = 1/a.
Indeed, since Bydy = —F(xy), we obtain

(o Flo) = (=B Flo), Flow) = ~|F @l < - (3) IFG@l?

and
allde||* < ldillB, = (Brdy, di) = —(F (), di) < |[F(x)|ll|dll,

which proves the statement. Therefore, since this method can be seen as an instance of
Framework 1, we trivially have, from Theorem 5.1.3, that the sequence {z;} generated by it
converges to a solution of (1.9).

We next present two examples of methods, in the spirit of the method in example 2, for the
nonsmooth case. Here, we define F': R" — R" as 7-strongly monotone if there is a constant
7 > 0 such that (x —y, F(x) — F(y)) > 7||lz — ||, for all x,y € R™. Moreover, F' is defined
as L-Lipschitz continuous if there is a constant £ > 0 such that ||F(z) — F(y)|| < L||lz —y||,
for all z,y € R™.

3) Spectral gradient-like methods with approzimate projections (SGM-AP). Consider d =
— A\ F () for every k > 0, where )\ is the spectral coefficient which is related to the
Barzilai-Borwein choice of the step-size [8]. Let us first discuss some existing choices of Ay.

3.1) In [52], A\; is defined by
<Sk7 Sk>

M = ——, 5.16

T o) (510

where s, = xp — xp_1 and uy, = F(x;) — F(z4_1). Under the assumption that
F' is 7-strongly monotone and £-Lipschitz continuous, we have that dy = — A, F'(xy)

satisfies (5.1) and (5.2) with n; = 1/L£ and 1, = 1/7. Indeed, using that F' is T-strongly
monotone, we have

(Sk, Uk) = <33k — Tk-1, F(ﬂfk) - F(Sﬂkq)) > T<9€k — Tg—1, Tk — qu) = 7'<3k7 5k> > 0,

for some 7 > 0, and therefore, Ay, < 1/7. Now, using the Cauchy-Schwarz inequality
and that F'is £-Lipschitz continuous, we obtain

(S ur) = (sg, Fwx) — Fap-1)) < [[F(2x) — F(r—1)ll[skll < L{sk, sx),

which implies 1/£ < A. Thus, 1/£ < A\, < 1/7 and, as a consequence, dy = — A\ F'(xy)
satisfies (5.1) and (5.2) with n; = 1/L£ and ny = 1/7.
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3.2) In [81,82], the coefficient Ay is as in (5.16) with s := xp — xx_1 and uy = F(zy) —
F(xy_1) + rsg, where 7 > 0 is a given scalar. Using that F’ is monotone, we have

(Skyur) = (s, Fl(wg) — F(zp1) +78p)
= (2 — Tp—1, F(w) — F(zp-1)) + 7(8k;, 58)
> r(sk, sk) >0,

which implies that Ay < 1/r. Now, by assuming that F' is £-Lipschitz continuous, we
obtain

(sk,uk> = <Sk, F(Q?k) — F(.kal) + T’Sk>
=z — wp1, F(wp) — F(2p-1)) + 7(5%, 58)
S (/: + 7’)<Sk, Sk>,

which yields 1/(L + r) < Ag. Therefore, as 1/(L +r) < A\, < 1/r, we can conclude,
from the fact that dy = —A\pF'(xy), that dj satisfies the conditions (5.1) and (5.2) with
m=1/(L+r)and n, = 1/r.

3.3) In the works [1,62] the coefficient A\, is a convex combination of the default spectral
coefficient in [8] and the positive spectral coefficient in [21]. More specifically, A
defined by

A = (1= )0; + 10"

where ¢ € [0,1], 0; = ||s&ll?/(ug, s&), 05 = lIsell/|ukll, sk ==z — 21, up := F(xp) —
F(xg—1) + rsp and r > 0. In [1, Lemma 2], it was shown that if F' is £-Lipschitz
continuous, then dy = — A\ F'(zy) satisfies (5.1) and (5.2) with 7, = max{1,1/(L +r)}
and 7, = min{1,1/r}.

Since the search directions in examples 3.1, 3.2 and 3.3 satisfy (5.1) and (5.2) for
specific values of 7; and 7y, we can conclude, from Theorem 5.1.3, that the SGM-AP (i.e.,
Framework 1 with the above three choice of search directions) converges to a solution of
(1.9).

4) Limited memory BFGS method with approzimate projections (L-BFGS-AP). Consider
the L-BFGS direction dj proposed in [83] obtained by solving the system Byd, = —F(zy),
where the sequence { By} is given by By = I and By is computed by the following modified
L-BFGS update process: let m > 0 be given and set m = min{k + 1, m} and B,io) =By=1.
Choose a set of increasing integers Ly = {Jjo,---,Jjm-1} C {0,...,k}. Update By using the
pairs {y;,, s;, 175", i-e., for [ =0,...,7m — 1,

(l) @ )
B]E:l) _ SJl(Sl])lBk y;{y}; f y]l Jl2 > e
I+1) _ TB I llsj, II* =
By = B( = E Si Ul
+1 - k+1
l .
B,i ) , otherwise,
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where s; := xp11 — x and y, = F(xpy1) — F(zg). If di in the Step 2 of Framework 1 is
defined as above, we obtain an L-BFGS method with approximate projections. Under the
assumption that F' is L£-Lipschitz continuous, it was proven in [83] that By and B, L are
bounded for all & > 0, i.e., { By} C B. Since Bydr = —F(x)) and using (2.2), we obtain

1

(di, F(zx)) = (=B 'F(an), F(a) = =|F(a) [0 < - <m) | (a0) |17,

which yields (d, F(zy)) < —1/L||F(x)|]*. Now, from Cauchy-Schwarz inequality, we have
ldills, = (Budi, di) = —(F(aw), di) < [F(@x)lllldll,

which, combined with (2.2) and || B || < L, yields (1/L)||dx|| < ||F(24)||. Thus, dj, satisfies
(5.1) and (5.2) with 7, = 1/L and 1y = L. Therefore, we conclude that, from Theorem 5.1.3,
the sequence {x} generated by L-BFGS-AP (i.e., Framework 1 with the above choice of
search direction) converges to a solution of (1.9).

We end this section by proposing a new convergent method for solving (1.9), which is
an instance of Framework 1. This method is inspired by [74, Algorithm 2.1] for solving
variational inequalities. In the context that the projection operator is computationally
expensive, the latter algorithm was devised in order to minimize the total number of
performed projection operations. Let us now present our extension of [74, Algorithm 2.1] to
the convex-constrained monotone nonlinear equations context.

5) Modified Newton-like method with approzimate projections (MNM-AP). Consider the
direction dj defined as follows: let n > 0, 6 € [0,n) and {6} C [0,60] be given. Let By, C B,
and set w}, := Byxy, — F(zy) and e}, := 07| F(z})]|*>. Compute s}, in R™ such that

sk = Jo* (wy) — (5.17)

where §5*(w}) is an ef-approximate solution of the problem (2.4). If n||F ()| < ||sk]| 5.,
then dj, := si. Otherwise, compute s7 in R" such that

F(x1) + Bysi = 0, (5.18)

and set dj, := sz. Note that the matrix By can be taken as those in the examples 3 and 4. We
will now prove that dj, described above satisfies (5.1) and (5.2), for all k& > 0. If n||F(xy)| <
skl 5,, then di = 5 (w}) — 1. By (2.5) with B = By, w = w}, and y = xy, we have

ORI F (@)l® = (B(an — g (wi)) — F (i), o — o (wy)
=116 (wi) — axllB, — (Flar), @x = Go* (wy)), ¥ k >0,
which, combined with the definition of dj, yields

—(F(ax), di) + N F(@p)l|* > lldills, > [1F (z)lI*n*, ¥ k >0, (5.19)
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or, equivalently,

—(F(zx),di) = || F(z)[*(n* = 67), ¥V k > 0.

Therefore, since ), < @ for all k > 0 and 8 € [0,7), we have
(F(xr),dy) < =" = )| F ()]

Hence, (5.1) holds with 7, = (n?—#?). From (5.19) and using the Cauchy-Schwarz inequality,
we have

ldill5, < ORIF (z)* — (B F(x), di) s, < O F (2i)I* + | By F )l 5, ]lde | 5,

which, combined with some algebraic manipulations, yields

1B P, 4%
el < O F () |2 + 22— P S

Using the definition of scalar product (-,-)p = (-, B-) and (2.2), we obtain

2
k1% 1 (@)l 1F () 1211 B 1B
S < BIIF () [P+ ————— < GIIF (e [P+ o = (G ) IF )P,
which implies that
Idell%, < (267 + | B ') I1F () 1%

Therefore, by (2.2), ||B;'|| < L and ), <8 for all k > 0, we have

ldi|® < L (26> + L) || F(zi) |,

and hence (5.2) holds with 7y = /L (26 + L). On the other hand, if di := s}, then the
proof is similar to the one in example 4. Therefore, we conclude that, from Theorem 5.1.3,
the sequence {x} generated by the MNM-AP (i.e., Framework 1 with the above choice of
search direction) converges to a solution of (1.9).

5.3 Numerical experiments

This section summarizes the numerical experiments carried out to verify the efficiency of
the instances of Framework 1. Numerical experiments are divided into two subsections.
In Subsection 5.3.1, the methods are tested for a group of convex-constrained monotone
nonlinear equations, whereas, in Subsection 5.3.2, they are tested for solving the system of
constrained absolute value equations (CAVE). The computational results are obtained using
MATLAB R2018a on a 2.4GHz Intel(R) i5 with 8GB of RAM and Windows 10 ultimate
system.
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5.3.1

In this subsection, our aim is to illustrate the behavior of the methods to solve 52 monotone
nonlinear equations with polyhedral constraints; see Tables 5.1 and 5.2. Some of these
problems are originally unconstrained for which constrains were added. In Pb11, the matrix
A € RY*" of Table 5.2 is randomly generated so that a solution of the problem 11 belongs

to the feasible set.

Monotone nonlinear equations with polyhedral constraints

Problem Ref. n
Pb1 | [81, Problem 1] | 1000/5000/10000
Pb2 | [81, Problem 2] | 1000/5000/10000
Pb 3 [78, Problem 2] 5/5/5
Pb 4 [78, Problem 3] 10/10/10
Pb 5 [78, Problem 4] 4
Pb6 | [1, Problem 1] | 1000/5000/10000
Pb 7 [1, Problem 2] | 1000/5000/10000
Pb8 | [1, Problem 3] | 1000/5000/10000
Pb9 | [1, Problem 5] | 1000/5000/10000
Pb10 | [L, Problem 6] | 1000/5000/10000
Pb 11 [51, Problem 1] | 1000/5000/10000
Pb 12 | [51, Problem 4] | 1000/5000,/10000
Pb 13 [51, Problem 7] | 1000/5000/10000
Pb 14 [51, Problem 8] | 1000/5000/10000
Pb15 | [51, Problem 9] | 1000/5000/10000
Pb 16 [55, Problem 2] | 1000/5000/10000
Pb 17 [55, Problem 3] | 1000/5000/10000
Pb18 | [55, Problem 7] | 1000/5000/10000

The tolerance in the stopping criterion ||F(x)]| < € was set to e = 1075, If the stopping
criterion is not satisfied, the method stops when a maximum of 500 iterations has been
performed. In this first group of test problems, it is taken o = 1074, v = 1/2 and yu;, =

o8

Table 5.1: Test problems

g = 0.25, for every k, in all algorithms. Moreover, the ex—approximate solution in (5.4)




Problem

Set C

Pb1
Pb 2
Pb 3
Pb 4
Pb 5
Pb 6
Pb 7
Pb 8§
Pb 9
Pb 10
Pb 11
Pb 12
Pb 13
Pb 14
Pb 15
Pb 16
Pb 17
Pb 18

[_

[—1,n] and Y ;' ;2 <n
[—1,n] and > ;" 2, <n
[0,n] and > 7" 2 <n
[0,n] and > " @ <n
[—1,n] and > ;" 2 <3
[—1,2)and > ;" 2 <n
[-1,2) and Y ;" jz; <n
[0,n] and > " @ <n
[-1,7 and Y/ 2, <11-n

[0,e] and > " jz; <e-n

1,2]; Az < b, where A € R1%%" and b = (n,

[—1,n] and > ;2; <20-n
—1,n] and Zl 1xi<n
]

SORS

Rlo

was computed by the conditional gradient method, which stopped when either the stopping
criterion is satisfied or a maximum of 300 iterations is performed.
excessive number of inner iterations, input €, was replaced by max{?||&xF (2x)||?, 1072}
Linear optimization subproblems in the conditional gradient method (see (2.11)) were solved
via the MATLAB command linprog. We denote by SGM-AP1, SGM-AP2 and SGM-AP3,
the method SGM-AP, with the coefficient \; given in examples 3.1, 3.2 and 3.3, respectively.
In SGM-AP2, we set r = 0.01, whereas, in SGM-AP3, we set t = 1/(exp(k +1)"*") and
r=1/(k+1)2. In the L-BFGS-AP, we used m = 1. Finally, we set n = 0.5, 6, = 6 = 0.25

in the MNM-AP.

We consider 4 different starting points (following the suggestions where the problems

Table 5.2: Polyhedral feasible sets

29

In order to avoid an




were proposed) for each problem of Table 5.1: For problem 1, z; = (0.1,...,0.1), 25 =
(1,...,1), z3=((n—1)/n,0.1,...,0.1,(n — 1)/n) and x4 = (—1,...,—1). For problem 2,
xy = (0.1,...,0.1), zo = (1,...,1), z3 = (0,...,0) and x4 = (—1,...,—1). For problem 3,
x1 = (10,0,...,0), o = (9,0,...,0), z3 = (3,0,3,0,3) and =4 = (0,2,2,2,2). For problem
5 x1 = (0,...,0), zg = (3,0,0,0), z3 = (1,1,1,0) and x4, = (0,1,1,1). For problems 14
and 16, 7y = (=1,...,—1), 2o = (=0.1,...,-0.1), z3 = (=1/2,-1/2%,...,—1/2") and
xy = (—1,—-1/2,...,—1/n). For problem 17, ;1 = ((n — 1)/n,0.1,...,0.1,(n — 1)/n),
s = (0.1,...,0.1), z3 = (1/2,1/2%,...,1/2") and x4 = (1,1/2,...,1/n). For problems
4, 6 to 13, 15 and 18, z1 = (1,...,1), 2o = (0.1,...,0.1), =5 = (1/2,1/22,...,1/2")
and x4 = (1,1/2,...,1/n). Figures 5.2 and 5.1 report the numerical results of SDM-AP,
SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and MNM-AP for solving the 52 problems
using performance profiles [26]. We adopted the CPU time as performance measurement.
Recall that in the performance profile, efficiency and robustness can be accessed on the left
and right extremes of the graphic, respectively. We consider that a method is the most
efficient if its runtime does not exceed in 5% the CPU time of the fastest one.

From Figures 5.1 and 5.2, we can see that all the variations of the SGM-AP achieved better
performance (in terms of efficient and robust) compared to L-BFGS-AP and MNM-AP. In
the group of SGM-AP variants, SGM-AP1 and SGM-AP2 were better than the others.

bl
=
T

e
=

Solved problems (%)

v ——SGM-AP1
SGM-AP2 |
SGM-AP3

---------- L-BFGS-AP
MNM-AP

0.2

.....

102 10°
Performance ratio - Time

Figure 5.1: Performance of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and
MNM-AP with zi41 as in (5.4)
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Figure 5.2: Performance of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and
MNM-AP with 211 as in (5.6)

5.3.2 Absolute value equations with polyhedral constraints

In this subsection, we consider the problem of finding a solution of the CAVE problem:
find z € C such that Az — |z| =0, (5.20)

where C = {z e R, Y7 @, <d,z; > —1,i=1,...,n}, Ae R™" be R" =R"™! and |z|
denotes the vector whose i-th component is equal to |z;|. The problem (5.20) draws attention
for its simple formulation when compared to its equivalent linear complementarity problem
(LCP) (see [18,19,59]) which in turn includes linear programs, quadratic programs, bimatrix
games and other problems. Hence, interesting algorithms relating to Newton-type methods
to solve (5.20) have been developed; see, for example, [20,58] and [65] for the unconstrained
and constrained case, respectively.

Under the assumption that ||[A7!| < 1, it was proven in [59, Proposition 4] that the
problem (5.20), with C' = R", is uniquely solvable for any b. Now, if A is symmetric positive
definite, then F(z) = Ax — |z| — b is monotone. In fact, for all z,y € R", we have

(F(z) = F(y),x —y) = (Az — |z[ = Ay + [yl,2 —y) = |z — g5 + (lyl — |2,z — y)
s 1 ) (5.21)

> [lz =y AT T (lyl =z, 2 —y) = llz —yl” + (Jyl = |zl 2 — ).
where in the second equality we use that (-,-)p = (-, B-), (2.2) and [|[A7!|] < 1. Now, note
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that |z| can be written as [z| = Pgn () + Pre (—2). So, from (5.21), the Cauchy-Schwarz
inequality and the fact that PRi(') is monotone and nonexpansive, we obtain

(F(x) = F(y),z —y) > llz — ylI* + (Pen (y) + Pen (—y) — Pan (2) — Pen (=), 2 — y)
=[lz — ylI* = (Pro (x) — Pen (y), © — y) + (Pan (—y) — Pan (—2), 2 — y))
>z — ylI* — | Pen (2) — Pan ()|l —
>z = yl* = [lz —ylI* = 0,

which proves the statement. In our implementation, we used the Matlab routine sprandsym
to construct matrix A randomly, which generates a symmetric positive definite sparse matrix
with predefined dimension, density and singular values. For this process, the density of
matrix A was set to 0.003 and the vector of singular values was randomly generated from
a uniform distribution on (0,1). In this case, as the vector of singular values (rc) is a
vector of length n, then A has eigenvalues rc. Thus, if rc is a positive (non-negative) vector
then A is a positive (non-negative) definite matrix. We chose a random solution z, from a
uniform distribution on (0.1,10) and computed b = Az, — |z.| and d = Y, (x,);, where
(x4); denotes the i-th component of the vector x,. The initial points were defined as xq =
0,...,0,d/2,0,...,0,d/2,0,...,0) € R", where the two positions of d/2 were generated
randomly on the set {1,2,...,n}.

For the CAVE problem, we consider only the SGM-AP2 since it was the best method in
our first class of experiment described in Subsection 5.3.1. For a comparative purpose, we
also run the inexact Newton method with feasible inexact projections (INM-InexP) of [65].
INM-InexP is an algorithm designed for solving smooth and nonsmooth equations subject
to a set of constraints. We rescale the vector of singular values to ensure that the condition
|A7Y] < 1/3 < 1 is fulfilled and consequently ensure the good definition of INM-InexP
(see [58, Theorem 2] for more details). In INM-InexP, we set § = § = ji = 0.25 and the other
parameters were set as in [65]. For both algorithms, a failure was declared if the number
of iterations was greater than 500. The procedure to obtain inexact projections used in the
implementation of INM-InexP was also the CondG method and the procedure stopped when
either the condition as in [65, Algorithm 1] was satisfied or a maximum of 10 iterations were
performed. For our algorithms, the procedure stopped when either the stopping criterion,
ie., (W — Tpr1, Y — Tpr1) < ex = pi||&eF ()], for all y € C'N Hy(or C), was satisfied or a
maximum of 10 iterations were performed.

As in Subsection 5.3.1, Figure 5.3 reports numerical results of algorithms using
performance profiles. We generated 50 CAVEs of dimensions 1000, 5000 and 10000 and
for each of them we test the algorithm for 5 different initial points. We see, from Figure 5.3,
that the SGM-AP2-C (with 25, as in (5.6)) was the most robust whereas INM-InexP was
more efficient in terms of time saving than SGM-AP2-C and SGM-AP2-CH (with x.; as in
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Figure 5.3:
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Chapter 6

Final remarks

In this thesis, we proposed and analyzed some methods to solve constrained optimization
problems and constrained monotone nonlinear systems of equations

In Chapter 3, we proposed an modified inexact variable metric method (M-IVM), with a
new inexactness criterion for its subproblems, for solving convex-constrained optimization
problems. When necessary, such inexact solutions of the subproblems can be obtained
by using suitable iterative algorithms; for example, the conditional gradient method
(Frank-Wolfe) [27,32] and its variants. Under mild assumptions, we proved that any
accumulation point of the sequence generated by the proposed method is a stationary point
of (1.1). Preliminary numerical experiments showed that the new algorithm works well and
compares favorably with a previous IVM on linearly constrained problems, and with its exact
version and the interior point method in [75] for semidefinite least squares problems.

In Chapter 4, we proposed Gauss-Newton methods with approximate projections
(GNM-AP) for solving constrained nonlinear least squares problems. For the local method,
we were able to show, under a majorant condition, that the generated sequence converges
locally linearly. In zero-residual problems, quadratic convergence rate can be achieved with
a stronger condition on the inexactness of the projections. As special cases of the majorant
condition, convergence results for the method with F” satisfying a Lipschitz-like condition
and F' being an analytic function satisfying a Smale condition were also discussed. For
the global method, under suitable conditions, the global convergence of the algorithm to a
stationary point of the problem was established. The numerical experiments showed that
the new algorithms work quite well and compare favorably with the proximal Gauss-Newton
method in [70] (which corresponds to an exact version of our GNM-AP) and the inexact
Gauss-Newton trust-region method in [68] for simple bounds.

In Chapter 5, we proposed a framework with approximate projections for constrained
monotone equations. Under mild assumptions, we proved that the sequence generated by
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the proposed framework converges to a solution of (1.9). Some examples of methods which
fall into this framework were presented. Preliminary numerical experiments showed that
some methods, which fall into the framework, performed well to solve constrained monotone
nonlinear equations, and they are competitive in terms of robustness with the Inexact Newton
method with feasible inexact projections in [65] for solving absolute value equations with
polyhedral constraints.
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