

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO DE PLANTAS

MAPEAMENTO DE QTL PARA CARACTERES DE IMPORTÂNCIA AGRONÔMICA EM ARROZ NO CRUZAMENTO Araguaia x Maninjau

JÉSSICA FERNANDA FERREIRA DOS SANTOS

Orientador: Prof. Dr. Claudio Brondani

Goiânia - GO Brasil

Setembro - 2020

TERMO DE CIÊNCIA E DE AUTORIZAÇÃO (TECA) PARA DISPONIBILIZAR VERSÕES ELETRÔNICAS DE TESES

E DISSERTAÇÕES NA BIBLIOTECA DIGITAL DA UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei 9.610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.

O conteúdo das Teses e Dissertações disponibilizado na BDTD/UFG é de responsabilidade exclusiva do autor. Ao encaminhar o produto final, o autor(a) e o(a) orientador(a) firmam o compromisso de que o trabalho não contém nenhuma violação de quaisquer direitos autorais ou outro direito de terceiros.

1. Identificação do material bibliográfico

[X] Dissertação [] Tese

2. Nome completo do autor

Jéssica Fernanda Ferreira dos Santos

3. Título do trabalho

MAPEAMENTO DE QTL PARA CARACTERES DE IMPORTÂNCIA AGRONÔMICA EM ARROZ NO CRUZAMENTO Araguaia x Maninjau

 Informações de acesso ao documento (este campo deve ser preenchido pelo orientador)

Concorda com a liberação total do documento [X] SIM [] NÃO¹

[1] Neste caso o documento será embargado por até um ano a partir da data de defesa. Após esse período, a possível disponibilização ocorrerá apenas mediante:
a) consulta ao(à) autor(a) e ao(à) orientador(a);

b) novo Termo de Ciência e de Autorização (TECA) assinado e inserido no arquivo da tese ou dissertação.

O documento não será disponibilizado durante o período de embargo.

Casos de embargo:

Solicitação de registro de patente;

- Submissão de artigo em revista científica;
- Publicação como capítulo de livro;
- Publicação da dissertação/tese em livro.

JÉSSICA FERNANDA FERREIRA DOS SANTOS

MAPEAMENTO DE QTL PARA CARACTERES DE IMPORTÂNCIA AGRONÔMICA EM ARROZ NO CRUZAMENTO Araguaia x Maninjau

Dissertação apresentada ao Programa de Pós-Graduação em Genética e Melhoramento de Plantas, da Universidade Federal de Goiás, como requisito para obtenção do título de mestra em Genética e Melhoramento de Plantas.

Orientador: **Prof. Dr. Claudio Brondani**

Goiânia, GO - Brasil. 2020

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática do Sistema de Bibliotecas da UFG.

Ferreira dos Santos, Jéssica Fernanda Mapeamento de QTL para caracteres de importância agronômica em arroz no cruzamento Araguaia X Maninjau [manuscrito] / Jéssica Fernanda Ferreira dos Santos. - 2020. CXXIV, 124 f.: il.

Orientador: Prof. Dr. Claudio Brondani. Dissertação (Mestrado) - Universidade Federal de Goiás, Escola de Agronomia (EA), Programa de Pós-graduação em Genética e Melhoramento de Plantas, Goiânia, 2020. Bibliografia. Apêndice. Inclui fotografias, gráfico, tabelas.

1. Cruzamento inter-subespecífico. 2. Linhagens puras recombinantes. 3. Marcadores SNPs. 4. DArTs. I. Brondani, Claudio, orient. II. Título.

UNIVERSIDADE FEDERAL DE GOIÁS

ESCOLA DE AGRONOMIA

ATA DE DEFESA DE DISSERTAÇÃO

Ata nº 159/2020 da sessão de Defesa de Dissertação do Jéssica Fernanda Ferreira dos Santos, que confere o título de Mestra em Genética e Melhoramento de Plantas, na área de concentração em Genética e Melhoramento de Plantas.

Ao/s 30/09/2020 - trinta dias do mês de setembro do ano de dois mil e vinte, a partir das 08h:15 min, Defesa por Vídeo-conferência, realizou-se a sessão pública de Defesa de Dissertação intitulada "MAPEAMENTO DE QTL PARA CARACTERES DE IMPORTÂNCIA AGRONÔMICA EM ARROZ NO CRUZAMENTO Araguaia x Maninjau". Os trabalhos foram instalados pelo Orientador, Dr. Claudio Brondani- Orientador - Embrapa Arroz e Feijão com a participação dos demais membros da Banca Examinadora: Dra. Rosana Pereira Vianello (Embrapa Arroz e Feijão), membro titular externo; Dra. Tereza Cristina de Oliveira Borba (Embrapa Arroz e Feijão), membro titular externo. Durante a arguição os membros da banca não/fizeram sugestão de alteração do título do trabalho. A Banca Examinadora reuniu-se em sessão secreta a fim de concluir o julgamento da Dissertação, tendo sido a candidata [aprovada pelos seus membros. Proclamados os resultados pelo Dr. Claudio Brondani- Orientador - Embrapa Arroz e Feijão, Presidente da Banca Examinadora, foram encerrados os trabalhos e, para constar, lavrou-se a presente ata que é assinada pelos Membros da Banca Examinadora, ao(s) 30/09/2020 - trinta dias do mês de setembro do ano de dois mil e vinte.

TÍTULO SUGERIDO PELA BANCA

Documento assinado eletronicamente por Rosana Pereira Vianello, Usuário sel! Externo, em 30/09/2020, às 12:22, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015. Documento assinado eletronicamente por Tereza Cristina de Oliveira Borba, Usuário Externo, em 30/09/2020, às 12:30, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015. Documento assinado eletronicamente por Claudio Brondani, Usuário sel! Externo, em 30/09/2020, às 12:31, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015. A autenticidade deste documento pode ser conferida no site A autenticidade deste documento pode ser cor https://sei.ufg.br/sei/controlador_externo.php? acao=documento conferir&id orgao acesso e acao=documento conferir&id orgao acesso externo=0, informando o código verificador 1549366 e o código CRC 19B15152. Ata de Defesa de Dissertação 159/2020 (1549366)

Referência: Processo nº 23070.040972/2020-61

SEI nº 1549366

Dedico este trabalho aos meus Pais, Luzia Ferreira dos Santos e João Pereira dos Santos. A minha avó Maria Virgulina de Andrade (in memoriam). Aos meus irmãos, Joselma Ferreira dos Santos e Joelson Ferreira dos Santos. A minha cunhada Marcivânia Feitosa, sobrinhos, afilhados e amigos. Ao meu amor e família de coração, por todo apoio, compreensão, carinho e amor nessa trajetória. Expresso aqui meu eterno amor e gratidão a vocês. Nada disso teria sentido se vocês não existissem na minha vida.

AGRADECIMENTOS

Agradeço primeiramente a Deus, por me fortalecer, guiar e tornar possível mais uma vitória na minha vida.

Agradeço aos meus pais, por serem minha força e inspiração, por todo amor, incentivo, força, paciência e apoio e compreensão em todos os momentos, em todas as minhas escolhas.

Agradeço aos meus irmãos e cunhada, pelo papel tão importante que assumiram na minha vida, além de amigos, pais, quando os meus não puderam estar por perto.

Agradeço aos meus amigos, em especial Antônia Sousa, Raimundo Nonato, Laís Neri, Lucas Costa, Camila Ribeiro, Clara Beatriz, Lucas Lima, Lucas Torres, Gabriela Moraes, Leandra Magalhães, Mayara Rodrigues, Jéfté e Juliana, pelo companheirismo e

apoio nos momentos em que mais precisei. Sem eles não teria chegado até aqui.

Agradeço ao Leonardo Ribeiro e a sua família por terem me acolhido, estado ao meu lado, pelos conselhos e apoio.

Agradeço ao meu orientador, Dr. Claudio Brondani, pela oportunidade, confiança, orientação, ensinamentos, paciência e apoio.

Agradeço a Felipe Antônio, Rodrigo Oliveira, Mariana Rodrigues, Daniany Adorno, Paula Valdisser, Tereza Borba, Rosana Vianello e João Antônio, que foram imprescindíveis para a realização desse trabalho.

Agradeço a Embrapa Arroz e Feijão e a CAPES, pelas dependências e financiamento que possibilitaram o desenvolvimento desse trabalho.

Agradeço a Universidade Federal de Goiás, pela oportunidade de aprimoramento da minha formação acadêmica. E a todos os professores do programa pelos conhecimentos adquiridos.

<u>SUMÁRIO</u>

RESUMO	10
ABSTRACT	11
1 INTRODUÇÃO	12
2 REVISÃO DE LITERATURA	15
2.1 A CULTURA DO ARROZ	15
2.1.2 Importância, produção e consumo	15
2.1.3 O Gênero Oryza	16
2.1.3.1 Diversidade genética do gênero <i>Oryza</i>	16
2.2 GENOMA DO ARROZ	17
2.3 CARACTERES RELACIONADOS À PRODUTIVIDADE	18
2.4 GENÓTIPO X AMBIENTE	19
2.5 MAPEAMENTO DE QTL	21
2.5.1 Populações utilizadas no mapeamento de QTL	23
2.5.2 Análise de QTL	24
2.5.3 Marcadores moleculares	26
3 MATERIAL E MÉTODOS	29
3.1 ANÁLISES FENOTÍPICAS	29
3.1.1 Desenvolvimento da População	29
3.1.2 Experimento de Campo	30
3.1.3 Avaliação Fenotípica da População	31
3.1.4 Análises Estatísticas Fenotípica	31
3.2 ANÁLISES GENOTÍPICAS	34
3.2.1 Extração de DNA e Genotipagem	34
3.2.2 Análise Estatística Genotípica	35
3.2.2.1 Filtragem dos dados e Mapa de Ligação	35
3.2.2.2 Análise de QTL	35
3.2.2.3 Desequilíbrio de ligação (DL) e blocos haplótipos	35

3.2.2.4 Perfil Genotípico	36
3.3 ANOTAÇÃO DOS GENES	36
4 RESULTADOS	37
4.1. ANÁLISES FENOTÍPICAS	37
4.1.2 Estimativa dos componentes de variância e parâmetros genéticos	37
4.1.3 Identificação das RILs com melhor desempenho	40
4.2. ANÁLISE GENOTÍPICA	45
4.2.1 Genotipagem, filtragem dos dados e mapa de ligação	45
4.2.2 Desequilíbrio de Ligação	46
4.2.3 Análise de QTL	46
4.2.4 Blocos haplotípicos e anotação dos genes	59
5 DISCUSSÃO	66
5.1 EXPERIMENTOS DE CAMPO	66
5.2 ANÁLISE GENOTÍPICAS E MAPEAMANTO DE QTLs	68
6 CONCLUSÕES	75
7 REFERÊNCIAS	76
APÊNDICES	104

RESUMO

SANTOS, J. F.F. MAPEAMENTO DE QTL PARA CARACTERES DE IMPORTÂNCIA AGRONÔMICA EM ARROZ NO CRUZAMENTO Araguaia x Maninjau. 2020. 124 f. Mestrado (Mestrado em Genética e Melhoramento de Plantas) – Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2020.

A produtividade das principais culturas alimentares não será suficiente para atender às demandas previstas por alimentos. O arroz (Oryza sativa L.) é o principal alimento de grande parte da população mundial, e o incremento de sua produtividade tem sido um dos principais objetivos dos programas de melhoramento no mundo, com intuito de desenvolver cultivares de arroz com maior potencial produtivo e estabilidade da produção do que as disponíveis hoje. Estudos de adaptabilidade e estabilidade, juntamente com o mapeamento de QTL (Quantitative Trait Loci) visando a descoberta de marcadores para seleção assistida, podem impulsionar a obtenção de cultivares comerciais que atendam a demanda de produção de grão do arroz. Esse trabalho objetivou identificar: 1) linhas puras recombinantes (RILs) produtivas, baixas e precoces com maior adaptabilidade e estabilidade, e 2) QTLs relacionados a caracteres agronômicos de importância em uma população de RILs provinda do cruzamento inter-subespecífico Araguaia x Maninjau. Foi realizada a análise de adaptabilidade e estabilidade em dois locais (Boa Vista – RR e Goianira – GO) para obtenção de dados fenotípicos de quatro caracteres agronômicos e para identificação de linhagens superiores. As RILs e os genitores foram genotipados pela metodologia DArTseq para obtenção de marcadores SNPs e sílico DArTs para o mapeamento de QTL. Após a consolidação dos dados dos experimentos de campo e de genotipagem, a análise de QTLs foi realizada considerando 234 RILs e 8.911 marcadores SNPs e DArTs pelo método de mapeamento por intervalo múltiplo, com LOD≥ 3,0. O cruzamento inter-subespecífico gerou variabilidade suficiente para seleção de linhagens superiores e alelos favoráveis para o mapeamento de QTL. O experimento de Goianira apresentou as linhagens mais produtivas (média de 6.455 Kg/ha) e mais resistentes ao acamamento (nota média de 1,7), enquanto o experimento de Boa Vista teve linhagens mais precoces (média de 72,1 dias até o florescimento) e baixas (altura média de 106,51 cm). O genitor Maninjau teve melhor desempenho fenotípico para produtividade, enquanto o Araguaia se mostrou mais precoce, baixo e resistente ao acamamento. Destacaram-se duas linhagens por apresentar bom desempenho nos diferentes ambientes para múltiplos caracteres. Foram identificados 22 QTLs significativos (LOD≥ 3,0), seis para produtividade de grão, cinco para florescimento e 11 para altura de plantas, com variação fenotípica explicada variando de 3,94% a 35,36%. O QTL *PTHT12* para altura de plantas teve estabilidade entre os ambientes. O mapeamento de QTL confirmou que o genitor Maninjau foi o doador de 66,6% dos alelos favoráveis para o aumento da produtividade de grãos, e que Araguaia foi o doador de 100% dos alelos favoráveis para florescimento precoce e 63,3% para porte baixo nas RILs. As linhagens com melhor desempenho são indicadas para seguirem no programa de melhoramento. Marcadores potenciais foram identificados para produtividade grãos, florescimento e altura de plantas, e são indicados para etapa de validação para uso na rotina de seleção assistida de programas de melhoramento genético de arroz do Brasil.

Palavras Chaves: Cruzamento inter-subespecífico, Linhagens puras recombinantes, Marcadores SNPs, DArTs.

¹Orientador: Prof. Dr. Claudio Brondani. Embrapa Arroz e Feijão.

ABSTRACT

SANTOS, J. F.F. **QTL MAPPING FOR TRAITS OF AGRONOMIC IMPORTANCE IN RICE IN THE CROSSING Araguaia x Maninjau** 2020. 124 p. Master (Master in Genetics and Plant Breeding) - School of Agronomy, Federal University of Goiás, Goiânia, 2020.

The productivity of the main food crops will not be sufficient to meet the anticipated demands for food. Rice (Oryza sativa L.) is the main food for a large part of the world population, and increasing its productivity has been one of the main objectives of breeding programs in the world, with the aim of developing rice cultivars with greater productive potential and production stability than those available today. Adaptability and stability studies, together with the mapping of QTL (Quantitative Trait Loci) aiming at the discovery of markers for assisted selection, can boost the obtaining of commercial cultivars that meet the demand for rice grain production. This work aimed to identify: 1) Recombinant Inbred Lines (RILs) productive, with greater adaptability and stability, and 2) QTLs related to important agronomic characters in a population of RILs from the interspecific crossing Araguaia x Maninjau. The adaptability and stability analysis was performed in two locations (Boa Vista - RR and Goianira - GO) to obtain phenotypic data of four agronomic traits and identification of superior inbred lines. The RILs and the genitors were genotyped by the DArTseq methodology to obtain SNPs markers and silico DArTs for the QTL mapping. After consolidating the data from the field and genotyping experiments, the QTLs analysis was performed considering 234 RILs and 8,911 SNPs and DArTs by the multiple interval mapping method, with $LOD \ge 3.0$. The interspecific crossing generated enough variability to select superior inbred lines and favorable alleles for OTL mapping. The Goianira experiment showed the most productive RILs (average of 6,455 kg/ha) and the most resistant to lodging (average score of 1.7), while the Boa Vista experiment showed precocious RILs (average of 72.1 days until flowering) and lower plants (average height of 106.51 cm). The genitor Maninjau had a better phenotypic performance for productivity, while Araguaia was more precocious, lower and resistant to lodging. Two line stood out for performing well in different environments for multiple characters. Twenty-two significant QTLs (LOD \geq 3.0) were identified, six for grain yield, five for days to flowering and 11 for plant height, with explained phenotypic variation ranging from 3.94% to 35.36 The QTL PTHT12 for plant height had stability between environments. The QTL mapping confirmed that the genitor Maninjau was the donor of 66.6% of the favorable alleles to increase grain productivity, and that Araguaia was the donor of 100% of the favorable alleles for early flowering and 63.3% for size low in RILs. The line with the best performance are indicated to continue in the breeding program. Potential markers were identified for grain yield, flowering and plant height, and are indicated for the validation step for use in the assisted selection routine of rice breeding programs in Brazil.

Keywords: Inter-subspecific crossing, recombinant inbred lines, SNP markers, DArT.

¹Advisor: Prof. Dr. Claudio Brondani. Embrapa Arroz e Feijão

1 INTRODUÇÃO

A população mundial chegará a nove bilhões de pessoas em 2050, havendo aumento na demanda de produção agrícola para alimentar mais dois bilhões de pessoas (ONU 2019; Dhein et al., 2020). As projeções de crescimento populacional, do aumento do consumo per capita, da limitação dos recursos hídricos, da expansão das cidades e das restrições no uso de terra nas próximas décadas, indicam que a produtividade das principais culturas alimentares não será suficiente para atender às demandas previstas por alimentos (Ray et al., 2013; Saath & Fachinello, 2018).

O arroz (*Oryza sativa* L.) é o principal alimento de grande parte da população mundial, e uma das culturas mais produzidas e consumidas no mundo, com previsão atual se aproximando de 500 milhões de toneladas (CONAB, 2019; Castro et al., 2020). Sua ampla adaptabilidade a diferentes condições de solo e clima, e ótimo balanceamento nutricional, torna seu incremento da produtividade um dos principais objetivos dos programas de melhoramento no mundo (Santos et al., 2006; FAO, 2014). Os esforços para o aumento da produtividade requerem o desenvolvimento de cultivares com adaptabilidade e estabilidade produtiva mesmo em condições desfavoráveis (Dixit et al., 2017).

Para aumentar a produção de arroz, é necessário o aprimoramento genético de caracteres relacionados à produtividade (Silva et al., 2017). Porém, o controle genético da maioria dos caracteres de interesse agronômico nas diversas culturas é quantitativo, definido por vários genes, e são influenciados pelo ambiente, o que torna mais difícil o trabalho de seleção genética (Guo et al., 2014). Assim, os programas de melhoramento enfrentram algumas dificuldades devido à natureza complexa dos mecanismos que governam essas características, que vem sendo superadas pelo avanço da fenotipagem de alto rendimento, da biologia molecular e da bioinformática (Zhu et al., 2017; Muthu et al., 2020). Tais avanços permite aprimorar a compreensão da base genética da produtividade das culturas (Varshney et al., 2014).

A tecnologia de sequenciamento de nova geração foi um dos avanços que permitiu compreender melhor a base genética, através da genotipagem por sequenciamento (GBS), um método rápido e econômico que passou a ser amplamente adotado no desenvolvimento de marcadores genômicos para estudos genéticos. Com melhor eficiência e velocidade de produção de dados genômicos, custos do processo de sequenciamento reduzidos, a identificação de regiões genômicas relacionadas a caracteres quantitativos em plantas foi impulsionada por meio de métodos como o mapeamento de QTL, que passou a utilizar mapas genéticos com alta densidade de marcadores (Liu et al., 2012; Van Nimwegen et al., 2016).

O mapeamento de QTL é um método no qual marcadores moleculares são utilizados para localizar regiões do genoma que estão relacionados ao controle dos caracteres de interesse (Angaji, 2009). Suas etapas consistem em: seleção de parentais contrastantes para o caráter de interesse; obtenção da população segregante, maximizando o potencial de evidenciar o desequilíbrio de ligação entre um loco marcador e região genômica associada ao controle do caráter de interesse; a fenotipagem da população; genotipagem da população; construção de mapa genético por programas estatísticos para alinhar os marcadores genotipados; e identificar marcadores moleculares ligados ao caráter de interesse por meio do mapeamento de QTLs (Coelho, 2000; Collard el al., 2005; Hao & Lin, 2010). Os marcadores identificados pelo mapeamento de QTL podem ser integrados aos programas de melhoramento genético por meio da estratégia de seleção assistida por marcadores (SAM) (Pantalião et al., 2020).

Esses avanços têm levado a vários estudos envolvendo a identificação e clonagem de locos de caracteres quantitativos (quantitative trait loci - QTL) relacionados a produtividade, como para o formato de grãos (*GS3*) (Fan et al., 2006), largura e pesos de grãos (*GW2 /GW5*) (Song et al., 2007); Weng et al., 2008) e largura de grãos (*qSW5*) (Shomura et al., 2008). No entanto, não basta apenas identificar QTLs associados a produtividade na população de estudo, mas devem ser avaliados em mais populações de base genética distinta, a fim de entender melhor sua base genética (Bai et al., 2011). Adicionalmente, QTLs de grandes efeitos relacionados ao aumento da produtividade em arroz tem sido identificado a partir de estruturas populacionais diversas, como *qGY8* (20%) (Zhu et al., 2017), *qDTY*_{1.3} e *qDTY*_{8.1} (43,7% e 39,7%) (Catolos et al., 2017), qGYD5.1(30%) e 8 qGYD8.1(34%) (SOLIS et al., 2018). Os componentes de produtividade são número de panículas por planta, número de grãos por panícula e peso de grãos (Xing & Zhang, 2010), e diversos QTLs foram identificados para os caracteres componentes, não somente para a produtividade de grão (Cui et al., 2002; Lim et al., 2014, Ding, et al., 2015; Zhou et al., 2018).

Conhecer o controle genéticos de caracteres como florescimento e a arquitetura da planta também tem sido foco de estudos por afetarem diretamente a produtividade (Terra et al., 2015; Zhou et al., 2016). Desde 1960, durante a Revolução Verde, tem-se conseguido aumentos significativos no incremento da produtividade por meio de estudos com caracteres relacionados a produtividade. A introdução do gene sd1 em linhagens de arroz, resultou na redução no porte da planta e, consequentemente, das perdas por acamamento e aumento na produtividade (Bai et al., 2011). Além disso inúmeros QTLs foram mapeados para florescimento, como Hd1, Hd3a e Ehd1 que foram clonados e também desempenharam papel importante no aumento da produtividade (Yano et al., 2000; Kojima et al., 2002; Doi et al., 2004). Apesar do sucesso no aumento da produtividade não ser recente, o incremento da produtividade é ultrapassado ano após ano por diversos fatores. Assim, a necessidade de desenvolver cultivares de arroz com maior potencial produtivo e estabilidade da produção é recorrente. A ampliação da base genética do arroz, com a incorporação de genótipos com grande variabilidade genética para seleção de novas combinações alélicas pode possibilitar um incremento maior. Cruzamentos interespecíficos podem levar a introdução de genes úteis para características agronômicas desejáveis.

No Brasil, o cultivo de arroz vem sendo realizado em dois sistemas de cultivo, sequeiro e irrigado. Dependendo do sistema de cultivo a produtividade e caracteres relacionados a produtividade podem sofrer mudanças negativas. A redução na disponibilidade hídrica pode aumentar o ciclo, reduzir número de panícolas, número de espigueta por panícola, massa dos grãos, e altura das plantas (Crusciol et al., 2003; Flauzino, 2019). Assim, para melhor controle em um experimento quando se deseja avaliar o desempenho de uma população, o sistema de cultivo irrigado pode fornecer melhor condições para reduzir as perdas na capacidade de desenvolvimento da planta. Com isso, esse trabalho teve como objetivo identificar linhas puras recombinantes (RILs) produtivas, baixas e precoces com adaptabilidade e estabilidade, e identificar QTLs relacionados a caracteres agronômicos de importância em uma população de RILs provinda do cruzamento inter-subespecífico Araguaia (sequeiro) x Maninjau (irrigado).

2 REVISÃO DE LITERATURA

2.1 CULTURA DO ARROZ

2.1.2 Importância, produção e consumo

A segurança alimentar global é desafiada por múltiplos fatores, incluindo o aumento contínuo da população, redução da disponibilidade de terras cultiváveis, as mudanças climáticas globais e as demandas por produção de biocombustíveis (Takeda & Matsuoka, 2008; FAO, 2014). O arroz está diretamente relacionado com a segurança alimentar, pois é uma das culturas alimentares mais importantes a nível mundial, no qual é a principal fonte de alimento para mais de 3,5 milhões de pessoas em todo o mundo (Zuo & Li, 2014; Li et al., 2018).

Mais de 80% da produção mundial de arroz destinam-se a alimentos, cerca de 4% para alimentação animal e 16% para outros usos (MAPA, 2017). O maior consumidor mundial é o continente asiático, com consumo médio alto de 78 Kg por pessoa por ano, enquanto que países situados na América Latina consomem em média 29 Kg por pessoa por ano (SOSBAI, 2018). O consumo mundial de arroz previsto em 2019/2020 é de 496,08 milhões de toneladas, aproximando-se da produção mundial, que ficará em 497,82 milhões de toneladas, com retração de aproximadamente 1,3 milhões de toneladas em relação à safra 2018/2019 (CONAB, 2019).

No Brasil, o arroz é consumido especialmente na forma de grãos inteiros, sendo conhecidos, em função da forma de processamento pós-colheita, como arroz branco, arroz integral e arroz parboilizado (Vieira & Rabelo, 2006). Quase 95% dos brasileiros consomem arroz e mais da metade o fazem no mínimo uma vez por dia, com a média de 32 Kg por pessoa por ano (Barata, 2005; SOSBAI, 2018). Na safra 2019/2020 é previsto um consumo de 11 milhões de toneladas, ultrapassando a produção prevista de 10,6 milhões de toneladas, em um cenário relativamente parecido com a safra 2018/2019 (CONAB, 2019).

No Brasil, as instituições de pesquisa voltadas a cultura de arroz vêm se dedicando há anos à solução de problemas relacionados ao incremento da produtividade e rentabilidade da cultura, tanto no sistema de cultivo irrigado como de terras altas (Pinheiro,

2006 apud Santos et al., 2006). O arroz é cultivado praticamente no país todo, porém, a maior parte da produção ocorre em 5 estados: Rio Grande do Sul, onde predomina o arroz irrigado, concentra 70,5% da produção nacional (safra 2018/19), Santa Catarina, 10,2%, Tocantins 6,0%, Mato Grosso 3,6% e Paraná com 1,5% (MAPA, 2019).

2.1.3 Gênero Oryza

O arroz, pertencente à divisão das Angiospermas, é uma gramínea herbácea anual, autógama, da classe das monocotiledôneas, Ordem Poales, Família Poaceae (Gramineae), subfamília Oryzoideae (Bambusoideae), tribo Oryzeae e Gênero *Oryza* (Huang et al., 2012; Khush, 1997). O gênero *Oryza* possui 25 espécies, das quais 23 são silvestres e duas são cultivadas: *Oryza sativa* L., de origem asiática, e *Oryza glaberrima* S., de origem africana (Gonzáles, 1985; Vaughan & Morishima, 2003; Rice Diversity Project, Cornell University, U.S.A).

Oryza sativa possui duas subespécies, *índica* e *japônica*, as quais possuem alta diversidade genética entre si. A subespécie *índica* é encontrada nas regiões inundadas da Ásia tropical enquanto que a subespécie *japônica* é encontrada nas regiões de terras altas e elevações do Sul da Ásia (Garris et al., 2005; Sweeney & McCouch, 2007).

Fenotipicamente o grupo *índica* possui colmos longos, alta capacidade de perfilhamento, folhas longas e decumbentes, ciclo tardio, e seus grão são mais longos e finos, tendo seu sistema de cultivo no Brasil predominantemente irrigado, enquanto a subespécie *japônica* apresenta colmos curtos e rígidos, capacidade de perfilhamento média, folhas estreitas com coloração verde-escura e ciclo geralmente mais curto, com seus grãos mais curtos e de formato arredondado, cujo sistema de cultivo no Brasil é predominantemente de sequeiro (Stone & Pinheiro, 1998; Khush,1997).

2.1.3.1 Diversidade genética do gênero Oryza

A diversidade genética do arroz está conservada em coleções diversos centros de pesquisa agronômica. A maior coleção de Oryza sp. existente pertence ao Centro Internacional de Pesquisa do Arroz (International Research Institute - IRRI), em Los Baños, nas Filipinas, que representa a maior e mais diversificada coleção de arroz entre os bancos de germoplasma existente (IRRI, 2020). No Brasil diversas instituições conservam

germoplasma de arroz, entre elas o IAC, o IRGA e a Embrapa, que possui a maior coleção ativa de germoplasma de arroz, com cerca de 12.000 acessos. Como forma de facilitar seu acesso para a caracterização agronômica, morfológica e molecular de modo rápido, econômico e preciso a Embrapa reduziu o tamanho da coleção principal com a criação de uma coleção nuclear, a Coleção nuclear de Arroz da Embrapa (CNAE), estabelecida em 2002 (Abadie et al., 2005).

Foi realizada a caracterização agronômica da CNAE, e caracterização molecular de alguns de seus acessos mais divergentes geneticamente (24 acessos) frequentemente utilizados nos programas de melhoramento brasileiro e mundiais, dos quais originaram a Mini-Coleção Nuclear de Arroz da Embrapa (Mini-CNAE) (Brondani et al., 2006; Borba et al., 2009). Em complementaridade, buscou-se avaliar o potencial para o melhoramento genético desta coleção através da combinação dos acessos pela realização de cruzamentos em dialelo (Abadie et al., 2005; Brondani et al., 2006). Esses cruzamentos em dialelos resultou em quatro combinações mais produtivas envolvendo quatro genitores em um esquema de dialelo circulante: Epagri 108 (sistema de cultivo irrigado) x IRAT 122 (sequeiro), Epagri 108 (irrigado) x Maninjau (irrigado), Araguaia (sequeiro) x IRAT 122 (sequeiro), e Maninjau (irrigado) x Araguaia (sequeiro) (RAMOS, 2015). As populações geradas por esse dialelo circulante tem sido alvo de estudo para o mapeamento de QTL para carcteres de de interesse agronômico, no qual possam ser uteis ao Programa de Melhoramento de arroz da Embrapa. A população Maninjau (irrigado) x Araguaia (sequeiro) possui geniores que podem reunir caracteres de interesse agronômico, como produtividade, precocidade, porte baixo e resistência ao acamamento, além de ter sido a população com maior distância genética entre os cruzamentos desse dialelo, motivos pelos quais essa população foi escolhida para ser estudada nesse trabalho.

2.2 O GENOMA DO ARROZ

O genoma do arroz é o menor entre as gramíneas de importância econômica, como o sorgo, milho, aveia, cevada e trigo, e também por ser diploide, é considerado a espécie modelo para estudos em monocotiledôneas, em paralelo com *Arabidopsis* para dicotiledôneas (Arumunagathan & Earle, 1991). O arroz possui 11 tipos de genomas, seis dos quais são diplóides (n = 12: AA, BB, CC, EE, FF e GG) e cinco são poliplóides (n = 24: BBCC, CCDD, HHJJ, HHKK e KKLL). As duas espécies cultivadas de arroz, *O. sativa*

e *O. glaberrima*, são diploides e com genoma do tipo AA (Ammiraju et al., 2010; Stein, et al., 2018).

Um acúmulo de informações detalhadas sobre a estrutura e funcionamento de genes relacionados a caracteres de interesse foi impulsionado pelo sequenciamento do genoma do arroz, que possibilitou o desenvolvimento de um número quase ilimitado de marcadores baseados em DNA, podendo ser aplicados em caracterização varietal, construção de mapas de ligação, análise de QTL (Quantitative Trait Loci) e mapeamento associativo (Xu et al., 2004).

O genoma do arroz foi sequenciado pela primeira vez, de forma independente, com as subespécies *índica* e *japônica* nos trabalhos de Yu et al. (2002) e Goff et al. (2002). De acordo com o Rice Genome Annotation Project, os dados mais recentes indicam que o genoma do arroz (cultivar Nipponbare) possui entre 384,2 a 386,5 Mb, considerando 96,7% a 97,1% de cobertura do genoma, além de terem sido identificados mais de 49.000 genes (International Rice Genome Project, 2005; Kawahara et al., 2013).

2.3 CARACTERES RELACIONANDOS À PRODUTIVIDADE

A produtividade de grãos na cultura do arroz é um caráter complexo e resultante da expressão e associação de diferentes componentes, sendo eles número de panículas por planta, número de grãos por panícula e peso de grãos (Sakamoto & Matsuoka, 2008; Cargnin et al. 2010; Xing & Zhang, 2010). A maioria dos caracteres que compõem a produtividade possuem alta herdabilidade, e sua mensuração auxilia na seleção indireta para incremento da produtividade em arroz (Garcia, 2017). A produtividade das culturas também pode ser influenciada por vários fatores, tais como clima, genótipo e ocorrência de pragas (Lopes et al., 2013).

É necessário realizar extensiva avaliação (ensaios conduzidos em vários locais e anos) para a identificação de genótipos superiores em produtividade e estabilidade de produção em certa amplitude de ambientes que representem os efeitos limitantes do clima, do solo e das pragas e doenças (De Almeida et al., 1999). Caracteres como peso de grãos, altura de planta, dias para floração, acamamento e resistência a doenças são caracteres que vem sendo utilizados com frequência em análises para a seleção de genótipos superiores para incremento da produtividade. A duração do ciclo de desenvolvimento do arroz tem relação direta com produtividade de grãos, e este entendimento pode auxiliar na escolha de genótipo mais apropriado para atingir o potencial de rendimentos de grãos em diferentes regiões (Streck et al., 2006). Cargnin et al. (2010) e Terra et al. (2015) também verificaram essa relação e constataram que há correlação negativa entre o florescimento e a produtividade de grãos, no qual condições adversas do ambiente, influenciam no florescimento médio e duração desta fase, e consequentemente afetando a produtividade.

A altura da planta também tem correlação negativa com a produtividade, visto que afeta diretamente o número de perfilhos produtivos (Ogunbayo et al., 2014; Zhou et al., 2016). Plantas baixas são mais desejáveis, pois a menor altura de plantas é uma característica interessante para eliminar a possibilidade de acamamento da cultura, enquanto que plantas altas, além de acamarem com mais facilidade, consomem mais energia, prejudicando a formação dos grãos (Silva et al., 2009; Garcia, 2017).

2.4 GENÓTIPO X AMBIENTE

Considerando um caráter qualquer, o valor observado para esse caráter, denominado fenótipo, é função do genótipo (G), do ambiente (A) e da interação genótipos com ambientes (GxA) (Ramalho et al., 2012). A ocorrência da interação GxA é consequência do comportamento não coincidente dos genótipos, que não mantêm o mesmo desempenho relativo nos diferentes ambientes em que são cultivados (Cruz & Carneiro, 2003; Neto et al., 2013). A seleção de genótipos e populações com boa adaptação e alta produtividade em vários ambientes é um dos objetivos básicos do melhoramento de plantas, mas que pode ser prejudicada caso ocorra forte interação genótipos x ambientes (Bueno et al., 2001; Cargnin et al., 2006; Cargnin, et al., 2008).

O conhecimento da interação genótipos x ambientes é de grande importância quando o interesse é a seleção de genótipos com adaptação ampla ou específica, escolha de locais de seleção e a determinação do número ideal de ambientes e de genótipos a serem avaliados durante a seleção (Borges et al., 2010; Fox et al., 1997). Assim, estudos de adaptabilidade e estabilidade são necessários para a identificação de genótipos com comportamento previsível, que sejam responsivos às variações ambientais, em condições específicas ou amplas (Cruz et al., 2014).

Segundo Cruz et al. (2004), dois procedimentos podem ser empregados para estimar a interação G x A: estudos de adaptabilidade e estabilidade de genótipos e estratificação ambiental. No primeiro, procura-se quantificar as respostas de cada genótipo frente às variações ambientais, para identificar aqueles de comportamento previsível e que sejam responsivos às variações ambientais, em condições específicas ou amplas. No segundo, identifica-se entre os ambientes disponíveis, padrões de similaridades de respostas dos genótipos, possibilitando avaliar o grau de representatividade dos ensaios, e a tomada de decisões com relação a descarte de ambientes quando necessário. Para isso, são identificados grupos de ambientes que a interação G x A possa ser não significativa, ou com predominância de porção interação de natureza simples, ou seja, que não venha a comprometer a recomendação de cultivares.

Existem inúmeros métodos para avaliação da adaptabilidade e estabilidade fenotípica, dos quais podem ser alternativos, complementares, ou que podem ser utilizados conjuntamente (Ramos et al., 2015). Uma das principais metodologias utilizadas para avaliar genótipos com relação às variações ambientais é a tradicional análise de grupos de experimentos, na qual a avaliação é feita pela variância dos efeitos de genótipo x local, genótipo x ano e genótipo x local x ano. A significância estatística das interações de genótipos com esses componentes ambientais (local, ano) justifica a partição das somas de quadrados em componentes da variação ambiental dentro de cada genótipo. Os genótipos mais estáveis serão aqueles com menores quadrados médios para os componentes ambientais (Oliveira, 1976).

O simples fato de se detectar a presença da interação G x A não contribui para o trabalho do melhorista. Um modelo alternativo é o método da média harmônica da performance relativa dos valores genotípicos (MHPRVG), que baseado em valores genotípicos preditos, via modelos mistos, agrupa em uma única estatística, a estabilidade, a adaptabilidade e a produtividade (Borges et al., 2010). Esse método é baseado na análise de variância estimada por REML/BLUP, em que o procedimento REML (Restricted Maximum Likelihood), ou máxima verossimilhança restrita, estima componentes de variância necessários ao modelo e o BLUP (Best Linear Unbiased Prediction), melhor preditor linear não viesado, estima o valor genotípico (Resende, 2007).

As vantagens do REML/BLUP é que ele permite comparar indivíduos ou linhagens através do tempo e espaço; permite a simultânea correção para os efeitos ambientais, estimação de componentes de variância e predição de valores genéticos; permite

lidar com estruturas complexas de dados, dados desbalanceados e delineamentos não ortogonais, além de outras vantagens, gerando estimativas e predições mais precisas; permite o ajuste para modelos alternativos, podendo-se escolher aquele que se ajusta melhor aos dados e, ao mesmo tempo, ser parcimonioso, ou seja, pode ser estruturado utilizando-se menor número de parâmetros (Resende, 2007).

2.5 MAPEAMENTO DE QTL

A genética quantitativa fornece a base teórica do melhoramento genético e permite a estimação de diversos parâmetros genéticos importantes, a partir de medidas fenotípicas que refletem a expressão simultânea dos genes que controlam o caráter. Como os caracteres quantitativos possuem baixa herdabilidade e pronunciado efeito ambiental, a identificação efetiva de indivíduos geneticamente superiores para produtividade é dificultada. Desse modo, separar caracteres de alta e de baixa herdabilidade facilitaria a seleção de materiais de interesse em programas de melhoramento (Bered, 1997; Sohrabi et al., 2012).

Informações adicionais fornecidas pelos marcadores moleculares permitem mapear individualmente os locos que controlam características quantitativas (QTL – *Quantitative Trait Loci*) (Moraes, 2005). Assim, a genética molecular e a genômica podem ser efetivamente úteis aos programas de melhoramento, uma vez que os alelos favoráveis identificados nos QTL possam ser utilizados na predição da relação entre genótipo e fenótipo (Tuberosa & Salvi, 2006).

A detecção da presença de um QTL no genoma é realizada através da busca por associações significativas entre o valor fenotípico de uma determinada população para o caráter quantitativo de interesse, e o genótipo desta mesma população para um ou mais marcadores genéticos (Doerge, 2002). O mapeamento de um QTL se dá pela identificação da sua posição no genoma e estimação dos seus efeitos (aditividade, dominância, heterose e epistasia), além de possibilitar a decomposição da interação genótipos por ambientes para cada QTL (Ferreira & Grattapaglia, 1996; Austin & Lee, 1998; Resende et al., 2012).

O uso de marcadores genéticos para localizar um loco que participa do controle da expressão de um caractere quantitativo não é recente, trabalhos como de Sax (1923) e Thoday (1961) foram pioneiros. Porém, só com a disponibilidade de marcadores de DNA e métodos biométricos de análise é que o mapeamento de QTL teve um enorme avanço (Asins, 2002). Assim, tornou possível a realização de diversos trabalhos em arroz e alguns para caracteres relacionados à produtividade, mesmo sendo um caráter complexo controlado por vários QTLs e de pronunciado efeito ambiental. (Kotla et al., 2013).

Peso de grãos é um componente de produtividade de grãos, que é um índice integrado de comprimento, largura e espessura do grão, e vem sendo mapeado por alguns pesquisadores. Trabalhos como o de Matsubara et al. (2018), mostram que é possível obter êxito não só na detecção de QTL, mas também em relação a detecção de interação QTL com ambiente. Nesse estudo foram encontraram seis QTLs para peso de grão, em que um QTL foi detectado em todos os ambientes estudados, confirmando a interação entre QTL e ambiente.

Caracteres da panícula podem influenciar no peso de grãos, e consequentemente, na produtividade, o que leva ao mapeamento destes caracteres, como no trabalho de Zhou et al. (2018), que identificaram um QTL (*GN4-1*) de efeito aditivo no cromossomo 4 em *japônica*, que foi responsável pelo aumento de 17% no número de grãos por panícula. Jia et al. (2019), também detectaram em RILs provindas do cruzamento *japônica* x *índica*, 19 QTLs relacionados à panícula indicaram ser favoráveis para o aumento da prdutividade, dos quais tiveram variação fenotípica explicada variando de 8,8% a 37,9%.

Em trabalho de Zhu et al. (2017), envolvendo cruzamentos entre *japônica* e *índica*, foram identificados quatro QTLs para produtividade de grão, onde o QTL *qGY8* explicou mais de 20% da variação fenotípica. Catolos et al. (2017) identificaram três principais QTLs para produtividade de grão (*qDTY*_{1,1}, *qDTY*_{1,3} e *qDTY*_{8,1}) em que as progênies mais produtivas possuíam as seguintes combinações: QTL *qDTY*_{1,3} + *qDTY*_{8,1}, *qDTY*_{1,1} + *qDTY*_{8,1} e *qDTY*_{1,1} + *qDTY*_{8,1} + *qDTY*_{1,3}. SOLIS et al. (2018) detectaram seis QTLs para produtividade nos cromossomos 1, 5, 8 e 9, em que a variância fenotípica positiva aditiva explicada pelos QTLs chegou a 34,0%.

Melhorar a arquitetura das plantas também é um meio eficaz para aumentar a produtividade. Em trabalho realizado por Lim et al. (2014), foram analisados seis caracteres: altura da planta, número de perfilhos, diâmetro da panícula, comprimento da panícula, comprimento da folha da bandeira e largura da folha da bandeira. Utilizando uma população de 178 linhagens recombinantes (RILs) de arroz *japônica* x *índica*, foram mapeados 11 QTLs de efeito principal e 16 de menor efeito, com variação fenotípica de 7,4 à 33,5%. Foram sugeridos 15 genes candidatos fortes para os 11 QTLs de efeito principal, mostrando que o mapeamento de QTL gera recursos genéticos úteis para a produção de cultivares de arroz de alta produtividade com arquitetura de plantas aprimorada.

Ding et al. (2015) detectaram 25 QTLs para seis caracteres, em que os principais QTLs, *qPH12*, *qLW12.2*, *qLL12* e *qGW12.1*, explicaram 50%, 57,08%, 15,41% e 22,51% de variação fenotípica para altura, largura e comprimento das folhas e largura dos grãos, respectivamente. Além da altura, o florescimento também tem papel importante no aumento da produtividade de grãos. Trabalho como o de Zhu et al. (2017) mostra a importância de obter informações sobre os genes que controlam o florescimento. Neste estudo, o gene *RFT1* influenciou no peso, número e produtividade de grãos, desempenhando papel importante no crescimento e desenvolvimento do arroz, ressaltando a importância do mapeamento de QTL para florescimento.

Um grande número de QTLs também foram identificados por Begum et al. (2015) em 363 linhagens elites do programa de melhoramento de arroz irrigado do International Rice Research Institute (IRRI), sendo 52 QTL para 11 caracteres, incluindo QTLs de grande efeito para o tempo de floração e comprimento - largura de grão, com variação fenotípica de 13 a 59%. Também identificaram haplótipos que podem ser usados para selecionar plantas na população para baixa altura de planta, tempo de floração precoce e alta produtividade.

2.5.1 Populações utilizadas no mapeamento de QTL

A escolha da população para o mapeamento de QTL envolve algumas etapas importantes, como escolha de genitores, determinação do tipo de cruzamento e métodos de condução (Staub et al., 1996). Porém, é indispensável que a população seja resultante de genitores com o máximo possível de polimorfismo, e que sejam produzidas gerações em que os locos estejam em desequilíbrio de ligação (Paterson et al., 1991; Tanksley, 1993).

Na prática, são utilizadas populações com tamanho variando de 50 a 250 indivíduos. Mapas desenvolvidos com um pequeno número de indivíduos fornecem grupos de ligação fragmentados e imprecisos (Ferreira et al., 2006). Para construção de um mapa genético uma premissa básica é a seleção de genitores contrastantes, já que o número de marcas no mapa representa o número de caracteres contrastantes nos genitores, e consequentemente, quanto maior o número de marcadores, maior chance de saturação do mapa (Carneiro & Vieira, 2002).

Para o mapeamento genético de plantas, diversos tipos de populações podem ser utilizados, cada uma com características próprias, apresentando vantagens e desvantagens que devem ser levadas em consideração pelo pesquisador no momento de selecionar populações para fins de estudos genéticos. As análises genômicas têm sido feitas a partir de dados obtidos de populações naturais ou de cruzamentos específicos, como gerações de retrocruzamentos, populações F2, linhagens duplo-haplóides, RILs (*Recombinant Inbred Lines*) e populações endogâmicas (Schuster & Cruz, 2013).

As linhas puras recombinantes são úteis e altamente recomendadas no mapeamento de QTLs, possibilitando determinar tanto a posição, quanto o efeito no fenótipo desses grupos de genes (Asins & Carbonell, 2014). Populações RILs são geradas a partir do cruzamento entre dois parentais homozigotos, seguido de etapas sucessivas de autofecundação por SSD (*single seed descent*, ou descendente de semente única) a partir da população F2, ou de cruzamento entre irmãos, que resultam na criação de uma população de linhagens puras, cujo genoma é um mosaico (devido a recombinação) dos genomas dos parentais (Broman, 2005).

A vantagem de populações de RILs é que por serem compostas por apenas indivíduos homozigotos, podem ser perpetuadas, assim a disponibilidade de grande quantidade de sementes de cada RIL permite o cultivo em vários locais, possibilitando a obtenção de estimativa mais precisa dos caracteres quantitativos a serem mapeados. Além disso, é possível mapear locos considerando a interação genótipo por ambiente nesses caracteres (Schuster & Cruz, 2013).

2.5.2 Análise de QTL

A análise de QTL corresponde à procura de associações entre determinado caráter quantitativo e os alelos dos marcadores segregando na população. De modo análogo às metodologias clássicas de mapeamento genético, o princípio básico que fundamenta as análises de mapeamento de QTL é a existência de desequilíbrio gamético de ligação decorrente da redução da frequência de recombinação entre genes situados em regiões próximas entre si ao longo de determinado cromossomo (Coelho, 2000).

O mapeamento de QTLs envolve quatro etapas principais: escolha da população de mapeamento, obtenção dos dados de marcadores para cada indivíduo, obtenção dos dados fenotípicos para cada indivíduo, aplicação de métodos estatísticos na análise simultânea dos dados fenotípicos e de marcadores (Bhering & Cruz, 2008; Resende et al., 2012; Segatto et al., 2017). A análise pode ser realizada por meio de mapas de ligação, onde a genotipagem

fornece o mapa físico e as distâncias entre os SNPs e os QTLs em pares de bases (pb), e através do método da máxima verossimilhança, é possível inferir se há ligação entre o marcador e o QTL considerando a distância entre eles (Schuster & Cruz, 2008).

Softwares com o *WinQTL Cartographer* e o *R* (pacote *R/qtl*) podem ser utilizados para a análise de QTL (Broman, 2014). O *R/qtl* suporta uma maior quantidade de dados, permitindo a manipulação dos QTLs de acordo com o modelo adotado, e fornecendo as estatísticas necessárias para a tomada de decisões sobre os efeitos fenotípicos de um loco, de acordo com os dados de entrada (Broman & Sen, 2009).

As metodologias estatísticas utilizadas para a identificação e mapeamento de QTL podem variar desde análises simples até modelos mais sofisticados, como mapeamento por marcas simples, mapeamento por intervalo simples, mapeamento por intervalo composto e mapeamento por intervalo múltiplo (Kao et al.; 1999; Doerge, 2002; Schuster & Cruz, 2013).

A análise de marca simples é considerada a menos complexa e se baseia na determinação de uma correlação entre a média fenotípica e o loco marcador através de um teste t, ANOVA, regressão linear simples ou pelo método da máxima verossimilhança. Estes testes são equivalentes e testam a hipótese nula de que a média dos caracteres fenotípicos é independente do genótipo de um determinado marcador. Se a hipótese nula for rejeitada, a implicação é que um possível QTL esteja ligado àquele marcador (Doerge, 2002).

As metodologias de análise de QTL foram sofisticando gradualmente com a finalidade de sobrepor as limitações das análises de marca simples e obter estimativas mais acuradas da posição e do efeito dos QTL. A metodologia de mapeamento por intervalo propõe a utilização de um par de marcadores de cada vez, mas previamente identificados em regiões adjacentes em um cromossomo, para verificar a ocorrência de um eventual QTL entre esses marcadores pelo princípio de máxima verossimilhança (Lander & Botstein, 1989).

Na metodologia de mapeamento por intervalo composto, além dos pares de marcadores adjacentes, são selecionados e adicionados ao modelo marcadores como cofatores, o que permite controlar os efeitos de QTL adjacentes através de um modelo de regressão múltipla (Zeng, 1994). A técnica de mapeamento por intervalo múltiplo permite um aumento da precisão e do poder de detecção de QTL, além de possibilitar a estimação e análise dos efeitos de interação entre eles (epistasia). Múltiplos intervalos são utilizados para

mapear múltiplos QTL simultaneamente, sendo assim, um dos métodos mais precisos e com maior poder de detecção (Kao et al., 1999).

2.5.3 Marcadores Moleculares

O avanço das técnicas moleculares tem sido acompanhado pelo grande desenvolvimento nas áreas da bioinformática, da estatística e da genética quantitativa. Com isso, encontram-se disponíveis informações genômicas ancoradas a mapas físicos e genéticos altamente saturados, além dos inúmeros genes diferencialmente expressos, que são facilmente integrados por meio da bioinformática. As limitações em termos de saturação do genoma, número de indivíduos analisados e precisão na detecção de QTLs tendem a ser minimizadas com a revolução trazida pelo sequenciamento em altíssima escala (Guimarães, et al., 2009).

Há uma variedade de marcadores moleculares disponiveis para análise genética aplicada ao melhoramento de plantas. Os principais são: RFLP – *Restriction Fragment Length Polymorphism* (Botstein et al., 1980); RAPD – Random Amplified Polymorphic DNA (Williams et al., 1990); SSR – *Simple Sequence Repeats* (Jacob et al., 1991); AFLP – *Amplified Fragment Length Polymorphism* (Vos et al., 1995); SNP - *Single Nucleotide Polymorphism* (Brookes, 1999); e o sílico DArT – *Diversity Array Technology* (Jaccoud et al., 2001).

Com o desenvolvimento da tecnologia DArT (*Diversity Arrays Technology*), os requisitos de custo competitivo, rendimento e de cobertura do genoma passaram a ser supridos. Sua primeira plataforma para geração de marcadores moleculares foi desenvolvida em 2001, na qual é baseada na metodologia de hibridização de fragmentos em microarranjos. Com o advento de genotipagem por sequenciamento de nova geração ou NGS (*Next Generation Sequencing*), houve a implementação da tecologia DArT, dando origem a uma variante, denominada de DArTseq (Jaccoud et al., 2001; Mwadzingen et al., 2017; Kulcheski, 2017).

Esta nova abordagem combina o protocolo de redução da complexidade genética empregando o sistema tradicional de DArT, seguido pela genotipagem por sequenciamento baseado na plataforma Illumina (*short read sequencing*) (Figura 1). A DArTseq fornece os sílicos DArTs (dominantes), baseados na presença/ausência de fragmentos em comum entre

as amostras sob análise, e os marcadores SNPs - *Single Nucleotide Polymorphism* (codominantes), detectados a partir de variações pontuais (Deokar et al., 2014; Mwadzingen et al., 2017; Kulcheski, 2017).

Figura 1. Passo a passo da metodologia DArTseq adaptada para plataformas NGS. 1) Digestão do DNA com uma enzima de restrição de corte coesivo visando reduzir a complexidade do genoma. 2) Ligação, com auxílio de enzima de ligação, do adaptador barcodes a uma das extremidades dos fragmentos clivados e do adaptador comum a outra extremidade. 3) PCR com a adição de primers apropriados capazes de se ligar aos adaptadores ligados aos fragmentos clivados. 4) A enzima T4 ligase é inativada e uma alíquota de cada amostra é reunida e aplicada a uma coluna de exclusão por tamanho para remoção de adaptadores não ligados ou falhas. 5) Purificação do produto da PCR e avaliação dos tamanhos dos fragmentos da biblioteca. 6-7-8) Análise de dados. Fonte: Sansaloni (2012).

Os sílicos DArTs são fragmentos polimórficos, enquanto os marcadores SNP são alterações em bases únicas da cadeia de bases nitrogenadas (Adenina, Citosina, Timina e Guanina). As mutações mais comuns são as transições, onde ocorrem trocas de uma purina por outra purina (A/G) ou de uma pirimidina por outra pirimidina (C/T). Menos frequentes, as transversões ocorrem quando há troca de uma purina por uma pirimidina, ou vice-versa (C/T ou A/G). Os SNPs podem ocorrer em regiões codificadoras ou com função regulatória, porém, na maior parte das vezes são encontrados em espaços intergênicos, sem função determinada (Caetano, 2009).

Para o mapeamento de QTL, os DArTseq são considerados ideais, pois para sua obtenção o custo de genotipagem por loco é baixo, baseia-se em procedimentos rápidos e

robustos, a geração de dados é automatizada, não depende da utilização de géis de agarose ou policrialamida, requer uma quantidade mínima de DNA genômico por amostra, gera uma gama de marcadores com ampla cobertura do genoma, e não há necessidade de obtenção de informações prévias sobre sequências de DNA ou de *primers* específicos (Jaccoud et al., 2001; Miah et al., 2013). Além disso, os marcadores DArTs e SNPs são ótimas alternativas para gerar mapas de alta resolução (Rafalski, 2002).

3 MATERIAL E MÉTODOS

3.1. ANÁLISES FENOTÍPICAS

3.1.1 Desenvolvimento da População

A população segregante avaliada nesse trabalho é composta por 251 linhagens puras recombinantes (RILs), resultante do cruzamento entre as cultivares Araguaia e Maninjau, pelo método de descendente de semente única, ou *Single Seed Descent* (SSD) até a geração F_{2:7} (RAMOS, 2015). Essa população é resultante de um dos quatro cruzamentos em esquema de dialelo circulante simplificado envolvendo os genitores mais produtivos da CNAE (Coleção Nuclear de Arroz da Embrapa): Epagri 108 (sistema de cultivo irrigado) x IRAT 122 (sequeiro), Epagri 108 (irrigado) x Maninjau (irrigado), Araguaia (sequeiro) x IRAT 122 (sequeiro), e Maninjau (irrigado) x Araguaia (sequeiro).

O genitor Maninjau (Figura 2) é uma cultivar de sistema de cultivo irrigado, pertencente a subespécie *índica*, introduzida da Indonésia, cujo altura média é de 116 cm, o florescimento médio é de 85,5 dias, teor de amilose médio de 24,65%, número médio de grãos inteiros de 52,65% e produtividade média de 4.396 Kg/ha. O genitor Araguaia (Figura 3) é uma cultivar desenvolvida na Embrapa, de sistema de cultivo sequeiro, pertencente a subespécie *japônica*. Sua altura média é de 112 cm, ciclo médio, com florescimento de 84,5 dias, teor de amilose médio de 23,93%, número médio de grãos inteiros de 46,86%, produtividade média de 3.310 Kg/ha e resistente a brusone nas folhas (Brondani et al., 2007; Garcia 2017; Ramos 2019).

Figura 2. Foto da planta da cultivar Maninjau (A): Foto do grão da cultivar Maninjau (B). Foto: Jéssica Fernanda, 2019.

Figura 3. Foto da planta da cultivar Araguaia (A): Foto do grão da cultivar Araguaia (B). Fonte: Jéssica Fernanda, 2019.

3.1.2 Experimento de Campo

O experimento foi conduzido em dois ensaios de campo, nas estações experimentais da Embrapa Roraima, localizada no município de Boa Vista - RR (2° 48' N, 60° 39' W e altitude média de 61 m) (safra 2017/2018), e na Fazenda Palmital, da Embrapa Arroz e Feijão, localizada no município de Goianira - GO (16° 26' S, 49° 23' W e altitude média de 728 m) (safra 2018/2019) (Apêndice IV). Ambos os experimentos foram

conduzidos no sistema de cultivo irrigado. Foram avaliadas 243 RILs e 17 testemunhas (incluindo os genitores) em Boa Vista e 247 RILs e nove testemunhas (incluindo os genitores) em Goianira, totalizando 251 RILs avaliadas (239 em comuns, 4 específicas de RR e 8 específicas de GO por conta da disponibilidade de sementes). Os delineamentos utilizados foram Lattice 17 x 18 em RR e 16 x 16 em GO, ambos com duas repetições. As parcelas foram compostas por quatro linhas de quatro metros de comprimento, com 17 cm de espaçamento entre linhas, e com densidade de semeadura de 75 sementes por metro.

3.1.3 Avaliação Fenotípica da População

Os caracteres avaliados foram produtividade de grãos, florescimento, altura de plantas e acamamento. A coleta de dados fenotípicos foi realizada nas duas linhas centrais de cada parcela, resultando na área de útil de 1,36 m².

A produtividade de grãos foi obtida após a completa maturação fisiológica dos grãos, por meio da conversão do peso dos grãos colhidos de cada parcela em Kg/ha. O florescimento foi obtido pelo número de dias a partir da semeadura até atingir 50% das panículas floridas. A altura foi estimada após a fase de maturação da planta, pela mensuração aleatória de cinco plantas da parcela, medida desde o colmo principal do solo até a extremidade da panícula. O acamamento foi avaliado pela percentagem de plantas acamadas na fase de maturação, considerando os critérios de Fonseca et al. (2002): 1 - sem acamamento; 3 - até 25% de plantas acamadas; 5 - de 25 a 50% de plantas acamadas; 7 - de 50 a 75% de plantas acamadas; e 9 - acima de 75% de plantas acamadas

3.1.4 Análises Estatísticas Fenotípica

As análises estatísticas dos dados fenotípicos foram divididas em análise individual para cada ambiente e análise conjunta envolvendo todos os ambientes, para a qual foram utilizados os dados médios da parcela para cada tratamento, para todos os caracteres avaliados. As estimativas dos componentes de variância foram obtidas no programa *R* versão *3.5.3* (R Core Team, 2019) pelo método da máxima verossimilhança (REML), com aplicação do procedimento de melhor predição linear não viesada (BLUP) para a estimação dos valores genéticos dos efeitos aleatórios (EBLUP).

O modelo adotado para análise individual:

$y_{ijkmn} = \mu + r_j + p_m + t_{n/m} + b_{k/j} + g_{i/m} + e_{ilkmn}$

Em que y_{ijkmn} é o valor da observação do genótipo *i*, na repetição *j*, dentro do bloco *k*, e µ é a constante inerente às observações, que representa a média geral do ensaio. Como efeitos fixos do modelo tem-se p_m , que é o efeito de grupos, que contém o genótipo *i*, e a testemunha *n*; $t_{n/m}$, que é o efeito da testemunha *n* dentro de grupos. Com efeitos aleatórios: r_j é o efeito da repetição *j*; $b_{k/j}$ é o efeito do bloco *k* dentro da repetição *j*; $g_{i/m}$ é o efeito do genótipo *i* dentro do grupo *m*; e e_{ilkmn} é o efeito dos erros associados.

O modelo adotado para análise conjunta:

$$y_{ijklmn} = \mu + r_{j/l} + p_m + t_{n/m} + pl_{ml} + tl_{nl} + b_{k/j/l} + g_{i/m} + gl_{il} + e_{ilklmn}$$

 y_{ijklmn} : é o valor da observação do genótipo *i*, na repetição *j*, dentro do bloco *k*, no local *l* e μ é a constante inerente às observações, que representa a média geral dos experimentos. Como efeito fixo tem-se : p_m que é o efeito de grupos, que contém o genótipo *i* e a testemunha *n*; $t_{n/m}$, que é o efeito da testemunha *n* dentro de grupos; pl_{ml} é o efeito da interação grupo *m* com o local *l*; tl_{nl} é o efeito da interação testemunha *n* com local *l*. Como efeitos aleatórios tem-se $r_{j/l}$, é o efeito da repetição *j* dentro do local *l*, $b_{k/j/l}$ é o efeito de bloco *k* da repetição *j* dentro do local *l*; $g_{i/m}$ é o efeito do genótipo *i* dentro do grupo *m*; gl_{il} , é o efeito da interação do genótipo *i* no local *l*; e e_{ilkmn} é o efeito dos erros associados.

A estimativa dos parâmetros genéticos para cada caráter foi baseada na análise de variância: variância fenotípica, coeficiente de herdabilidade, coeficiente de variação experimental, coeficiente de variação genética e Acurácia.

A variância fenotípica foi estimada por:

$$\hat{\sigma}^2_{\ p} = \hat{\sigma}^2_{\ g} + \left(\frac{\hat{\sigma}^2_{\ e}}{k}\right)$$

Em que $\hat{\sigma}_{p}^{2}$ é a estimativa da variância fenotípica, , $\hat{\sigma}_{g}^{2}$ é a estimativa da variância genética, $\hat{\sigma}_{e}^{2}$ a estimativa da variância ambiental e *k* é o número de repetições.

A herdabilidade na análise individual foi estimada por:

$$\hat{h}^{2} = \frac{\hat{\sigma}^{2}_{g}}{\hat{\sigma}^{2}_{g} + \left(\frac{\hat{\sigma}^{2}_{e}}{k1}\right)}$$

E na análise conjunta por:

$$\hat{h}^2 = \frac{\hat{\sigma}^2_{\ g}}{\hat{\sigma}^2_{\ g} + \left(\frac{\widehat{\sigma}^2_{\ e}}{k2}\right)}$$

Em que \hat{h}^2 é a estimador da herdabilidade, $\hat{\sigma}^2_g$ é a estimativa da variância genética e $\hat{\sigma}^2_e$ a estimativa da variância ambiental. O número de repetições é representado por k1 e k2 representa o produto entre o número de repetições e o número de locais.

O coeficiente de variação experimental foi estimado por:

$$\widehat{CV}_e = \frac{\hat{\sigma}_e^2}{m} x \ 100$$

Em que \widehat{CV}_e é a estimador do coeficiente de variação, $\widehat{\sigma}_e^2$ a estimativa da variância ambiental e *m* é a média do experimento.

O coeficiente de variação genética foi estimado por:

$$\widehat{CV}_g = \frac{\hat{\sigma}_g^2}{m} x \, 100$$

Em que \widehat{CV}_g é a estimador do coeficiente de variação genética, $\hat{\sigma}_g^2$ é a variância genética e *m* é a média do experimento.

A acurácia por:

$$\hat{r}_{gg} = \left[1 - \frac{1}{\mathrm{Fc}}\right] 1/2$$

Em que \hat{r}_{gg} é a estimador da acurácia e Fc é o valor de F para genótipos.

A correlação fenotípica por:

$$\hat{r}_f = \frac{PMG_{xy}}{\sqrt{QMG_x \ QMG_y}}$$

Em que \hat{r}_f : estimador da correlação fenotípica; PMG_{xy} : produto médio entre os genótipos para os caracteres X e Y; QMG_x : quadrado médio entre os genótipos para o carácter X; QMG_y : quadrado médio entre os genótipos para o carácter Y.

E a correlação genotípica por:

$$\hat{r}_{g} = \frac{PMG_{xy} - PMR_{xy}/r}{\sqrt{\hat{\sigma}_{g(x)}\hat{\sigma}_{g(y)}}} = \frac{\hat{\sigma}_{g(xy)}}{\sqrt{\hat{\sigma}_{g(x)}\hat{\sigma}_{g(y)}}}$$
$$\hat{\sigma}_{g(x)} = \frac{QMG_{x} - QMR_{x}}{r}$$

$$\hat{\varphi}_{g(Y)} = \frac{QMG_x - QMR_x}{r}$$

Em que $\hat{\sigma}_{g(xy)}$: é o estimador da covariância genética; $\hat{\sigma}_{g(x)}$ e $\hat{\sigma}_{g(Y)}$: estimadores dos componentes quadráticos a variabilidade genotípica para os caracteres X e Y, respectivamente. Foi utilizado a correlação de Pearson, em que a significância da correlação fenotípica foi estimada pelo teste t com n-2 graus de liberdade, em que n corresponde ao número de genótipos avaliados. A significância das correlações genotípicas foi avaliada pelo bootstrap com 5.000 simulações. As análises de correlação foram realizadas no programa computacional GENES (Cruz, 2006).

Para melhor visualização dos dados foi utilizado o pacote *ggplot2* (Wickham 2016) para produzir histogramas e Boxplots das médias ajustadas das RILs e genitores para cada caractere, para cada local e para a análise conjunta.

3.2 ANÁLISES GENOTÍPICAS

3.2.1 Extração de DNA e Genotipagem

O DNA genômico foi extraído de folhas jovens de 251 linhagens e seus genitores utilizando kit comercial DNeasy 96 Plant Kit (Qiagen). As amostras foram quantificadas, diluídas, distribuídas em placas e enviadas para a empresa *Diversity Arrays Technology Pty Ltd* (DArT P/L), em Canberra (Australia) onde foi realizado a genotipagem pela tecnologia de sequenciamento de nova geração, denominada de genotipagem por sequenciamento

(GBS, Genotyping by sequencing), utilizando equipamento HiSeq 2000 (Illumina) e tecnologia DArTseq.

3.2.2 Análise Estatística Genotípica

3.2.2.1 Filtragem dos dados e Mapa de Ligação

A filtragem dos dados genotípicos foi realizada no software estatístico R versão 3.5.3 (R Core Team, 2019) por meio do pacote Onemap (Maragrido el al., 2007) para a exclusão dos marcadores monomórficos, dados faltantes, locos em heterozigose e distorcidos. A conversão da distância física dos marcadores em cM para obtenção do mapa ligação foi realizada pelo software cМ 1.2.1 de Converter versão (http://mapdisto.free.fr/cMconverter). A representação gráfica do mapa genético foi obtido pelo programa MapChart versão 2.32 (Voorrips, 2002). A nomenclatura dos marcadores é composta do nome do tipo de marcador, seguido de underline (_) e posição física.

3.2.2.2 Análise de QTL

A análise de QTL foi realizada pelo método de mapeamento por intervalo múltiplo por meio do pacote *R/qtl* (Bromam et al., 2003) do software estatístico *R* versão *3.5.3* (R Core Team, 2019), considerando LOD igual ou maior a três. O mapeamento foi realizado para os caracteres produtividade de grão, florescimento e altura de plantas, para 234 RILs e 8.911 marcadores SNPs e silico DArTs. A nomenclatura dos QTLs significativos seguiu as diretrizes descritas por McCouch et al. (1997).

3.2.2.3 Desequilíbrio de ligação (DL) e blocos haplotípicos

O desequilíbrio de ligação (DL) foi obtido pelo programa *TASSEL 5* versão 5.2.51 (Glaubitz et al., 2014), onde foi obtida uma matriz de valores r^2 (Bradbury et al., 2007). O decaimento DL foi explicado pelo modelo não linear (Hill & Weir, 1988), ajustado e graficamente visualizado no software estatístico *R* versão 3.5.3 (R Core Team, 2019). A verificação da posição no genoma dos marcadores mapeados próximos aos picos dos QTLs foi realizada através da identificação de blocos haplotípicos utilizando o software *Haploview*

(Barrett et al., 2005) com porcentagem mínima de genotipagem dos indivíduos $\geq 75\%$ e coeficiente de correlação quadrática de r² ≥ 0.8 .

3.2.2.4 Perfil Genotípico

O perfil genotípico das RILs em relação aos marcadores que flanquearam os QTLs significativos foi obtido por Boxplots produzidos pelo pacote *ggplot2* (Wickham 2016) do software *R* versão *3.5.3* (R Core Team, 2019), utilizando as médias ajustadas dos dados fenotípicos e os dados genotípicos considerando a população completa e para seguintes sub-conjuntos: i) RILs mais produtivas; ii) RILs menos produtivas; iii) RILs mais altas; iv) RILs mais baixas; v) RILs mais precoces; e vi) RILs mais tardias (i a vi: selecionadas por ranqueamento dos BLUPs); vii) População inteira. A significância foi pelo Teste Welch.

3.3 ANOTAÇÃO DOS GENES

Os genes presentes nos blocos haplotípicos e nas regiões interblocos dos QTLs significativos detectados foram identificados através de buscas em duas plataformas de bancos de dados do genoma do arroz: MSU Rice Genome versão 7.0 (<u>http://rice.plantbiology.msu.edu</u>) e Rice FREND (<u>https://ricefrend.dna.affrc.go.jp</u>). A identificação de suas respectivas proteínas e o agrupamento por função protéica em categorias funcionais também foi realizada na plataforma MSU Rice Genome versão 7.0 por meio da busca de termos descritos no *Gene Ontology* (GO terms), em que foram selecionados para estudo aprofundado as funções dos genes que estão próximos aos picos dos QTLs identificados. A busca por QTLs já referenciados na literatura para a cultura do arroz foi realizada através do banco de dados QTARO (<u>http://qtaro.abr.affrc.go.jp/</u>), utilizando o intervalo do bloco haplotípicos ou interblocos para cada QTL significativo.
4 RESULTADOS

4.1. ANÁLISES FENOTÍPICAS

4.1.2 Estimativa dos componentes de variância e parâmetros genéticos

A análise de componentes de variância indicou, pelo teste de razão de verossimilhança, diferença significativa entre as progênies para todos os caracteres nas análises individuais e análise conjunta dos ambientes (Tabela 1). Para testemunhas foi significativo apenas para produtividade de grãos, florescimento e altura de plantas nas análises individuais, enquanto que na análise conjunta foi apenas para altura de plantas significativo. Houve interação significativa entre progênies com ambiente para produtividade de grãos, florescimento. A interação entre testemunhas com ambiente foi significativa para produtividade de grãos e florescimento.

A variância genética (σ_g^2) das testemunhas foi maior que das progênies em produtividade de grãos, florescimento e altura, exceto em acamamento. Já a variância genética (σ_g^2) do efeito de interação de testemunhas com ambiente foi maior que a variância genética do efeito de interação de progênie com ambiente para todos os caracteres. A variância genética (σ_g^2) e variância fenotípica (σ_p^2) entre progênies e a variância ambiental σ_e^2 foi maior em Goianira para produtividade de grãos e altura de plantas, e em Boa Vista para florescimento e acamamento (Tabelas 1 e 2).

A herdabilidade (h²) de progênies foi considerada alta para produtividade de grãos, florescimento e altura de plantas, e moderada para acamamento. Produtividade de grãos teve maior herdabilidade em Boa Vista (h²= 0,84), florescimento em Goianira (h²= 0,99), e altura de plantas e acamamento na análise conjunta (h²= 0,90 e 0,51). O CV_g , de modo geral, foi considerado alto, com exceção de produtividade de grãos conjunta e em acamamento, em que o coeficiente de variação fenotípica (CV_e) foi maior que o CV_g (Tabela 2).

Local	Efeito	Deviance	p – value	Variância (σ_g^2)
	Produtiv	idade de grã	ios	
	Progênie	8.739.0	2.2e-16 ***	84,1
Boa vista	Testemunha	8.822.1	2.2e-16 ***	115,8
	Resíduo	-	-	31,5
	Progênie	8.651.0	2.2e-16 ***	115,7
Goianira	Testemunha	8.668.4	2.2e-16 ***	157,7
	Resíduo	-	-	66,9
	Progênie	1.712,1	1,993e-11 ***	53,0
	Testemunha	1.707,6	1^{ns}	150,2
Analise conjunta	Progênie x Ambiente	1.718,1	2.2e-16 ***	48,5
	Testemunha x Ambiente	1.710,0	0,00131 **	160,0
	Resíduo	-	-	48,4
	Flor	escimento		
	Progênie	3.377,7	2.2e-16 ***	36,4
Boa vista	Testemunha	3.258,8	2.2e-16 ***	147,3
	Resíduo	-	-	5,3
	Progênie	2.346,2	2.2e-16 ***	23,1
Goianira	Testemunha	2.988,9	2.2e-16 ***	324,2
	Resíduo	-	-	0,9
	Progênie	5.525,8	2.2e-16 ***	24,5
	Testemunha	5.316,9	1^{ns}	87,8
Analise conjunta	Progênie x Ambiente	5.511,7	2.2e-16 ***	5,5
	Testemunha x Ambiente	5.373,7	6.433e-10 ***	8,2
	Resíduo	-	-	3,2
	Altur	a de Plantas		
	Progênie	3.800,2	2.2e-16 ***	57,5
Boa vista	Testemunha	3.715,8	5.897e-08***	130,6
	Resíduo	-	-	29,9
	Progênie	3.902,9	2.2e-16 ***	107,8
Goianira	Testemunha	3.758,9	3.978e-14***	344,1
	Resíduo	-	-	29,9
	Progênie	7.346,8	2.2e-16 ***	69,3
	Testemunha	7.193	2.2e-16 ***	277,2
Analise conjunta	Progênie x Ambiente	7.231,5	5.57e-10 ***	14,2
	Testemunha x Ambiente	7.199,7	0,4613 ^{ns}	27,3
	Resíduo	-	-	29,8
	Aca	mamento		
	Progênie	2.105,8	8.176e-08***	1,0
Boa vista	Testemunha	2.080,4	0,9996 ^{ns}	0,4
	Resíduo	-	-	2,3
	Progênie	1.994,1	6.191e-08***	1,0
Goianira	Testemunha	1.965,8	0,9982 ^{ns}	0,2
	Resíduo	-	-	2,0
	Progênie	4.045,4	2.904e-05 ***	0,5
	Testemunha	4.027.9	1^{ns}	0.3
Analise conjunta	Progênie x Ambiente	4.038.7	0.001024 **	0.4
	Testemunha x Ambiente	4.030.1	0.949 ^{ns}	0.6
	Resíduo	-	-	2,2
	1.0.1000			_,_

Tabela 1. Resumo da análise de variância para produtividade de grãos (Kg/ha), florescimento (dias), altura
de plantas (cm) e acamamento (nota) em Boa Vista, Goianira e análise conjunta.

*** Significância a 0,001; ** Significância a 0,01; ns: não siginificativo.

Carátar	Parâmetro		Ambiente					
	T arametro	Boa Vista	Goianira	Análise conjunta				
	$\sigma^2{}_g$	84,1	115,7	53,0				
	σ^2_{e}	31,5	66,9	48,4				
	σ^2_p	57,8	91,3	50,7				
Produtividade de grãos	h^2	0,8	0,7	0,8				
	CV_g	16,8	17,9	10,0				
	$CV_e(\%)$	12,1	12,3	12,4				
	Acurácia	0,8	0,8	0,9				
	Média geral (Kg/ha)	5.000	6.455	4.977				
	$\sigma^2{}_g$	36,4	23,1	24,5				
	σ^2_e	5,3	0,9	3,2				
	$\sigma^2 _p$	20,9	12,0	13,8				
Florescimento	h ²	0,9	0,9	0,9				
rioresemiento	CV_g	50,6	27,9	33,8				
	$CV_e(\%)$	3,2	1,1	2,3				
	Acurácia	0,9	0,9	0,9				
	Média geral (dias)	72,0	82,8	72,3				
	$\sigma^2{}_g$	57,5	107,8	69,3				
	σ^2_e	29,9	29,9	29,8				
	σ^2_p	43,7	68,8	49,5				
Altura de Plantas	h ²	0,7	0,8	0,9				
Altura de Flantas	CV_g	54,0	91,1	64,5				
	$CV_e(\%)$	5,2	4,6	4,9				
	Acurácia	0,8	0,8	0,9				
	Média geral (cm)	106,5	118,2	107,3				
	$\sigma^2{}_g$	1,0	1,0	0,5				
	σ^2_{e}	2,3	2,0	2,2				
	$\sigma^2 p$	1,7	1,5	1,4				
Acamamento	h ²	0,4	0,5	0,5				
Acamanento	CV_g	52,5	62,2	28,2				
	$CV_e(\%)$	80,6	89,1	84,5				
	Acurácia	0,4	0,4	0,5				
	Média geral (nota)	2,0	1,6	2,1				

Tabela 2.	Estimativas dos componentes de variância e de parâmetros genéticos para produtividade de
	grãos (Kg/ha), florescimento (dias), altura de plantas (cm) e acamamento (notas) para as
	RILs de arroz testadas em dois ambientes.

 $CV_e(\%)$: coeficiente de variação experimental; CV_g : coeficiente de variação genética; σ^2_g : variância genotípica; σ^2_e : variância residual; σ^2_p : variância fenotípica; h²: herdabilidade.

O coeficiente de variação experimental ($CV_e(\%)$) foi baixo para produtividade de grãos (12,1%; 12,3% e 12,4), florescimento (3,2%; 1,1% e 2,3%) e altura de plantas (5,2%; 4,6% e 4,9%) e alto para acamamento (80,6%; 89,1 e 84,5%) em todos os locais e análise conjunta. Em contrapartida, a acurácia foi alta para produtividade de grãos (0,89; 0,8 e 0,9), florescimento (0,93; 0,98 e 0,97) e altura de plantas (0,81; 0,86 e 0,92), enquanto que para acamamento foi baixa (0,42; 0,41 e 0,57) (Tabela 2).

A análise de correlação dos caracteres indicou correlação positiva significativa entre florescimento e altura de plantas (Boa Vista, Goianira e análise conjunta), altura de plantas e acamamento (Boa Vista, Goianira e análise conjunta) e acamamento e produtividade (Goianira e análise conjunta). Houve correlação negativa entre florescimento e acamamento (Goianira e análise conjunta) e florescimento e produtividade (Goianira e análise conjunta) e florescimento e produtividade (Goianira e análise conjunta) (Tabela 3). Assim, a correlação indicou que plantas precoces foram baixas e produtivas, as baixas resistentes ao acamamento e, que as resistentes ao acamamento também foram produtivas.

 Tabela 3. Correlações fenotípicas (F) e genotípicas (G) entre os caracteres florescimento (Flo), altura de plantas (Alt), acamamento (Aca) e produtividade (Prod) avaliados em uma população de linhas puras recombinantes de arroz.

Caráter		Flo	Alt	Aca	Prod	Flo	Alt	Aca	Prod	Flo	Alt	Aca	Prod
	Boa Vista Goianira										С	onjunta	
Fla	F	-	0,27**	-0,05	0,04	-	0,20**	-0,05	-0,19**	-	0,27**	-0,08	-0,10
F10	G	-	0,33++	-0,07	0,07	-	0,21++	-0,10+	-0,22	-	0,31++	-0,17++	-0,16++
A 14	F		-	0,11	0,12		-	0,36**	-0,05		-	0,24**	0,005
Alt	G		-	$0,15^{+}$	0,09		-	0,52++	-0,07		-	0,28++	-0,04
1 00	F			-	0,04			-	0,25**			-	0,19**
Aca	G			-	0,02			-	0,43++			-	0,26++
Drod	F				-				-				-
rrou	G				-				-				-

**,*: Significativo a 1 e 5%, pelo teste t, respectivamente, ++,+: significativoa 1 e 5%, respectivamente, pelo método bootstrap com 5000 simulações.

4.1.3 Identificação das RILs com melhor desempenho

As RILs com melhor desempenho produtivo (média de 6.455 Kg/ha) e resistentes ao acamamento (média de 1,7) foram obtidas em Goainira, enquanto as mais precoces (média de 72,1 dias) e baixas (média 106, 51cm) foram obtidas em Boa Vista (Figura 4). Houve transgressividade das linhagens em relação aos genitores para todos os caracteres.

Figura 4. Produtividade (Kg/ha), florescimento (dias), altura de plantas (cm) e acamamento (nota) das linhas puras recombinantes provindas do cruzamento Araguaia x Maninjau e testemunhas nos experimentos de Boa Vista, Goianira e análise conjunta.

Os genitores, assim como as linhagens, tiveram melhor desempenho para produtividade (Maninjau - 8.637 Kg/ha e Araguaia - 5.384 Kg/ha) e acamamento (Maninjau – nota 1,2 e Araguaia – nota 2,0) em Goianira, e maior precocidade (Maninjau - 73,5 dias e Araguaia - 77 dias) e porte baixo (Araguaia – 98,7 cm e Maninjau – 108,7 cm) em Boa vista (Figura 5).

Figura 5. Produtividade de grãos (Kg/ha), florescimento (dias), altura de plantas (cm) e acamamento (nota) das linhas puras recombinantes provindas do cruzamento Araguaia x Maninjau e testemunhas nos experimentos de Boa Vista, Goianira e análise conjunta. (L - BV): linhas puras recombinantes em Boa vista; (L - GO): linhas puras recombinantes em Goianira; (L - CJ): linhas puras recombinantes em análise conjunta; (T - BV): testemunhas em Boa Vista; (T - GO): testemunhas em Goianira; (T - CJ): testemunhas em análise conjunta; (G – BV): genitores em Boa Vista; (G – BV): genitores em Goianira e (G – BV): genitores em análise conjunta.

Considerando todos os ambientes, o genitor Maninjau teve melhor desempenho produtivo em relação ao genitor Araguaia. Por outro lado, Araguaia teve maior precocidade, porte baixo e resistência ao acamamento do que o genitor Maninjau (Figura 6).

Com ranqueamento das RILs pelas médias ajustadas selecionamos 15 RILs com melhor desempenho e 15 com pior desempenho para cada caractere em cada ambiente e na análise conjunta (Apêndice I), o que possibilitou a seleção de linhagens superiores e verificar o perfil genotípico dessas linhagens em relação aos QTLs identificados na análise genotípica. Entre as linhagens mais produtivas de cada ambiente, foram selecionadas as que agregaram precocidade e/ou porte baixo. Destacaram-se três linhagens em Boa Vista, três em Goianira e quatro na análise conjunta (Tabela 4). Entre elas, duas linhagens merecem destaque por possuírem maior adaptabilidade e estabilidade para múltiplos caracteres: na análise conjunta dos ambientes a linhagem 1435 está simultaneamente entre as 15 linhagens mais produtivas, precoces e baixas, e e a linhagem 1572 está entre as 15 linhagens mais produtivas e baixas (Figura 7).

Figura 6. Histogramas de florescimento das linhas puras recombinantes provindas do cruzamento Araguais x Maninjau e testemunhas em Boa Vista, Goianira e análise conjunta.

Local	Genótipo	Produtividade (Kg/ha)	Florescimento (dias)	Altura (cm)	Acamamento (nota)
	1572	6.917	68,0	91,7	2,1
	1632	6.513	75,5	98,4	1,7
	1648	6.181	68,0	100,9	1,7
	Maninjau	6 125	73 5	108 7	3.0
Boa Vista	(Genitor)	0.125	75,5	100,7	5,0
	Araguaia	2 763	77.0	98 7	0.9
	(Genitor)	2.705	77,0	90,7	0,9
	Média Geral	5.001	72,1	106,5	2,1
	CV%	12,1	3,2	5,2	80,6
	1572	8.827	80,7	99,0	1,4
	1435	8.067	76,7	102,2	1,3
	1552	7.830	73,4	109,4	1,5
	Maninjau	8 637	92	125.1	12
Goianira	(Genitor)	0.007	/=	125,1	1,2
	Araguaia	5.384	83.5	115.9	2.0
	(Genitor)			110,>	2,0
	Média Geral	6.455	82,8	118,3	1,7
	CV%	12,3	1,1	4,6	89,1
	1572	6.546	69,3	90,0	2,0
	1632	6.307	73,5	100,6	1,9
	1648	5.846	69,8	101,1	1,8
	1435	5.784	65,4	95,4	2,6
Análise	Maninjau	7.340	82,8	117,1	2,1
Conjunta	(Genitor)		,	,	,
	Araguaia	4.034	80,3	107,2	1,4
	(Genitor)	4.079	72.4	107.4	0.1
	Media Geral	4.978	/2,4	107,4	2,1
	CV%	12,4	2,3	4,9	84,5

 Tabela 4. Linhagens puras recombinantes que se destacaram por bom desempenho de múltiplos caracteres simultaneamente entre as 15 RILs mais produtivas de cada ambiente.

Figura 7. Linhas puras recombinantes (Araguais x Maninjau) com melhor desempenho. 1572 (A): produtiva e baixa; 1435 (B): produtiva, precoce e baixa. Foto: Jéssica Fernanda.

4.2. ANÁLISE GENOTÍPICA

4.2.1 Genotipagem, filtragem dos dados e mapa de ligação

A genotipagem DArTseq das 251 linhagens puras recombinantes e seus genitores Araguaia e Maninjau, identificou 33.099 marcadores, dos quais 15.181 eram SNPs (codominantes) e 17.918 silico DArTs (dominantes). A filtragem dos marcadores eliminou duplicatas (mesma posição física), monomórficos, heterozigóticos, locos com 80% de dados perdidos e locos distorcidos pelo teste de X², que não se ajustaram à segregação esperada em F7, de 1:1 (Tabela 5), resultando em 8.911 marcadores, dos quais 5.025 eram SNPs e 3.886 sílicos DArTs em 234 RILs. A partir desses marcadores foi gerado um mapa de ligação constituído de 12 cromossomos, com tamanho total de 1.621 cM (364 Mbp) e com distância média entre marcadores de 0,18 cM (Tabela 6). A quantidade de marcadores por cromossomo variou de 368 a 1.442 marcadores e a distância total de 92 cM (22 Mbp) à 203 cM (43 Mbp).

	linais para as allalises.
	Marcadores SNPs e DArTs
Número de marcadores iniciais	33.099
Filtro 1: número de marcadores após eliminação de duplicatas	
(eliminação de Darts com mesma posição física dos SNPs)	25.271
Filtro 2: número de marcadores após eliminação de locos heterozigóticos, monomórficos, dados perdidos	12.637
Filtro 4: número de marcadores após eliminação de locos distorcidos	8.911
Total de marcadores após as filtragens	8.911

Tabela 5. Filtragem utilizada para obtenção do conjunto de marcadores finais para as análises.

Tabela 6. Distribuição de marcadores por cromossomo das RILs provindas do cruzamento Araguaia x Maninjau utilisados na analise de QTL.

Cromossomo	Marcadores SNPs	Marcadores DArTs	Total de Marcadores	Distância Total ≈ (Mbp)	Distância Total ≈ (cM)
1	907	535	1.442	43	203
2	736	485	1.221	35	175
3	420	245	665	36	194
4	427	307	734	35	133
5	537	307	844	29	132
6	393	286	679	30	137
7	383	399	782	28	151
8	244	203	447	28	117
9	446	342	788	22	92
10	138	230	368	23	93
11	225	339	564	28	94
12	169	208	377	27	100
Total	5.025	3.886	8.911	364	1.621

4.2.2 Desequilíbrio de Ligação

A extensão e a taxa de decaimento do desequilíbrio de ligação (DL), em função da distância física em kb, na população Maninjau x Araguaia (Apêndice III), considerando todos os cromossomos de 234 linhagens genotipadas, teve taxa média de decaimento de DL no genoma considerada alta. O valor médio ($r^2 = ~ 0,22$) de DL, correspondente à redução em 50% do máximo previsto na linha de tendência ($r^2 = ~ 0,45$), atingiu distância física de 4.960,84 kb.

Figura 8. Medida do desequilíbrio de ligação (DL) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0.22$) do máximo estimado ($r^2 = \sim 0.45$).

4.2.3 Análise de QTL

A análise por mapeamento múltiplo identificou 22 QTLs significativos (LOD mínimo 3), seis para produtividade de grãos, cinco para florescimento, e 11 para altura de plantas (Tabelas 7, 8 e 9; Figura 9). Os seis QTLs identificados para produtividade (Tabela 7), foram identificados nos cromossomos 1, 2, 3, 8 e 12. A variação fenotípica explicada por eles variou de 6,13% a 14,91% e contribuíram de 49,67 Kg/ha a 223,85 Kg/ha na

produtividade das linhagens. Houve interação entre os QTLs *GYLD1.1* e *GYLD12* e juntos explicaram 7,10% da variação fenotípica, com incremento de 179,90 Kg/ha na produtividade de grãos.

Os cinco QTLs detectados para florescimento, foram identificados nos cromossomos 3 e 6 (Tabela 8). A variação fenotípica explicada pelos QTLs de florescimento variou de 4,59% a 35,36%, com incremento de 0,78 dias a 27,48 dias no florescimento das linhagens. Houve interação entre os QTLs *FWRG3.1* e *FWRG6*, e *FWRG3.2* e *FWRG6.1*. Os efeitos de suas interções variaram de 4,59% a 6,57%, com incremento de 1,28 dias a 10,31 dias. Os 11 QTLs identificados para altura de plantas foram detectados nos cromossomos 2, 3, 4, 5, 9 e 12, e explicaram de 3,94% a 15,64% da variação fenotípica, com incremento na altura de plantas de 1,33 cm a 3,82 cm (Tabela 9).

Um único QTL não apresentou interação QTL por ambiente, o *PTHT12* para altura de plantas, que foi identificado em todas as análises (ambientes). Apesar dos demais QTLs terem sido detectados em apenas um ambiente, alguns deles identificados para o mesmo caractere em ambientes diferentes estão localizados em regiões próximas do mesmo cromossomo, como *GYLD1* e *GYLD1.1* para produtividade; *FWRG3, FWRG3.1* e *FWRG3.2* para florescimento; *PTHT3 e PTHT3.1, PTHT4.1, PTHT4.1.1 e PTHT4.1.2*, e *PTHT4.2* e *PTHT4.2.1* para altura de plantas. Além disso, o QTL para produtividade *GYLD12* foi identificado apenas na análise conjunta.

A partir da análise de QTL e do perfil genotípico das RILs em relação aos marcadores que flanquearam os picos dos QTLs, foi possível verificar que a maioria dos alelos favoráveis para produtividade foram provenientes do genitor Maninjau, e para florescimento e altura, foram provenientes do genitor Araguaia (Figuras 10 a 17).

Local	QTL	Chr.	Posição (cM)	LOD	Marcador Significativo	Intervalo Marcador	Bloco(DL)	N° Genes no Bloco	Local (Gene) do Marcador	Interação Aditiva	LOD IA	ADD	VF (%)	AF	TA
							Produtividade de G	rãos							
	CVII D2	2	104.7	2.07	(ND 0 00(51750	SNP_2_8456 a	Dart_2_22546576 a	27	1.00.0.00.07540			222.95	6.01	× · ·	0/0
	GYLD2	2	104,7	3,87	SNP_2_22651753	Dart_2_25949481	SNP_2_22686498 (139kb)	27	LOC_0s02g37540			223,85	6,91	Maninjau	C/G
BV	GYI D8	8	27.8	3 4 4	SNP 8 3615434	SNP_8_3355082 a	Dart_8_3592741 a	5	LOC 0s08e06430	-	-	-	613	Araquaia	G/A
	GTEDO	0	27,0	5,14	5141_0_5015454	SNP_8_8838176	SNP_8_3617996(25 kb)	5	100_0300g00130			211,01	0,15	Ingunu	G/H
	CVII D1	1	22.2	5.05	D (1 4544440	Dart_1_3094309 a	SNP_1_4143515 a	64	100.001.00020			292.22	0.04		DAT
	GYLDI	1	22,2	5,05	Dart_1_4544449	SNP_1_6366619	SNP_1_4623218 (449 kb)	64	LOC_Os01g09030			282,33	8,84	Maninjau	DArI
GO	CVI D2	2	0.0	2 7 2	Dorf 2 1200050	SNP_3_412709 a	SNP_3_1216800 a	50	entre LOC_Os03g03100 e	-	-	-	6 42	A #0.0000i0	DA-T
	GILDS	3	9,0	5,72	Dan_5_1509059	SNP_3_16586344	SNP_3_1629632 (412 kb)	39	LOC_Os03g03110			245,18	0,45	Alaguala	DATI
	GYLD1.1	1	28,0	8,30	Dart_1_5140203	SNP_1_4518260 a	SNP_1_4729830 a	63	LOC_Os01g09890			142,92	14,91	Maninjau	DArT
						SNP_1_6366619	SNP_1_5226775 (496 kb)								
AC	GYLD12	12	34,0	4,41	SNP_12_5143767	SNP_12_5143767 a	Dart_12_38956 a Dart_12_260583 (221 kb) e	55	entre LOC_Os12g37290 e			49,67	7,65	Maninjau	T/C
						Dart_12_6972574	Dart_12_15157119 a Dart_12_15641604 (484 kb)		LOC_Os12g37320						
	-	-	-	-	-	-	-	-	-	GYLD1.1 X GYLD12	4,10	172,90	7,10	-	-

Tabela 7. QTLs identificados para produtividade de grãos (Kg/ha) nas linhagens puras recombinantes provindas do cruzamento Araguaia x Maninjau.

Chr. = cromossomo; Posição (cM) = posição do QTL no mapa genético em cM; Bloco (DL) = intervalo do bloco em desequilíbrio de ligação no qual está o pico do QTL detectado. LOD IA = LOD da interação aditiva; ADD = efeito aditivo; VF (%) = porcentagem de variação fenotípica explicada pelo QTL; AF = alelo favorável herdado do genitor Araguaia ou Maninjau; TA = troca de alelo; BV= Boa Vista; GO= Goianira; AC= análise conjunta.

Local	QTL	Chr.	Posição (cM)	LOD	Marcador Significativo	Intervalo Marcador	Bloco (DL)	N° Genes no Bloco	Local (Gene) do Marcador	Interação Aditiva	LOD IA	ADD	VF (%)	AF	ТА
							Florescimer	ito							
ΡV	EWPC2	2	00	16.22	SNID 2 2292709	SNP_3_126800 a	SNP_3_2382798 a	51	LOC 0:03:004040			2 10	27.49	Moniniou	C/A
Бv	I WK05	3	0,0	10,55	SINF_5_2362796	SNP_3_2188644	SNP_3_2729909 (347 kb)	51	LOC_0803g04940	-	-	3,10	27,40	wannjau	C/A
	EWD C2 1	2	0.0	21.75	Dort 2 1200050	SNP_3_1226668 a	SNP_3_1216800 a	50	entre LOC_Os03g03100 e			2.64	24.29	Moniniou	DAT
	FWK05.1	3	9,0	21,75	Dan_5_1509059	SNP_3_1441759	SNP_3_1629632 (412 kb)	39	LOC_Os03g03110			2,04	34,38	Mannjau	DATI
						Dart_6_4577290 a	Dart_6_4577290 à SNP_6_4628769(51 kb) e	bloco 1: 11;	entre LOC_Os06g09950 e						
GO	FWRG6	6	26,6	6,55	Dart_6_5080779	SND 6 6845640	SNP_6_5556514 à	interblocos:117;	ocos:117;			1,17	8,85	Maninjau	DArT
						5141_0_0045045	SNP_6_5669018 (112 kb)	bloco 2: 24	bloco 2: 24 LOC_Os06g09960						
	-	-	-	-	-	-	-	-	-	FWRG3.1 X FWRG6	4,94	1,28	6,57	-	-
	EWD C2 2	2	00	22 42	SND 2 1226669	SNP_3_1226668 a	SNP_3_1216800 a	55	entre LOC_Os03g02980 e			27 18	25.26	Moniniou	4/T
	FWK05.2	3	0,0	22,43	SINF_5_1220008	SNP_3_1404297	SNP_3_1629632 (412 kb)	55	LOC_Os03g03000			27,40	35,50	wannjau	AVI
						SND 6 800202 a	Dart_6_4577290 à	bloco 1: 11;	antra I OC Oc06c00050 a						
AC	FWRG6.1	6	31,3	4,37	Dart_6_5519024	SINP_0_809205 a	SNP_6_4628769(51 kb) e	interblocos:117;	entre LOC_Os00g09950 e			0,78	5,73	Maninjau	DArT
						SNP_6_24367467	SNP_6_5556514 à SNP_6_5669018 (112 kb)	bloco 2: 24	LOC_Os06g09960					5	
	-	-	-	-	-	-	-	-	-	FWRG3.2 X FWRG6.1	3,53	10,31	4,59	-	-

Tabela 8. QTLs identificados para florescimento (dias) nas linhagens puras recombinantes provindas do cruzamento Araguaia x Maninjau.

Chr. = cromossomo; Posição (cM) = posição do QTL no mapa genético em cM; Bloco (DL) = intervalo do bloco em desequilíbrio de ligação no qual está o pico do QTL detectado. LOD IA = LOD da interação aditiva; ADD = efeito aditivo; VF (%) = porcentagem de variação fenotípica explicada pelo QTL; AF = alelo favorável herdado do genitor Araguaia ou Maninjau; TA = troca de alelo; BV= Boa Vista; GO= Goianira; AC= análise conjunta.

Local	QTL	Chr.	Posição (cM)	LOD	Marcador Significativo	Intervalo Marcador	Bloco (DL)	N° Genes no Bloco	Local (Gene) do Marcador	ADD	VF (%)	AF	ТА
							Altura de Plantas						
	DTUTO	2	1146	2.46	SND 2 24752077	Dart_2_20858299 a	SNP_2_24387075 a	57	LOC 0:02:040840	1.26	4.1.1	Anoquaia	C/C
	PIHI2	2	114,0	5,40	SINP_2_24752077	SNP_2_28546065	SNP_2_24839341 (452 kb)	37	LOC_0802g40840	-1,50	4,11	Araguara	C/G
	DTUTO	2	0.0	0.00	D-+ 2 1200050	SNP_3_225564 a	SNP_3_1216800 a	50	entre LOC_Os03g03100 e	2.22	10.22	Maniatan	DAJ
	PIRIS	3	9,0	0,20	Dan_5_1509059	SNP_3_3334462	SNP_3_1629632 (412 kb)	39	LOC_Os03g03110	2,22	10,55	Mannjau	DATI
		4	20.2	4.02	Devt 4 12282100	SNP_4_1743685 a	Dart_4_13178627 a	27	entre LOC_Os04g23260 e	1.40	4.90	Maniatan	DAJ
DV	P1H14.1	4	20,2	4,02	Dan_4_13282199	Dart_4_20451855	Dart_4_13674389(495 kb)	57	LOC_Os04g23280	1,48	4,80	Maninjau	DATI
BV	DTUT 4 0	4	121.0	C 01	CND 4 25015166	SNP_4_32253623 a	SNP_4_34583188 a	20	entre LOC_Os04g58860 e	1.02	7.22	A	1/0
	P1H14.2	4	131,0	6,01	SNP_4_33013166	SNP_4_35441030	SNP_4_35083050 (499 kb)	80	LOC_Os04g58870	-1,83	7,55	Araguaia	A/G
	DELEDO	0	60.1	2.22	CND 0 10541250	Dart_9_15168611 a	Dart_9_18188790 a	74	entre LOC_Os09g30438 e	1.22	2.04	. ·	C.T.
	PIHI9	9	69,1	3,32	SNP_9_18541358	Dart_9_22939398	Dart_9_18688699(499 kb)	/4	LOC_Os09g30442	-1,33	3,94	Araguaia	C/1
	DTL ITL	10	72.1	6.10	CND 12 22007040	Dart_12_22172464 a	SNP_12_22490046 a		entre LOC_Os12g37290 e	1.05	7.44	X. · ·	C (1)
	PTHT12	12	73,1	6,10	SNP_12_22887040	Dart_12_24006071	Dart_12_22964654 (474 kb)	55	LOC_Os12g37320	1,85	7,44	Maninjau	C/A
			10.0	1.02	D . 1 7502470	SNP_4_1743685 a	SNP_4_7389186 a	21	1.00.0.01.12500	2.22		X. · ·	D.L.T.
	PIH14.1.1	4	19,8	4,02	Dart_4_/5934/9	SNP_4_35441030	SNP_4_7875012	21	LOC_0s04g13590	2,32	5,75	Maninjau	DArI
60	DTL FLC	-	02.0	216	CND 5 01007150	Dart_5_11906865 a	SNP_5_21097152	75	entre LOC_Os05g35490 e	2.07	1.10	X. · ·	T /O
GO	PIHIS	5	83,0	3,16	SNP_5_2109/152	SNP_5_26866103	Dart_5_21559701	/5	LOC_Os05g35500	2,07	4,49	Maninjau	I/C
	DTL ITL	10	72.1	10.07	CND 12 22007040	SNP_12_22490046 a	SNP_12_22490046 a		entre LOC_Os12g37290 e	2.02	15.64	X. · ·	C (1
	PIHI12	12	/3,1	10,27	SNP_12_22887040	SNP_12_23016351	Dart_12_22964654 (474 kb)	22	LOC_Os12g37320	3,82	15,64	Maninjau	C/A
	DTUT2 1	2	10.2	4.00	CNID 2 1425501	SNP_3_225564 a	SNP_3_1216800 a	50	entre LOC_Os03g03360 e	1 79	5 20	Moniniou	CЛ
	P1H15.1	3	10,2	4,09	SNP_5_1455501	SNP_3_5985794	SNP_3_1629632 (412 kb)	39	LOC_Os03g03370	1,78	5,39	Mannjau	C/1
	DTUTA 1.2	4	20.0	2.64	Devt 4 12046720	Dart_4_2471473 a	SNP_4_11887933 a	27	entre LOC_Os04g21330 e	1.00	4 70	Maniatan	DAJ
10	P1H14.1.2	4	20,0	3,04	Dan_4_12046739	Dart_4_20451855	Dart_4_12383732 (495 kb)	57	LOC_Os04g21340	1,00	4,78	Maninjau	DATI
AC	DTUTA 2.1	4	121.5	2 72	SND 4 25050209	SNP_4_32253623 a	SNP_4_34583188 a	20	entre LOC_Os04g58920 e	1.00	4.80	A	T/C
	P1H14.2.1	4	131,5	3,73	SINP_4_35059308	SNP_4_35441030 a	SNP_4_35083050(499 kb)	80	LOC_Os04g58940	-1,00	4,89	Araguaia	I/C
	DTUT12	12	72.1	10.50	CND 12 22897040	SNP_12_22490046 a	SNP_12_22490046 a		entre LOC_Os12g37290 e	2.00	14.04	Maniaia	CIA
	PTHT12	12	73,1	10,56	SINP_12_22887040	SNP_12_23016351	Dart_12_22964654 (474 kb)	55	LOC_Os12g37320	2,90	14,84	Maninjau	C/A

Tabela 9. QTLs identificados para altura de plantas (cm) nas linhagens puras recombinantes provindas do cruzamento Araguaia x Maninjau.

Chr. = cromossomo; Posição (cM) = posição do QTL no mapa genético em cM; Bloco (DL) = intervalo do bloco em desequilíbrio de ligação no qual está o pico do QTL detectado. LOD IA = LOD da interação aditiva; ADD = efeito aditivo; VF (%) = porcentagem de variação fenotípica explicada pelo QTL; AF = alelo favorável herdado do genitor Araguaia ou Maninjau; TA = troca de alelo; BV= Boa Vista; GO= Goianira; AC= análise conjunta.

Figura 9. Mapa genético com localização dos QTLs significativos para produtividade grãos (vermelho), florescimento (azul), altura de plantas (verde), e para os três caracteres simultaneamente (rosa) nas linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Em preto são os marcadores das extremidades dos cromossomos.

Figura 10. Efeitos genotípicos (Blups) das linhas puras recobinantes (RILs) para produtividade de grãos (Kg/ha) (15 RILs mais produtivas e 15 RILs menos produtivas) em Boa Vista, e Goianira. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 11. Perfil genotípico das 234 linhas puras recombinantes (RILs) com relação ao efeito dos alelos doados pelos genitores (Araguaia x Maninjau), e os marcadores (SNPs e silico DArTs) que flanqueiam os QTLs identificados para produtividade de grãos (Kg/ha) em Boa Vista, Goianira e análise conjunta. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 12. Efeitos genotípicos (Blups) das linhas puras recobinantes (RILs) para florescimento (dias) (15 RILs mais precoces e 15 mais tardias) em Boa Vista, Goianira e análise conjunta. Alelo (A) referese ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 13. Perfil genotípico das 234 linhas puras recombinantes (RILs) com relação ao efeito dos alelos doados pelos genitores (Araguaia x Maninjau), e os marcadores (SNPs e silico DArTs) que flanqueiam os QTLs identificados para florescimento (dias) em Boa Vista, Goianira e análise conjunta.

Figura 14. Efeitos genotípicos (Blups) das linhas puras recobinantes (RILs) para altura de plantas (cm) (15 RILs mais altas e 15 RILs mais baixas) em Boa Vista e Goianira. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 15. Efeitos genotípicos (Blups) das linhas puras recobinantes (RILs) para altura de plantas (cm) (15 RILs mais produtivas e 15 RILs menos produtivas) na análise conjunta. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 16. Perfil genotípico das 234 linhas puras recombinantes (RILs) com relação ao efeito dos alelos doados pelos genitores (Araguaia x Maninjau), e os marcadores (SNPs e silico DArTs) que flanqueiam os QTLs identificados para altura de plantas (cm) em Boa Vista, Goianira. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

Figura 17. Perfil genotípico das 234 linhas puras recombinantes (RILs) com relação ao efeito dos alelos doados pelos genitores (Araguaia x Maninjau), e os marcadores (SNPs e sílico DArTs) que flanqueiam os QTLs identificados para altura de plantas (cm) na análise conjunta. Alelo (A) refere-se ao genitor Araguaia e alelo (B) genitor Maninjau. Significância de pelo Teste Welch.

4.2.4 Blocos haplotípicos e anotação dos genes

A identificação dos blocos haplotípos permitiu verificar o tamanho dos blocos, quantos e quais são os genes que os compõem (Tabela 7, 8 e 9). A maioria dos QTLs para produtividade estão localizados em regiões gênicas em blocos que variaram de e 25 kb a 496 kb, contendo de 5 a 64 genes. Apenas o QTL *GYLD3* está localizado em região intergênica (entre os genes *LOC_Os03g03100* e *LOC_Os03g03110*), e o *QTL GYLD12* em região interblocos composta de 1.443 genes.

Os QTLs para florescimento *FWRG3.1 e FWRG3.2* estão em regiões intergênicas, em blocos de 412 kb, contendo de 55 a 59 genes. *FWRG6 e FWRG6.1* estão localizados em uma mesma região intergênica interblocos contendo 117 genes, com blocos que antecem e precedem a região variando de 51 kb e 112 kb. Apesar de estarem em mesma região, foram flanqueados por marcadores diferentes (Dart_6_5080779 e Dart_6_5519024). Apenas um QTL para florescimento (*FWRG3*) está localizado em região gênica (*LOC_Os03g04940*), em um bloco de 347 kb, contendo 51 genes.

A maioria dos QTLs para altura de plantas foram localizados em regiões intergênicas, em blocos variando de 499 kb a 412 kb, e contendo de 37 a 80 genes. Os QTLs *PTHT2 e PTHT4.1.1* foram identificados em regiões gênicas, em blocos variando de 452 kb a 485 kb, e contendo de 57 a 21 genes. Os QTL *PTHT3*, *GYLD3* e *FWRG3.1* foram localizados na mesma região intergênica (entre *LOC_Os03g03100* e *LOC_Os03g03110*) pelo mesmo marcador (Dart_3_1309059).

As funções putativas dos genes contidos nos blocos haplotípicos dos QTLs para todas as características estão relacionadas com componentes celulares, processos biológicos e funções moleculares, em que os processos biológicos foram os mais expressos (Apêndice II). Alguns genes não possuem função identificada, e são referidos como sendo "provavelmente responsáveis por expressão de proteínas".

Os genes com funções identificadas onde os picos dos QTLs de produtividade foram localizados estão relacionados ao fator de iniciação de tradução SUI1, expressão de NADH-ubiquinona oxidoredutase mitocondrial, resposta ao estresse e família de genes MADS-box (Figura 18).

Os genes com funções identificadas relacionados aos QTLs de florescimento, estão relacionados a família de genes MADS-box, expressão de metiltrasferase, expressão de proteínas quinases dependente de cálcio/calmodulina, domínios homeobox, processos biossintéticos, metabólicos de nucleases, nucleosídeo e ácido nucleico (Figura 19).

Os genes com funções identificadas relacionados aos QTLs de altura de plantas foram relacionados a família de genes MADS-box, a proteína ribossômica L5, hidroxilase de ácidos graxos, transposons da família CACTA, proteína harpin, subunidade do complexo exocisto exo70, domínio U-box, proteínas resistentes a T10rga12-1 e lipoxigenase, precursorde cloroplasto (Figura 20).

Figura 18. Classificação funcional dos genes localizados nos picos dos QTLs para produtividade de grãos (Kg/ha) detectados nas 234 linhas puras recombinantes (RILs) provindas do cruzamento Araguaia x Maninjau em Boa Vista, Goianira e análise conjunta.

Classificação funcional dos genes localizados nos picos dos QTLs de Florescimento

Figura 19. Classificação funcional dos genes localizados nos picos dos QTLs para florescimento (dias) detectados nas 234 linhas puras recombinantes (RILs) provindas do cruzamento Araguaia x Maninjau em Boa Vista, Goianira e análise conjunta.

Classificação funcional dos genes localizados nos picos dos QTLs de Altura de Plantas

Figura 20. Classificação funcional dos genes localizados nos picos dos QTLs para altura de plantas (cm) detectados nas 234 linhas puras recombinantes (RILs) provindas do cruzamento Araguaia x Maninjau em Boa Vista, Goianira e análise conjunta.

A busca por QTLs na mesma região ou próximo aos QTLs identificados nas linhas puras recombinantes, resultou na identificação de 24 QTLs já publicados (Tabela 10), 13 deles para caracteres relacionados a produtividade, oito ao florescimento e um para a altura de plantas. Entre os 13 QTLs identificados na literatura para produtividade e seus componentes, apenas quatro estão relacionados diretamente a produtividade de grãos, *qSW1-3/ gw1a* (4795155-575985), *yld2.1*(21658702- 26758298) *e gy12* (309365-7731094), que estão dentro do intervalo do QTL *GYLD1.1* (4729830 - 5226775), *GYLD2* (22546576- 22686498) e *GYLD12* (263452- 15140195), respectivamente.

Para florescimento e altura de plantas, apenas um QTL para cada caractere está dentro do mesmo intervalo que QTLs descritos na literatura, *FWRG3.1* (1216800 – 1629632) e *PTHT2* (24387075-24839341) para os QTLs descritos *Hd9* (975995-1427051) e *Sn2a* (23457248- 26356387). Os QTLs para altura de plantas *PTHT3*, *PTHT4.1*, *PTHT4.2*, *PTHT9*, *PTHT12*, *PTHT4.1.1*, *PTHT5*, *PTHT3.1*, *PTHT4.1.2* e *PTHT4.2.1*, e para o *FWRG3.2* ainda não foram descritos na literatura.

QTL detectado	Intervalo do bloco QTL detectado	QTL Literatura	Chr	Caráter	Intervalo QTL Literatura	Referência
		qPN1	1	Panícula por planta	4424186 - 4424560	Tian et al., 2006.
GYLDI	4143515-4623218	gpla	1	Grãos por panícula	18875224-4635870	Yu et al., 1997.
		spla e dnla	1	Espigueta por panícula/ densidade (panícula)	4795155-5759851 4795155-5759851	Xing et al., 2001.
		anla o avila	1	Crãos por papícula/ paso do grãos	4795155-5759851	Hup at al. 2002
		gpiù e gwiù	1	Graos por panicula/ peso de graos	4795155-5759851	11ua et al., 2002.
		qTNSP-1-1	1	Espiguetas por panícula	4635793-5759851	Zhuang et al.,. 2002.
GYLD1.1	4729830 - 5226775	qSW1-3	1	Peso de grãos	4795155-5759851	Cui et al., 2002.
		qSSB1- 1	1	Espigueta por ramos secundários	4795155-5759851	Cui et al., 2002.
		ppp1.1 e spp1.2	1	Panícula por planta/ espigueta por panícula	5094276- 7970819 5094276- 7970819	Cho et al., 2007.
		gn1	1	Grãos por panícula	4795155- 5759851	Xing et al., 2002.
		qSS1-2	1	Tamanho de semente	4795155-5759851	Cui et al., 2002.
GYLD2	22546576-22686498	yld2.1	2	Produtividade	21658702-26758298	Marri et al., 2005.
PTHT2	24387075-24839341	Sn2a	2	Comprimento do segundo entrenó superior	23457248- 26356387	Tan et al., 1996.
GYLD3	1216800-1629632	QSs3	3	Esterilidade das espiguetas	1429107-3215610	Li et al., 1997.
		qDEF-3	3	Dias para o surgimento da folha bandeira	1423343 - 4098191	Dong et al., 2004.
FWRG3	2382798 - 2729909	qFDN-3	3	Duração da floração	1429107-3509693	Hittalmani et al., 2002.
		qHDD3-2	3	Florescimento	1429107 - 2432615	Hittalmani et al., 2003.
		Hd9	3	Dias para floração	975995-1427051	Lin et al., 2002.
		qDEF-3	3	Dias para o surgimento da folha bandeira	1423343-4098191	Dong et al., 2004.
FWRG3.1	1216800-1629632	qFDN-3	3	Duração da floração	1429107- 3509693	Hittalmani et al., 2002.
		qHDD3-2	3	Florescimento	1429107 - 2432615	Hittalmani et al., 2003
FWRG6 e FWRG6.1	4630848-5528576	qSPTF6	6	Fertilidade de espiguetas	4234080- 5096867	Yan et al., 2003.
GYLD8	3592741 - 3617996	qPL8	8	Comprimento da panícula	360155-4446617	Miyata et al., 2007.
GVI D12	262452 15140105	-	12	Peso de 1000 grãos	5820051-24012742	Zhuang et al., 2000.
GILD12	200402-10140190	gy12	12	Produtividade de grãos	309365-7731094	Xiao et al., 1996.

Tabela 10. QTLs encontrados na literatura dentro do intervalo dos blocos haplotípicos dos QTLs identificados nas linhas puras recombinantes provindas do cruzamento Araguaia x Mninjau em Boa Vista, Goianira e análise conjunta.

5 DISCUSSÃO

5.1 EXPERIMENTOS DE CAMPO

Os dados de variância e da estimativa dos parâmetros genéticos obtidos indicam a existência de variabilidade genética suficiente para realização de seleção de linhagens superiores para os caracteres de interesse avaliados (Falconer, 1973; Falconer, 1987; Ramalho et al., 1993; Resende & Duarte, 2007; Idris & Mohamed, 2013). A alta variância genética e fenotípica, baixa variação ambiental, CV_g considerado alto (exceto para produtividade de grãos conjunta e acamamento), alta herdabilidade (exceto acamamento) das RILs, precisão experimental evidenciada pelo baixo $CV_e(\%)$ e alta acurácia, resultou em linhagens com transgressividade em relação aos genitores, o que permitiu a seleção de linhagens superiores. Além disso, as estimativas de adaptabilidade estabilidade da análise conjunta permitiu seleção de linhagens com melhor desempenho para cada caractere e para múltiplos caracteres simultaneamente em ambos locais. Linhagens com desempenho estável são desejáveis, levando-se em conta que quanto maior o número de ambientes que uma determinada cultivar apresentar desempenho superior, maior sucesso comercial no mercado de sementes ela terá.

A variabilidade genética deve-se ao cruzamento inter-subespecífico entre os genitores (*japônica* x *índica*), que já havia sido observada por Ramos et al. (2019), com estudo da capacidade combinatória entre cruzamentos em dialelos dos acessos mais produtivos da Coleção Nuclear de Arroz da Embrapa, coleção a qual foi previamente caracterizada agronomicamente por Brondani et al. (2006). Embora o cruzamento entre Araguaia e Maninjau não tenha sido um dos cruzamentos com melhor capacidade combinatória entre os cruzamentos estudados por Ramos et al. (2019), os genitores possuem a maior distância genética (RW= 0,95) entre os genitores das demais combinações estudadas, e provavelmente seja o motivo pelo qual gerou-se uma grande quantidade de marcadores polimórficos nesse trabalho.

A escolha de cruzamentos entre genitores com caracteres favoráveis e complementares entre si, capazes de gerar populações segregantes com variabilidade para

seleções de linhagens superiores, maximiza a probabilidade de encontrar polimorfismo na população, o que é indispensável para o mapeamento de QTL (Paterson et al., 1991; Tanksley, 1993; Ramalho et al., 2012). O melhor desempenho do genitor Maninjau para a produtividade de grão e do Araguaia para maior precocidade, porte baixo e resistência ao acamamento, evidenciou o contraste e complementariedade dos genitores.

A estimativa dos componentes de variância atribuídos ao efeito da interação entre progênies com ambiente na análise conjunta, pressupõe que o efeito ambiental tenha agido sobre o desempenho das linhagens. É comum a ocorrência da interação G x A, já que é consequência do comportamento não coincidente dos genótipos, que tem desempenho inconsistente e diferenciado em diferentes ambientes (Cruz & Carneiro, 2003; Neto et al., 2013). Isso justifica e ressalta a importância de estudos de adaptabilidade e estabilidade para avaliar melhor o desempenho dos genótipos em diferentes condições, permitindo também identificar os genótipos mais estáveis (Cruz et al., 2014).

A variação indicada entre testemunhas na análise individual, é devido ao comportamente fenotípico diferenciado de cada cultivar. Com exceção da interação detectada para altura, a inexistência de interação de testemunhas com ambiente era esperada, visto que as testemunhas são cultivares com adaptação a ambientes favoráveis e desfavoráveis e previsibilidade de comportamento. Utilizando-se cultivares com ampla adaptabilidade e boa estabilidade, a interação passa a ser não-significativa (Peluzio et al., 2010). Pressupõe-se que em altura, a interação seja de natureza residual, evidenciando a complexidade da característica.

A maior produtividade e menor acamamento em linhagens em Goianira, e maior precocidade e linhagens mais baixas em Boa Vista podem ser resultado de implicações da interação ambiental, já que as testemunhas, que tem comportamento estável, também apresentaram resultados semelhantes. Ramos et al. (2019), em experimentos nos mesmos locais avaliados nesse trabalho, mas avaliando RILs de outra população intersubespecífica, também obtiveram RILs mais altas em Goianira. Já o florescimento mais precoce em Boa Vista foi resultante da sensibilidade do arroz às diferenças de fotoperíodo. Boa vista possui latitude menor em relação a Goianira, assim, nos períodos em que foram conduzidos os experimentos, os dias foram mais curtos em Boa Vista e mais longos em Goianira. O arroz é uma planta adaptada a dia curto, em situações de dias mais longos, ou seja, fotoperiodo maior, o florescimento é mais mais tadio. (Vergara & Cheng, 1985).

Em geral, os coeficientes de correlação genotípica foram maiores que os coeficientes de correlação fenotípica nos dois locais, indicando que as correlações observadas entre os caracteres são de natureza genética. No entanto, a interação ambiental pode ter afetado a correlação entre florescimento e altura de plantas com produtividade, visto que é esperado uma correlação negativa entre esses dois caracteres e produtividade, e nesse estudo não se obteve correlações negativas e significativas entre ambos e produtividade em todos os locais.

A correlação positiva significativa entre florescimento e altura de plantas detectada indica que pode selecionar simultâneamente os dois caracteres. Na maioria das vezes, florescimento e altura de plantas possuem correlação negativa com produtividade, sendo assim, pode-se dizer que a seleção de linhagens mais precoces, por exemplo, resultaria tanto em plantas baixas, quanto em plantas mais produtivas. (Sanghera et al., 2013; Ogunbayo et al.,2014; Akhi et al., 2016). Já a correlação positiva entre altura de plantas e acamamento, e entre acamamento e produtividade indicam que plantas altas tendem a acamar, e que o acamamento acarreta em perdas de grãos. Assim, a seleção na análise conjunta é eficiente, visto que além da adaptabilidade e estabilidade, a seleção de uma planta produtiva, também resulta em plantas precoces, baixas e com maior resistência ao acamamento.

Visto que todos os critérios foram atendidos para uma eficiente seleção e mapeamento de QTL, a população desse estudo apresentou alto potencial para seleção de linhagens superiores e consequentemente para detecção da associação entre QTL e um determinado marcador (Jangarelli et al., 2010).

5.2 ANÁLISE GENOTÍPICA E MAPEAMENTO DE QTLs

Para que o mapeamento de QTL seja eficaz, sua detecção e o posicionamento devem ser confiáveis, e isso depende diretamente do tamanho da população, da saturação do genoma por marcadores, e da metodologia aplicada à detecção de QTL (Tanksley et al. 1993). Um maior tamanho da população segregante é desejável, visto que acarreta na detecção de loci quantitativos de menores efeitos genéticos, otimizando o poder de detecção de QTL (Van Der Beek et al., 1995; Zhu et al., 2001; Silva et al., 2005).

Os genitores Araguaia e Maninjau foram contrastantes para os caracteres de interesse avaliadas nesse trabalho. Esse cruzamento forneceu 234 linhagens para o mapeamento, que gerou uma grande quantidade de marcadores (33.099 marcadores),

dada a diversidade existente entre os genitores. Nem todo o cruzamento intersubespespecífico resulta em sucesso na obtenção de populações segregantes devido a possibilidade de incompatibilidade genética, o que ocasiona, além da distorção da frequência esperada (1:1 no caso de RILs), populações de tamanho reduzido. A quantidade de marcadores polimórficos encontrados nesse trabalho foi similar ao encontrado por Phung et al. (2014) em um cruzamento *índica* x *japônica*, que identificaram 25.971 marcadores (15.284 DArTs e 10.687 SNPs) para 185 acessos.

Outro fator importante é o desequilíbrio de ligação existente na população, visto que a determinação de ligação gênica entre um QTL e um marcador molecular depende da existência de desequilíbrio de ligação (DL) entre seus alelos. A extensão e distribuição do DL são de importância fundamental, visto que quando o DL se estende por grandes distâncias físicas, relativamente poucos marcadores são necessários para assegurar a adequada cobertura do genoma, mas quando ele é menor, um número elevado de marcadores é necessário para a cobertura completa do genoma (Aranzana et al., 2005). A extensão de DL no arroz varia em média de 100 a 500 kb (Garris et al., 2005; Myles et al., 2009; Tung et al., 2010). Para as linhagens do cruzamento Araguaia x Maninjau, a extensão média do DL ($r^2=0,22$), para a distância de aproximadamente 4.960,84 kb, foi alto e sugere a formação de blocos haplotípicos grandes. Para subespécie índica, o decaimento médio de DL é de 50-200 kb (Mather et al., 2007; Huang et al., 2010; Xu et al., 2012), enquanto que para a subespécie *japônica* é comum encontrar decaimento médio superior a 500 kb (Chen et al., 2013). A maioria desses autores fizeram análise de GWAS, em que utilizaram acessos, dos quais possuem blocos menores e por tanto a extensão do decaimento do DL foi menor que a encontrada em nosso estudo. No nosso caso, em que estudamos uma população F7, a extensão do decaimento do DL de populações segregantes é maior devido a menor possibilidade de quebra dos locos, acarretando em blocos grandes e desequilíbrio maior.

Quanto menor a distância média entre os marcadores melhor a precisão da estimativa de um QTL entre esses marcadores (Wu et al., 2007). A resolução de mapeamento de QTL está em torno de 0,25 e 0,5 cM para marcadores SNPs (Tan et al., 2013) e o tamanho de mapas de ligação é em torno de 1.600 cM para a cultura do arroz (Chen et al., 2002). Os 8.911 marcadores resultantes das filtragens, necessárias, que antecederam a análise de QTL, forneceram ao mapa uma excelente resolução, visto que foi obtido um mapa de 1.621 cM, e uma distância média entre marcadores de 0,18 cM, resultando em tamanho e distância em conformidade com o relatado em arroz.

Quanto ao método de mapeamento, foi utilizado mapeamento por intervalo múltiplo, que permite maior precisão e a detecção de múltiplos QTLs, com estimativa de seus efeitos. Com todos os critérios exigidos para o mapeamento de QTL atendidos, considerou-se que o mapa de ligação estaria apto para o mapeamento de QTL. Ao todo foram encontrados 22 QTLs. A variação fenotípica explicada pelos QTLs encontrada nesse estudo variou de 3,94% a 35,36%, valores superiores quando comparados aos descritos por Raghavan et al. (2017). Esses autores também identificaram quatro QTLs para produtividade (cromossomos 2, 3, 7 e 8), oito QTLs para florescimento (cromossomos 1, 3, 4, 5, 6,7 e 8), e dez QTLs para altura de plantas (cromossomos 1, 3, 4, 5, 6, 7, 11 e 12), com variação de 1,79% a 17,51%. Em trabalhos como Lim et al. (2014), Begum et al. (2015), Ding et al. (2015), e Zhang et al. (2017), também foram obtidos números expressivos de QTLs relacionados à produtividade (27, 52, 25 e 26 QTLs, respectivamente). A variação encontrada no nosso estudo acrescenta nova informaçãoes a literatura, por ser algo diferente das regiões já encontradas.

Os QTLs identificados para produtividade que merecem destaque são GYLD1.1 (14,91% da variação), GYLD3 (6,43% da variação), GYLD8 (6,13% da variação) e GYLD12 (7,65% da variação). Possivelmente suas contribuições na produtividade estão ligadas com a adaptação ao estresse salino, resposta ao estresse, crescimento, desenvolvimento e respiração. O QTL GYLD1.1 (14,91% da variação) teve destaque, visto ele explicou a maior variação para o caráter, além de está presente em uma interação (GYLD1.1 x GYLD12) na análise conjunta com efeito principal. As funções de ambos QTLs estão relacionadas ao estresse e podem ser complementares, o que justifica essa interação. O fator de iniciação de tradução SUI1 (GYLD1.1) tem papel central na adaptação ao estresse salino em arroz, pois regula o acúmulo de íons no estado redox intracelular (Diédhiou et al., 2008). Alguns autores têm relatado o efeito negativo da salinidade em determinadas fases do desenvolvimento e crescimento de algumas espécies, o que consequentemente causa redução na germinação, no desenvolvimento das plantas e perda de produtividade das culturas (Fraga et al., 2010; Deuner et al., 2011; Lemes et al., 2016). Em arroz irrigado, Lemes et al. (2018) verificaram que a salinidade afeta a produção de grãos de arroz, e que essa interferência varia com o estádio de desenvolvimento da planta e com a duração e a intensidade do estresse.

O QTL *GYLD12* foi identificado apenas na análise conjunta. É de se supor que uma marca detectada na análise conjunta dos locais também o seja em pelo menos um dos locais de avaliação. Essa discrepância pode ter ocorrido devido à limitação inerente ao método utilizado para seleção das marcas, visto que o LOD mínimo três, torna significativo apenas os QTLs com efeito mais pronunciado no caractere avaliado. Assim, uma marca que tenha atingido valor próximo aos limites definidos pode não ter sido incluída na seleção por local, o sendo, posteriormente, na análise conjunta devido a melhor estimativa do modelo (Rumin, 2005).

Além do controle do estresse, a respiração é um fator essencial para a produtividade, uma vez que permite a produção da energia metabólica requerida para vários processos de crescimento, resultando em produtividade. A expressão de NADH-ubiquinona oxidoredutase mitocondrial (*GYLD8*), pode participar como componente do complexo I transportador mitocondrial de elétrons, e está relacionada com a respiração (Ferreira & Vilarinho, 2008).

O QTL GYLD3 (6,43%) (entre LOC_Os03g03100 e LOC_Os03g03110) se sobrepôs a dois outros QTLs para outros caracteres neste trabalho, PTHT3 (10,33% da variação) para altura de plantas (Boa Vista), e FWRG3.1 (34,38% da variação) para florescimento (Goianira). Os caracteres florescimento e altura de plantas, e florescimento e produtividade, foram significativamente correlacionadas nos ambientes onde os QTLs foram detectados. Cada QTL pode contribuir apenas com um pequeno efeito positivo, mas a co-localização de múltiplos caracteres indica que a seleção para alelo benéfico nestes locos resultará em um aumento cumulativo na produtividade devido ao efeito positivo integrativo de vários QTLs (Marathi et al., 2012). A região onde estão localizados esses QTLs está ligada a família de genes MADS-box, que além de estarem envolvidos na especificação de órgãos florais, também foram implicados em vários aspectos do crescimento e desenvolvimento das plantas. Isso inclui controle do tempo de floração, identidade de meristemas, identidade de órgãos florais, formação de zona de deiscência, amadurecimento de frutos, desenvolvimento de embriões e desenvolvimento de órgãos vegetativos como raiz e folha (Alvarez-Buylla et al., 2000; Moore et al., 2002; Arora et al., 2007).

Arora et al. (2007), analisando a família MADS-box em arroz, perceberam que transcritos para 31 genes da família MADS-box se acumulam preferencialmente na fase reprodutiva, dos quais 12 genes são expressos especificamente em sementes e seis genes mostram expressão específica para o desenvolvimento da panícula. No trabalho de Raghavan et al. (2017), também foi identificado um mesmo marcador para produtividade e florescimento no cromossomo 3, e um para altura de plantas em posição bastante próxima. No cromossomo 1 também foi identificado um mesmo marcador para

florescimento e altura de plantas, e também foi sugerido possíveis correlações entre as características (Raghavan et al., 2017).

Para florescimento, os QTLs que mais contribuíram foram identificados no cromossomo 3: FWRG3.1 (27,48% da variação), FWRG3 (34,38% da variação), e o FWRG3.2 (35,36% da variação). O FWRG3 está relacionado com a expressão de metiltransferase com funções ainda desconhecidas, mas o FWRG3.2 está relacionado com expressão de proteínas quinases dependente de cálcio/calmodulina. As proteínas quinases dependente de cálcio/calmodulina tem função importante nos processos celulares e podem estar ligadas a mudanças hormonais e ao crescimento e desenvolvimento da planta, inclusive do tubo polínico (Evans et al., 2001; Hepler et al., 2001). Poovaiah et al. (1999) relataram a presença dessas proteínas durante o desenvolvimento da antera, e que mudanças de concentração de cálcio podem regular o desenvolvimento das anteras. Os QTLs FWRG3.1 e FWRG3.2 também têm efeito principal nas interações com outros dois QTLs (FWRG3.1 x FWRG6, e FWRG3.2 x FWRG6.1), ambos localizados no cromossomo 6, porém em regiões distintas. A identificação dos QTLs para o mesmo caráter, identificados no mesmo cromossomo em posições próximas, mas para diferentes ambientes, pode ser devido a interação ambiental (Lynch & Walsh, 1998). Apenas o QTL FWRG6.1 (5,73% da variação) tem função conhecida relacionada com famílias de genes com domínios homeobox, envolvidos no desenvolvimento do embrião, além de desempenharem papéis importantes na arquitetura das plantas e no desenvolvimento de órgãos florais (Costanzo et al., 2014). Minh-Thu et al. (2018) trabalharam com algumas famílias de genes com domínios homeobox em arroz, o que resultou em tolerância à seca e floração precoce.

Os genes das regiões dos QTLs identificados para altura de plantas possuem funções parecidas, relacionadas ao crescimento e desenvolvimento, resistência a doenças, e tolerância a estresses bióticos e abióticos. O QTL de maior efeito foi detectado no cromossomo 12 (*PTHT12* (14,84% da variação)). Esse QTL está em uma região intergênica, mas os genes presentes no bloco de ligação próximo a sua localização estão relacionados a resistência a doenças (Qi et al., 2011; Zhou et al., 2019).

A falta de consistência da presença de QTLs entre diferentes ambientes é o principal obstáculo para a utilização das informações geradas por meio de experimentos de mapeamento de QTL (Marathi et al., 2012). O QTL *PTHT12* foi o único QTL nesse estudo que foi detectado nos dois ambientes avaliados, ou seja, não houve interação QTL x ambiente. Adicionalmente, também foi identificado na análise conjunta, e que
comprova a estabilidade da expressão do caráter independentemente de condições serem favoráveis ou não (Ramalho et al., 2012). Esse QTL pode dar origem a um marcador molecular para selecionar plantas de menor altura nas gerações iniciais de populações segregantes.

Considerando todos os caracteres avaliados, a maioria dos QTLs foram identificados nos cromossomos 3 e 4, com valores intermediários para a variação fenotípica explicada, detectados em ambientes diferentes, mas em regiões próximas nesses cromossomos. O *PTHT3*, que se sobrepõe aos QTLs *GYLD3* e *FWRG3.1*, está envolvido no crescimento e desenvolvimento das plantas, enquanto que o *PTHT3.1* está relacionado com a proteína ribossômica L5 e hidroxilase de ácidos graxos. As proteínas ribossômicas auxiliam no crescimento celular em resposta a disponibilidade de nutrientes (Richard, & Manley, 2009; Xiao & Grove, 2009). Lopes (2014) verificou que o acúmulo de ácidos graxos em folhas pode afetar o crescimento da planta como um todo, por isso, a hidrólise dos ácidos graxos é essencial para a conversão de energia para seu uso no crescimento da planta (Eastmond, et al., 2000; Graham, 2008).

Os QTLs identificados no cromossomo 4 foram distribuídos basicamente em duas regiões. Na primeira, envolvendo os QTLs *PTHT4.1* (4,80% da variação), *PTHT4.1.1* (5,75% da variação) e *PTHT4.1.2* (4,78% da variação), apenas o *PTHT4.1.1* inclui um gene com função conhecida, um transposon da família CACTA. Jiang et al. (2013) verificaram que em arroz os elementos CACTA contribuíram significativamente para a divergência de expressão e a regulação entre genótipos *índica e japônica* em condições normais ou com alto estresse de salinidade em diferentes etapas de desenvolvimento.

A segunda região envolve os QTLs *PTHT4.2* (7,33% da variação) e *PTHT4.2.1* (4,89% da variação). Os genes próximos ao *PTHT4.2* expressam domínio de proteína 1 induzido por harpin e subunidade do complexo exocisto exo70. A presença da harpin, proteína produzida por bactérias patogênicas das plantas, induzem a expressão de vários genes que regulam a defesa e o crescimento do arroz, podendo resultar na tolerância a estresses bióticos e abióticos (Chen et al.,2008; Li et al., 2012; Cao et al., 2018). O exo70 está envolvida na morfogênese de células e órgãos, perda de dominância apical e crescimento indeterminado (Synek et al., 2006; Guan et al., 2019).

A região intergênica do QTL *PTHT4.2.1* possui um gene que expressa proteínas contendo domínio U-box, que desempenham um papel importante no crescimento, desenvolvimento das plantas e tolerância a estresses abióticos (Hu et al., 2019). Os trabalhos de Adler et al. (2018) e Peng et al. (2019) com *Arabidopsis* mostraram a relação de algumas dessas proteínas com a resposta à seca e ao aumento da termotolerância, que é vital para o crescimento e a sobrevivência das plantas. Em arroz, Min et al. (2019) verificaram que estão envolvidas com aumento do crescimento das plântulas.

Os QTLs de menor efeito foram identificados nos cromossomos 2, 5 e 9 (*PTHT2* (4,11% da variação), *PTHT5* (4,49% da variação) e *PTHT9* (3,94% da variação)). Não há relato de funções dos genes que compõem a região intergênica do QTL *PTHT9*. A região gênica do QTL *PTHT2* expressa enzimas álcool-oxidases que podem gerar peróxido de hidrogênio. O peróxido de hidrogênio (H2O2 é a mais estável das espécies reativas de oxigênio (ROS) e desempenha um papel crucial como uma molécula sinalizadora em vários processos fisiológicos, bem como fatores de transcrição, que por sua vez regulam a expressão gênica e os processos do ciclo celular (Ślesak et al., 2007).

A região intergênica do PTHT5 possui expressão de fatores de transcrição da família MYB, que controlam o desenvolvimento, metabolismo e resposta a estímulos, com destaque na regulação do crescimento secundário e tolerância a estresses bióticos e abióticos (Soler el al., 2014; Mondal & Roy, 2017; Chen et al., 2017; Tan et al., 2020). (2019) e Li et al. (2019)verificaram que Tang et al. fatores de transcrição MYB desempenham papel regulatório positivo em resposta à seca e à resistência ao estresse salino em arroz.

O QTL *PTHT2* foi o único identificado para altura de plantas que possui relato na literatura (*Sn2a*) dentro do mesmo intervalo (Tan et al., 1996). Os demais QTLs para altura de plantas, juntamente com o QTL *FWRG3.2* para florescimento, estão sendo relatados pela primeira vez e provavelmente são novos locos-alvo para estudos para o desenvolvimento de marcadores para seleção assistida no arroz. Novos QTLs identificados podem contribuir também com informações para ampliar o entendimento do controle genético dos principais caracteres de interesse do arroz.

6 CONCLUSÕES

1) O cruzamento Araguaia x Maninjau foi capaz de gerar RILs com alto potencial para seleção de linhagens fenotipicamente superiores aos genitores para os caracteres avaliados, e consequentemente para detecção da associação entre QTL e marcador.

2) A linhagem 1435 destacou-se pela maior produtividade, precocidade e porte baixo e a linhagem 1572 pela maior produtividade e porte baixo, ambas mantiveram um bom desempenho em todos os ambientes e possuem bom tipo de grão, sendo assim, indicadas como genitores para programas nacionais de melhoramento genético do arroz.

3) Existem alelos potenciais que são favoráveis para produtividade e características que contribuem para a produtividade entre as subespécies *índica* e *japônica* do arroz cultivado (*Oryza sativa* L.).

4) O genitor Maninjau foi o doador da maioria dos alelos favoráveis para o aumento da produtividade de grãos, e o genitor Araguaia para florescimento precoce e porte baixo nas RILs.

5) Os marcadores Dart_1_5140203, SNP_3_1226668 e SNP_12_22887040 que explicaram variação fenotípica de 14,91%, 35,36% e 14,84%, são identificados para produtividade de grãos, florescimento e altura de plantas, respectivamente, e são indicados para etapa de validação para uso na rotina de seleção assistida de programas de melhoramento genético de arroz do Brasil. Esses marcadores podem acelerar etapas no melhoramento e trazer ganho de tempo para seleção e lançamento de cultivares comerciais com maior potencial produtivo, precocidade e porte baixo.

7 REFERÊNCIAS

ABADIE, T. et al. Construção de uma coleção nuclear de arroz para o Brasil. **Pesquisa Agropecuária Brasileira**, v. 40, n. 2, p. 129-136, 2005.

ADLER, G. et al. Overexpression of Arabidopsis ubiquitin ligase AtPUB46 enhances tolerance to drought and oxidative stress. Plant Sci. 276, 220–228, 2018.

AKHI, A. H.; MIAH, M. A. K.; IVY N. A.; ISLAM A.; ISLAM M. Z. Estimação e predição por modelo linear misto com ênfase na ordenação de médias de tratamento (Oryza sativa L.). Bangladesh Journal of Agricultural Research, v. 7122, n. 09, p. 387-396, set. 2016.

ALVAREZ-BUYLLA E.R. et al. Evolução do gene MADS-box além das flores: expressão em pólen, endosperma, células guarda, raízes e tricomas. Plant J. 2000.

AMMIRAJU, J. S. S.; SONG, X.; LUO, M. The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. **Breeding Science**, Tóquio, v. 60, p. 536–543, 2010.

ANGAJI, SA "Mapeamento QTL: alguns pontos-chave." *Int J Appl Res Nat Prod* 2, n. 2 (2009): 1-3.

ARANZANA, M. J.; KIM, S.; ZHAO, K.; BAKKER, E.; HORTON, M.; JAKOB, K.; LISTER, C.; MOLITOR, J.; SHINDO, C.; TANG, C.; TOOMAJIAN, C.; TRAW, B.; ZHENG, H.; BERGELSON, J.; DEAN, C.; MARJORAM, P.; NORDBORG, M. GenomeWide association mapping in Arabidopsis indentifies previously known flowering time and pathogen resistance genes. Plos Genetics, v. 5, p. 531-539, 2005. ARAÚJO, Leila Garcês ; PRABHU, Anne Sitarama. Indução de variabilidade na cultivar de arroz Metica-1 para resistência a Pyricularia grisea. **Pesquisa Agropecuária Brasileira**, v. 37, n. 12, p. 1689-1695, 2002.

ARORA, R. et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC genomics, v. 8, n. 1, p. 242, 2007.

ARUMUNAGATHAN, K.; EARL, E.D. 1991. Nuclear DNA content of some important plant species. **Plant Mol Bio** v.9 : 208-218

ASINS, M.; CARBONELL, E. The effect of epistasis between linked genes on quantitative trait locus analysis. **Molecular Breeding**, v. 34, n. 3, p. 1125-1135, 2014.

ASINS, M.J. Present and future of quantitative trait locus analysis in plant breeding. **Plant Breeding**. Berlin, v.121, p. 281-291, 2002.

AUSTIN, D.F.; LEE, M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Science, Madison, v.38, p.1296-1308, 1998.

BALARDIN, R.S.; BORIN, R.C. **Doenças na cultura do arroz irrigado**. Santa Maria: UFSM, 2001. 48p

BARATA, T. S. Caracterização do consumo de arroz no Brasil: um estudo na Região Metropolitana de Porto Alegre. 2005. 93 f. Dissertação (Mestrado em Agronegócios)– Universidade Federal do Rio Grande do Sul - Cepan, Porto Alegre, RS, 2005.

BARRETT J.C. et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005.

BARKER NP, CLARK LG, DAVIS JI, DUVALL MR, GUALA GF, HSIAO C, KELLOGG EA, LINDER P. Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Annals of the Missouri Botanical Garden, 88(3): 373-457, 2001. BEGUM, Hasina et al. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PloS one, v. 10, n. 3, 2015.

BERED, F.; BARBOSA NETO, J. F.; CARVALHO, F. I. F. DNA markers and their application in plant breeding. **Ciência Rural**, v. 27, n. 3, p. 513-520, 1997.

BHERING, L. L.; CRUZ, C. D. Tamanho de população ideal para mapeamento genético em famílias de irmãos completos. **Pesquisa Agropecuária Brasileira**, Brasília, v. 43, n. 3, p. 379-385, 2008.

BORBA, T. C. de O.; BRONDANI, R. P. V.; RANGEL, P. H. N.; BRONDANI, C. Microssatellite marker-mediated analysis of the Embrapa rice core collection genetic diversity. Genetica, The Hague, v. 137, p. 293-304, Dec. 2009.

BORGES, Vanderley et al. Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. **Embrapa Florestas-Artigo em periódico indexado (ALICE)**, 2010.

BOTSTEIN, D.; WHITE, R. L.; SKOLNICK, M.; DAVIS, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorfisms. American Journal Human Genetic, Chicago, v. 32, n. 3, p. 314-331, 1980.

BRADBURY, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, v. 23, n. 19, p. 2633–2635, 2007.
BROMAN, K.; SEN, S. A Guide to QTL Mapping with R/qtl. New York, NY: Springer, 2009.

BROOKES, A. J. The essence of SNPs. Gene, Sweden, v. 234, p. 177-186, maio 1999.

BRONDANI, Claudio et al. Development and Mapping of Oryza Glumaepatula-Derived Microsatellite Markers in the Interspecific Cross Oryza Glumaepatula X O. Sativa. **Hereditas**, v. 134, n. 1, p. 59-71, 2001. BRONDANI, C.; BRONDANI, R. P.V.; BORBA, T. C. O.; RANGEL, P. H. N.; GUIMARÃES, E. P. **Utilização de marcadores microssatélites no melhoramento populacional do arroz**. Embrapa Arroz e Feijão, 2004.

BRONDANI, C. et al. Catálogo descritivo dos acessos da Coleção Nuclear de Arroz da Embrapa-CNAE versão 1.0. **Embrapa Arroz e Feijão. Documentos**, 2007.

BRONDANI, C. et al. Coleção nuclear de arroz da Embrapa: caracterização agronômica. **Embrapa Arroz e Feijão-Documentos (INFOTECA-E)**, 2006.

BROMAN, Karl W. et al. R / qtl: mapeamento de QTL em cruzamentos experimentais. **Bioinformática**, v. 19, n. 7, pág. 889-890, 2003.

BROMAN, K. W.; Sen, S.A Guide to QTL Mapping with R/qtl. Genetics, 2009. New York, 396 p.

BROMAN, K. W. The genomes of recombinant inbred lines. **Genetics**, Austin, v. 169, n. 2, p. 1133-1146, 2005.

BUENO, L. C.; MENDES, A. N. G.; CARVALHO, S. P. Melhoramento genético de plantas: princípios e procedimentos. Lavras, MG: UFLA, 2001. 282 p.

CAETANO, Alexandre Rodrigues. SNP markers: basic concepts, applications in animal breeding and management and perspectives for the future. **Revista Brasileira de Zootecnia**, v. 38, n. SPE, p. 64-71, 2009.

CAO, Y. et al. Overexpression of SSBXoc, a Single-Stranded DNA-Binding Protein From Xanthomonas oryzae pv. oryzicola, Enhances Plant Growth and Disease and Salt Stress Tolerance in Transgenic Nicotiana benthamiana. Frontiers in Plant Science, 2018.

CARGNIN, A.; SOUZA, M. A.; CARNEIRO, P. C. S.; SOFIATTI, V. Interação entre genótipos e ambientes e implicações em ganhos com seleção em trigo. **Pesquisa Agropecuária Brasileira**. v.41, p.987-993, 2006.

CARGNIN, Adeliano et al. Interação genótipos e ambientes e implicações na adaptabilidade e estabilidade de arroz sequeiro. **Current Agricultural Science and Technology**, v. 14, n. 3, 2008.

CARGNIN, A.; SOUZA, M. A.; PIMENTEL, A. J. B.; FOGAÇA, C. M. Diversidade genética em cultivares de arroz e correlações entre caracteres agronômicos. **Revista Ceres**, v. 57, n. 1, p. 53-59, 2010.http://dx.doi.org/10.1590/S0034737X2010000100010.

CARNEIRO, M.S., VIEIRA, M.L.C. Mapas genéticos em plantas. Bragantia, Campinas, 61:89-100, 2002.

CASTRO, Douglas Goulart et al. Estimativas de associação entre caracteres agronômicos na seleção de genótipos de arroz de terras altas. **MAGISTRA**, v. 30, p. 359-367, 2020.

CATOLOS, Margaret et al. Genetic loci governing grain yield and root development under variable rice cultivation conditions. **Frontiers in plant science**, v. 8, p. 1763, 2017.

CHEN, M. et al. An integrated physical and genetic map of the rice genome. The Plant Cell, Rockville, v. 14, n. 3, p. 537-545, 2002.

CHEN, L., et al. Identification of Specific Fragments of HpaGXooc, a Harpin fromXanthomonas oryzaepv.oryzicola, that Induce Disease Resistance and Enhance Growth in Plants. Phytopathology, 98(7), 781–791, 2008.

CHEN, H.; HE, H.; ZHOU, F.; YU, H.; DENG, X. W. Development of genomics-based genotyping platforms and their applications in rice breeding. Current Opinion in Plant Biology, v. 16, n. 2, p. 247-254, 2013.

CHEN, S., NIU, X., GUAN, Y., & LI, H. Genome-Wide Analysis and Expression Profiles of the MYB Genes in Brachypodium distachyon. Plant and Cell Physiology, 58(10), 1777–1788. 2017. CHO, Y.-G., Kang, H.-J., Lee, J.-S., Lee, Y.-T., Lim, S.-J., Gauch, H., Eun, M.-Y., and McCouch, S.R. Identification of Quantitative Trait Loci in Rice for Yield, Yield Components, and Agronomic Traits across Years and Locations. Crop Sci. 47, 2403-2417, 2007.

CRUSCIOL, CARLOS ALEXANDRE COSTA et al. Produtividade do arroz de terras altas sob condições de sequeiro e irrigado por aspersão em função do espaçamento entre fileiras. **Agronomia, Rio de Janeiro**, v. 37, n. 1, p. 10-15, 2003.

CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, v.2. 2003.

CRUZ, C. D.; REGAZZI, A. J.; CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 2004.

CRUZ, Cosme Damião. **Programa Genes: estatística experimental e matrizes**. UFV, 2006.

CRUZ, C. D., CARNEIRO, P. C. S., & REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético (3. ed.). Viçosa: Editora UFV. 668 p., 2014.

COELHO, A.S.G. Considerações gerais sobre a análise de QTL. In: PINHEIRO, J.B.; CARNEIRO, I.F.(Ed). **Análise de QTL no melhoramento de plantas**. Goiânia: FUNAPE, 2000, p.1-20.

COELHO, A. S. G. Considerações Gerais Sobre a Análise de QTL's. In: PINHEIRO, J. B.; CARNEIRO, I. F (Org.). Análise de QTL no Melhoramento de Plantas: 2ª Jornada em Genética e Melhoramento de Plantas realizada na Escola de Agronomia da Universidade Federal de Goiás. Goiânia: Funape, 2000. p. 1-17.

COLLARD, Bertrand CY, M. Z. Z. Jahufer, J. B. Brouwer, and E. C. K. Pang. "An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts." *Euphytica* 142, no. 1-2 (2005): 169-196.

COSTANZO, Enrico; TREHIN, Christophe; VANDENBUSSCHE, Michiel. The role of WOX genes in flower development. Annals of botany, v. 114, n. 7, p. 1545-1553, 2014.

CUI, H., et al. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105, 745-753, 2002a.

CUI, K.H. et al. Genetic analysis of the panicle traits related to yield sink size of rice. Yi Chuan Xue Bao 29, 144-152, 2002b.

CUI, K., et al. Molecular dissection of relationship between seedling characteristics and seed size in rice. Acta Bot Sinica 44, 702-707, 2002c.

DAVEY, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. **Nature Reviews Genetics**, v. 12, n. 7, p. 499-510, 2011.

DE ALMEIDA, Leones Alves et al. Melhoramento da soja para regiões de baixas latitudes. **Embrapa Meio-Norte-Capítulo em livro científico (ALICE)**, 1999.

DEOKAR, A. A., RAMSAY, L., SHARPE, A. G., DIAPARI, M., SINDHU, A., BETT, K., ... & TAR'AN, B. (2014). Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. **BMC genomics**, *15*(1), 708.

DEUNER, C. et al. Viabilidade e atividade antioxidante de sementes de genótipos de feijão-miúdo submetidos ao estresse salino.Revista Brasileira de Sementes, vol. 33, n. 4, p. 711-720, 2011.

DIÉDHIOU, C. J. et al. The SUI-homologous translation initiation factor eIF-1 is involved in regulation of ion homeostasis in rice. Plant biology Stuttgart Germany, [S.l.], v. 10, p. 298-309, 2008.

DING, Zhengquan et al. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochemical and biophysical research communications, v. 457, n. 2, p. 133-140, 2015.

Diversity Arrays Technology. Disponível em: <<u>http//</u>www.diversityarrays.com >. Acesso em 23 de outubro de 2018. International Rice Research Institute. Disponível em: <<u>https://www.irri.org/</u>>.Acesso em 28 de agosto de 2020.

DIXIT, Shalabh et al. Combining drought and submergence tolerance in rice: markerassisted breeding and QTL combination effects. **Molecular breeding**, v. 37, n. 12, p. 143, 2017.

DHEIN, C. A.; DICK, D. P.; BENDER, A. C. Comparison of methods for determination of humic substances in commercial liquid fertilizers. Química Nova, v. 43, n. 8, p. 1138-1144, 2020.

DOERGE, R. W. Mapping and analysis of quantitative trait loci in experimental populations. **Nature Reviews Genetics**, New York, v. 3, n. 1, p. 43-52, 2002.

DONG, Y., KAMIUNTEN, H., OGAWA, T., TSUZUKI, E., TERAO, H., LIN, D., AND MATSUO, M. Mapping of QTLs for leaf developmental behavior in rice (Oryza sativa L.). Euphytica V138, 169-175, 2004.

EASTMOND, PJ. et al. Armadilha do promotor de uma nova acil-CoA oxidase de cadeia média, que é induzida transcricionalmente durante a germinação de sementes de Arabidopsis. Journal of Biological Chemistry , 275 (44), 2000.

ELSHIRE, R.J.; GLAUBITZ, J.C.; SUN, Q.; POLAND, J. A.; KAWAMOTO, K.; BUCKLER, E. S.; MITCHELL, S. E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. **PLoS ONE**, v. 6, n. 5, p. 1-10, 2011. EVANS, Nicola H.; MCAINSH, Martin R.; HETHERINGTON, Alistair M. Calcium oscillations in higher plants. Current opinion in plant biology, v. 4, n. 5, p. 415-420, 2001. FAO. Rice Market Monitor. Rome, v. 12, n. 3, oct. 2014.

FAO. Rice Mark Monitor 20: 1–27, December 2017.

FALCONER, David D.; MAGEE JR, F. R. Adaptive channel memory truncation for maximum likelihood sequence estimation. **Bell System Technical Journal**, v. 52, n. 9, p. 1541-1562, 1973.

FALCONER, D. S. Introdução à genética quantitativa. Viçosa: UFV, 279 p., 1987.

FAN, Chuchuan et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. **Theoretical and Applied Genetics**, v. 112, n. 6, p. 1164-1171, 2006.

FERREIRA, A., DA SILVA, M.F., DA COSTA E SILVA, L., CRUZ, C.D. Estimating the effects of population size and type on the accuracy of genetic maps. Genetics Molecular Biology, 29:182-192, 2006.

FERREIRA, Mariana; AGUIAR, Tatiana; VILARINHO, Laura. Cadeia Respiratória Mitocondrial Aspectos Clínicos, Bioquímicos, Enzimáticos e Moleculares Associados ao Défice do Complexo I. Arquivos de Medicina, v. 22, n. 2-3, p. 49-56, 2008.

FERREIRA, M. E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 1996.

FERREIRA ME, GRATTAPAGLIA D. Introdução ao uso de marcadores em análise genética. Brasília: EMBRAPA/CENARGEN, 1998.

FLAUZINO, Jayson Carrijo et al. Arroz de terras altas inoculado com bactérias diazotróficas associativas e submetido à disponibilidades hídricas. 2019.

FONSECA, J. R.; CUTRIM, V. dos A.; RANGEL, P. H. N. Descritores morfo agronômicos e fenológicos de cultivares comerciais de arroz de várzeas. **Embrapa Arroz e Feijão-Documentos (INFOTECA-E)**, 2002.

FOX, P.N.; CROSSA, J.; ROMAGOSA, I. Multi-environment testing and genotypeenvironment interaction. In: KEMPTON, R.A.; FOX, P.N. (Ed.). Statistical methods for plant variety evaluation. New York: Chapman & Hall, 1997. p. 117-138.

FRAGA, T.I. et al. Flooded rice yield as affected by levels of water salinity in different stages of its cycle.RevistaBrasileira de Ciência do Solo, vol. 34, n. 1, p. 175-182, 2010.

GARCIA, A. L. B. Caracterização genética por modelos mistos de uma população de linhas puras recombinantes de arroz irrigado [manuscrito]. 2017. 137 f.
Dissertação (Mestrado) - Universidade Federal de Goiás, Escola de Agronomia (EA),
Programa de Pós-Graduação em Genética & Melhoramentos de Plantas, Goiânia, 2017.

GARRIS, A.J.; TAI, T.H.; COBURN, J.; KRESOVICH, S., McCOUCH, S. Genetic structure and diversity in Oryza sativa L. **Genetics**, Baltimore, v. 169, n. 3, p.1631-1638, 2005.

GHEYI, Hans Raj; DA SILVA DIAS, N.; DE LACERDA, C. F. Manejo da salinidade na agricultura: Estudos básicos e aplicados. Fortaleza: INCTSal, 2010.

GLAUBITZ, Jeffrey C. et al. TASSEL-GBS: um pipeline de análise de genotipagem por sequenciamento de alta capacidade. **PloS one**, v. 9, n. 2, pág. e90346, 2014.

GOFF, S.A.; RICKE, D. LAN, T.; PRESTING, G.; WANG, R.; DUNN, M.; et al. A draft sequence of the rice genome (*Oryza sativa* L. Ssp. *japônica*). **Science**, v. 296, p. 92-100, 2002

GONZÁLES, J.F. Origen, taxonomia y anatomia de la planta de arroz (*Oryza sativa* L.). In: TASCÓN, E.J.; GARCÍA, E.D. **Arroz: Investigación y Producción**. CIAT: Colombia, 1985, p. 45-80. GRAHAM, I. A. Seed storage oil mobilization. Annu. Rev. Plant Biol., 59, 115-142, 2008.

GUAN, W. et al. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Current Genetics, 2019.

GUIMARÃES, E.P.; SANT'ANA, E.P. Sistemas de cultivo. In: VIEIRA, N.R.A.; SANTOS, A.B.; SANT'ANA, E.P. (Ed.). **A cultura do arroz no Brasil**. Goiânia: Embrapa Arroz e Feijão, 1999. p.17-35.

GUIMARÂES, C. T., DE MAGALHÃES, J. V., LANZA, M. A., & SCHUSTER, I. Marcadores moleculares e suas aplicações no melhoramento genético. *Embrapa Milho e Sorgo-Artigo em periódico indexado (ALICE)*. 2009.

GUO, L.; GAO, Z.; QIAN, Q. Application of resequencing to rice genomics, functional genomics and evolutionary analysis. **Rice**, New York, v. 7, n. 1, p. 4, 2014.

HAO, W.; LIN, H. X. Towards understanding genetic mechanisms of complex traits in rice. Journal of Genetics and Genomics, Beijing, v. 37, n. 10, p. 653-666, 2010.

HEPLER, Peter K.; VIDALI, Luis; CHEUNG, Alice Y. Polarized cell growth in higher plants. Annual review of cell and developmental biology, v. 17, n. 1, p. 159-187, 2001. HITTALMANI, S., SHASHIDHAR, H.E., BAGALI, P.G., HUANG, N., SIDHU, J.S., SINGH, V.P., AND KHUSH, G.S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica V125, 207-214, 2002.

HILL, W. G.; WEIR, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol, v. 33, p. 54–78, 1988.

HITTALMANI, S, et al. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107, 679-690, 2003.

HU, X. et al. Genome-Wide Distribution, Expression and Function Analysis of the U-Box Gene Family in Brassica oleracea L. Genes, 2019.

HUA, J.P. et al. Genetic Dissection of an Elite Rice Hybrid Revealed That Heterozygotes Are Not Always Advantageous for Performance. Genetics 162, 1885-1895, 2002.

HUANG, X.; WEI, X.; SANG, T.; ZHAO, Q.; FENG, Q.; ZHAO, Y. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, London, v. 42, n. 1, p. 961-967, 2010.

HUANG, X. et al. A map of rice genome variation reveals the origin of cultivated rice. **Nature**, v. 490, n. 7421, p. 497-501, 2012.

IDRIS, A. E.; MOHAMED, K. A. Estimation of Genetic Variability and Correlation for Grain Yield Components in Rice. Global Journal of Plant Ecophysiology, v. 3, n. 1, p. 16, 2013.

INTERNATIONAL RICE GENOME SEQUENCING PROJECT (IRGSP). The mapbased sequence of the rice genome. **Nature**, v. 436, n. 7052, p. 793-800, 2005.

IRRI. Standard evaluation system for rice. Manila, International Rice Research Institute (IRRI), 2002.

JACOB, H. J.; LINDPAINTNER, K.; LINCOLN, S. E.; KUSUMI, K.; BUNKER, R. K.; MAO, Y. P.; GANTEN, D.; DZAU, V. J.; LANDER, E. S. Genetic Mapping of a Gene Causing Hypertension in the Stroke-Prone Spontaneously Hypertensive Rat. Cell, Cambridge, v. 67, p. 213-224, out. 1991.

JACCOUD, D., PENG, K., FEINSTEIN, D., & KILIAN, A. Diversity arrays: a solid state technology for sequence information independent genotyping. **Nucleic acids research**, *29*(4), e25-e25, 2001.

JANGARELLI, M.; EUCLYDES, R. F.; CRUZ, C. D.; CECON, P. R.; CARNEIRO, A.P. S. Análise de agrupamento de diferentes densidades de marcadores no mapeamento genético por varredura genômica. Ceres, Viçosa, v. 57, n. 6, 2010.

JIA, B. et al. Quantitative trait loci mapping of panicle traits in rice. Molecular Biology Research Communications, v. 8, n. 1, p. 9, 2019.

JIANG, S. Y., Ma, A., Ramamoorthy, R., & Ramachandran, S. Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome biology and evolution, v. 5, n. 11, p. 2032-2050, 2013.

JÚNIOR, S. R. G. S. Análise mensal arroz agosto de 2018. Conab. Brasília-DF, 2018.

JÚNIOR, S. R. G. S. Análise mensal arroz abril/maioo de 2019. **Conab**. Brasília-DF, 2019.

KAO, C. H., ZENG, Z. B., TEASDALE, R. D. Multiple interval mapping for quantitative trait loci. **Genetics**, Bethesda, v. 152, n. 3, p. 1203-1216, jul. 1999.

KAWAHARA, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. **Rice**, v.6, p.4-14, 2013. DOI: 10.1186/1939-8433-6-4.

KOTLA, Anuradha et al. Quantitative trait loci and candidate genes for yield and related traits in Madhukar x Swarna RIL population of rice. **Journal of Crop Science and Biotechnology**, v. 16, n. 1, p. 35-44, 2013.

KHUSH, G.S. Origin, dispersal, cultivation and variation of rice. **Plant Mol. Biol**. 35:25-34, 1997.

KULCHESKI, F.R. DArT: marcadores baseados em Diversity Arrays Technology. In: TURCHETTO-ZOLET, A. C. et. al. Marcadores Moleculares na Era genômica: Metodologias e Aplicações. Ribeirão Preto: **Sociedade Brasileira de Genética**, 181 p. 2017.

LACERDA, F. H. D. Peróxido de hidrogênio como amenizador da suscetibilidade do milho verde ao estresse salino. Dissertação (Mestrado em Horticultura Tropical), Centro de Ciências e Tecnologia - Universidade Federal de Campina Grande. Pombal-Paraíba, p.31. 2015.

LANDER, E. S., BOTSTEIN, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. **Genetics**, Bathenda, v. 121, n. 1, p. 185-199, jan. 1989.

LEMES, E.S. et al. Productivity and physiological quality of irrigated rice seeds under salt stress and carbonized rice husk ashes fertilization.Revista de Agrociencia, vol. 50, p. 307-321, 2016.

LEMES, E. S. et al. Salinidade na cultura do arroz irrigado: características agronómicas e qualidade de sementes. Revista de Ciências Agrárias, 41(4), 131-140, 2018. LI, J. Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 20(2), 251. 2019.

LI, W., SHAO, M. et al. Ectopic Expression of Hrf1 Enhances Bacterial Resistance via Regulation of Diterpene Phytoalexins, Silicon and Reactive Oxygen Species Burst in Rice. 2012.

LI, Y.; XIAO, J.; CHEN, L.; HUANG, X.; CHENG, Z.; HAN, B.; ZHANG, Q.; WU, C. Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, v. 11, p. 359-380, 2018.

LI, Z., PINSON, S.R., PATERSON, A.H., PARK, W.D., AND STANSEL, J.W. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145, 1139-1148, 1997.

LIM, Jung-Hyun et al. Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Molecules and cells, v. 37, n. 2, p. 149, 2014.

LIN, H., ASHIKARI, M., YAMANOUCHI, U., SASAKI, T., AND YANO, M. Identification and Characterization of a Quantitative Trait Locus, Hd9, Controlling Heading Date in Rice. Breeding Science 52, 35-41, 2002.

LIU, Lin et al. Comparison of next-generation sequencing systems. **BioMed research** international, v. 2012, 2012.

LOPES, A. A. C.; SOUSA, D. M. G.; CHAER, G. M.; REIS JUNIOR, F b..; GOEDERT, W. J.; CARVALHO MENDES, I. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. **Soil Science Society of America Journal**, v. 77, n. 2, p. 461-472, 2013. http://dx.doi.org/10.2136/sssaj2012.0191.

LOPES, AMANDA DE SANTANA. Caracterização molecular e fisiológica de plantas transplastômicas de tabaco expressando dessaturases de cianobactéria. Tese de Doutorado. Universidade Federal de Viçosa.2014.

LYNCH, M.; WALSH, B. Genetic and analysis of quantitative traits. Sunderland: Sinauer, 1998. 980p).

MAPA. Projeções do Agronegócio : Brasil 2018/19 a 2028/29 projeções de longo prazo / Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Política Agrícola. 10° ed. Brasília -DF. 126 p., 2019.

MAPA. **Projeções do Agronegócio: Brasil 2017/2018 a 2027/28 - Projeções a longo prazo**. 9° ed. Brasília-DF. 2018.

MAPA. **Projeções do Agronegócio: Brasil 2017/2018 a 2027/28 - Projeções a longo prazo**. 8° ed. Brasília-DF. 2017. MARATHI, B., Guleria, S., Mohapatra, T. *et al.* QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (*Oryza sativaL.*). *BMC Plant Biol* **12**, 137 (2012).

MARGARIDO, Gabriel RA; SOUZA, Anete P .; GARCIA, Antonio AF. OneMap: software para mapeamento genético em espécies outcrossing. **Hereditas**, v. 144, n. 3, pág. 78-79, 2007.

MARRI, P.R. et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6, 33, 2005.

MATSUBARA, Kazuki et al. Improvement of rice biomass yield through QTL-based selection. **PloS one**, v. 11, n. 3, p. e0151830, 2016.

MATHER, K. A.; CAICEDO, A. L.; POLATO, N. R.; OLSEN, K. M.; MCCOUCH, S. et al. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics, Austin, v. 177, n. 4, p. 2223-2232, 2007.

MATSUBARA, Kazuki et al. A follow-up study for biomass yield QTLs in rice. **PloS one**, v. 13, n. 10, p. e0206054, 2018.

MCCOUCH, S. R.; CHEN, X.; PANAUD, O.; TEMNYKH, S.; XU, Y.; CHO, Y. G.; HUANG, N.; ISHII, T.; BLAIR, M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant molecular biology, The Hague, v. 35, n. 1-2, p. 89-99, 1997.

MIAH, G.; RAFII, M.Y.; ISMAIL, M.R.; PUTEH, A. B.; HAHIM, H. A.; ISLAM, K. N.; LATIF, M. A. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. **International Journal of Molecular Sciences**, v. 14, n. 11, p. 22499-22528, 2013.

MICHAEL, W. Matthew; DREYFUSS, Gideon. Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization. Journal of Biological Chemistry, v. 271, n. 19, p. 11571-11574, 1996.

MINH-THU, Pham-Thi et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. **Molecules and cells**, v. 41, n. 8, p. 781, 2018.

MIN, H.J. et al. OsBZR1 turnover mediated by OsSK22- regulated U-box E3 ligase OsPUB24 in rice BR response. Plant J. 99, 426–438, 2019.

MIYATA, M. et al. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet 114, 539-548, 2007.

MOORE S, VREBALOV J, PAYTON P, GIOVANNONI J. Uso de ferramentas genômicas para isolar os principais genes de amadurecimento e analisar a maturação dos frutos em tomateiro. J Exp Bot. 2002.

MONDAL, S. K., & ROY, S. Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis. Journal of Biomolecular Structure and Dynamics, 36(6), 1577–1601. 2017.

MORAES, Michel Choairy de. Mapas de ligação e mapeamento de QTL (Quantitative Trait Loci) em maracujá-amarelo (Passiflora edulis Sims f. flavicarpa Deg.). 2005. Tese de Doutorado. Universidade de São Paulo.

MUTHU, Valarmathi et al. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. **PloS one**, v. 15, n. 1, p. e0227421, 2020.

MWADZINGENI L, SHIMELIS H, REES DJG, TSILO TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. *Plos One* 12 (2).

MYLES, Sean et al. Association mapping: critical considerations shift from genotyping to experimental design. **The Plant Cell**, v. 21, n. 8, p. 2194-2202, 2009.TUNG, Chih-

Wei et al. Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.). **Rice**, v. 3, n. 4, p. 205-217, 2010.

NADEEM, Muhammad Azhar et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. **Biotechnology** & Biotechnological Equipment, v. 32, n. 2, p. 261-285, 2018.

NETO, Amadeu Regitano et al. Comportamento de genótipos de arroz de terras altas no estado de São Paulo. **Revista Ciência Agronômica**, v. 44, n. 3, p. 512-519, 2013.

OGUNBAYO, S. A.; SIÉ, M.; OJO, D. K.; SANNI, K. A.; AKINWALE, M. G.; TOULOU, B.; SHITTU, A.; IDEHEN, E. O.; POPOOLA, A. R.; DANIEL, I. O.; GREGORIO, G. B. Genetic variation and heritability of yield and related traits in promising rice genotypes (Oryza sativa L.). Journal of Plant Breeding and Crop Science, Nairobi, v. 6, n. November, p. 153-159, 2014.

OLIVEIRA, A. C.Comparação de alguns métodos de determinação da estabilidade em plantas cultivadas. 1976. 64f. **Dissertação** (Mestrado em Ciências Agrárias) Universidade de Brasília, Brasília, 1976.

ONU - Organização das Nações Unidas. População mundial deve ter mais 2 bilhões de pessoas nos próximos 30 anos. 2019. Disponível em: https://news.un.org/pt/story/2019/06/1676601> Acesso em: 19 de outubro de 2020.

PANTALIÃO, Gabriel Feresin et al. Desenvolvimento de marcadores SNP para triagem de produtividade de grãos de cultivares brasileiras de arroz. **Pesquisa Agropecuária Brasileira**, v. 55, n. X, p. 01643, 2020.

PATERSON, A. H.; TANKSLEY, S. D.; SORRELLS, M. E. DNA markers in plant improvement. Advances in agronomy, v. 46, p. 39-90, 1991.

PELUZIO, Joênes Mucci et al. Adaptabilidade e estabilidade de cultivares de soja em várzea irrigada no Tocantins. **Revista Ciência Agronômica**, v. 41, n. 3, p. 427-434, 2010.

PENG, L. et al. AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis. Biochem. Biophys. Res. Commun. 2019.

PINHEIRO, B. S. Apresentação. In: SANTOS et. al. A cultura do arroz no Brasil. Santo Antônio de Goiás, Embrapa Arroz e Feijão. 1000p, 2006.

POOVAIAH, B. W. et al. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta, 209(2), 161-171, 1999.

POLAND, J. A.; RIFE, Trevor W. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, v. 5, n. 3, p. 92-102, 2012.

PHUNG, N. T.P. et al. Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes. BMC plant biology, v. 14, n. 1, p. 371, 2014.

QI, J. et al. The chloroplast-localized phospholipases D α 4 and α 5 regulate herbivoreinduced direct and indirect defenses in rice. Plant Physiology, v. 157, n. 4, p. 1987-1999, 2011.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. Disponível em : < <u>https://www.R-project.org/</u>>. Acesso: 20/06/2020. RAFALSKI, A. Applications of single nucleotide polymorphism in crop genetics. **Current Opinion in Plant Biology**, v. 5, n. Ld, p. 94-100, 2002.

RAGHAVAN, C. et al. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population. G3: Genes, Genomes, Genetics, v. 7, June 2017, 1721, 2017.

RAMALHO, M. A. P.; SANTOS, J.; ZIMMERMANN, M. J. O. Genética quantitativa em plantas autógamas. Goiânia: UFG, 272 p., 1993.

RAMALHO, M. A. P.; ABREU A. F. B.; SANTOS J. B. NUNES, J. A. R. Aplicações da genética quantitativa no melhoramento de plantas autógamas. **Ciência Agrotécnica**, p. 33-40, 2012.

RAMOS MOLINA, Lina Maria et al. Um estudo sobre métodos estatísticos na avaliação da interação genótipo x ambientes em genótipos de arroz (Oryza sativa L.). 2007. Dissertação (Mestrado) - Universidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal – São Paulo, 2007.

RAMOS, Mariana Rodrigues Feitosa et al. **Heterose e capacidade combinatória de genótipos da coleção nuclear de arroz da Embrapa.** 2015. Dissertação (Mestrado) -Universidade Federal de Goiás, Escola de Agronomia (EA), Programa de Pós-Graduação em Genética & Melhoramentos de Plantas, Goiânia, 2015.

RAMOS, Mariana Rodrigues Feitosa et al. HETEROSIS AND COMBINING ABILITY FOR GRAIN YIELD AND EARLINESS IN ACCESSIONS OFA RICE CORE COLLECTION. **Functional Plant Breeding Journal**, v. 1, n. 1, 2019.

RANGEL, PHN et al. Piramidização de genes de resistência no desenvolvimento de multilinhas de arroz irrigado com resistência estável à brusone (Pyricularia grisea). In: **Embrapa Arroz e Feijão-Artigo em anais de congresso (ALICE)**. In: CONGRESSO BRASILEIRO DE ARROZ IRRIGADO, 7., 2011, Balneário Camboriú. Racionalizando recursos e ampliando oportunidades: anais. Itajaí: Epagri, 2011.

RAY, Deepak K. et al. Yield trends are insufficient to double global crop production by 2050. **PloS one**, v. 8, n. 6, p. e66428, 2013.

RESENDE, Marcos Deon Vilele. **Métodos estatísticos ótimos na análise de experimentos de campo**. Embrapa Florestas, 2004.

RESENDE, M.D.V. Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas, 2007a. 561p.

RESENDE, M. D. V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, Goiânia, v. 37, n. 3, p. 182- 194, 2007.

RESENDE, MDV de et al. Seleção genômica ampla (GWS) via modelos mistos (REML/BLUP), inferência bayesiana (MCMC), regressão aleatória multivariada e estatística espacial. **Viçosa: Ed. UFV**, 2012.

Rice Diversity Project, Cornell University, USA. Disponível em: http://www.ricediversity.org>. Acesso em 28 de outubro de 2018.

RICHARD, Patricia; MANLEY, James L. Transcription termination by nuclear RNA polymerases. Genes & development, v. 23, n. 11, p. 1247-1269, 2009.

SAATH, Kleverton Clovis de Oliveira; FACHINELLO, Arlei Luiz. Crescimento da demanda mundial de alimentos e restrições do fator terra no Brasil. **Revista de Economia e Sociologia Rural**, v. 56, n. 2, p. 195-212, 2018.

SAIGA S. et al. "The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance". Development. 135:1751-9, 2008.

SANGHERA, G. S.; KASHYAP, S. C.; PARRAY, G. A. Genetic Variation for Grain Yield and Related Traits in Temperate Red Rice (Oryza sativa L.) Ecotypes. Notulae Scientia Biologicae, v. 5, n. 3, p. 400-406, 2013.

SANSALONI, C. P. Desenvolvimento e aplicações de DArT (Diversity Arrays
Technology) e genotipagem por sequenciamento (Genotyping-by- Sequencing)
para análise genética em Eucalyptus. Tese (doutorado) – Universidade de Brasilia /
Departamento de Biologia Celular – Brasilia, DF. 2012.

SANTOS, A.B; STONE, L. F.; VIEIRA, N.R.A. A cultura do arroz no Brasil. Santo Antônio de Goiás, Embrapa Arroz e Feijão. 1000p, 2006. SAKAMOTO, T.; MATSUOKA, M. Identifying and exploiting grain yield genes in rice. **Current opinion in plant biology**, v. 11, n. 2, p. 209-214, 2008.

SAX, K. The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. *Genetics*, Baltimore, v.8, p.552-560, 1923.

SCHUSTER, I.; CRUZ, C. D. Estatística genômica aplicada a populações derivadas de cruzamentos controlados. 2 ed. Viçosa, MG: UFV, 2008.

SCHUSTER, I.; CRUZ, C. D. Estatística genômica aplicada a populações derivadas de cruzamentos controlados. 3 ed. Viçosa, MG: UFV, 2013.

SEGATTO, A. L. A.. Marcador molecular CAPS - Sequências polimórficas
amplificadas clivadas (Cleaved Amplified Polymorphic Sequences). In: TURCHETTOZOLET, A. C. et. al. Marcadores Moleculares na Era genômica: Metodologias e
Aplicações. Ribeirão Preto: Sociedade Brasileira de Genética, 181 p. 2017.

SILVA, M.V.G.B.; MARTINEZ, M.L.; TORRES, R.A. et al. Modelos aleatórios na estimação da localização de QTLs em famílias de meio-irmãos. Revista Brasileira de Zootecnia, v.34, n.1, p.66-75, 2005.

SILVA, E. A.; SORATTO, R. P.; ADRIANO, E.; BISCARO, G. A. A. Avaliação de cultivares de arroz de terras altas sob condições de sequeiro em Cassilândia, MS. **Ciência e Agrotecnologia**, v. 33, n. 1, p. 298-304, 2009. http://dx.doi.org/10.1590/S141370542009000100041.

SILVA, C. S. C. et al. Genetic and phenotypic parameters in the selection of upland rice genotypes. **American Journal of Plant Sciences**, v. 8, n. 13, p. 3450-3459, 2017.

SHOMURA, Ayahiko et al. Deletion in a gene associated with grain size increased yields during rice domestication. **Nature genetics**, v. 40, n. 8, p. 1023-1028, 2008.

SLESAK, Ireneusz et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. **Acta Biochimica Polonica**, v. 54, n. 1, p. 39-50, 2007.

SOHRABI, S.S; ESMAILIZADEH, A. K., BAGHIZADEH, A. et al. Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. **Animal Production Science**, 2012.

SOLER, M. TheEucalyptus grandisR2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytologist, 206(4), 1364–1377. 2014.

SOLIS, Julio et al. Genetic mapping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions. **Frontiers in chemistry**, v. 5, p. 129, 2018.

SONG, Xian-Jun et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. **Nature genetics**, v. 39, n. 5, p. 623-630, 2007.

SPINDEL, J.; WRIGHT, M.; CHEN, C.; COBB, J.; GAGE, J.; HARRINGTON, S.; LORIEUX, M.; AHMADI, N.; McCOUCH, S. 2013. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add highdensity SNP markers and new value to traditional biparental mapping and breeding populations. **Theoretical and Applied Genetics.** 126:26992716.

STEIN, Joshua C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. **Nature genetics**, v. 50, n. 2, p. 285, 2018.

STAUB, J. E.; SERQUEN, F. C.; GUPTA, M. Genetic markers, map construction, and their application in plant breeding. HortScience, Alexandria, v. 31, n. 5, p. 729-741, 1996.

STONE, L. F.; PINHEIRO, B. S. O arroz sob irrigação suplementar por aspersão. In:
BRESEGHELLO, F.; STONE, L. F. Tecnologia para o arroz de terras altas. Santo
Antônio de Goiás: Embrapa Arroz e Feijão, 1998.p. 31-33.

SUJI, K. K. et al. Mapping QTLs for plant phenology and production traits using indica rice (Oryza sativa L.) lines adapted to rainfed environment. **Molecular biotechnology**, v. 52, n. 2, p. 151-160, 2012.

SYNEK, L., et al. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal, 48(1), 54–72, 2006.

TAKEDA, Shin; MATSUOKA, Makoto. Genetic approaches to crop improvement: responding to environmental and population changes. **Nature Reviews Genetics**, v. 9, n. 6, p. 444, 2008.

TAN, C. et al. QTL scanning for rice yield using a whole genome SNP array. Journal of Genetics and Genomics, Beijing, v. 40, n. 12, p. 629-638, 2013.

TAN, L. Genome-Wide Identification and Comparative Analysis of MYB Transcription Factor Family in Musa acuminata and Musa balbisiana. Plants, 9(4), 413. 2020.

TAN, Z.B. Identification of QTLs for lengths of the top internodes and other traits in rice and analysis of their genetic effects. Acta Genet Sinica 23, 439-446. 1996.

TANG, Y. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Frontiers in Plant Science, 10, 2019.

TANKSLEY, S. D. Mapping polygenes. Annual review of genetics, Palo Alto, v. 27, n. 1, p. 205-233, 1993.

TERRA, T. G. R.; LEAL, T. C. A. B.; RANGEL, P. H. N.; OLIVEIRA, A. B. Características de tolerância à seca em genótipos de uma coleção nuclear de arroz de terras altas. **Pesquisa Agropecuária Brasileira,** v. 50, n. 9, p. 788-796, 2015. http://dx.doi.org/10.1590/S0100-204X2015000900007.

THODAY, J.M. Location of polygenes. Nature, v.191, p.368-370, 1961.

TIAN, F. et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.). 2006.

TUBEROSA, R., SALVI, S. Genomics-based approaches to improve drought tolerance in crops. **Trends in Plant Science**, v. 11, n. 8, p. 405–412, ago. 2006.

TURCHETTO-ZOLET, A. C. et. al. Marcadores Moleculares na Era genômica: Metodologias e Aplicações. Ribeirão Preto: **Sociedade Brasileira de Genética**, 181 p. 2017.

VAN DER BEEK, S.; VAN ARENDONK, J.A.M.; GROEN, A.F. Power of two and three-generation QTL, mapping experiments in an outbred population containing fullsib or half-sib families. Theoretical and Applied Genetics, v.91, n.6-7, p.1115-1124, 1995.

VAN NIMWEGEN, Kirsten JM et al. Is the \$1000 genome as near as we think? A cost analysis of next-generation sequencing. **Clinical chemistry**, v. 62, n. 11, p. 1458-1464, 2016.

VARSHNEY, Rajeev K.; TERAUCHI, Ryohei; MCCOUCH, Susan R. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. **PLoS Biol**, v. 12, n. 6, p. e1001883, 2014.

VAUGHAN, D.A.; MORISHIMA, H. Biosystematics of the genus Oryza. In: SMITH, C.W.; DILDAY, R.H. **Rice. Origin, History, Tecnology ang Production**. Jonh Wileyand Sons Inc., Hoboken, New Jersey. p. 27-65, 2003.

VERGARA, B.; CHANG, T. The flowering response of the rice plant to photoperiod: A review of the literature. Los Baños: IRRI, 61 p., 1985. VIEIRA, N. R. A.; RABELO, R. R. Qualidade tecnológica. In: SANTOS, A. B.; STONE, L. F.; VIEIRA, N. R. A. **A cultura do arroz no Brasil**. 2. ed. Santo Antônio da Goiás: Embrapa Arroz e Feijão, 2006. cap. 23. p. 869-900.

VOORRIPS, R. E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, v. 93, n. 1, p. 77–78, 2002.

VOS, P.; HOGERS, R.; BLEEKER, M.; REIJANS, M.; VAN DE LEE, T.; HORNES, M.; FRIJTERS, A.; POT, J.; PELEMAN, H.; KUIPER, M.; ZABEAU, M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, Oxford, v. 23, n. 1, p. 4407-4414, out. 1995.

WENG, Jianfeng et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. **Cell research**, v. 18, n. 12, p. 1199-1209, 2008.

WICKHAM, Hadley. ggplot2: gráficos elegantes para análise de dados**. Springer**. 2016.

WILLIAMS, J. G. K.; KUBELIK, A. R.; LIVAK, K. J.; RAFALSKI, J. A.; TINGEY,S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research, Oxford, v. 18, n. 22, p. 6531-6535, out. 1990.

WU, R., MA, C., CASELLA, G. Statistical genetics of quantitative traits: linkage, maps and QTL. New York. Springer, 365p., 2007.

XIAO, J., LI, J., YUAN, L., AND TANKSLEY, S.D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. TAG Theoretical and Applied Genetics 92, 230-244, 1996.

XIAO, LiJuan; GROVE, Anne. Coordination of ribosomal protein and ribosomal RNA gene expression in response to TOR signaling. Current Genomics, v. 10, n. 3, p. 198-205, 2009.

XING, Y.Z. et al. Analysis of QTL x environment interaction for rice panicle characteristics. Yi Chuan Xue Bao 28, 439-446, 2001.

XING, Yongzhong et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. **Theoretical and applied genetics**, v. 105, n. 2-3, p. 248-257, 2002.

XING, Yongzhong; ZHANG, Qifa. Genetic and molecular bases of rice yield. **Annual** review of plant biology, v. 61, p. 421-442, 2010.

XU, Y. B.; BEACHELL, H.; McCOUCH, S. R. A marker-based approach to broadening the genetic base of rice in the USA. Crop Science, Madison, v. 44, n. 6, p. 1947-1959, 2004.

XU, Y.; MCCOUCH, S.; ZHANG, QIFA. How can we use genomics to improve /cereals with rice as a reference genome? **Plant Molecular Biology**. V. 59, p.7-26, 2005.

XU, X.; LIU, X.; GE, S.; JENSEN, J. D.; HU, F. Y.; LI, X. et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, New York, v. 7, n. 1, p. 105-111, 2012.

YAMAMOTO, T.; NAGASAKI, H.; YONEMARU, J.; EBANA K, NAKAJIMA, M.; SHIBAYA, T. et al. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of singlenucleotide polymorphisms. **BMC Genomics**. BioMed Central Ltd; 11: 267, 2010. doi: 10.1186/1471-2164-11-267 PMID: 20423466.

YAN, C.J., LIANG, G.H., GU, S.L., YI, C.D., LU, J.F., LI, X., TANG, S.Z., AND GU, M.H. Molecular marker analysis and genetic basis for sterility of typical indica/japonica hybrids. Yi Chuan Xue Bao 30, 267-276, 2003.

YU, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q., and Maroof, M.A.S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS 94, 9226-9231, 1997.

ZENG, Z.B. Precision mapping quantitative trait loci. **Genetics**, Bethesda, v. 136, n. 4, p. 1457-1468, 1994.

ZHOU, G. et al. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. The Plant Journal, v. 60, n. 4, p. 638-648, 2009.

ZHOU, Yong et al. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.). **Theoretical and Applied Genetics**, v. 131, n. 3, p. 637-648, 2018.

ZHU, J.J.; LILLEHOJ, H.S.; CHENG, H.H. et al. Screening for highly heterozygous chickens in outbred commercial broiler lines for QTL mapping to increase detection power. Poultry Science, v.80, n.1, p.6-12, 2001.

ZHU, Manshan et al. QTL mapping using an ultra-high-density SNP map reveals a major locus for grain yield in an elite rice restorer R998. **Scientific Reports**, v. 7, n. 1, p. 10914, 2017.

ZHUANG, J.Y. et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet 105, 1137-1145, 2002.

ZUO, Jianru; LI, Jiayang. Molecular genetic dissection of quantitative trait loci regulating rice grain size. **Annual review of genetics**, v. 48, p. 99-118, 2014.

APÊNDICES

APÊNDICE I. Desenpenho das RILs

Apêndice A. Valor genotípico (µi + gi) dos caracteres avaliados para as 15 linhagens com melhor desempenho e 15 pior desempenho e seus genitores em cada local e em ambos para produtividade de grãos (Kg/ha), altura de plantas (cm), florescimento (dias) e acamamento

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento	
	Be	oa Vista			
	RILs ma	ais produtivas			
1681	7.116	77,3	111,8	1,7	
1572	6.917	68,0	91,7	2,1	
1434	6.664	74,5	105,2	1,7	
1628	6.642	68,0	103,5	2,6	
1486	6.575	68,1	110,0	5,5	
1632	6.513	75,5	98,4	1,7	
1680	6.478	73,6	118,1	2,2	
1580	6.436	71,3	115,2	1,7	
1567	6.418	71,3	117,1	2,1	
1686	6.406	70,4	108,5	3,1	
1482	6.383	68,0	109,7	1,7	
1491	6.343	77,4	112,8	1,6	
1427	6.334	70,3	93,8	2,2	
1648	6.181	68,0	100,9	1,7	
1402	6.172	69,0	105,5	2,6	
	RILs me	nos produtivas			
1444	3.016	84,8	113,6	1,7	
1530	3.071	66,6	107,7	2,6	
1640	3.188	74,6	101,7	1,7	
1460	3.236	75,6	108,2	1,7	
1664	3.274	59,6	95,5	2,2	
1595	3.308	71,3	109,9	4,0	
1516	3.356	77,4	117,3	1,7	
1534	3.377	71,3	102,5	1,7	
1497	3.384	74,6	101,4	1,7	
1414	3.386	70,4	107,4	1,7	
1676	3.403	70,4	114,5	1,7	
1403	3.409	59,2	93,7	1,6	
1683	3.431	74,6	117,9	2,6	
1558	3.476	68,0	100,5	1,7	
1559	3.485	75,5	110,3	2,1	
RILs mais Precoces					
1555	4.466	55,9	125,4	3,1	
1403	3.409	59,2	93,7	1,6	
1552	4.665	59,2	102,3	3,1	
1664	3.274	59,6	95,5	2,2	
1512	3.785	60,6	103,5	5,4	
1549	5.539	61,5	102,2	1,7	
1477	5.121	61,5	100,3	1,7	

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento	
1395	4.621	62,5	101,8	2,6	
1619	4.507	63,3	117,7	1,7	
1475	4.992	63,4	114,1	3,1	
1435	5.628	63,4	99,5	3,6	
1495	4.700	63,4	110,1	1,7	
1457	3.555	63,4	102,2	1,7	
1483	4.336	63,4	103,2	2,6	
1496	4.161	64,3	104,0	1,7	
	RILs r	nais Tardias			
1417	6.092	89,5	103,7	1,7	
1400	3.800	86,7	107,8	1,7	
1573	5.869	84,8	114,5	1,7	
1444	3.016	84,8	113,6	1,7	
1618	5.736	84,8	112,3	2,1	
1453	4.783	84,8	119,9	2,1	
1401	6.062	83,9	117,1	1,7	
1669	5.080	83,9	114,4	1,6	
1661	5.466	83,9	108,8	2,2	
1634	5.765	83,8	110,4	2,1	
1476	3.724	83,0	108,6	1,7	
1451	4.784	82,9	111,3	1,7	
1585	4.417	82,0	109,3	3,1	
1394	4.584	82,0	101,9	1,7	
1492	6.158	82,0	117,7	1,7	
	RILs	mais Baixas	,		
1671	5.274	68,0	89,5	1,7	
1471	4.271	68,1	90,7	1,7	
1572	6.917	68,0	91,7	2,1	
1397	4.862	65,7	91,9	1,7	
1615	4.663	72,7	93,4	3,6	
1452	5.359	75,5	93,4	2,2	
1403	3.409	59,2	93,7	1,6	
1427	6.334	70,3	93,8	2,2	
1611	3.870	68,0	95,2	1,7	
1664	3.274	59,6	95,5	2,2	
1489	4.500	82,0	97,1	2,6	
1520	4.053	68,1	97,2	1,7	
1631	4.680	74,6	97,5	1,7	
1666	4.741	68,1	97,9	2,6	
1490	5.470	73,7	98,3	1,7	
RILs mais Altas					
1555	4.466	55,9	125,4	3,1	
1627	5.230	75,5	124,8	2,6	
1478	5.040	80,6	122,9	2,2	
1461	4.679	82,0	121,9	1,7	
1422	4.591	78,3	121,9	1,7	
1569	5.910	74,5	120,8	3,1	
1643	5.180	72,7	120,0	2,6	
1453	4.783	84,8	119,9	2,1	
1415	5.698	79,7	119,7	1,7	
1462	4.446	82,0	119,3	2,1	
1680	6.478	73,6	118,1	2,2	

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento
1543	4.796	66,7	118,1	1,7
1683	3.431	74,5	117,8	2,6
1619	4.507	63,3	117,7	1,7
1492	6.158	82,0	117,7	1,7
	RILs mais Resis	stente ao acamame	ento	
1536	5.748	74,6	98,6	1,6
1430	4.522	76,4	112,5	1,6
1502	3.939	68,1	106,3	1,6
1459	5.197	73,6	112,0	1,6
1403	3.409	59,2	93,7	1,6
1581	4.088	68,0	114,6	1,6
1469	4.998	73,6	106,1	1,6
1587	4.049	72,7	105,6	1,6
1669	5.080	83,9	114,4	1,6
1491	6.343	77,4	112,8	1,6
1557	5.389	73,6	108,6	1,6
1496	4.161	64,3	104,0	1,7
1476	3.724	83,0	108,6	1,7
1580	6.436	71,3	115,2	1,7
1630	4.719	77,4	106,9	1,7
	RILs mais Suce	tíveis ao acamame	ento	
1486	6.575	68,1	110,0	5,5
1512	3.785	60,6	103,5	5,4
1620	4.291	68,1	101,0	5,0
1518	6.146	73,2	116,5	4,5
1668	4.570	69,9	111,2	4,5
1409	3.840	74,6	108,8	4,1
1595	3.308	71,3	109,9	4,0
1578	4.085	81,1	115,2	4,0
1615	4.663	72,7	93,4	3,6
1563	4.549	71,3	99,6	3,6
1665	5.454	81,6	105,9	3,6
1649	4.697	68,1	112,9	3,6
1616	6.046	68,1	112,2	3,6
1443	4.636	75,5	111,3	3,6
1564	4.569	72,7	116,3	3,6
	Tes	temunhas		
BRS Catiana	10.465	84,1	87,5	1,0
BRS Pampeira	9.373	88,0	84,7	1,0
BRS Tropical	9.137	83,0	88,8	1,0
BRS Pampa	8.775	77,1	88,7	1,1
IRGA 424	7.931	77,1	78,2	1,0
BRS Jaçanã	7.886	72,5	82,8	0,9
IRGA 417	7.878	77,0	86,6	0,9
BRS IRGA 409	7.464	74,0	84,4	1,0
BRS Roraima	7.395	70,0	82,0	1,0
Epagri 108	6.981	84,0	76,9	1,0
BRS Querência	6.839	58.0	83.7	1.0
Maninjau	(125	72 5	109.7	2.0
(Genitor)	0.125	13,5	108,7	3,0
BRS A501-CL	4.442	68,0	92,1	0,9
BRS Sertaneja	4.320	65,5	91,0	1,0

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento	
BRS Esmeralda	4.094	63,0	93,6	1,0	
BRS Primavera	3.934	61,0	102,1	1,0	
Araguaia	2 763	77.0	98 7	0.9	
(Genitor)	2.703		>0,,	0,9	
Média Geral	5.001	72,1	106,5	2,1	
CV%	12,1	3,2	5,2	80,6	
	G	olanira			
1406	RILS m	ais produtivas	110 6	1.0	
1486	9.226	82,1	118,6	4,8	
1575	8.996	84,1	128,5	3,3	
1572	8.827	80,7	99,0	1,4	
1632	8.591	82,2	114,2	1,4	
1617	8.154	77,7	118,1	1,9	
1550	8.134	77,8	121,1	2,7	
1616	8.077	82,1	132,9	5,1	
1435	8.067	76,7	102,2	1,3	
1621	8.007	83,1	125,1	3,2	
1485	7.989	79,7	116,3	2,3	
1684	7.946	83,2	105,1	2,0	
1402	7.933	82,6	123,1	3,3	
1666	7.864	81,2	117,9	1,4	
1552	7.830	73,4	109,4	1,5	
1503	7.810	82,1	128,4	3,0	
	RILs me	nos produtivas			
1444	3.075	93,9	125,1	1,3	
1601	3.938	88,0	132,1	1,9	
1551	4.342	87,5	122,0	1,5	
1428	4.348	81,7	116,7	1,4	
1499	4.477	82,6	122,4	1,3	
1574	4.605	85,6	126,3	1,4	
1403	4.697	72,3	108,6	2,0	
1548	4.719	83,1	130,0	1,4	
1408	4.732	88,1	119,1	1,4	
1530	4.739	77,7	111,3	1,8	
1620	4.764	82,2	107,8	1,4	
1587	4.764	82,6	130,0	1,3	
1489	4.847	88,5	108,4	1,4	
1595	4.863	81,1	139,7	1,3	
1520	4.880	79,2	97,8	1,4	
RILs mais Precoces					
1403	4.697	72,3	108,6	2,0	
1453	5.608	72,6	120,4	1,5	
1495	6.969	73,3	120,5	1,4	
1552	7.830	73,4	109,4	1,5	
1685	6.789	74,3	113,7	1,4	
1411	6.538	74,4	126,5	2,4	
1435	8.067	76,7	102,2	1,3	
1664	7.675	76,7	109,6	1,4	
1395	6.306	76,8	123,4	3,7	
1439	6.161	76,8	123,3	1,4	
1670	6.738	76,8	108,0	1,4	
1475	6.385	77,2	133,2	1,9	

1519 6.470 77.2 111.6 3.4 1423 7.337 77.2 107.4 1.4 RILs mais Tardias 1401 6.063 107.6 126.0 1.4 1402 5.574 97.8 129.7 1.4 1491 5.971 96.9 123.0 1.4 1472 5.441 95.4 119.3 1.3 1539 6.269 94.9 119.4 1.2 1462 5.427 94.4 119.4 1.2 1462 5.624 92.9 116.1 1.3 1412 7.733 37.9 123.3 1.4 1530 5.674 92.0 122.3 1.4 1400 6.171 92.0 122.3 1.4 1531 2.980 92.1 95.1 1.9 1532 5.281 79.2 97.8 1.4 RILs mais Bai	Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1519	6.470	77,2	111,6	3,4
1512 6.358 77.2 107.4 1.4 RLs mais Tardias 1401 6.063 107.6 126.0 1.4 1492 5.574 97.8 129.7 1.4 1618 6.226 97.3 124.5 1.4 1491 5.971 96.9 123.0 1.4 1472 5.441 95.4 119.3 1.3 1539 6.269 94.9 119.4 1.2 1462 5.427 94.4 119.3 1.3 1412 7.733 93.9 104.9 1.4 1444 3.075 93.9 104.9 1.4 1420 6.624 92.0 123.3 1.4 1504 5.624 92.0 102.1 1.4 157 5.791 91.9 123.3 1.4 1504 6.640 91.5 118.1 1.3 1544 6.640 91.5 114.1 1.8 1572 <td>1423</td> <td>7.337</td> <td>77,2</td> <td>105,6</td> <td>1,4</td>	1423	7.337	77,2	105,6	1,4
RLs mais Tardias 1401 6.063 107,6 126,0 1,4 1492 5.574 97,8 129,7 1,4 1618 6.226 97,3 124,5 1,4 1491 5.971 96,9 123,0 1,4 1472 5.441 95,4 119,3 1,3 1539 6.269 94,9 119,4 1,2 1462 5.427 94,4 119,4 1,4 1442 7.733 93,9 104,9 1,4 1564 5.624 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1400 6.171 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1634 6.640 91,5 114,1 1.8 1634 6.640 91,5 114,1 1.8 1520 4.880 79,2 97,8 1,4 1572 <td>1512</td> <td>6.358</td> <td>77,2</td> <td>107,4</td> <td>1,4</td>	1512	6.358	77,2	107,4	1,4
1401 6.063 107.6 126.0 1.4 1492 5.574 97.8 129.7 1.4 1618 6.226 97.3 124.5 1.4 1491 5.971 96.9 123.0 1.4 1472 5.441 95.4 119.3 1.3 1539 6.269 94.9 119.4 1.4 1442 5.427 94.4 119.4 1.4 1442 7.733 93.9 125.1 1.3 1412 7.733 93.9 104.9 1.4 1564 5.624 92.9 116.1 1.3 1432 5.674 92.0 123.3 1.4 1400 6.171 92.0 102.1 1.4 1534 6.640 91.5 118.1 1.3 1490 5.980 82.1 95.1 1.9 1558 5.281 79.7 97.6 1.3 1520 4.880 79.2 97.8 1.4 1572 8.827 80.7 99.0 1.4 </td <td></td> <td>RILs r</td> <td>nais Tardias</td> <td></td> <td></td>		RILs r	nais Tardias		
1492 5.574 97,8 129,7 1,4 1618 6.226 97,3 124,5 1,4 1491 5.971 96,9 123,0 1,4 1472 5.441 95,4 119,3 1,3 1539 6.269 94,9 119,4 1,2 1462 5.427 94,4 119,4 1,4 1444 3.075 93,9 125,1 1,3 1412 7.733 93,9 104,9 1,4 1432 5.674 92,0 123,3 1,4 1400 6.171 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1400 6.171 92,0 102,1 1,4 1533 5.791 91,9 123,3 1,4 1394 6.630 91,5 118,1 1,3 1545 5.281 79,7 97,6 1,3 1550 4.880 79,2 97,8 </td <td>1401</td> <td>6.063</td> <td>107,6</td> <td>126,0</td> <td>1,4</td>	1401	6.063	107,6	126,0	1,4
1618 6.226 97.3 124.5 1.4 1491 5.971 96.9 123.0 1.4 1472 5.441 95.4 119.3 1.3 1539 6.269 94.9 119.4 1.2 1462 5.427 94.4 119.4 1.4 1444 3.075 93.9 125.1 1.3 1412 7.733 93.9 104.9 1.4 1564 5.624 92.0 123.3 1.4 1400 6.171 92.0 123.3 1.4 1394 6.930 91.5 118.1 1.3 1490 5.980 82.1 95.1 1.9 1558 5.281 79.7 97.6 1.3 1520 4.880 79.2 97.8 1.4 1657 6.793 78.2 99.5 1.4 1657 6.793 78.2 99.5 1.4 1657 6.6793 78.2 99.5	1492	5.574	97,8	129,7	1,4
1491 5.971 96.9 123.0 1.4 1472 5.441 95.4 119.3 1.3 1539 6.269 94.9 119.4 1.4 1462 5.427 94.4 119.4 1.4 1442 7.733 93.9 104.9 1.4 1564 5.624 92.9 116.1 1.3 1432 5.674 92.0 123.3 1.4 1400 6.171 92.0 102.1 1.4 1573 5.791 91.9 123.3 1.4 1394 6.930 91.5 118.1 1.3 1490 5.980 82.1 95.1 1.9 1558 5.281 79.7 97.6 1.3 1572 8.827 80.7 99.0 1.4 1471 7.405 81.6 99.1 1.4 1572 8.827 80.7 99.5 1.4 1657 6.793 78.2 99.5	1618	6.226	97,3	124,5	1,4
1472 5.441 95,4 119,3 1,3 1539 6.269 94,9 119,4 1,2 1462 5.427 94,4 119,4 1,4 1444 3.075 93,9 125,1 1,3 1412 7.733 93,9 104,9 1,4 1564 5.624 92,9 116,1 1,3 1432 5.674 92,0 102,1 1,4 1500 6.930 91,5 114,1 1,8 1634 6.640 91,5 114,1 1,8 1634 6.640 91,5 114,1 1,8 1634 6.640 91,5 114,1 1,8 1634 6.640 91,5 114,1 1,8 1634 6.640 91,5 1,4 1,3 1520 4.880 79,2 97,8 1,4 1572 8.827 80,7 99,0 1,4 1471 7.405 81,6 90,1 <td>1491</td> <td>5.971</td> <td>96,9</td> <td>123,0</td> <td>1,4</td>	1491	5.971	96,9	123,0	1,4
1539 6.269 94.9 119.4 1.2 1462 5.427 94.4 119.4 1.4 1444 3.075 93.9 125.1 1.4 1564 5.624 92.9 116.1 1.3 1432 5.674 92.0 123.3 1.4 1400 6.171 92.0 102.1 1.4 1573 5.791 91.9 123.3 1.4 1394 6.930 91.5 114.1 1.8 1634 6.640 91.5 114.1 1.8 1520 4.880 79.2 97.6 1.3 1520 4.880 79.2 97.6 1.3 1520 4.880 79.2 97.8 1.4 1572 8.827 80.7 99.0 1.4 1471 7.405 81.6 99.1 1.4 1657 6.793 78.2 99.5 1.4 1561 6.768 81.1 100.6	1472	5.441	95,4	119,3	1,3
1462 5.427 94,4 119,4 1,4 1444 3.075 93,9 125,1 1,3 1412 7.733 93,9 104,9 1,4 1564 5.624 92,9 116,1 1,3 1432 5.674 92,0 123,3 1,4 1400 6.171 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1394 6.930 91,5 114,1 1,8 1634 6.640 91,5 118,1 1,3 RILs mais Baixas 1490 5.980 82,1 95,1 1,9 1558 5.281 79,7 97,6 1,3 1520 4.880 79,2 97,8 1,4 1657 6.793 78,2 99,5 1,4 1657 6.793 78,2 99,5 1,4 14561 6.768 81,6 100,6 1,4 1477	1539	6.269	94,9	119,4	1,2
1444 3.075 $93,9$ $125,1$ $1,3$ 1412 7.733 $93,9$ $104,9$ $1,4$ 1564 5.624 $92,9$ $116,1$ $1,3$ 1432 5.674 $92,0$ $102,1$ $1,4$ 1573 5.791 $91,9$ $123,3$ $1,4$ 1574 $692,0$ $102,1$ $1,4$ 1573 5.791 $91,9$ $123,3$ $1,4$ 1634 6.640 $91,5$ $118,1$ $1,3$ RILs mais Baixas 1490 5.980 $82,1$ $95,1$ $1,9$ 1558 5.281 $79,7$ $97,6$ $1,3$ 1520 4.880 $79,2$ $97,8$ $1,4$ 1572 8.827 $80,7$ $99,0$ $1,4$ 1471 7.405 $81,6$ $99,1$ $1,4$ 1457 6.793 $78,2$ $99,5$ $1,4$ 1457 6.695	1462	5.427	94,4	119,4	1,4
1412 7.733 93,9 104,9 1,4 1564 5.624 92,9 116,1 1,3 1432 5.674 92,0 123,3 1,4 1400 6.171 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1394 6.930 91,5 114,1 1,8 1634 6.640 91,5 118,1 1,3 RILs mais Baixas 1490 5.980 82,1 95,1 1,9 1558 5.281 79,7 97,6 1,3 1520 4.880 79,2 97,8 1,4 1572 8.827 80,7 99,0 1,4 1471 7.405 81,6 99,1 1,4 1561 6.768 81,1 100,4 1,2 1427 6.842 78,7 100,5 1,4 1477 5.461 77,3 101,2 1,9 1487	1444	3.075	93,9	125,1	1,3
1564 5.624 92,9 116,1 1,3 1432 5.674 92,0 123,3 1,4 1400 6.171 92,0 102,1 1,4 1573 5.791 91,9 123,3 1,4 1394 6.930 91,5 114,1 1,8 1634 6.640 91,5 114,1 1,8 1490 5.980 82,1 95,1 1,9 1558 5.281 79,7 97,6 1,3 1520 4.880 79,2 97,8 1,4 1572 8.827 80,7 99,0 1,4 1471 7.405 81,6 99,1 1,4 1657 6.793 78,2 99,5 1,4 1561 6.768 81,1 100,4 1,2 1427 6.842 78,7 100,5 1,4 1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5	1412	7.733	93,9	104,9	1,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1564	5.624	92,9	116,1	1,3
1400 6.171 $92,0$ $102,1$ 1.4 1573 5.791 $91,9$ $123,3$ 1.4 1394 6.930 $91,5$ $114,1$ 1.8 1634 6.640 $91,5$ $118,1$ 1.3 1490 5.980 $82,1$ $95,1$ 1.9 1558 5.281 $79,7$ $97,6$ 1.3 1520 4.880 $79,2$ $97,8$ 1.4 1572 8.827 $80,7$ $99,0$ 1.4 1471 7.405 $81,6$ $99,1$ 1.4 1657 6.793 $78,2$ $99,5$ 1.4 1427 6.842 $78,7$ $100,5$ 1.4 1447 5.126 $81,6$ $100,6$ 1.4 1447 5.461 $77,3$ $101,2$ 1.9 1487 6.695 $80,6$ $101,5$ 1.3 1511 6.599 $82,1$	1432	5.674	92,0	123,3	1,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400	6.171	92.0	102.1	1.4
1394 6.930 91.5 114.1 1.8 1634 6.640 91.5 118.1 1.3 RILs mais Baixas 1490 5.980 82.1 95.1 1.9 1558 5.281 79.7 97.6 1.3 1520 4.880 79.2 97.8 1.4 1572 8.827 80.7 99.0 1.4 1471 7.405 81.6 99.1 1.4 1657 6.793 78.2 99.5 1.4 1561 6.768 81.1 100.4 1.2 1427 6.842 78.7 100.5 1.4 1477 5.461 77.3 101.2 1.9 1487 6.695 80.6 101.5 1.3 1511 6.595 80.6 101.5 1.3 1690 5.895 81.6 103.1 1.4 1435 8.067 76.7 102.2 1.3 1690	1573	5.791	91.9	123.3	1.4
1634 6.640 91.5 118,1 1.3 RILs mais Baixas 1490 5.980 82,1 95,1 1.9 1558 5.281 79,7 97,6 1.3 1520 4.880 79,2 97,8 1.4 1572 8.827 80,7 99,0 1.4 1471 7.405 81,6 99,1 1.4 1657 6.793 78,2 99,5 1.4 1561 6.768 81,1 100,4 1.2 1427 6.842 78,7 100,5 1.4 1477 5.461 77,3 101.2 1.9 1487 6.695 80,6 101,5 1.3 1511 6.599 82,1 101,6 1.4 1400 6.171 92,0 102,1 1.4 1435 8.067 76,7 102,2 1.3 1690 5.895 81,6 103,1 1.4 1435	1394	6.930	91.5	114.1	1.8
RILs mais Baixas 1490 5.980 82,1 95,1 1.9 1558 5.281 79,7 97,6 1,3 1520 4.880 79,2 97,8 1,4 1572 8.827 80,7 99,0 1,4 1471 7.405 81,6 99,1 1,4 1657 6.793 78,2 99,5 1,4 1561 6.768 81,1 100,4 1,2 1427 6.842 78,7 100,5 1,4 1497 5.126 81,6 100,6 1,4 1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5 1,3 1511 6.599 82,1 101,6 1,4 1400 6.171 92,0 102,1 1,4 1435 8.067 76,7 102,2 1,3 1690 5.895 81,6 103,1 1,4 1433	1634	6.640	91.5	118.1	1.3
1490 5.980 $82,1$ $95,1$ 1.9 1558 5.281 $79,7$ $97,6$ $1,3$ 1520 4.880 $79,2$ $97,8$ $1,4$ 1572 8.827 $80,7$ $99,0$ 1.4 1471 7.405 $81,6$ $99,1$ $1,4$ 1657 6.793 $78,2$ $99,5$ $1,4$ 14561 6.768 $81,1$ $100,4$ 1.2 1427 6.842 $78,7$ $100,5$ 1.4 1497 5.126 $81,6$ $100,6$ 1.4 1477 5.461 $77,3$ $101,2$ 1.9 1487 6.695 $80,6$ $101,5$ 1.3 1511 6.599 $82,1$ $101,6$ 1.4 1400 6.171 $92,0$ $102,1$ 1.4 1435 8.067 $76,7$ $102,2$ 1.3 1690 5.895 $81,6$ $103,1$ $1.$		RILs	nais Baixas	,-	-,-
1558 5.281 79,7 97,6 1,3 1520 4.880 79,2 97,8 1,4 1572 8.827 80,7 99,0 1,4 1471 7.405 81,6 99,1 1,4 1657 6.793 78,2 99,5 1,4 1561 6.768 81,1 100,4 1,2 1427 6.842 78,7 100,5 1,4 1497 5.126 81,6 100,6 1,4 1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5 1,3 1511 6.599 82,1 101,6 1,4 1400 6.171 92,0 102,1 1,4 1435 8.067 76,7 102,2 1,3 1690 5.895 81,6 103,1 1,4 1435 5.781 90,9 144,5 2,6 1619 6.470 79,1 142,4	1490	5.980	82,1	95,1	1,9
1520 4.880 79.2 97.8 1.4 1572 8.827 80,7 99,0 1.4 1471 7.405 81,6 99,1 1.4 1657 6.793 78.2 99,5 1.4 1561 6.768 81,1 100,4 1.2 1427 6.842 78,7 100,5 1.4 1497 5.126 81,6 100,6 1.4 1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5 1.3 1511 6.599 82,1 101,6 1.4 1435 8.067 76,7 102,2 1.3 1690 5.895 81,6 103,1 1.4 1435 8.067 76,7 102,2 1.3 1690 5.470 79,1 142,4 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 <td>1558</td> <td>5.281</td> <td>79.7</td> <td>97.6</td> <td>1.3</td>	1558	5.281	79.7	97.6	1.3
1572 8.827 80,7 99,0 1,4 1471 7.405 $81,6$ $99,1$ 1,4 1657 6.793 $78,2$ $99,5$ 1,4 1561 6.768 $81,1$ $100,4$ $1,2$ 1427 6.842 $78,7$ $100,5$ $1,4$ 1497 5.126 $81,6$ $100,6$ $1,4$ 1477 5.461 $77,3$ $101,2$ $1,9$ 1487 6.695 $80,6$ $101,5$ $1,3$ 1511 6.599 $82,1$ $101,6$ $1,4$ 1400 6.171 $92,0$ $102,1$ $1,4$ 1435 8.067 $76,7$ $102,2$ $1,3$ 1690 5.895 $81,6$ $103,1$ $1,4$ 1435 5.781 $90,9$ $144,5$ $2,6$ 1619 6.470 $79,1$ $142,4$ $2,7$ 1676 4.953 $83,1$ $139,7$ $1,3$	1520	4.880	79.2	97.8	1.4
1471 7.405 81.6 99.1 1.4 1657 6.793 78.2 99.5 1.4 1561 6.768 81.1 100.4 1.2 1427 6.842 78.7 100.5 1.4 1497 5.126 81.6 100.6 1.4 1477 5.461 77.3 101.2 1.9 1487 6.695 80.6 101.5 1.3 1511 6.599 82.1 101.6 1.4 1400 6.171 92.0 102.1 1.4 1435 8.067 76.7 102.2 1.3 1690 5.895 81.6 103.1 1.4 1478 5.781 90.9 144.5 2.6 1619 6.470 79.1 142.4 2.7 1676 4.953 83.1 140.0 3.7 1595 4.863 81.1	1572	8.827	80.7	99.0	1.4
1657 6.793 78,2 99,5 1,4 1561 6.768 81,1 100,4 1,2 1427 6.842 78,7 100,5 1,4 1497 5.126 81,6 100,6 1,4 1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5 1,3 1511 6.599 82,1 101,6 1,4 1400 6.171 92,0 102,1 1,4 1435 8.067 76,7 102,2 1,3 1690 5.895 81,6 103,1 1,4 RILs mais Altas 1478 5.781 90,9 144,5 2,6 1619 6.470 79,1 142,4 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895	1471	7.405	81.6	99.1	1.4
15616.76881,1100,41,214276.84278,7100,51,414975.12681,6100,61,414775.46177,3101,21,914876.69580,6101,51,315116.59982,1101,61,414006.17192,0102,11,414358.06776,7102,21,316905.89581,6103,11,4RILs mais Altas14785.78190,9144,52,616196.47079,1142,42,716764.95383,1140,03,715954.86381,1139,71,314615.85888,5138,22,714305.28684,6136,01,215056.89582,1135,62,614225.26986,6135,11,415276.78783,1134,54,715187.10981,2134,35,115427.77680,2134,31,416247.72989,0134,34,314596.61180,2133,31,414756.38577,2133,21,915816.30480,7133,13,2RILs mais Resistentes ao acamamento	1657	6.793	78.2	99.5	1.4
14276.84278,7100,51,414276.84278,7100,51,414975.12681,6100,61,414775.46177,3101,21,914876.69580,6101,51,315116.59982,1101,61,414006.17192,0102,11,414358.06776,7102,21,316905.89581,6103,11,4RILs mais Altas14785.78190,9144,52,616196.47079,1142,42,716764.95383,1140,03,715954.86381,1139,71,314615.85888,5138,22,714305.28684,6136,01,215056.89582,1135,62,614225.26986,6135,11,415276.78783,1134,54,715187.10981,2134,35,115427.77680,2134,31,416247.72989,0134,34,314596.61180,2133,31,414756.38577,2133,21,915816.30480,7133,13,2RILs mais Resistentes ao acamamento80133,13,2	1561	6.768	81.1	100.4	1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1427	6.842	78.7	100.5	1.4
1477 5.461 77,3 101,2 1,9 1487 6.695 80,6 101,5 1,3 1511 6.599 82,1 101,6 1,4 1400 6.171 92,0 102,1 1,4 1435 8.067 76,7 102,2 1,3 1690 5.895 81,6 103,1 1,4 RILs mais Altas 1478 5.781 90,9 144,5 2,6 1619 6.470 79,1 142,4 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542	1497	5 126	81.6	100.6	14
11111111111111111111111114876.695 $80,6$ $101,5$ $1,3$ 1511 6.599 $82,1$ $101,6$ $1,4$ 1400 6.171 $92,0$ $102,1$ $1,4$ 1435 8.067 $76,7$ $102,2$ $1,3$ 1690 5.895 $81,6$ $103,1$ $1,4$ RILs mais Altas1478 5.781 $90,9$ $144,5$ $2,6$ 1619 6.470 $79,1$ $142,4$ $2,7$ 1676 4.953 $83,1$ $140,0$ $3,7$ 1595 4.863 $81,1$ $139,7$ $1,3$ 1461 5.858 $88,5$ $138,2$ $2,7$ 1430 5.286 $84,6$ $136,0$ $1,2$ 1505 6.895 $82,1$ $135,6$ $2,6$ 1422 5.269 $86,6$ $135,1$ $1,4$ 1527 6.787 $83,1$ $134,5$ $4,7$ 1518 7.109 $81,2$ $134,3$ $1,4$ 1624 7.729 $89,0$ $134,3$ $4,3$ 1459 6.611 $80,2$ $133,3$ $1,4$ 1475 6.385 $77,2$ $133,2$ $1,9$ 1581 6.304 $80,7$ $133,1$ $3,2$	1477	5 461	77.3	101.2	19
1101 6.599 $82,1$ $101,6$ $1,4$ 1400 6.171 $92,0$ $102,1$ $1,4$ 1435 8.067 $76,7$ $102,2$ $1,3$ 1690 5.895 $81,6$ $103,1$ $1,4$ RILs mais Altas1478 5.781 $90,9$ $144,5$ $2,6$ 1619 6.470 $79,1$ $142,4$ $2,7$ 1676 4.953 $83,1$ $140,0$ $3,7$ 1595 4.863 $81,1$ $139,7$ $1,3$ 1461 5.858 $88,5$ $138,2$ $2,7$ 1430 5.286 $84,6$ $136,0$ $1,2$ 1505 6.895 $82,1$ $135,6$ $2,6$ 1422 5.269 $86,6$ $135,1$ $1,4$ 1527 6.787 $83,1$ $134,5$ $4,7$ 1518 7.109 $81,2$ $134,3$ $5,1$ 1542 7.776 $80,2$ $134,3$ $1,4$ 1624 7.729 $89,0$ $134,3$ $4,3$ 1459 6.611 $80,2$ $133,1$ $3,2$ RILs mais Resistentes ao acamamentoRILs mais Resistentes ao acamamento	1487	6 695	80.6	101.5	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1511	6 599	82.1	101,5	1,5
1400 0.111 $0.2,0$ $102,1$ $1,7$ 1435 8.067 $76,7$ $102,2$ $1,3$ 1690 5.895 $81,6$ $103,1$ $1,4$ RILs mais Altas1478 5.781 $90,9$ $144,5$ $2,6$ 1619 6.470 $79,1$ $142,4$ $2,7$ 1676 4.953 $83,1$ $140,0$ $3,7$ 1595 4.863 $81,1$ $139,7$ $1,3$ 1461 5.858 $88,5$ $138,2$ $2,7$ 1430 5.286 $84,6$ $136,0$ $1,2$ 1505 6.895 $82,1$ $135,6$ $2,6$ 1422 5.269 $86,6$ $135,1$ $1,4$ 1527 6.787 $83,1$ $134,5$ $4,7$ 1518 7.109 $81,2$ $134,3$ $1,4$ 1624 7.729 $89,0$ $134,3$ $4,3$ 1459 6.611 $80,2$ $133,3$ $1,4$ 1475 6.385 $77,2$ $133,2$ $1,9$ 1581 6.304 $80,7$ $133,1$ $3,2$	1400	6 171	92.0	102.1	1,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400	8.067	76.7	102,1	1,4
Interview Interview <t< td=""><td>1690</td><td>5.895</td><td>81.6</td><td>102,2</td><td>1,5</td></t<>	1690	5.895	81.6	102,2	1,5
1478 5.781 90,9 144,5 2,6 1619 6.470 79,1 142,4 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 4,3 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1090	RILS	mais Altas	103,1	1,1
1110 6.470 79,1 142,4 2,7 1619 6.470 79,1 142,4 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 4,3 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1478	5 781	90.9	144 5	2.6
1615 6.116 17,1 112,1 2,7 1676 4.953 83,1 140,0 3,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 4,3 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1619	6 470	79 1	142.4	2,0
1676 1.555 65,1 1.16,6 5,7 1595 4.863 81,1 139,7 1,3 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1676	4 953	83.1	140.0	37
1455 11000 01,1 115,1 1,5 1461 5.858 88,5 138,2 2,7 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1595	4 863	81.1	139.7	13
1430 5.286 84,6 136,0 1,2 1430 5.286 84,6 136,0 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1461	5 858	88 5	138.2	27
1450 5.260 64,6 150,6 1,2 1505 6.895 82,1 135,6 2,6 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1430	5.000	84.6	136.0	1.2
1303 0.393 02,1 135,0 2,0 1422 5.269 86,6 135,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1505	6 895	82.1	135,6	2.6
1422 5.269 60,0 155,1 1,4 1527 6.787 83,1 134,5 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1422	5 269	86.6	135,0	2,0
1527 6.767 63,1 134,3 4,7 1518 7.109 81,2 134,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1527	6 787	83.1	13/ 5	1, 4 1/7
1510 1.107 01,2 1.54,3 5,1 1542 7.776 80,2 134,3 1,4 1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1518	7 109	81.7	134.3	, / 5 1
1624 7.729 89,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1542	7.109	80.2	134,3	<i>J</i> ,1 1 <i>A</i>
102-4 1722 67,0 134,3 4,3 1459 6.611 80,2 133,3 1,4 1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2 RILs mais Resistentes ao acamamento	1542	7.770	80,2 80 N	134,3	1, 1 / 3
1475 6.385 77,2 133,2 1,9 1581 6.304 80,7 133,1 3,2	1/50	6 611	80.7	134,5	+,5 1 /
1775 0.305 1772 133,2 1,9 1581 6.304 80,7 133,1 3,2 RILs mais Resistentes ao acamamento	1452	6 385	00,2 77 0	133,5	1, 4 1 0
RILs mais Resistentes ao acamamento	1475	6 30/	//,∠ 80.7	133,2	1,7 3 7
	1501	RILs mais Resis	tentes ao acamam	ento	5,2
Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento	
---------------	------------------------	-------------------	-------------------	------------	
1646	7.312	82,6	114,0	1,1	
1591	6.794	77,7	116,1	1,1	
1501	5.277	80,1	115,9	1,1	
1656	5.752	81,6	108,7	1,1	
1431	5.905	81,6	109,9	1,1	
1515	7.057	81,7	123,0	1,1	
1593	5.095	81,1	127,4	1,1	
1502	6.519	79,7	122,3	1,1	
1571	6.322	83,1	120,1	1,1	
1554	5.237	83,1	119,1	1,1	
1414	5.506	82,6	120,4	1,1	
1588	5.934	88,5	113,0	1,2	
1446	5.924	81,6	111,2	1,2	
1522	5.726	85,6	129,9	1,2	
1626	5.152	90,4	121,8	1,2	
	RILs mais Suce	tíveis ao acamame	ento		
1518	7.109	81,2	134,3	5,1	
1616	8.077	82,1	132,9	5,1	
1486	9.226	82,1	118,6	4,8	
1527	6.787	83,1	134,5	4,7	
1624	7.729	89,0	134,3	4,3	
1676	4.953	83,1	140,0	3.7	
1395	6.306	76,8	123,4	3.7	
1519	6.470	77,2	111.6	3,4	
1509	7.741	78,3	128,4	3,4	
1402	7.933	82,6	123.1	3.3	
1575	8.996	84.1	128.5	3.3	
1627	6.306	86.6	131.6	3.3	
1625	6.816	82,6	116.1	3.3	
1581	6.304	80.7	133.1	3.2	
1583	7.650	87.0	128,7	3.2	
	Tes	temunhas	,	,	
BRS Catiana	11.342	95	96.1	0.8	
BRS Pampeira	9.945	95	102.1	1.1	
Enagri 108	9 326	102	96.1	1.2	
BRS Tropical	9.150	95	97 3	1,2	
IRGA 417	8.843	82	94	1,1	
Maninjau	0.675	° -	105.1	1,2	
(Genitor)	8.637	92	125,1	1,2	
BRS Esmeralda	8.156	77	99,2	1,1	
Araguaia	5 384	83 5	115.9	2.0	
(Genitor)	5.501	05,5	115,9	2,0	
IRAT 122	1.820	120,5	129,9	0,7	
Média Geral	6.455	82,8	118,3	1,7	
CV%	12,3	1,1	4,6	89,1	
	Anális	se Conjunta			
	RILs ma	ais produtivas			
1486	6.582	70,0	108,6	5,0	
1572	6.546	69,3	90,0	2,0	
1632	6.307	73,5	100,6	1,9	
1575	6.197	74,4	116,0	3,1	
1686	5.962	71,1	108,1	3,1	

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento
1616	5.914	70,0	116,5	4,3
1402	5.908	70,7	108,4	3,1
1681	5.879	75,2	110,9	1,8
1617	5.861	68,1	108,8	2,2
1648	5.846	69,8	101,1	1,8
1680	5.832	71,9	118,6	2,0
1485	5.824	68,9	106.2	2,7
1435	5.784	65,4	95,4	2,6
1583	5.763	74.4	117.0	3.2
1517	5.762	71.3	103.2	2.0
	RILs me	nos produtivas	1	7 -
1444	2.953	83.1	1137	1.8
1530	3 622	67.4	104.1	2.4
1595	3 709	71.1	118 5	2,1
1601	3 746	74.6	117.6	2,0
1676	3 762	74,0	121.3	2,0
1403	3.762	61.5	95 7	2,9
1403	3.764	73.3	109.8	2,1
1499	3.704	75,5	109,8	1,8
1424	3.032	77,2	112,2	2,4
1374	2.024	77,0	05.6	1,8
1497	3.924	72,9	95,0 115,2	1,8
14/0	3.940	70,4	115,5	2,3
1587	3.949	72,4	112,1	1,/
1460	3.960	/4,2	112,0	1,8
1558	3.968	68,9	94,1	1,8
1683	3.968	/3,9	117,8	2,6
	RILs m	ans Precoces	100.0	
1555	4.685	58,6	123,3	2,7
1403	3.763	61,5	95,7	2,1
1552	5.355	61,8	100,7	2,5
1664	4.795	63,7	96,7	2,0
1495	5.022	63,9	109,6	1,8
1512	4.496	64,3	100,1	3,5
1477	4.604	64,8	95,6	2,0
1549	5.316	65,0	105,4	1,9
1395	4.789	65,0	106,8	3,2
1411	4.916	65,2	114,7	2,2
1435	5.784	65,4	95,4	2,6
1475	4.903	65,6	118,0	2,6
1483	5.213	65,7	105,0	2,5
1457	4.182	66,1	100,9	1,8
1591	5.035	66,3	106,7	1,9
	RILs n	nais Tardias		
1401	5.158	88,8	116,1	1,8
1618	5.084	84,6	112,9	2,0
1492	5.006	83,5	118,0	1,8
1400	4.360	83,1	100,1	1,8
1444	2.953	83,1	113,7	1,8
1417	5.451	82,7	99,0	1,8
1573	5.017	82,2	113,3	1,8
1539	5.185	82,2	108,4	2,3
1462	4.351	82,0	113,9	2,0

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento
1472	4.443	81,8	108,7	2,4
1634	5.314	81,5	108,6	2,0
1412	5.579	81,0	96,4	2,0
1491	5.279	80,9	112,1	1,8
1394	5.046	80,7	102,3	2,0
1661	5.029	80,5	110,6	2,3
	RILs 1	nais Baixas		
1471	5.033	69,8	89,3	1,8
1572	6.546	69,3	90,0	2,0
1490	4.897	72,6	91,3	2,0
1671	4.740	70,0	91,9	1,8
1427	5.588	69,5	91,9	2,0
1520	4.034	68,7	92,5	1,8
1561	5.073	70,9	92,9	1,9
1611	4.722	68.0	94,0	1.8
1558	3.968	68.9	94.1	1.8
1657	5.083	68.3	94.3	1.8
1397	5.105	68.9	95.0	1.8
1435	5 784	65.4	95,0 95.4	2.6
1477	4 604	64.8	95.6	2,0
1/197	3 92/	72 9	95,6 95,6	1.8
1403	3.763	61.5	95,0	2.1
1405	RILS	mais Altas	<i>)3</i> ,7	2,1
1/78	1 724	79.8	127.8	2.6
1478	4.724	79,8 79.4	127,8	2,0
1619	4.055	7 <i>5</i> , 4 66 5	124,0	2,4
1555	4.745	58.6	124,0	2,4
1422	4.005	56,0 76,8	123,3	2,7
1422	5.044	76,8	122,7	1,0
1676	3.762	75,5	122,0	3,0
1070	5.702	71,5	121,5	2,9
1303	5.341	70,0	120,8	2,0
1415	5.550	78,5	120,5	1,8
1624	5.577	77,2	120,1	3,0
1527	4.847	70,8	119,9	3,3
1518	5.015	72,0	119,0	4,8
1410	4.570	76,0	118,7	2,0
1680	5.832	/1,9	118,6	2,0
1595	3.709	/1,1	118,5	2,8
1500	KILS mais Resis	stente ao acamame		
1502	4.601	68,9	108,4	1,7
1536	5.146	73,0	103,1	1,7
1430	4.344	75,0	118,4	1,7
1501	4.840	69,1	105,5	1,7
1446	4.458	72,8	103,8	1,7
1469	4.949	73,5	108,7	1,7
1431	4.427	70,2	101,3	1,7
1587	3.949	72,4	112,1	1,7
1414	4.071	71,3	108,1	1,7
1554	4.051	74,8	106,9	1,7
1496	4.932	66,5	103,8	1,7
1588	4.978	78,3	106,0	1,7
1525	4.993	72,8	111,7	1,8

Genótipo	Produtividade de grãos	Florescimento	Altura de Plantas	Acamamento
1493	4.615	67,8	107,5	1,8
1669	5.396	78,3	106,0	1,8
	RILs mais Suce	tíveis ao acamame	ento	
1486	6.582	70,0	108,6	5,0
1518	5.615	72,0	119,6	4,8
1616	5.914	70,0	116,5	4,3
1624	5.577	77,2	120,1	3,6
1512	4.496	64,3	100,1	3,5
1620	4.099	70,0	99,0	3,3
1615	4.648	71,5	96,7	3,3
1527	4.847	70,8	119,9	3,3
1395	4.789	65,0	106,8	3,2
1583	5.763	74,4	117,0	3,2
1578	4.465	79,5	114,0	3,2
1668	4.904	71,3	103,4	3,1
1650	4.894	66,9	114,7	3,1
1575	6.197	74,3	116,0	3,1
1686	5.962	71,1	108,1	3,1
	Tes	temunhas		
BRS Catiana	10.821	89,5	91,8	0,9
BRS Pampeira	9.694	91,5	93,5	1,1
BRS Tropical	9.194	89	93,2	1,0
IRGA 417	8.387	79,5	90,1	1,0
Epagri 108	8.144	93	86,3	1,0
Maninjau (Genitor)	7.340	82,8	117,1	2,1
BRS Esmeralda	6.152	70	96,5	1,0
Araguaia (Genitor)	4.034	80,3	107,2	1,4
Média Geral	4.978	72,4	107,4	2,1
CV%	12,4	2,3	4,9	84,5

APÊNDICE II. Função Putativa

QTL	Gene	Função Putativa	GOSlim ID	Nome GO	Tipo GO
GYLD1	LOC_Os01g09130	Proteína expressa	Não determinado	Não determinado	Não determinado
GYLD1.1	LOC_Os01g09890	Fator de iniciação da tradução SUI1, putativo, expresso	GO:0006412	Tradução	Processo Biológico
GYLD2	LOC_Os02g37540	Proteína expressa	Não determinado	Não determinado	Não determinado
		*	GO:0003824	Atividade catalítica	Função Molecular
			GO:0003674	Função molecular	Função Molecular
DTHT	$I \cap C \cap \Omega^{2} = 40840$	Álcool ovidasa putativo avprasso	GO:0005623	celula	Componente Celular
1 11112	LUC_0302g40040	Alcool oxidase, putativo, expresso	GO:0005783	Retículo endoplasático	Componente Celular
			GO:0005488	ligação	Função Molecular
			GO:0008152	Processo metabólico	Processo Biológico
	LOC_Os03g03100	OsMADS50 - gene da família MADS-box com MIKCc tipo box, expresso	GO:0003677	Ligação ao DNA	Função Molecular
			GO:0005634	núcleo	Componente Celular
			GO:0005515	Proteína de ligação	Função Molecular
GYLD3/PTHT3/FWRG3.1			GO:0009058	Processos biossintéticos	Processo Biológico
			GO:0006139	Processo metabólico de nucleobase, nucleosídeo, nucleotídeo e ácido nucleico	Processo Biológico
			GO:0003700	Atividade do fator de transcrição de ligação a DNA específico da sequência	Função Molecular
	LOC_Os03g03110	Proteína expressa	Não determinado	Não determinado	Não determinado
			GO:0016020	Membrana	Componente Celular
		Proteína ribossômica I.5. putativa	GO:0005840	Ribosomo	Componente Celular
	IOC 0503003360	expressa	GO:0005829	Citosol	Componente Celular
PTHT3.1	LCC_0303203300	expressa	GO:0006412	Tradução	Processo Biológico
			GO:0005198	Atividade da molécula estrutural	Função Molecular
			GO:0009536	Plastídeo	Componente Celular

Apêndice B. Função putativa dos picos dos QTLs identificados nas linhas puras recombinantes provindas do cruzamento Araguaia x Mninjau em Boa Vista, Goianira e análise conjunta para produtividade de grão, florescimento e altura de plantas.

FWRG3 LOC_0s03g03300 Hidroxilase de ácidos graxos, putativa, expressa GO:0009087 Processos biosintéticos Processo Biológico FWRG3 LOC_0s03g04940 Hidroxilase de ácidos graxos, putativa, expressa GO:00095783 Retículo endoplasático Componente Celular FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado Não determinado Não determinado FWRG3 LOC_0s03g02980.2 CAMK_CAMK_like_ULKh_APGy.1 GO:0008152 Processo metabólico Processo Biológico CAMK_CAMK_like_ULKh_APGy.1 - CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressa GO:000664 Processo de modificação de processo Biológico FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:000664 Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Proteína retrofransposon, putativa, Não determinado Não determinado Não determinado FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Processo metabólico de nucleosase, nucleoside o nucleosase, nucleoside o nucleosa, nucleoside o ligição a DNA sepecífico da sequência Processo Biológico	QTL	Gene	Função Putativa	GOSlim ID	Nome GO	Tipo GO
LOC_0s03g03370 Hidroxilase de ácidos graxos, putativa, expressa GO:000987 Processo eclulares Processo Biológico LOC_0s03g03370 Hidroxilase de ácidos graxos, putativa, expressa GO:0005783 Retículo endoplasático Componente Celular FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado FWRG3 LOC_0s03g02980.2 CAMK_CAMK_like_ULKh_APGy.1 GO:000987 Processo eclulares Processo Biológico CAMK inclui proteínas cinases GO:000987 Processo eclulares Processo Biológico FWRG3.2 CAMK inclui proteínas cinases GO:000987 Processo eclulares Processo Biológico FWRG3.2 CAMK inclui proteínas cinases GO:00016301 Atividade quinase Função Molecular FWRG3.2 Domínio de ligação ao DNA da Processo Biológico Processo Biológico Processo Biológico FWRG3.2 Domínio de ligação ao DNA da Processo Biológico Processo Biológico Processo Biológico FWRG3.2 Domínio de ligação ao DNA da Processo Biológico Processo Biológico Processo Biológico FWRG3.2 Domínio de ligação ao DNA da Processo Biológico				GO:0009058	Processos biossintéticos	Processo Biológico
LOC_0s03g03370Hidroxilase de ácidos graxos, putativa, expressaGO:0006629 GO:000783Processo metabólico lipídico Retículo endoplasáticoProcesso Biológico Componente Celular Função MolecularFWRG3LOC_0s03g04940metiltransferase, putativa, expressaNão determinadoNão determinadoNão determinadoFWRG3LOC_0s03g04940metiltransferase, putativa, expressaNão determinadoNão determinadoNão determinadoFWRG3LOC_0s03g02980.2CAMK_CAMK_like_ULKh_APGy.1 - CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressasGO:0006152 GO:000166Processo scelulares Processo scelularesProcesso Biológico Processo BiológicoFWRG3.2Componente Celular expressasGO:0006166Nucleotide binding proteínasFunção Molecular Processo BiológicoFWRG3.2Componente celular expressasGO:0006166Processo de modificação de proteínasProcesso Biológico Processo BiológicoFWRG3.2Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7Processo de modificação de processo biossintéticos processo BiológicoProcesso Biológico Processo BiológicoFWRG3.2Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7Processo Biológico Mão determinadoProcesso Biológico Processo Biológico Processo Biológico Processo Biológico Atividade do fator de transcrição de ligão ao DNA da hélice-alça-hélice que contém proteínas+BF7Proteína retrotransposon, putativa, Não determinadoNão determinadoNão determinadoFortefina retrotransposon, putativa, Não				GO:0009987	Processos celulares	Processo Biológico
LOC_0s03g03370 Influtionase de actions grados, putativa, expressa GO:0005783 Retículo endoplasático Componente Celular putativa, expressa GO:0008152 Processo Biológico Processo Biológico FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado FWRG3 LOC_0s03g02980.2 CAMK_CAMK_like_ULKh_APGy.1 GO:0009876 Processo celulares Processo Biológico COC_0s03g02980.2 CAMK_inclui proteínas cinases GO:0006464 Processo de modificação de processo Biológico Processo Biológico FWRG3.2 COC_0s03g0300.1 hélice-alça-hélice que contém proteínas +BF7 GO:0006464 Processo biossintéticos Processo Biológico FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Não determinado Não determinado Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0003677 Ligação ao DNA Função Molecular Processo Biológico Proteína retrotransposon, putativa, Proteína retrotransposon, putativa, Não determinado <t< td=""><td></td><td></td><td>Hidrovilasa da ácidos gravos</td><td>GO:0006629</td><td>Processo metabólico lipídico</td><td>Processo Biológico</td></t<>			Hidrovilasa da ácidos gravos	GO:0006629	Processo metabólico lipídico	Processo Biológico
FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa GO:0003824 GO:0009536 Atividade catalítica Função Molecular FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado Não determinado Não determinado LOC_0s03g02980.2 CAMK_CAMK_like_ULKh_APGy.1 - CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressas GO:0006160 Nucleotide binding Função Molecular FWRG3.2 FWRG3.2 COs03g03000.1 CAMK_cambed a cálcio / calmodulina, expressas GO:0006464 Processo de modificação de proteínas Processo Biológico FWRG3.2 FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006160 Nucleotide binding Processo Biológico Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006139 Núcleo Componente Celular Não determinado Não determinado Não determinado Não determinado Não determinado		LOC_0s03g03370	putativa expressa	GO:0005783	Retículo endoplasático	Componente Celular
FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado Não determinado LOC_0s03g02980.2 CAMK_CAMK_like_ULKh_APGy.1 GO:00098152 Processo metabólico Processo Biológico LOC_0s03g02980.2 CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressas GO:0006464 Processo de modificação de proteínas Função Molecular FWRG3.2 COC_0s03g03000.1 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0005634 Núcleo Componente Celular FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Não determinado Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Proteína retrotransposon, putativa, Domínio de ligação a DNA da Mão determinado Não determinado Não determinado Não determinado Não determinado Não determinado Não determinado Não determinado			putativa, expressa	GO:0003824	Atividade catalítica	Função Molecular
GO:0009536 Plastídeo Componente Celular FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Processo Biológico GO:0009987 Processo de modificação de uproteínas Função Molecular Função Molecular GO:0000166 Nucleotide binding Função Molecular FWRG3.2 GO:0003607 Ligação ao DNA Processo Biológico Processo Biológico Processo Biológico FWRG3.2 Domínio de ligação ao DNA da Máo determinado Núcleo Componente Celular GO:00005634 Processo biosistintéticos Processo Biológico Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0000584 Núcleo Componente Celular Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0000700 Iigação a DNA especifico da Processo				GO:0008152	Processo metabólico	Processo Biológico
FWRG3 LOC_0s03g04940 metiltransferase, putativa, expressa Não determinado Não determinado Não determinado GO:0008152 Processo metabólico Processo Biológico GO:000987 Processo metabólico Processo Biológico GO:000987 Processo celulares Processo Biológico GO:00016301 Atividade quinase Função Molecular expressas GO:0006464 Processo de modificação de processo Biológico FWRG3.2 Omínio de ligação ao DNA da GO:0005634 Núcleo Componente Celular Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo é ácido processo Biológico Processo Biológico Processo netabólico de nucleobase, nucleoide de processos biosintéticos Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo e ácido nucleoideo e ácido nucleoid da do fator de transcrição de Iligação a DNA específico da sequência Função Molecular Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0000139 nucleosídeo, nucleotídeo e ácido nucleosídeo de ligação a DNA específico da GO				GO:0009536	Plastídeo	Componente Celular
FWRG3.2 CAMK_CAMK_like_ULKh_APGy.1 GO:0008152 Processo metabólico Processo Biológico FWRG3.2 CAMK_CAMK_like_ULKh_APGy.1 GO:000987 Processo celulares Processo Biológico FWRG3.2 CAMK_constructionas cinases dependentes de cálcio / calmodulina, expressas GO:0003677 Ligação ao DNA Função Molecular FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 Processo biosintéticos Processo Biológico LOC_00420300 Proteína retrotransposon, putativa, contra de cina de cin	FWRG3	LOC_0s03g04940	metiltransferase, putativa, expressa	Não determinado	Não determinado	Não determinado
FWRG3.2 CAMK_CAMK_like_ULKh_APGy.1 GO:0009987 Processos celulares Processos Biológico FWRG3.2 CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressas GO:0006464 Processo de modificação de proteínas Função Molecular FWRG3.2 Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006464 Processos biosintéticos Processo Biológico GO:00005634 Núcleo Componente Celular GO:0006139 nucleosídeo a nucleobase, nucleosídeo, nucleotíde o e ácido processo Biológico Processo Biológico Processo Biológico Processo Division de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006139 Nucleotide binding Processo Biológico Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular				GO:0008152	Processo metabólico	Processo Biológico
EXAME_CCAME_IKE_ULKh_APGy.1 GO:0016301 Atividade quinase Função Molecular LOC_0s03g02980.2 - CAMK inclui proteínas cinases dependentes de cálcio / calmodulina, expressas GO:0016301 Atividade quinase Função Molecular FWRG3.2 - CAMS - CAMK				GO:0009987	Processos celulares	Processo Biológico
LOC_Os03g02980.2 FORME incluing potentias cinases dependentes de cálcio / calmodulina, expressas GO:0000166 Nucleotide binding Função Molecular FWRG3.2 GO:0006464 Processo de modificação de proteínas Processo Biológico FWRG3.2 GO:0003677 Ligação ao DNA Função Molecular GO:0009058 Processos biosistitéticos Processo Biológico Domínio de ligação ao DNA da proteínas +BF7 GO:0006139 nucleosídeo, nucleotíde o e ácido LOC_Os03g03000.1 hélice-alça-hélice que contém proteínas +BF7 GO:0006139 nucleosídeo, acleotídeo e ácido VOC_OS03g03000.1 Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado			CAMK_CAMK_like_ULKh_APGy.1	GO:0016301	Atividade quinase	Função Molecular
FWRG3.2 expressas GO:0006464 Processo de modificação de proteínas Processo Biológico FWRG3.2 GO:0003677 Ligação ao DNA Função Molecular GO:0009058 Processos biossintéticos Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006139 nucleosídeo, nucleotídeo e ácido nucleobase, de		LOC_Os03g02980.2	dependentes de cálcio / calmodulina,	GO:0000166	Nucleotide binding	Função Molecular
FWRG3.2 GO:0006464 Processo de modificação de proteínas Processo Biológico FWRG3.2 GO:0003677 Ligação ao DNA Função Molecular GO:0005634 Núcleo Componente Celular GO:0009058 Processos biossintéticos Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7 GO:0006139 nucleosídeo, nucleotídeo e ácido nucleico Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular Proteína retrotransposon, putativa, Não determinado Não determinado			expressas			
FWRG3.2 GO:0003677 Ligação ao DNA Função Molecular GO:0005634 Núcleo Componente Celular GO:0009058 Processos biossintéticos Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo e ácido nucleico Processo Biológico Processo Biológico Processo Biológico Proteína retrotransposon, putativa, GO:0003700 Atividade do fator de transcrição de Brução Molecular LOC 0 04 2020 Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado			-	GO:0006464	Processo de modificação de	
FWRG3.2 GO:0003677 Ligação ao DNA Função Molecular GO:0005634 Núcleo Componente Celular GO:0009058 Processos biossintéticos Processo Biológico Domínio de ligação ao DNA da hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo e ácido LOC_0s03g03000.1 hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo e ácido Processo Biológico GO:0003700 ligação a DNA específico da sequência Função Molecular VOC_0 0 4/23360 Proteína retrotransposon, putativa, Não determinado Não determinado					proteínas	Processo Biológico
GO:0005634 Núcleo Componente Celular GO:0009058 Processos biossintéticos Processo Biológico Domínio de ligação ao DNA da processo metabólico de nucleobase, Processo Biológico hélice-alça-hélice que contém GO:0006139 nucleosídeo, nucleotídeo e ácido Processo Biológico proteínas+BF7 GO:0003700 Atividade do fator de transcrição de Processo Biológico Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado	FWRG3.2			GO:0003677	Ligação ao DNA	Função Molecular
GO:0009058 Processos biossintéticos Processo Biológico processo metabólico de nucleobase, nucleosídeo, nucleotídeo e ácido nucleico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Processo Biológico Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular				GO:0005634	Núcleo	Componente Celular
Domínio de ligação ao DNA da processo metabólico de nucleobase, nucleosídeo, nucleotídeo e ácido nucleico Processo Biológico LOC_Os03g03000.1 hélice-alça-hélice que contém proteínas+BF7 GO:0006139 nucleosídeo, nucleotídeo e ácido nucleico Processo Biológico GO:0003700 GO:0003700 ligação a DNA específico da sequência Função Molecular Proteína retrotransposon, putativa, no determinado Não determinado Não determinado Não determinado			Domínio de ligação ao DNA da hélice-alça-hélice que contém proteínas+BF7	GO:0009058	Processos biossintéticos	Processo Biológico
LOC_Os03g03000.1 hélice-alça-hélice que contém proteínas+BF7 GO:0006139 nucleosídeo, nucleotídeo e ácido nucleico Processo Biológico Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular					processo metabólico de nucleobase,	
proteínas+BF7 nucleico Processo Biológico Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado		LOC_Os03g03000.1		GO:0006139	nucleosídeo, nucleotídeo e ácido	
Atividade do fator de transcrição de GO:0003700 Atividade do fator de transcrição de ligação a DNA específico da sequência Função Molecular Não determinado Não determinado Não determinado					nucleico	Processo Biológico
GO:0003700 ligação a DNA específico da sequência Função Molecular Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado				GO:0003700	Atividade do fator de transcrição de	
Proteína retrotransposon, putativa, Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado					ligação a DNA específico da	
Proteína retrotransposon, putativa, Não determinado Não determinado Não determinado					sequência	Função Molecular
	PTHT4.1	100 0-04-22260	Proteína retrotransposon, putativa,	Não determinado	Não determinado	Não determinado
DTUTA 1 Destaine de transmessão instativo		LOC_0504g25500	nao classificada, expressa			
PIΠI4.1 Proteina de transposao, putativa, subalassa CACTA En / Sam Não determinado Não determinado Não determinado			aubalassa CACTA En / Sam	Não dotorminodo	Não determinado	Não dotorminodo
Subclasse CACTA, EIT/Spiil, Nao determinado Nao determinado Nao determinado Nao determinado		$I \cap C \cap 0 = 0 / a 23380$	subclasse CACTA, EII / Spill,	Nao determinado	Não determinado	Nao determinado
GO:0003674 Eunção molecular Eunção Molecular		100_0304823300	expressa	GO:000367/	Função molecular	Função Molecular
LOC Os04a58860 Domínio de proteína 1 induzido por Domínio de proteína 1 induzido por Domínio de proteína 1 induzido por Componente celular Componente celular Componente celular Componente celular		IOC 0s04a58860	Domínio de proteína 1 induzido por harpin contendo proteína, expresso	GO:0005575	Componente celular	Componente Celular
PTHT4.2 harpin contendo proteína, expresso GO:000575 Componente central Componente central Processo Biológico Processo Biológico	PTHT4.2	LOC_0307g30000		GO:0008150	Processo biológico	Processo Biológico

QTL	Gene	Função Putativa	GOSlim ID	Nome GO	Tipo GO
	LOC_0s04g58870	Subunidade complexa do exocisto exo70, putativa, expressa	GO:0005737 GO:0006810 GO:0009887	Citoplasma Transporte Processo celular	Componente Celular Processo Biológico Processo Biológico
PTHT4 1 1	LOC 0s04913590	Proteina expressa	GO:0009987	Processo biológico	Processo Biológico
	LOC_Os04g21330	Proteína hipotética	Não determinado	Não determinado	Não determinado
PTHT4.1.2	LOC_0s04g21340	Proteina expressa	GO:0003674 GO:0005575 GO:0008150	Função molecular Componente celular	Função Molecular Componente Celular Processo Biológico
	LOC_Os04g58920	Proteína contendo domínio U-box, putativa, expressa	GO:0006950	Resposta ao estrese	Processo Biológico
			GO:0009628	Resposta ao estímulo abiótico	Biological Process
			GO:0006464	Processo de modificação de proteínas	Processo Biológico
P1H14.2.1			GO:0008152	Processo metabólico	Processo Biológico
			GO:0003824	Atividade catalítica	Molecular Function
			GO:0008150	Processo biológico	Processo Biológico
			GO:0005829	Citosol	Componente Celular
	LOC_0s04g58940	Proteína expressa	Não determinado	Não determinado	Não determinado
	LOC_Os05g35490	Proteína hipotética	Não determinado	Não determinado	Não determinado
PTHT5		Fotor do transprição do fomílio MVD	GO:0006950 GO:0003677 GO:0009058	Resposta ao estrese Ligação ao DNA Processos biossintéticos Processo metabólico de nucleobase,	Processo Biológico Função Molecular Processo Biológico
	LOC_Os05g35500	putativo, expresso	GO:0006139 GO:0009987 GO:0019748	nucleoso e actuo nucleico processo celular Processo metabólico secundário	Processo Biológico Processo Biológico Processo Biológico
			GO:0009719	Resposta ao estímulo endógeno	Processo Biológico

QTL	Gene	Função Putativa	GOSlim ID	Nome GO	Tipo GO
			GO:0008150	Processo biológico	Processo Biológico
			GO:0005515	Proteína de ligação	Função Molecular
			GO:0009628	Resposta ao estímulo abiótico	Processo Biológico
			GO:0008152	Processo metabólico	Processo Biológico
				Atividade do fator de transcrição de	
				ligação a DNA específico da	
			GO:0003700	sequência	Função Molecular
	LOC_Os06g09950	Proteína expressa	Não determinado	Não determinado	Não determinado
FWRG6	LOC_0s06g09960	Proteína expressa	Não determinado	Não determinado	Não determinado
			GO:0005634	Núcleo	Componente Celular
			GO:0009653	Morfogênese da estrutura anatômica Organização de componentes	Processo Biológico
			GO:0016043	celulares	Processo Biológico
			GO:0030154	Diferenciação celular	Processo Biológico
				Desenvolvimento organizacional	
	100 0-06-10600	domínios homeobox e START	GO:0007275	multicelular	Processo Biológico
FWRG6.1	LOC_0500910000	contendo proteínas, putativas, expressas	GO:0009058	Processo biossintético	Processo Biológico
		ľ	GO:0006139	Processo metabólico de nucleobase, nucleosídeo, nucleotídeo e ácido nucleico Atividade do fator de transcrição de	Processo Biológico
			GO:0003700	ligação a DNA específico da sequência	Função Molecular
	LOC_0s06g10610	Proteina expressa	Não determinado	Não determinado	Não determinado
GVLD8		NADH-ubiquinona oxidoredutase			
UILDO	LOC_0s08g06430	mitocondrial, putativa, expressa	GO:0005739	Mitocôndria	Componente Celular
	LOC_Os09g30438	Proteina expressa	Não determinado	Não determinado	Não determinado
РТНТ9	LOC_0s09g30442	Proteina expressa	Não determinado	Não determinado	Não determinado

QTL	Gene	Função Putativa	GOSlim ID	Nome GO	Tipo GO
			GO:0005515	Proteína de ligação	Função Molecular
GYLD12	LOC Os12g09739	Proteína de sinalização de pólen com atividade de adenilil ciclase, putativa,			
	0	expressa			
			GO:0006950	Resposta ao estresse	Processo Biológico
			GO:0006950	Resposta ao estresse	Processo Biológico
			GO:0009607	Resposta ao estímulo abiótico	Processo Biológico
	$I \cap C \cap (12a37200)$	proteina de resistência T10rga2-1A,	GO:0008219	Morte celular	Processo Biológico
	100_0312g37290	putativo, expressa	GO:0000166	Ligação nucleotídica	Função Molecular
			GO:0005886	Membrana pasmática	Componente Celular
			GO:0005737	Citoplasma	Componente Celular
			GO:0006950	Resposta ao estresse	Processo Biológico
			GO:0016020	Membrana	Componente Celular
			GO:0009536	Pastídeo	Componente Celular
PTHT12			GO:0009579	Tilacóide	Componente Celular
			GO:0009607	Resposta ao estímulo abiótico	Processo Biológico
			GO:0009628	Resposta ao estímulo abiótico	Processo Biológico
	LOC Os12g37320	lipoxigenase 2.2, precursor de	GO:0009719	Resposta ao estímulo endógeno	Processo Biológico
	20020012807020	cloroplasto, putativas, expressas			
			GO:0008152	Processo metabólico	Processo Biológico
			GO:0005737	Citoplasma	Componente Celular
			GO:0005515	Proteína de ligação	Função Molecular
			GO:0009058	Processos biossintéticos	Processo Biológico
			GO:0009987	Processo celular	Processo Biológico
			GO:0006629	Processo metabólico lipídico	Processo Biológico
			GO:0003824	Atividade catalítica	Função Molecular

APÊNDICE III. Desequilibrio de ligação

Apêndice C. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 1 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice D. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 2 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Distance (kbp)

Apêndice E. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 3 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice F. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 4 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = ~ 0,22$) do máximo estimado ($r^2 = ~ 0,45$).

Distance (kbp)

Apêndice G. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 5 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice H. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 6 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice I. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 7 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice J. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 8 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Distance (kbp)

Apêndice K. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 9 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = ~ 0,22$) do máximo estimado ($r^2 = ~ 0,45$).

Apêndice L. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 10 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

Apêndice M. Medida do desequilíbrio de ligação (DL, r²) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 11 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r² correspondente à metade (r² = ~ 0,22) do máximo estimado (r² = ~ 0,45).

Apêndice N. Medida do desequilíbrio de ligação (DL, r^2) vs. distância física de mapa, entre pares de marcadores SNP e sílicos Darts do cromossomo 12 de linhas puras recombinantes de arroz provindas do cruzamento Maninjau x Araguaia. Os pontos pretos correspondem aos valores de DL observados; a linha azul, a tendência não-linear do decaimento esperado de DL; a linha vermelha, ao valor de r^2 correspondente à metade ($r^2 = \sim 0,22$) do máximo estimado ($r^2 = \sim 0,45$).

APÊNDICE IV. Experimento de Campo

Apêndice O. Experimento de campo de linhas puras recombinates provindas do cruzamento Araguaia x Maninjau em Goianira safra 2018/2019.

