Integrating the archaea, bacteria and fungi of the gut microbiome with human diet

dc.contributor.advisor-co1Bataus, Luiz Artur Mendes
dc.contributor.advisor1Bushman, Frederic D.
dc.creatorHoffmann, Christian
dc.creator.Latteshttp://lattes.cnpq.br/7327103834220996por
dc.date.accessioned2014-09-24T21:00:52Z
dc.date.issued2013-08-15
dc.description.abstractA dieta influencia a saúde sendo uma fonte de nutrientes e toxinas, e por moldar a composição de populações microbianas residentes no corpo humano. Estudos prévios começaram a mapear as associações entre a dieta e bactérias e vírus do microbioma intestinal humano. Este trabalho investiga as associações entre a dieta e populações arqueanas e fúngicas, tomando vantagem de amostras oriundas de 98 indivíduos bem caracterizados, e integra esses dados novos com o conhecimento corrente relacionado a bactérias e o microbioma intestinal humano. A dieta foi quantificada utilizando questionários que acessam a dieta usual e recente, e arquêas e fungos foram caracterizados usando genes marcadores obtidos de amostras fecais através e sequenciamento de DNA em larga escala de última geração. Foram encontrados 66 gêneros de fungos, geralmente com uma presença mutuamente exclusiva dos filos Ascomycota e Basidiomycota. Quanto as arquêas, Methanobrevibacter foi o gênero mais prevalente, presente em 30% das amostras. Diversas outras arquêas foram detectadas com abundancia e frequência mais baixa. Uma miríade de associações foi observada entre fungos e arquêas e a dieta, entre fungos e arquêas, e entre estes e linhagens bacterianas. Metanobrevibacter e Candida foram positivamente associados com uma dieta rica em carboidratos, e negativamente com dietas ricas em amino acidos, proteínas e ácidos graxos. Dados publicados previamente enfatizam que a estrutura das populações bacterianas no intestino são primariamente com hábitos alimentares de longo prazo, porém, uma abundancia alta de Candida foi fortemente associada com a ingestao recente de carboidratos. A abundância de Methanobrevibacter foi associada tanto com a ingestão usual ou recente de carboidratos. Estes resultados confirmam estudos direcionados anteriores e provém varias novas associações a serem consideradas quando modelando os efeitos da dieta no microbioma intestinal e a na saúde humana.por
dc.description.provenanceSubmitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-24T20:12:44Z No. of bitstreams: 2 hoffmann_doctoralThesis_2013_final.v4_forPrint.pdf: 2888260 bytes, checksum: 4331871b2fa71a10777e85a507ba14c8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-24T21:00:52Z (GMT) No. of bitstreams: 2 hoffmann_doctoralThesis_2013_final.v4_forPrint.pdf: 2888260 bytes, checksum: 4331871b2fa71a10777e85a507ba14c8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-09-24T21:00:52Z (GMT). No. of bitstreams: 2 hoffmann_doctoralThesis_2013_final.v4_forPrint.pdf: 2888260 bytes, checksum: 4331871b2fa71a10777e85a507ba14c8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-08-15eng
dc.description.resumoDiet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. This work investigates associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals, and integrates this novel data with the current knowledge regarding the bacteria of the human gut microbiome. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacterwas the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter andCandida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. Previously published data emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.por
dc.formatapplication/pdf*
dc.identifier.citationHOFFMANN, Christian. Integrating the archaea, bacteria and fungi of the gut microbiome with human diet. 2013. 139 f. Tese (Doutorado em Biologia) - Universidade Federal de Goiás, Goiânia, 2013.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/3160
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas - ICB (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Biologia (ICB)por
dc.relation.referencesANDERSON, H. W. Yeast-Like Fungi of the Human Intestinal Tract. The Journal of Infectious Diseases, v. 21, n. 4, p. 13, 1917. ARUMUGAM, M. et al. Enterotypes of the human gut microbiome. Nature, v. 473, n. 7346, p. 174-80, May 12 2011. BERNSTEIN, C. N.; BLANCHARD, J. F. The epidemiology of Crohn's disease. Gastroenterology, v. 116, n. 6, p. 1503-1504, Jun 1999. BINLADEN, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, v. 2, p. e197, Feb 14 2007. BISWAS, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun, v. 70, n. 1, p. 204-10, Jan 2002. BLANCHARD, J. F. et al. Small-area variations and sociodemographic correlates for the incidence of Crohn's disease and ulcerative colitis. American Journal of Epidemiology, v. 154, n. 4, p. 328-335, Aug 15 2001. CANTAREL, B. L. et al. Complex carbohydrate utilization by the healthy human microbiome. PLoS One, v. 7, n. 6, p. e28742, 2012. CAPORASO, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, v. 26, n. 2, p. 266-7, Jan 15 2010. CAPORASO, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, v. 7, n. 5, p. 335-6, May 2010. CHEN, J. et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, v. 28, n. 16, p. 2106-13, Aug 15 2012. CHHIBBER, S. et al. Co-Therapy Using Lytic Bacteriophage and Linezolid: Effective Treatment in Eliminating Methicillin Resistant Staphylococcus aureus (MRSA) from Diabetic Foot Infections. PLoS One, v. 8, n. 2, p. e56022, 2013. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 99 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás CHO, I.; BLASER, M. J. The human microbiome: at the interface of health and disease. Nat Rev Genet, v. 13, n. 4, p. 260-70, Apr 2012. CLAESSON, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature, v. 488, n. 7410, p. 178-84, Aug 9 2012. COLE, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res, v. 37, n. Database issue, p. D141-5, Jan 2009. COSTELLO, E. K. et al. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J, v. 4, n. 11, p. 1375-85, Nov 2010. COSTELLO, E. K. et al. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science (New York, N.Y.), Nov 5 2009. COSTELLO, E. K. et al. The application of ecological theory toward an understanding of the human microbiome. Science, v. 336, n. 6086, p. 1255-62, Jun 8 2012. DELONG, E. F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A, v. 89, n. 12, p. 5685-9, Jun 15 1992. DETHLEFSEN, L. et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS biology, v. 6, n. 11, p. e280, Nov 18 2008. DICE, L. R. Measures of the Amount of Ecologic Association Between Species. Ecology, v. 26, n. 3, p. 6, jul., 1945 1945. DOLLIVE, S. et al. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol, v. 13, n. 7, p. R60, Jul 3 2012. DOWNES, J. et al. Prevotella saccharolytica sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol, v. 60, n. Pt 10, p. 2458-61, Oct 2010. DRAY, S.; DUFOUR, A. B. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, v. 22, n. 4, p. 20, 2007. DRIDI, B. Laboratory tools for detection of archaea in humans. Clin Microbiol Infect, v. 18, n. 9, p. 825-33, Sep 2012. DRIDI, B. et al. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE, v. 4, n. 9, p. e7063, 2009. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 100 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás DRIDI, B. et al. Archaea as emerging organisms in complex human microbiomes. Anaerobe, v. 17, n. 2, p. 56-63, Apr 2011. ECKBURG, P. B. et al. Diversity of the human intestinal microbial flora. Science, v. 308, n. 5728, p. 1635-8, Jun 10 2005. FAITH, J. J. et al. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science, v. 333, n. 6038, p. 101-4, Jul 1 2011. FAUST, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol, v. 8, n. 7, p. e1002606, 2012. FRANK, D. N.; PACE, N. R. Gastrointestinal microbiology enters the metagenomics era. Current opinion in gastroenterology, v. 24, n. 1, p. 4-10, Jan 2008. GEVERS, D. et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol, v. 10, n. 8, p. e1001377, 2012. GHANNOUM, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog, v. 6, n. 1, p. e1000713, Jan 2010. GILL, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.), v. 312, n. 5778, p. 1355-1359, Jun 2 2006. GONZALEZ, A. et al. Our microbial selves: what ecology can teach us. EMBO Rep, v. 12, n. 8, p. 775-84, Aug 2011. GRICE, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science, v. 324, n. 5931, p. 1190-2, May 29 2009. GUMBO, T. et al. Candida glabrata Fungemia. Clinical features of 139 patients. Medicine (Baltimore), v. 78, n. 4, p. 220-7, Jul 1999. HAMAD, I. et al. Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS One, v. 7, n. 7, p. e40888, 2012. HAMADY, M. et al. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J, v. 4, n. 1, p. 17-27, Jan 2010. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 101 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás HAMADY, M. et al. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature methods, v. 5, n. 3, p. 235-237, Mar 2008. HE, T. et al. The role of colonic metabolism in lactose intolerance. European journal of clinical investigation, v. 38, n. 8, p. 541-547, Aug 2008. HEUER, H. et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol, v. 63, n. 8, p. 3233-41, Aug 1997. HILDEBRANDT, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, v. 137, n. 5, p. 1716-24 e1-2, Nov 2009. HOFFMANN, C. et al. Community-wide response of gut microbiota to enteropathogenic Citrobacter infection revealed by deep sequencing. Infection and immunity, Jul 27 2009. HOFFMANN, C. et al. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic acids research, v. 35, n. 13, p. e91, 2007. HOOPER, L. V.; GORDON, J. I. Commensal host-bacterial relationships in the gut. Science (New York, N.Y.), v. 292, n. 5519, p. 1115-1118, May 11 2001. IANNOTTI, E. L. et al. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2. J Bacteriol, v. 114, n. 3, p. 1231-40, Jun 1973. ILIEV, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science, v. 336, n. 6086, p. 1314-7, Jun 8 2012. KOENIG, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A, v. 108 Suppl 1, p. 4578-85, Mar 15 2011. KOVATCHEVA-DATCHARY, P. et al. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol, v. 11, n. 4, p. 914-26, Apr 2009. KUCZYNSKI, J. et al. Direct sequencing of the human microbiome readily reveals community differences. Genome Biol, v. 11, n. 5, p. 210, May 5 2010. LEMON, K. P. et al. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med, v. 4, n. 137, p. 137rv5, Jun 6 2012. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 102 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás LEPP, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A, v. 101, n. 16, p. 6176-81, Apr 20 2004. LEWIS, S. J.; HEATON, K. W. Stool form scale as a useful guide to intestinal transit time. Scandinavian journal of gastroenterology, v. 32, n. 9, p. 920-924, Sep 1997. LEY, R. E. et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, v. 102, n. 31, p. 11070-5, Aug 2 2005. LEY, R. E. et al. Evolution of mammals and their gut microbes. Science, v. 320, n. 5883, p. 1647-51, Jun 20 2008. LEY, R. E. et al. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature reviews.Microbiology, v. 6, n. 10, p. 776-788, Oct 2008. LEY, R. E. et al. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, v. 124, p. 837-484, 2006. LIU, Z. et al. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic acids research, Sep 18 2007. LOZUPONE, C. et al. UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC bioinformatics, v. 7, p. 371, Aug 7 2006. LOZUPONE, C.; KNIGHT, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, v. 71, n. 12, p. 8228-35, Dec 2005. LOZUPONE, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 39, p. 15076-15081, Sep 30 2008. LOZUPONE, C. A. et al. Quantitative and Qualitative {beta} Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Applied and Environmental Microbiology, v. 73, n. 5, p. 1576-1585, Mar 2007. LOZUPONE, C. A.; KNIGHT, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev, v. 32, n. 4, p. 557-78, Jul 2008. LOZUPONE, C. A. et al. Diversity, stability and resilience of the human gut microbiota. Nature, v. 489, n. 7415, p. 220-30, Sep 13 2012. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 103 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás LUDWIG, W. et al. ARB: a software environment for sequence data. Nucleic acids research, v. 32, n. 4, p. 1363-1371, Feb 25 2004. MACPHERSON, A. J.; HARRIS, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature reviews.Immunology, v. 4, n. 6, p. 478-485, Jun 2004. MARDIS, E. R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, v. 9, p. 387-402, 2008. MATARAZZO, F. et al. The domain Archaea in human mucosal surfaces. Clin Microbiol Infect, v. 18, n. 9, p. 834-40, Sep 2012. MCKENNA, P. et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS pathogens, v. 4, n. 2, p. e20, Feb 8 2008. MCNULTY, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med, v. 3, n. 106, p. 106ra106, Oct 26 2011. MILLER, T. L. et al. Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol, v. 43, n. 1, p. 227-32, Jan 1982. MINOT, S. et al. Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A, v. 109, n. 10, p. 3962-6, Mar 6 2012. MINOT, S. et al. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res, Aug 31 2011. MINOT, S. et al. Conservation of Gene Cassettes among Diverse Viruses of the Human Gut. PLoS One, v. 7, n. 8, p. e42342, 2012. MOROWITZ, M. J. et al. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci U S A, v. 108, n. 3, p. 1128-33, Jan 18 2011. MURDOCH, T. B. et al. Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease. Inflamm Bowel Dis, v. 18, n. 9, p. 1743-8, Sep 2012.(NCHS)., C. F. D. C. A. P. C. N. C. F. H. S. National Health and Nutrition Examination Survey Questionnaire. . Hyattsville, MD.: Centers for Disease Control and Prevention (CDC). 2011. (NCHS)., C. F. D. C. A. P. C. N. C. F. H. S. National Health and Nutrition Examination Survey Questionnaire. . Hyattsville, MD.: Centers for Disease Control and Prevention (CDC). 2011. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 104 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás NEEFS, J. M. et al. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res, v. 21, n. 13, p. 3025-49, Jul 1 1993. OTT, S. J. et al. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol, v. 43, n. 7, p. 831-41, 2008. PALMER, C. et al. Rapid quantitative profiling of complex microbial populations. Nuc. Acids Res., v. 10, p. e5, 2006. POLZ, M. F.; CAVANAUGH, C. M. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, v. 64, n. 10, p. 3724-3730, Oct 1998. PRICE, M. N. et al. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular biology and evolution, v. 26, n. 7, p. 1641-1650, Jul 2009. PURUSHE, J. et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol, v. 60, n. 4, p. 721-9, Nov 2010. REYES, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, v. 466, n. 7304, p. 334-8, Jul 15 2010. REYES, A. et al. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol, v. 10, n. 9, p. 607-17, Aug 6 2012. SAMUEL, B. S. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A, v. 104, n. 25, p. 10643-8, Jun 19 2007. SARTOR, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology, v. 134, n. 2, p. 577-94, Feb 2008. SCANLAN, P. D. et al. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. J Clin Microbiol, v. 44, n. 11, p. 3980-8, Nov 2006. SCUPHAM, A. J. et al. Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol, v. 72, n. 1, p. 793-801, Jan 2006. SEGATA, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol, v. 13, n. 6, p. R42, 2012. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 105 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás SEIBOLD, F. et al. Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease: a family study. Scand J Gastroenterol, v. 36, n. 2, p. 196-201, Feb 2001. STAMS, A. J.; PLUGGE, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol, v. 7, n. 8, p. 568-77, Aug 2009. STEWART, J. A. et al. Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples. Lett Appl Microbiol, v. 43, n. 1, p. 58-63, Jul 2006. TANG, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, v. 368, n. 17, p. 1575-84, Apr 25 2013. THE HMP CONSORTIUM. Structure, function and diversity of the healthy human microbiome. Nature, v. 486, n. 7402, p. 207-14, Jun 14 2012. TOURNA, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A, v. 108, n. 20, p. 8420-5, May 17 2011. TURNBAUGH, P. J. et al. A core gut microbiome in obese and lean twins. Nature, v. 457, n. 7228, p. 480-4, Jan 22 2009a. TURNBAUGH, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, v. 444, n. 7122, p. 1027-31, Dec 21 2006. URSELL, L. K. et al. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol, v. 129, n. 5, p. 1204-8, May 2012. VAN GYLSWYK, N. O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int J Syst Bacteriol, v. 45, n. 2, p. 297-300, Apr 1995. VAN NOOD, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med, v. 368, n. 5, p. 407-15, Jan 31 2013. WANG, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, v. 73, n. 16, p. 5261-5267, Aug 2007. WHITMAN, W. B. et al. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A, v. 95, p. 6578-6583, 1998. WHITTAKER, R. H. Evolution and Measurement of Species Diversity. Taxon, v. 21, n. 2/3, p. 213-251, may 1972 1972. Integrating the Archaea, Bacteria and Fungi of the Gut Microbiome with Human Diet Christian Hoffmann 106 Tese de Doutorado em Biologia - Instituto de Ciências Biológicas - Universidade Federal de Goiás WILLETT, W. C. et al. Validation of a dietary questionnaire with plasma carotenoid and alpha-tocopherol levels. Am J Clin Nutr, v. 38, n. 4, p. 631-9, Oct 1983. WOESE, C. R.; FOX, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A, v. 74, n. 11, p. 5088-90, Nov 1977. WREDE, C. et al. Archaea in symbioses. Archaea, v. 2012, p. 596846, 2012. WU, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, v. 334, n. 6052, p. 105-8, Oct 7 2011. WUTHRICH, M. et al. Adaptive immunity to fungi. Annu Rev Immunol, v. 30, p. 115-48, 2012. XU, J. et al. Evolution of Symbiotic Bacteria in the Distal Human Intestine. PLoS Biol., v. 5, n. 7, p. e156, Jun 19 2007. YANG, S. K. et al. Epidemiology of inflammatory bowel disease in Asia. Inflammatory bowel diseases, v. 7, n. 3, p. 260-270, Aug 2001. YATSUNENKO, T. et al. Human gut microbiome viewed across age and geography. Nature, v. 486, n. 7402, p. 222-7, Jun 14 2012.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBactériaspor
dc.subjectFungospor
dc.subjectMicrobioma intestinal humanopor
dc.subjectLinhagens bacterianaspor
dc.subjectMicrobiomeeng
dc.subjectDieteng
dc.subjectFungieng
dc.subjectArchaeaeng
dc.subjectDietapor
dc.subject.cnpqBIOQUIMICA::BIOLOGIA MOLECULARpor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/8548/hoffmann_doctoralThesis_2013_final.v4_forPrint.pdf.jpg*
dc.titleIntegrating the archaea, bacteria and fungi of the gut microbiome with human dietpor
dc.title.alternativeIntegrando arqueas, bactérias e fungos do microbioma intestinal humano com a dietapor
dc.typeTesepor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
hoffmann_doctoralThesis_2013_final.v4_forPrint.pdf
Tamanho:
2.75 MB
Formato:
Adobe Portable Document Format
Descrição:
Tese
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.11 KB
Formato:
Item-specific license agreed upon to submission
Descrição: