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et  al. 2002, Boyce et  al. 2016). RSFs are proportional to 
the probability of an area being used by an animal and link 
populations to their habitats (Boyce and McDonald 1999) 
and scale animal abundance to the probability of selecting a 
given habitat (Johnson and Seip 2008).

Correlative ecological niche modelling (ENM) using 
occurrence data can also provide environmental suitabil-
ity for a species based on environmental variables where 
areas with highest suitability could indicate areas that best 
match a species’ ecological niche (Yackulic et al. 2013). The 
underlying mechanism is based on population demogra-
phy. Within a species range it is expected that the intrinsic 
growth rate of populations is positive whereas outside a 
species range it is expected to be negative (Gaston 2003). 
However, within a species range the probability of occur-
rence can be positively or negatively related with the intrin-
sic growth rate of a population and positively related to 
the carrying capacity of a population (Thuiller et al. 2014). 
Therefore areas with high environmental suitability or 
probability of occurrence tend to harbor larger popula-
tions because favorability of local conditions increases birth 
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For every species there should be one or a few most favor-
able sites within its geographic range where its abundance 
is highest and many other sites of lower quality where it is 
less abundant but still able to persist (Brown 1984). Such 
a pattern reflects population response to local conditions 
(e.g. food resources and climatic conditions) in particular 
the extent to which local conditions meet species ecological 
requirements (Hutchinson 1957, Brown 1984).

There is a well documented correlation between distribu-
tion and abundance of species (Brown 1995, Gaston 2003). 
However, He and Gaston (2007) argue that ‘how best to 
estimate abundance from distribution largely remains an 
unsolved problem’. One way of addressing spatial variation 
of abundance within a species range is interpolating local 
abundance data over a geographic domain of interest (Bahn 
and McGill 2007) relying on the assumption that abundance 
is spatially autocorrelated (Brown 1995). However, this 
approach does not allow inference about any ecological 
process that may mediate the role of environment on species 
abundance. Habitat selection or resource selection func-
tions (RSF) can also be used to predict abundance (Manly 
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It is thought that species abundance is correlated with environmental suitability and that environmental variables, 
scale, and type of model fitting can confound this relationship. We performed a meta-analysis to 1) test whether species 
abundance is positively correlated with environmental suitability derived from correlative ecological niche models (ENM), 
2) test whether studies encompassing large areas within a species range ( 50%) exhibited higher AS correlations than 
studies encompassing small areas within a species range ( 50%), 3) assess which modelling method provided higher AS 
correlation, and 4) compare strength of the AS relationship between studies using only climatic variables and those that 
used both climatic and other environmental variables to derive suitability. We used correlation coefficients to measure 
the relationship between abundance and environmental suitability derived from ENM. Each correlation coefficient was 
considered an effect size in a random-effects multivariate meta-analysis. In all cases we found a significantly positive 
relationship between abundance and suitability. This relationship was consistent regardless of scale of study, ENM method, 
or set of variables used to derive suitability. There was no difference in strength of correlation between studies focusing on 
large or small areas within a species’ range or among ENM methods. Studies using other variables in combination with 
climate exhibited higher AS correlations than studies using only climatic variables. We conclude that occurrence data can 
be a reasonable proxy for abundance, especially for vertebrates, and the use of local variables increases the strength of the 
AS relationship. Use of ENMs can significantly decrease survey costs and allow the study of large-scale abundance patterns 
using less information. Including only climatic variables in ENM may confound the relationship between abundance and 
suitability when compared to studies including variables taken locally. However, modelers and conservationists must be 
aware that high environmental suitability does not always indicate high abundance.
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and survival rates and decrease extinction rate (Morrison 
et  al. 2006). In fact, probability of occurrence is nega-
tively correlated with probability of extinction (Araújo 
et al. 2002). Extinction events are more common in areas 
with lower probability of occurrence than in areas with 
higher probability of occurrence. Spatial autocorrelation 
in presence data occurs because species exhibit greater 
aggregations (i.e. high abundance) where the environment 
is more suitable (Araújo et  al. 2002). Therefore, areas of 
high environmental suitability should also exhibit high 
abundances. This hypothesis relies on the assumption that 
population dynamics are in equilibrium with the environ-
ment. If populations are changing rapidly, we may not 
expect to find real and meaningful correlations between 
abundance and environmental suitability.

Despite environmental determinism being commonly 
claimed to explain aggregations of individuals of a species, 
other factors may also play a role on species abundance 
such as demography (Ehrlén and Morris 2015), philopa-
try (Stacey and Ligon 1991) or neutral processes (Hubbell 
2001). However, even demographic and philopatric 
processes can be affected by the environment because spe-
cies only occur at high densities where the environment is 
suitable (Araújo et al. 2002). To this end, there should be a 
positive abundance-suitability (AS) relationship and ENM 
should provide an effective proxy for spatial variation in 
abundance over geographic space. Furthermore, understand-
ing the AS relationship may elucidate how species respond to 
environmental conditions, especially under climate change 
scenarios.

The AS relationship has been tested across a number 
of different organisms and has also been used for various 
ecological applications. For example, Mellin et  al. (2012) 
modelled the distribution of two marine mollusks species. 
They assessed the AS relationship and used it to estimate the 
potential effects of global change on mollusk populations. 
If the AS relationship holds true, identifying areas of high 
environmental suitability will improve our ability to find 
populations of rare species with narrow habitat requirements 
(Gogol-Prokurat 2011). In addition, such an approach also 
enables researchers to forecast areas more prone to biological 
invasions (Januchowski-Hartley et al. 2011, Kulhanek et al. 
2011).

Studies using correlative ENM to relate predicted spe-
cies abundance with environmental suitability have found 
varying support for the AS relationship. Some authors have 
found strong and positive correlations (Ready et  al. 2010, 
Kulhanek et al. 2011, Oppel et al. 2012, Weber and Grelle 
2012), while others have found only moderate (Seoane et al. 
2005, Elmendorf and Moore 2008, Tellería et  al. 2012, 
Tôrres et  al. 2012) or low to non-significant correlations 
(Pearce and Ferrier 2001, Nielsen et  al. 2005, Filz et  al. 
2013). When AS correlations are low, ENM’s are not good 
predictors of abundance (Jiménez-Valverde et  al. 2009). 
However, a comprehensive analysis encompassing numer-
ous tests addressing the AS relationship is still lacking. Such 
analysis represents an important step towards formulating 
generalizations regarding the relationships between suitabil-
ity derived from ENM’s and actual abundance of organisms 
in nature.

One potential explanation for some weak AS relation-
ships is that spatial scale at which occurrence and abundance 
are actually measured may affect the strength of the rela-
tionship (Nielsen et  al. 2005). Indeed, scale can be a key 
consideration when estimating spatial variation of abun-
dance from occurrence data (He and Gaston 2007). Varying 
the size of the study area can generate different abundance 
estimates (Aebischer et  al. 1993). Studies carried out over 
small areas within a species’ range may not include enough 
environmental variation experienced by a species to find a 
strong AS relationship. In such cases, environmental vari-
ables might vary within a relatively small range of values 
and such incomplete sampling may reduce power of tests 
(Nielsen et al. 2005, Van Couwenberghe et al. 2012). On 
the other hand, studies including a large area within a species’ 
geographic range encompass more environmental variation 
experienced by that species and will likely produce higher 
correlations than studies considering only small portions of 
a range (Tôrres et al. 2012, Weber and Grelle 2012). In addi-
tion, not covering the entire species range, or at least a large 
portion of it, decreases the probability of sampling sites with 
high abundance because few areas harbor many individuals 
and most areas harbor few individuals (Brown et al. 1995, 
Martínez-Meyer et al. 2013). So far there has been no analy-
sis examining the AS relationship using different proportions 
of species ranges (e.g. small vs large areas within ranges).

Other methodological issues may affect the strength 
of AS correlations. For example, there are three different 
approaches used to model ecological niches: 1) statistical 
models, 2) similarity and 3) machine learning methods 
(Franklin 2010). It is still unclear which approach performs 
better when trying to correlate abundance with environ-
mental suitability. For example, BIOCLIM (a similarity 
method) had the best performance in correlating environ-
mental suitability with jaguar abundance among eleven 
different algorithms, although the correlation was only 
moderate (Tôrres et al. 2012). On the other hand, machine 
learning methods and statistical models seem to provide 
suitability values that correlate better with abundance than 
similarity methods (Kulhanek et  al. 2011, Mellin et  al. 
2012, Weber and Grelle 2012). Therefore, we are still far 
from a comprehensive understanding of the effect of using 
different methods to address the AS relationship.

In addition to issues of proportion of species range and 
type of modelling method, another cause of varying corre-
lation between environmental suitability and species abun-
dance may be the set of environmental predictors used to 
derive environmental suitability from occurrence data. For 
example, the climatic database most used to derive suitability  
is the Worldclim database (< www.worldclim.org/ >), pro-
vided by Hijmans et al. (2005). However, it is unlikely that 
climate is the only influence on species abundance. Moreover, 
it is widely known that species abundance responds to 
environmental disturbances (such as distance to cities and 
amount of pollutants) and conditions other than climate 
such as tree density, type of soil, or pH (Van Couwenberghe 
et al. 2012), to namely only a few.

Different algorithms used to derive environmental suit-
ability have been used long enough and as presented above 
provide conflicting empirical support for the AS relationship. 
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Hence, it is important to review current knowledge and 
perform a meta-analysis to quantify the degree to which 
species abundance is correlated with suitability as well as the 
influence of methodological issues such as amount of species’ 
range examined, modelling methods or set of variables used 
to derive environmental suitability. Here our goals are 1) to 
test whether species abundance is positively correlated with 
environmental suitability derived from correlative ENMs, 
2) to test whether studies encompassing large areas within 
a species range show higher AS correlations than studies 
encompassing small areas, 3) to assess which modelling 
method provides higher AS correlation, and 4) to compare 
strength of the AS relationship between studies that use 
only climatic variables with those using both climatic and 
environmental variables to derive suitability.

Methods

Correlation coefficients

We searched for papers that tested the AS relationship using 
suitability values obtained from correlative ENM in the on-
line database Web of Science (< http://apps.isiknowledge.
com >) published up to August 2015. We used the following 
combination of key-words for searching: ecological niche 
model* or environmental niche model* or species distribu-
tion model* or habitat suitability model* and abundance. 
For each species we used correlation coefficients provided 
by the authors to measure the relationship between abun-
dance and environmental suitability derived from occur-
rence data. The kind of correlation coefficient used varied 
across studies (e.g. Pearson’s r, Spearman’s rs, Kendall’s tau). 
Comparing different indices may affect analyses, but we 
assumed that authors used the most appropriate correlation 
index for each analysis, providing the best fit for the cor-
relation between abundance and suitability. Furthermore, 
all correlation coefficients vary between –1 and 1, and 
therefore provide a standardized measure of the relationship 
between abundance and suitability that can be compared in 
a meta-analysis. When more than one modelling algorithm 
was used to build an ENM, we used the best fit found by 
the authors, i.e. the highest correlation coefficient regard-
less of the modelling algorithm used to generate the general 
pattern of the AS relationship. When the same species was 
analyzed in more than one study we used the one that used 
the largest sample size.

When only the coefficient of determination was provided 
by the authors, we calculated the correlation coefficient by 
taking the square root of the coefficient of determination 
(VanDerWal et  al. 2009, Tôrres et  al. 2012), taking into 
account if the relationship was positive or negative. When 
different correlation values were provided using training 
and test data, we chose only the correlation provided for the 
training data (Nielsen et al. 2005), because training data are 
used to develop the model and test data are used to test the 
model predictions. If correlation values using both presence/
absence and presence-only data were provided (Pearce and 
Ferrier 2001, Nielsen et  al. 2005), we selected correlation 
values considering presence and absence (abundance equal 
to zero).

Effect sizes and multivariate meta-analysis model

Meta-analyses focus on combining and contrasting results 
from different studies to identify emergent patterns among 
studies. Pattern is normally characterized by a com-
mon measure of effect size, of which a weighted average 
is commonly the output of a meta-analysis (Cooper and 
Hedges 1994). In this study, each correlation coefficient 
for each species was considered an effect size, a value that 
reflects the strength of the relationship between abundance 
and environmental suitability.

We computed effect size for each species, assessed 
consistency of effect sizes across species, and computed a 
summary effect (Borenstein et al. 2009). Correlation coef-
ficients should not be used directly to synthesize effect 
sizes because the variance depends on correlation strength 
(Borenstein et al. 2009). Therefore, we converted correlation 
coefficients to Fisher’s z scores and performed analyses using 
transformed values. In order to present results in a more 
understandable manner, we converted the summary effect 
and the confidence intervals back to correlation coefficients.

Studies differed in the set of species analyzed, methods, 
and the environmental/climatic variables used to derive 
suitability. In order to account for such differences, we used 
a random-effects model that includes both variation within 
and across studies (Borenstein et  al. 2009). We assume 
that selected studies have enough in common to synthesize 
information.

Some papers dealt with sets of species and therefore 
provided effect sizes for several related species using the same 
sampling design, variables, and methods to build ENM’s. 
Several effect sizes from the same study are non-independent 
(Nakagawa and Santos 2012). In order to account for such 
non-independence, we used a random-effects multivariate 
meta-analysis.

In addition to non-independence of correlations from 
the same study, species relatedness may also affect statistical 
independence since related species likely have similar eco-
logical characteristics (Harvey and Pagel 1991, Nakagawa 
and Santos 2012). Each ENM built for every species takes 
into account variables that are thought to estimate its niche, 
and for related species such variables tend to be similar 
(Peterson et al. 1999). However, even with niche similarity 
across related species, there is no reason to suppose that spe-
cies abundance in the same geographic region will respond 
similarly to environmental suitability. Furthermore, in this 
study we are dealing with very different organisms (e.g. 
earthworms, mollusks, insects, reptiles, mammals, fishes, 
and flowering plants) which makes incorporating a compar-
ative method and test for phylogenetic independence of the 
effect sizes prohibitively difficult [but see how to incorporate 
phylogenetic effects in a meta-analysis in Adams (2008)]. 
Therefore, we used the taxonomic family as a surrogate of 
relatedness among species to account for phylogenetic inde-
pendence. Thus, we built a random-effects multivariate 
meta-analysis using both authorship and species family as 
non-independent factors.

We assume that researchers modelled the potential 
environmental niche based on the realized niche (observed 
data), which has already been limited by non-environ-
mental factors (e.g. biotic interactions and demographic 
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lower limit for species occurrence (i.e. where the species is 
likely to occur). This geographic space is called an envelope. 
Similarity models consider that the ecological optimum 
for a species is in the centroid of occurrence points in eco-
logical space. The distance between the estimated optimum 
and observed values for each pixel in the geographic area is 
inversely related to the environmental suitability for the focal 
species at that site (Araújo and Peterson 2012). Similarity 
methods include BIOCLIM (Busby 1991), DOMAIN 
(Carpenter et al. 1993), Mahalanobis distance (Farber and 
Kadmon 2003), and AquaMaps (Kaschner et al. 2013).

The machine learning method is a much more complex 
statistical technique based on presence/absence or presence/
pseudo-absence or presence/background data. In contrast to 
the statistical methods, this approach is a suite of regressions 
that are used to learn the mapping function directly from 
the training data to get the best prediction and it does not 
need prior assumptions as needed in the statistical models 
(Franklin 2010). In general, this method performs better 
than statistical and similarity methods in predicting species 
distributions (Elith et al. 2006). Machine learning methods 
include Maxent (Phillips and Dudík 2008), GARP (Stockwell 
and Noble 1992), artificial neural networks (Segurado and 
Araújo 2004), random forests (Breiman 2001), classifica-
tion tree analysis (Breiman et  al. 1984), and generalized 
boosting models (Friedman 2001). Although machine learn-
ing methods are much more complex algorithms, they are 
mathematically equivalent to the statistical methods because 
both relate environmental predictors with presence/absence 
or presence/background data (Renner and Warton 2013).

Although all three kinds of methods are statistical, we are 
referring to the first kind as statistical methods for practical 
reasons. We clustered different modelling approaches using 
the same general method as described above. We calculated 
the summary effect size of the AS relationship for each of 
the three approaches using a multivariate meta-analysis 
with random-effects. We then compared the summary 
effect among the three approaches (statistical, similarity and 
machine learning methods) to assess which better predicts 
the AS relationship. We made all comparisons mentioned 
above among model coefficients using the Wald test. We 
consider statistical significance when p  0.05.

Publication bias

Studies reporting statistically significant results are more 
likely to be published than studies reporting non-significant 
results (Greenwald 1975). If publication bias is a problem, 
then studies included in a meta-analysis may represent a 
biased subset of the total number of studies performed (Wang 
and Bushman 1998). Publication bias can be detected using 
quantile-quantile plots, which are preferred over funnel plots 
(Wang and Bushman 1998). In a quantile-quantile plot or 
normal quantile plot, quantiles of the observed data distribu-
tion are plotted against theoretical quantiles of the standard 
normal distribution (with mean of zero and standard devia-
tion of 1). If observed data have a standard normal distri-
bution, points on the plot will fall close to the line y  x 
and the slope of the plotted line will be close to 1. Thus 
we can assume that data are not biased and they come from 

constraints). We acknowledge that there may be other 
species-specific factors influencing local species abundance 
other than environmental suitability such as time of coloni-
zation, interspecific competition and source-sink dynamics. 
However, here we are only interested in to what extent envi-
ronmental suitability derived from ENM (not geographic 
range per se) is related to abundance.

Proportion of the geographic range of each species used 
to estimate the niche model may influence strength of the 
AS relationship. In order to account for this effect, we com-
pared the magnitude of correlation from studies carried out 
over small areas within a species’ range ( 50% of a spe-
cies range) to magnitude of correlation from studies car-
ried out over large areas within a species’ range ( 50% of 
a species range). To determine proportion of species’ range 
that was studied, we compared it visually to maps of species 
ranges obtained from IUCN (< www.iucnredlist.org/ >). For 
this analysis we considered only mammal and bird species 
because geographic distributions of invertebrate, reptile, and 
plant species considered here are poorly known.

To compare influence of the set of variables chosen to 
derive environmental suitability in the ENMs on the AS 
relationship, we classified niche models into two groups: 1) 
climatic niche models and 2) environmental niche models. 
In climatic niche models, variables included in modelling 
were exclusively those of climate (e.g. Worldclim variables) 
and elevation (often used as a proxy for temperature). In 
environmental niche models, variables included in modelling 
were both climatic and non-climatic (e.g. salinity, habitat 
patch size, and soil moisture). Such comparison may identify 
which kinds of variables provide environmental suitability 
values that correlate better with species abundance.

Comparing ENM approaches

To evaluate which ENM approach provides the strongest AS 
relationship we classified all approaches used to derive suit-
ability into three categories according to Franklin (2010): 
statistical modelling, similarity and machine learning meth-
ods. Statistical modelling is based on presence/absence data 
and is derived from classical statistical techniques, such as 
generalized linear models (GLM). These models seek a rela-
tionship between species presence/absence and a suite of 
environmental variables, estimating a probability of occur-
rence (Yackulic et al. 2013) and they are functionally similar 
to RSFs (Manly et al. 2002). In statistical modelling certain 
assumptions are made about the form of the model (which 
are chosen by the modeler) and all the data are used to esti-
mate the model parameters (Franklin 2010). This approach 
can provide simple and realistic models, allowing a better 
understanding of species distribution than more complex 
methods (Guisan and Zimmermann 2000). Statistical 
modelling includes GLM (Guisan et al. 2002), generalized 
additive models (GAM, Yee and Mitchell 1991), mixture 
discriminant analysis (Manel et  al. 1999), and MARS 
(multivariate adaptive regression splines) (Moisen and 
Frescino 2002).

Similarity methods are based on presence data only and 
are simple representations of the ecological niche. They 
determine for each environmental variable an upper and 
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birds, mammals, insects, arachnids, earthworms, mollusks, 
pteridophytes, and flowering plants (Table 1). We did not 
find any evidence of publication bias in our data both 
visually (Fig. 1) or statistically (Wald test  1.101, DF  1, 
p  0.29).

Most cases reported a positive relationship between 
abundance and environmental suitability, although nega-
tive correlations were also observed (Fig. 2). The summary 
effect of correlation between abundance and suitability was 
moderate when all taxa were analyzed together (r  0.55, 
95% confidence interval [CI]  0.45–0.64, p  0.0001, 
k  450). A positive relationship between abundance and 
suitability was consistent across different taxa analyzed: 
vertebrates (r  0.62, CI  0.51–0.72, p  0.001, k  166), 
invertebrates (r  0.53, CI  0.25–0.72, p  0.001, 
k  133), and plants (r  0.34, CI  0.25–0.41, p  0.0001, 
k  151) (Fig. 3A).

Most cases used machine learning methods (n  316) 
and statistical models (n  118) to derive suitability and 

a single population and the sample size for each study is 
large enough (Borenstein et al. 2009). To statistically assess 
publication bias, we added the variance as a moderator into 
the model and this is similar to the Egger test (Egger et al. 
1997) applied to non-hierarchical models. Non significant 
(p  0.05) moderators in a Wald test indicate no publication 
bias. All analyses were carried out in the software R ver. 2.14 
(R Development Core Team) using the ‘metafor’ package 
(Viechtbauer 2010).

Data available from the Dryad Digital Repository: 
< http://dx.doi.org/10.5061/dryad.g2fd2 > (Weber et  al. 
2016).

Results

We obtained 450 correlations between species abun-
dance and environmental suitability derived from ENM 
from 30 studies on several taxa including fishes, reptiles, 

Table 1. List of the 30 studies included in this meta-analysis showing number of species considered in each study, taxonomic group, method 
of ecological niche modeling, spatial resolution and number of variables used to model species’ ecological niche, and type of abundance 
data used to correlate with environmental suitability. ANN  artificial neural networks, BRT  boosted regression trees, CEM  climate enve-
lope model, CTA  classification tree analysis, FF  favourability function, GAM  generalized additive models, GARP  genetic algorithm 
for rule-set production, GBM  generalized boosting models, GLM  generalized linear models, LR  logistic regression, Maxent  maximum 
entropy, MARS  multivariate adaptive regression splines, MD  Mahalanobis distance, MDA  mixture discriminant analysis, RF  random 
forests, RSF  resource selection function. Number of species considered here may be different to the original studies because of selection 
criteria (see Methods section).

Study Number of species Taxonomic group Method of modelling

Pearce and Ferrier (2001) 73 reptiles, birds, mammals, ferns, 
and flowering plants

Statistical (LR)

Nielsen et al. (2005) 2 ungulate and fern Statistical (LR)
Seoane et al. (2005) 53 birds Machine learning (BRT)
Elmendorf and Moore (2008) 100 flowering plants Machine learning (ANN, BRT)
Jedrzejewski et al. (2008) 1 carnivore Statistical (RSF)
Jiménez-Valverde et al. (2009) 46 arthropods Machine learning (ANN)
Real et al. (2009) 2 carnivore and rabbit Statistical (FF)
VanDerWal et al. (2009) 2 vertebrates Machine learning (Maxent)
Ready et al. (2010) 12 whales and sea fishes Statistical (GLM, GAM), Machine learning 

(Maxent, GARP), and Similarity (AquaMaps)
Giannoulaki et al. (2011) 1 fish Statistical (GLM)
Gogol-Prokurat (2011) 2 flowering plants Machine learning (Maxent)
Januchowski-Hartley et al. (2011) 1 flowering plant Machine learning (Maxent)
Jones-Farrand et al. (2011) 5 birds Machine learning (CTA)
Kulhanek et al. (2011) 1 fish Machine learning (ANN)
Estrada and Arroyo (2012) 2 seabirds Statistical (GLM)
Guarino et al. (2012) 9 fern, conifer, and flowering plants Statistical (GLM)
Mellin et al. (2012) 2 mollusks Statistical (GLM)
Oppel et al. (2012) 1 seabird Statistical (GAM, GLM) and Machine learning 

(RF, BRT)
Tellería et al. (2012) 1 bird Machine learning (Maxent)
Tôrres et al. (2012) 1 carnivore Statistical (MDA, MARS), Similarity (BIOCLIM, 

DOMAIN, MD), and Machine learning 
(Maxent, GARP, CTA, RF, GBM, ANN)

Weber and Grelle (2012) 1 bat Machine learning (Maxent)
Bucas et al. (2013) 31 arthropods, mollusks, polychaetes, 

algae, and flowering plants
Statistical (GAM, MARS), machine learning 

(Maxent, RF)
Filz et al. (2013) 61 butterflies Machine learning (Maxent)
Gutiérrez et al. (2013) 1 butterfly Statistical (GLM)
Palm et al. (2012) 2 earthworms Machine learning (BRT)
Bean et al. (2014) 1 mammal Machine learning (Maxent)
Carrascal et al. (2015) 19 birds Machine learning (BRT, Maxent)
Muñoz et al. (2015) 1 bird Statistical (LR, FF)
Russel et al. (2015) 9 seabirds Similarity (CEM)
Young and Carr (2015) 7 reef fishes Statistical (GAM)
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deriving suitability only from climatic niches (Wald 
test  7.23, DF  1, p  0.0072, Fig. 3D).

Discussion

Abundance-suitability patterns

Environmental suitability values derived from correlative 
ENM’s have recently been used to relate suitability with 
population density but until now there has been no con-
sensus regarding the ubiquity of this relationship (Jiménez-
Valverde et  al. 2009, VanDerWal et  al. 2009, Weber and 
Grelle 2012). Our meta-analysis corroborates a general 
positive correlation between abundance and environmen-
tal suitability derived from ENM, although the summary 
effect of the correlation between abundance and suitabil-
ity was only moderate and widely variable. This pattern 
was consistent regardless of taxonomic group, modelling 
method, proportion of species range utilized, and set of 
variables included. Most studies used variables such as tem-
perature, precipitation, and measures of disturbance (e.g. 
crop presence) that are variables related to the Grinnellian 
niche (Soberón 2007), which are thought to be important 
in driving species abundance. However, environmental 
suitability is only one of several factors influencing spe-
cies abundance over geographic space. That environmen-
tal suitability explained approximately 30% (r  0.55) of 
variation in abundance, on average, is notable, considering 
that species abundance is a complex ecological trait that is 
also affected by time of colonization, interspecific competi-
tion, demography, and source-sink dynamics (see below). 
Suitability should be considered a reasonable proxy for 
species abundance.

Vertebrates and invertebrates showed the highest summary 
effect sizes among taxonomic groups examined. However, 
invertebrates also showed the widest confidence interval for 
the AS correlation. Jiménez-Valverde et  al. (2009) suggest 
that ENM’s do not account for arthropod abundance and 
that suitability should not be used as a surrogate of abun-
dance. Several components of vegetation structure (e.g. 
plant density and architectural complexity), and microscale 
variables such as leaf chemical composition and soil mois-
ture may be more important contributors to variation in 
arthropod abundance than climate and topographic vari-
ables (Price et  al. 2011), although climate variables may 
affect arthropod abundance as well. Indeed, studies on 
invertebrates using both microscale variables (e.g. soil pH, 
soil moisture, and shrub cover) and climatic variables taken 
locally over a short time span revealed an average AS cor-
relation higher than studies incorporating only topographic 
and interpolated climate variables [rmean  0.72, n  5 
(Mellin et al. 2012, Palm et al. 2012, Gutiérrez et al. 2013), 
rmean  0.13, n  107 (Jiménez-Valverde et  al. 2009, Filz 
et al. 2013), respectively]. Therefore, including only climatic 
variables may weaken the relationship between abundance 
and suitability for invertebrates, when compared to studies 
including microscale variables.

In contrast to invertebrates, plants showed the narrowest 
confidence interval but the lowest summary effect size for 
the AS correlation. This low correlation may suggest that 

correlate it to abundance. Similarity methods were the 
least used (n  16). All ENM’s generated suitability values 
that were positively correlated with species abundance. 
Machine learning methods showed the highest summary 
effect (r  0.59, CI  0.44–0.71, p  0.0001, k  316) fol-
lowed by similarity methods (r  0.58, CI  0.36–0.73, 
p  0.0001, k  16) and statistical methods (r  0.47, 
CI  0.38–0.54, p  0.0001, k  118). There was no dif-
ference in the strength of the AS relationship among ENM 
methods (Wald test  0.236, DF  2, p  0.889; Fig. 3B).

Summary effect of correlation between abundance and 
suitability was also positive when considering both large and 
small proportions of species’ ranges (r  0.51, CI  0.26–0.7, 
p  0.0001, k  20; r  0.62, CI  0.47–0.73, p  0.0001, 
k  125; respectively, Fig. 3C). However, there was no dif-
ference in the effect sizes between groups (Wald test  0.09, 
DF  1, p  0.764).

Summary effect of the AS correlation was also positive  
for studies modelling climatic and environmental niches 
(r  0.3, CI  0.16–0.43, p  0.001, k  120; r  0.58, 
CI  0.48–0.67, p  0.0001, k  330; respectively). 
However, studies deriving suitability from environmental 
niches exhibited a higher AS relationship than studies 

Figure 1. Quantile-quantile plot showing the relationship of the 
observed sample quantiles (black dots, n  450) and the theoretical 
quantiles from the standard normal distribution (mean of zero and 
standard deviation of 1). Black solid line indicates the mean of the 
data. Slope of the black solid line is approximately 1, indicating 
no bias. Dashed lines around the black dots indicate the 95% 
confidence interval.

Figure 2. Histogram showing the frequencies of the correlation 
coefficient (r) testing the relationship between abundance and envi-
ronmental suitability derived from ENM found for 450 species.

 16000587, 2017, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.02125 by C

A
PE

S, W
iley O

nline L
ibrary on [01/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



823

a response to local conditions (Hutchinson 1957). When 
environmental variables meet species requirements species 
attain high abundances which are generally located at the 
niche centroid (Maguire 1973, Martínez-Meyer et al. 2013). 
Furthermore, environmental suitability seems to be related 
to the carrying capacity of populations (Thuiller et al. 2014). 
Sites with high suitability tend to harbor larger populations 
because suitability decreases probability of extinction (Araújo 
et al. 2002) and increases birth and survival rates (Morrison 
et al. 2006). Therefore, the link between population demog-
raphy and local conditions seems to be the driving force of 
the AS relationship.

However, exactly because of the theoretical reasons 
described above, we acknowledge that the AS relationship 
may be more complex than a simple linear relationship. 
For instance, VanDerWal et  al. (2009) showed that suit-
ability predicts only the upper limit of local abundance of 
69 vertebrate species and that a linear model explained on 
average only 12% (r  0.35) of the variation in abundance. 
Therefore, the AS relationship under some circumstances 
may be better described by a constraint envelope of triangu-
lar shape, which is a common form of relationship between 
macroecological variables (Brown and Maurer 1987, Brown 
1995), whereby the highest abundance corresponds to the 

there are other ecological drivers affecting plant species 
abundances that are more important than environmental 
suitability. For instance, competitive exclusion could drive 
individuals to less favorable areas (Cabral and Kreft 2012). 
For plants this is especially important because the dominant 
competitor once established can prevent establishment of 
subordinate competitor seedlings (Went 1973). Therefore, 
dominant plant species may generate better ecological niche 
models than subordinate species because occurrence patterns 
of dominant species may reflect their niches better than sub-
ordinate species (Elmendorf and Moore 2008). On the other 
hand, neutral processes, such as ecological drift, may influ-
ence species abundance rather than niche-based processes 
(Hubbell 2001). However, it is worth emphasizing that niche 
and neutral theories are complementary and not conflicting 
ideas to explain biodiversity patterns (Chave 2004).

Conceptual and methodological issues underlying 
the AS relationship

A positive correlation between abundance and suitabil-
ity can be interpreted as a consequence of the ecological 
niche. Abundance of a species can be partially explained as 

Figure 3. (A) Summary effect of the correlation coefficient (r) calculated for the AS relationship for all species (n  450), only vertebrates 
(n  166), only invertebrates (n  133), and only plants (n  151), (B) for the three ENM approaches [machine learning (n  316), 
similarity (n  16) and statistical modeling (n  118)], (C) for studies carried out in large proportions of species’ range ( 50%) (n  20) 
and studies carried out in small proportions of species’ range ( 50%) (n  125) for mammals and birds only, and (D) for climatic niche 
models (n  120) and environmental niche models (n  330). All analyses were based on a hierarchical meta-analysis with random-effects 
model. Mean values (black circles) and 95% confidence intervals (vertical lines) for effect sizes are shown. Different letters in parentheses 
above confidence intervals indicate significant statistical difference between groups assessed with Wald test (p  0.05).
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the generality of the AS relationship should be accepted 
with caution because high suitability can indicate low or 
high abundance. Despite this, such inconsistency may be 
minimized using more adequate statistical methods, e.g. 
quantile-regression (Cade and Noon 2003) to describe such 
patterns. Moreover, this triangular pattern can arise due to 
several methodological and sampling artifacts as well such 
as inadequate survey techniques, small number of presences, 
sampling biases, scale, or unmeasured factors.

Modelling the ecological niche over a small area within 
a species’ range is thought to diminish the strength of the 
correlation between abundance and suitability (Nielsen 
et al. 2005) or generate a triangular relationship. However, 
we demonstrated here that there was no difference in the 
strength of the AS relationship between studies including 
large or small areas within species ranges. Thus, the correla-
tion between environmental suitability and abundance holds 
true regardless of the proportion of a species range that is 
considered by a study. Nonetheless our conclusion was based 
on mammals and birds only. Therefore, lack of difference 
between niche models based on completely sampled and 
partially sampled geographic ranges should be viewed with 
caution. We suggest that comparing ENM’s developed for 
the whole species distribution with those including small 
areas within species range may prove useful to better under-
stand the effect of scale on the AS relationship.

One hindrance to evaluating the AS relationship over the 
whole range, or even over a large area within a species’ range, 
is that it is expensive and time consuming. One alternative 
method might be to use published data on relative abun-
dance in well sampled communities across a species’ geo-
graphic range and use relative abundance to evaluate the AS 
relationship. This alternative would be much less time and 
money consuming than gathering data in the field and it 
seems a promising approach (Weber and Grelle 2012), espe-
cially when funding is scarce. However, researchers should 
be careful when using data obtained from published local 
communities. These data can be affected by many factors 
such as disturbance that can increase abundance of general-
ist species and decrease abundance of sensitive species, sea-
sonal differences because abundance is subject to resources 
phenology (Stevens and Amarilla-Stevens 2012), and under-
sampling effects that can make species abundance data less 
reliable (Yañez-Arenas et al. 2014). After controlling for such 
sources of variation or including disturbance variables into 
models, relative abundance data can be used to test AS rela-
tionships, but the criteria used by authors should be explic-
itly provided.

Another effect that should be considered when using rela-
tive abundance data is species probability of detection, which 
influences the density of presence points across sampled sites 
(Jiménez-Valverde 2011). Researchers cannot be sure if the 
positive relationship between local abundance and suitability 
estimated from a well calibrated ENM is a real pattern or is 
just the consequence of circular reasoning (Jiménez-Valverde 
2011). We suggest that if abundance data has enough varia-
tion (from sites of low to high abundance) and presence 
data is widespread across a species’ range, this concern may 
be minimal and the AS relationship can be properly tested. 
Moreover, the inclusion of absence data and unbiased sam-
pling data has provided better results than studies using only 

highest suitability. However, at higher suitability, abundance 
can be high or low, whereas at the lowest suitability abun-
dance tends to be low (VanDerWal et al. 2009, Tôrres et al. 
2012, Carrascal et al. 2015). Similarly, correlation between 
abundance and probability of use of habitat (derived from 
RSF) is also better described by a triangular relationship 
(Boyce et al. 2016). Unfortunately we were not able to ana-
lyze this triangular relationship here because we do not have 
access to the original data used in the papers sampled. It is 
not even possible to assess in which cases the AS relation-
ships studied here are better described by a triangular pattern 
than by a linear correlation coefficient. But it is important to 
note that if a moderate correlation between abundance and 
suitability was found using a simple correlation coefficient, 
if some (or even all) of the relationships analyzed were better 
described by a triangular envelope, our estimates of the over-
all magnitude of the relationship between abundance and 
suitability would be conservative. For instance, if we apply 
a quantile-regression (Tôrres et  al. 2012) to the original 
data to analyze the AS relationship, we would have higher 
values of correlations when considering the upper limit of 
abundance.

Thus, the origins of the triangular relationship between 
abundance and suitability may be in fact that we are con-
sidering only abiotic conditions (Grinnellian niche), but 
abundance may also be a function of species interactions 
(Eltonian niche), species dispersal and history (Gaston 2003, 
Peterson et  al. 2011). Therefore, a site can be assigned as 
highly suitable for a species but a superior competitor or the 
absence of a fundamental resource may prevent the species 
of occurring there (leading to species absence in a favorable 
area) or the species may become rare under these conditions 
(leading to low abundance in a favorable area) prevent-
ing it from attaining high abundance. Demographically, 
the suitability would be more related to carrying capacity 
of the region and thus set the upper limit of the triangular 
relationship, forming a soft boundary (Thuiller et al. 2014). 
In addition, if in a source-sink dominated metapopulation, 
good breeding sites in the source are likely to be rare and poor 
sites in the sink more common. As a result, a large propor-
tion of a population may occur in the sink (Pulliam 1988). 
Therefore, sink habitats may support higher abundance than 
source habitats. This situation has serious implications and 
could easily lead to misleading conclusions about habitat 
requirements of a species (Van Horne 1983, Pulliam 1988) 
if one implicitly assumes a positive and linear relationship 
between abundance and environmental suitability. Also, if 
samples were taken from portions of the range where the 
population is most dynamic (high turnover), the probabil-
ity of detection is lowest (Doherty et al. 2003). Moreover, 
we know less about how dispersal across regional boundaries 
may affect population dynamics and, consequently, abun-
dance used to correlate with suitability (Schurr et al. 2012). 
Furthermore, barriers may prevent a species from coloniz-
ing a suitable site, or a species may not colonize climatically 
suitable areas because it is recent in the phylogeny and has 
not had enough time to spread to most suitable sites (Weber 
et al. 2014).

All these hypotheses (species interactions, population 
dynamics, dispersal and time for colonization) may explain 
why a species can be rare in a suitable site. As a consequence, 
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scenario likely would generate a triangular relationship 
between abundance and suitability. In fact, importance of 
local conditions was corroborated by the fact that studies 
using other variables in addition to climate exhibited higher 
AS correlation than studies using only climate to derive 
suitability. Climatic niche models can be useful proxies for 
abundance, but environmental niche models prove to be 
a better proxy for species abundance than climatic niche 
models. There are numerous variables that influence spatial 
variation of abundance and climate is only a subset of these 
variables. Including local variables into ENM’s can improve 
our ability to generate better proxies for species abundance. 
However, including large-scale variables other than climate 
into ENM’s at large scales is still a challenge.

Concluding remarks

For a long time the AS relationship was assumed by ecologists 
but lack of data on geographic patterns in abundance 
prevented more general tests. As such data accumulates, 
the relationship started to be tested for some better known 
species. The meta-analysis tools used here provide the oppor-
tunity to make generalization based on what we know about 
the AS relationship so far. Moving beyond assumptions 
creates an opportunity to bring new rigor to macroecology 
and offers new insights into fundamental ecological process 
(Sagarin et al. 2006) such as the AS relationship (analyzed 
here) and the abundant center hypothesis (Sagarin and 
Gaines 2002). Here we showed that suitability derived from 
ENM’s is positively correlated with species abundance and 
we discussed that interaction between niche variables and 
population demography seems to be the mechanism that 
generates a positive correlation between abundance and 
suitability. These results suggest that occurrence data can 
be a reasonable proxy for abundance, especially for verte-
brates. Identifying areas where species are most abundant 
has been an invaluable tool for designing biological reserves 
(Schoener 1987, Araújo and Williams 2000, Araújo et  al. 
2004). Therefore, since the AS relationship holds true, ENM 
can be used as a proxy of species abundance that is a better 
ecological feature for defining spatial conservation priorities 
than species occurrence. Applying ENM to systematic con-
servation planning and selecting those areas that are highly 
suitable for a species can be effective in protecting source 
populations. Furthermore, we can predict how species abun-
dance will respond to climate change. Nevertheless, modelers 
and conservationists must be aware that high environmental 
suitability does not always indicate high abundance. This 
relationship can exhibit much variation, as we found in the 
AS correlations, and be better characterized by a triangular 
relationship between abundance and suitability which has 
been commonly found in many studies (VanDerWal et al. 
2009, Tôrres et  al. 2012, Gutiérrez et  al. 2013, Carrascal 
et al. 2015, Boyce et al. 2016).

Species abundance datasets are rare because collecting 
such data is money and time consuming (Potts and Elith 
2006). Nonetheless, since the AS relationship holds true, 
researchers can also use presence–absence data as a proxy of 
species abundance. Use of ENMs can significantly decrease 
survey costs and allow the study of large-scale abundance 

background or pseudo-absence data (Yañez-Arenas et  al. 
2014, Carrascal et al. 2015).

The three ENM methods generated suitability data that 
correlate positively with species abundance. Tôrres et  al. 
(2012) suggest that similarity models, such as BIOCLIM, 
should be preferred over alternative methods to test the AS 
relationship. Similarly, Ready et al. (2010) also found that 
similarity methods provide better correlations between 
abundance and suitability than machine learning and statis-
tical methods. However, the kind of method used to derive 
environmental suitability seems not to affect the strength of 
the AS relationship. All methods provided high summary 
effects for the AS correlation, but they all also exhibited wide 
confidence intervals. Therefore, we cannot suggest which 
modelling method is better for correlating suitability with 
species abundance since all methods showed a similar pat-
tern. Despite a positive AS relationship regardless of the 
kind of modelling method used, most studies using different 
algorithms found a wide range of correlations between abun-
dance and environmental suitability, ranging from no cor-
relation to high correlation. Surprisingly no study that used 
more than one algorithm to derive suitability has tested what 
the AS relationship would be using an ensemble approach 
(i.e. the combination of different outputs from different 
algorithms). Diniz-Filho et  al. (2015) analyzed the corre-
lation between mean suitability derived from an ensemble 
and heterozygosity of an endemic tree species of the Cerrado 
(Brazil) and found no significant correlation. However, sig-
nificance varied among algorithms that generated negative, 
near zero and positive correlations. Similar to the correlation 
between heterozygosity and suitability, uncertainty found in 
the AS relationship may also be due the methods chosen for 
modelling. To avoid such inconsistencies, we suggest using at 
least one algorithm of each modelling method to assess the 
AS relationship. The algorithm chosen for modelling is one 
of the biggest sources of uncertainty in ENMs (Araújo and 
New 2007, Diniz-Filho et al. 2009), thus ecologists should 
be aware of that and consider it when correlating species 
abundance with environmental suitability.

Population growth rates are affected directly by habitat 
conditions and limiting factors of the environment (Maguire 
1973). We observed few authors explicitly justifying why 
they used particular environmental variables [see examples in 
Nielsen et al. (2005) and Van Couwenberghe et al. (2012)]. 
Inclusion of variables in the model should be justified, even 
briefly, and the selection should include only those variables 
that authors think affect species abundance. In addition to 
environmental data, researchers should also have a good 
understanding of variation in species density across time and 
space (Johnson and Seip 2008). For instance, if the samples 
were taken when density is very low due to seasonal varia-
tion, small number of localities with inaccurate abundance 
data may hide or weaken the correlation between abundance 
and suitability. Sampling design is crucial to properly address 
the AS relationship. Informed selection is not an easy task 
and our knowledge of species requirements is often poor 
(Van Horne 1983). Habitat is the main determinant of dis-
tribution and abundance for most organisms (Boyce et  al. 
2016). Moreover, a habitat that provides cover but no food 
may still be deemed climatically suitable, even though the 
species might not be able to persist in that habitat; such a 
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patterns using less information. It is worth emphasizing 
that modelling a species niche does not replace the need 
for abundance data at large spatial scales, but it improves 
our understanding of spatial variance of species abundance 
and reinforces the need to incorporate GIS variables other 
than climate when correlating environmental suitability 
with abundance. Although the general relationship between 
abundance and suitability was moderate, ENM can be used 
as a useful proxy of abundance, especially for vertebrates.
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