Síntese, caracterização e estudo das propriedades magnéticas e ópticas de óxidos nanoparticulados: CoFe2-xYxO4 produzido por reação de combustão e ZnO produzido por meio do método poliol

Nenhuma Miniatura disponível

Data

2018-07-18

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

n this study we investigated the structural, optical band-gap, and magnetic properties of CoFe2-xYxO4 ) nanoparticles (NPs) synthesized using a combustion reaction method without the need for subsequent heat treatment or the calcing process. The particle size measured from X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images confirms the nanostructural character in the range of 16–36 nm. The optical band-gap (Eg) values increase with the Y3+ ion concentration being 3.30 and 3.58 eV for x = 0,00 and x = 0,04, respectively. The presence of yttrium in the cobalt ferrite (Y-doped cobalt ferrite) structure affects the magnetic properties. For instance, the saturation magnetization, MS and remanent magnetization, Mr, decrease from 69 emu.g-1 to 33 and 28 to 12 emu.g-1 for x = 0,00 and x = 0.04, respectively. On the other hand the coercivity, Hc, increases from 1100 to 1900 Oe for x = 0,00 and x = 0,04 at room temperature. Also we found that MS, Mr, and Hc decreased with increasing temperature up to 773 K. The cubic magnetocrystalline constant, K1, determined by using the ‘‘law of approach’’ (LA) to saturation decreases with Y3+ ion concentration and temperature. K1 values for x = 0,00 (x = 0,04) were 3,3 x 106 erg.cm-3 (2,0 x 106 erg.cm-3) e 0,4 x 106 erg.cm-3 (0,3 x 106 erg.cm-3) at 300 K and 773 K, respectively. The results were discussed in terms of inter-particle interactions induced by thermal fluctuations, and Co2+ ion distribution over tetrahedral and octahedral sites of the spinel structure due to Y3+ ion substitution. Also, in the present work, zinc oxide (ZnO) nanoparticles were prepared by the polyol method which consist of zinc acetate acetate and sodium acetate in propylene glycol solution with control over the hydrolysis reaction time and subjecting to the variation of reaction parameters, as ratio of hydrolysis (th) and ratio of acetate (ta). It was observed that the reaction time of the hydrolysis and the addition of ions had a strong effect on the morphology and size of the ZnO particles. For example, transmission electron microscopy (TEM) images revealed that the ZnO samples were synthesized for short time of RH (10 min) and long time (300 min) in small rods and in elongated rod forms, respectively. On the other hand, using only zinc acetate reagent, as the ZnO samples crystallized into a coarse spherical shape. These differences can be attributed to the polarization of the acetate and the propylene glycol, i.e., the greater amount of deficits present in the preferred growth solution of the ZnO crystals. In addition, the HR time does not change changes in the optical band gap. For example, values ​​controlled by the Kubelka-Munk model decreased from 3.31 eV to 3.28 eV for the short HR time and the long HR time, respectively. This can be explained in terms of defects and is due to the change in particle sizes. X-ray diffraction patterns (XRDs) revealed that all the units crystallized the typical wurtzite structure of ZnO. However, the relative intensity of the diffraction peak (002) of the ZnO samples was synthesized with zinc acetate and was higher than the sensations from zinc acetate as sodium acetate. That is, an indication of direction should be directed toward the preferential growth of the crystals. Therefore, the morphology of the ZnO samples can be adapted using the polyol method, just as the physical properties are important for some technological applications.

Descrição

Citação

ALVES, Thiago Eduardo Pereira. Síntese, caracterização e estudo das propriedades magnéticas e ópticas de óxidos nanoparticulados: CoFe2-xYxO4 produzido por reação de combustão e ZnO produzido por meio do método poliol. 2018. 156 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2018.