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Abstract EEL: ethanolic extract of the leaves
v EER: ethanolic extract of the roots
As part of our continuing chemical and biological ~ EES: ethanolic extract of the stems
analyses of Rubiaceae species from Cerrado, we  Fs: femtoseconds
isolated novel alkaloids 1 and 2, along with  HL: hexane
known compounds epicatechin, ursolic acid, and  ICL: isocitrate lyase
oleanolic acid, from Galianthe ramosa. Alkaloid 2  MD: molecular dynamics
inhibited malate synthase from the pathogenic = MIC: minimal inhibitory concentration
fungus Paracoccidioides spp. This enzyme is con-  ML: methanol
sidered an important molecular target because it ~ MLS: malate synthase
is not found in humans. Molecular docking simu-  ns: nanoseconds
lations were used to describe the interactions be-  PbICL: isocitrate lyase from Paracoccidioides
tween the alkaloids and malate synthase. spp.
PbMLS:  malate synthase from Paracoccidioides
Spp.
Abbreviations PCM: paracoccidioidomycosis
v PDB: Brookhaven Protein Data Bank
AL: ethyl acetate RMSD: root-mean-square deviation
ASA: accessible surface area
CL: chloroform Supporting information available online
DTNB: 5,5'-dithiobis-(2-nitrobenzoic acid) http://www.thieme-connect.de/products
EEF: ethanolic extract of the flowers
Introduction the phytopathogenic fungus Magnaporthe grisea
v [10]. The expression of the MLS gene in Paracocci-

Paracoccidioides spp. are dimorphic fungi that
cause PCM, the most prevalent invasive fungal
disease in South America [1]. Distinct forms of
PCM exist [2], and prolonged treatment regimens
are required to treat patients with the more se-
vere forms, resulting in greater toxicity and dis-
ease relapse [3]. In addition, cases of PCM associ-
ated with AIDS have recently been reported [4-5].
Over the last decade, efforts have been focused on
finding specific targets for antifungal drugs that
are absent in mammalian cells. The role of the
glyoxylate cycle and the associated enzymes ICL
and MLS in microbial virulence has been reported
for several pathogens, including Mycobacterium
tuberculosis [6], Candida albicans [7-8], Crypto-
coccus neoformans [9], Paracoccidioides spp., and
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dioides spp. is induced during the infection pro-
cess, suggesting that this enzyme plays an impor-
tant role in the establishment of infection [11-
14]. Therefore, this enzyme may be an attractive
target for novel antifungal agents against PCM.
Indole alkaloids are a diverse and complex class of
natural products. Because this class has been
found to exhibit a wide range of biological activ-
ities, including antifungal activity, we included
carboline alkaloids isolated from Rubiaceae spe-
cies in our antifungal screening program to iden-
tify natural molecules with the potential to inhib-
it Paracoccidioides spp. growth and PbMLS activ-
ity.

In this paper, we describe the structural elucida-
tion of two novel indole alkaloids, 1 and 2, iso-
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# 13¢/HSQC* 6'H (H mult: J in Hz) Table 1 'Hand "3C/HSQC
1 2 1 2 (500.15 MHz, CDCl3) NMR data for
1 = - 9.57 (1H; brs) 9.39(1H; ) alkaloids 1 and 2.
2 135.4 135.3 - -
3 141.9 142.7 - -
4 - _ _
5 138.3 138.5 8.33 (1H; d; 5.4) 8.40 (1H; d; 5.3)
6 114.5 115.4 7.89 (1H; d; 5.4) 8.02 (1H; d; 5.3)
7 128.3 127.8 = =
8 106.3 1121 - -
9 157.5 157.2 - -
10 91.9 100.4 6.28 (1H; d; 1.8) 6.68 (1H; d; 8.1)
11 162.3 129.3 - 7.45 (1H; t; 8.1)
12 87.2 104.4 6.54 (1H; d; 1.8) 7.11 (1H; d; 8.1)
13 142.8 141.8 - -
14 57.6 57.5 3.76 (1H; d; 11.0) 3.78 (1H; d; 11.8)
15 83.3 83.4 - -
16 41.8 41.9 2.01-1.94(1H;m) 2.13-2.04  2.01-1.94 (1H; m)
(1H; m) 2.13-2.04 (1H; m)
17 28.6 28.6 1.90-1.83 (1H; m) 1.95-1.87 (1H; m)
2.13-2.04 (1H; m) 2.13-2.04 (1H; m)
18 465 46.5 3.72-3.67 (1H; m) 3.75-3.71 (1H; m)
19 147.3 147.3 - -
20 109.5 109.8 4.61 (1H; brs) 4.68 (1H; brs)
4.67 (1H; brs) 4.63 (1H; brs)
21 20.9 21.5 1.71 (3H;s) 1.74 (3H;5)
22 25.5 25.9 0.98 (3H; s) 0.98 (3H; s)
9-0CH; 55.6 55.7 4.01 3H;s) 4.07 3H: s)
11 -0CH3 55.8 3.86 (3H; s) -

*13C chemical shifts were measured from indirect dimension of HSQC and HMBC experiments

lated from the aerial part of Galianthe ramosa E.L. Cabral (Rubia-
ceae). We also describe their activity against Paracoccidioides spp.
and PbMLS as well as the results of molecular docking investiga-
tions.

Results and Discussion

v

Alkaloid 1 was obtained as a brown solid and was found to con-
tain a nitrogen functionality based on TLC analysis with Dragen-
dorff's reagent. Analysis of the HRMS data indicated that com-
pound 1 possesses the molecular formula CyoHyg NoO3 [(M + H)*:
m/z 367.2027, calcd. m/z 367.2022]. The IR spectrum suggested
the presence of an NH and/or OH (3390 cm™) functionality and
an alkene group (1625 cm™). The 'H NMR spectrum showed res-
onances at 6 8.33 (1H, d, J=5.4Hz), 7.89 (1H, d, J=5.4 Hz), 6.28
(1H,d,J=1.8Hz), and 6.54 (1H, d, J = 1.8 Hz) that were correlated
with . at 138.3, 114.5, 91.9, and 87.2, respectively (© Table 1),
which suggested the presence of a tetrasubstituted phenyl ring
and a 1,2-pyridine ring. The presence of seven quaternary sp>
carbons at 135.4 (C-2), 141.9 (C-3), 128.7 (C-7), 106.3 (C-8),
157.5 (C-9), 162.3 (C-11), and 142.8 (C-13), the HMBC correla-
tions between H-6 and C-8 (106.3) and C-2 (135.4), as well as
the H-5/C-7 (128.3), H-10/C8 (106.3) and H-12/C-10 (91.9) corre-
lations indicated the presence of a disubstituted moiety, f-carbo-
line. In the HSQC spectrum, the resonances at § 4.01 (3H, s) and
3.86 (3H, s) were correlated with the resonances at 55.6 and 55.8,
respectively, and HMBC correlations existed between both C-9
(6c 157.5) and C-11 (6. 162.3) and these methoxy groups. These
correlations corroborated the presence of a meta-substituted f-
carboline core at C-9 and C-11. Four methylene hydrogens,

2.13-1.94 (m, H-16 and H-17), were correlated with § 41.8 and
28.6, and two methine hydrogens, § 3.72-3.67 (1H, m, H-18)
and 6 3.76 (1H, d, J=11Hz), were correlated with 6. 46.5 and
57.6, respectively. An oxymethine carbon was also observed at §
83.3. The COSY correlations H-16/H-17/H-18 and the HMBC cor-
relations H-14/C-15/C-16 confirmed the presence of a cyclopen-
tane unit in alkaloid 1. Additionally, in the HMBC spectrum, the
methyl group at § 0.98 (3H, s, H-22) was correlated with C-15 (6
83.3), suggesting that this five-membered ring was substituted
with hydroxy and methyl groups.

The indole unit and the cyclopentane ring were found to be con-
nected at C-3 and C-14, as demonstrated by the HMBC correla-
tion between the hydrogen at 6 3.76 (1H, d, H-14) and 141.9 (C-
3). Additionally, a CH3CCH; fragment was suggested by the pres-
ence of the signal of methylene group at § 4.61 (1H, br s, H-20a)
and 6 4.67 (1H, br s, H-20b) and the sp? carbon at 109.5. Further-
more, the methyl hydrogens at § 1.71 (3H, s, H-21) were corre-
lated with §. 20.9 (C-21) in the HSQC spectrum and with C-20
(109.5) and 147.4 (C-19) in the HMBC spectrum, which corrobo-
rated the presence of an isopropenyl unit.

The main HMBC correlations, H-14/C-3/C-15/C-18 and H-20/C-
18, demonstrated that the three units are connected (Fig. 17S,
Supporting Information). Further HMBC correlations are listed
in Table 1S, Supporting Information. All of these data were con-
sistent with the proposed structure for novel alkaloid 1. Our data
for alkaloid 1 were compared with available literature data for
the alkaloid 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-
methoxy-9H-p-carbolin-1-yl) cyclopentanol isolated from Ga-
lianthe thalictroides [15], and this comparison showed that these
two alkaloids possess a similar substructure.
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The relative configuration of the stereocenter at C-14 was deter-
mined based on the coupling constant of H-14 (6 3.76,d,J=11.0),
which corresponded to a 3Jy14-p1g vicinal coupling. The large
coupling constant observed from the cis orientation pattern was
confirmed by theoretical calculations of the spin-spin coupling
constants. The calculated 3Jy14-y18 Vvicinal coupling constants
were 8.5 Hz and 10.5 Hz for the trans isomer and cis isomer, re-
spectively. These results clearly agree with the experimental
3Jt14-118 and indicate a cis substitution pattern for the five-mem-
bered ring. In addition, the NOE difference peaks for H-14/H-16/
H-17 and H-18 that were observed when the methyl group was
irradiated verified that H-14 and H-18 were in the cis orientation.
Alkaloid 2 showed spectroscopic data similar to those of alkaloid
1.

The analysis of the HRMS data indicated that compound 2 pos-
sesses the molecular formula Cy;Hy4N20, [(M + H)": m/z
337.1965, calcd. m/z 337.1916]. This ion was 30 amu lighter than
that for alkaloid 1, suggesting that compound 2 contains only one
methoxy unit.

The 'H NMR, HSQC and HMBC correlations are listed in Tables 1S
and 2S, Supporting Information. Only one methoxy group, at §
4,07 (s, 3H), was present, and it was correlated with dc 55.7. The
HMBC correlation of this methoxy group with the resonance at
157.2 and the 3C assignments for the aromatic ring system sug-
gested that this group was on the 9-position of the B-carboline
indole ring. The comparison of the data for alkaloids 2 and 1 indi-
cated that alkaloid 2 is a 9-methoxyindole alkaloid derivative.
Epicatechin, ursolic acid and a mixture containing ursolic acid
and oleanolic acid were also isolated from G. ramosa, and the
spectroscopic data for these compounds agreed with those from
the literature [16-17].

Alkaloids 1 and 2 (© Fig. 1) were tested for activity against Para-
coccidioides spp. and its enzyme PbMLS. Both 1 and 2 inhibited
the growth of Paracoccidioides spp., with MIC values of 185 uM
and 26 uM, respectively. For the antifungal amphotericin B (Sig-
ma-Aldrich; from Streptomyces sp., approx. 80% by HPLC), the
MIC value was 0.270 pM. We evaluated the effects of alkaloids 1
and 2 on PbMLS using pyruvic acid as a positive control [18-19].
Alkaloid 1 exhibited no inhibitory activity against PbMLS, but al-
kaloid 2 inhibited PbMLS with an ICsq of 50 uM (© Fig. 2), compa-
rable to that of the positive control, pyruvic acid.

A 3D homology model of PhMLS was built based on the 3D struc-
tures of both Escherichia coli and Bacillus anthracis malate syn-
thases A, each of them being 54% identical to PbMLS (PDB ID:
3CUX; resolution: 1.7 A). The Ramachandran plot of the homol-
ogy model was used to assess the @ and y distributions. Ninety-
six percent of the residues were in the favored region, and 2.9%
were in allowed regions. The quality factor of this structure was
estimated to be 72.710 by ERRAT.

PbMLS was subjected to a 200 ns simulation with the program
Gromacs to achieve a stable RMSD for the non-hydrogen atoms
with respect to the structure homology models.

© Fig. 3 shows that the conformation of PbMLS remained stable
at around RMSD =0.5 nm after approximately 80 ns of simula-
tion.

The cluster analysis of the conformations with a cutoff of 0.3 A al-
lowed the identification of 7 conformations that are capable of
the flexibility of PbOMLS throughout its trajectory. However, even
in an area of transient stability after approximately 80 ns, only
one of these conformations was able to effectively represent the
trajectory (Fig. 18S, Supporting Information). This conformation
(cluster 1) was then used for the molecular docking analysis. This

de Freitas CS et al. B-Carboline Alkaloids from... Planta Med 2014; 80: 1746-1752

Fig.1 Structures of al-
kaloids 1 and 2 isolated
from Galianthe ramosa.
(Color figure available
online only.)
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Fig.2 Influence of alkaloids 1 and 2 on the activity of malate synthase
from Paracoccidioides spp. The relative activity of PBMLS is shown as a
function of the concentrations (in uM) of pyruvic acid (positive control) and
indole alkaloids 1 and 2. Reactions performed with (indicated in red) and
without (negative control indicated in yellow) PbMLS served as references.
(Color figure available online only.)
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Fig.3 Dynamic profile for the root-mean-square deviation obtained for

the molecular dynamics simulations of isocitrate lyase from Paracoccidioides
spp. over 200 ns. The homology model (blue) and the MD structure (green)
of PbMLS are superimposed in the inset. (Color figure available online only.)

structure exhibited a higher RMSD with respect to the homology
model, with an increase of approximately 5.63 A.

Molecular docking of alkaloids 1 and 2 to PbMSL was performed
using AutoDock Vina. Only the best model structures (lowest
score) provided by AutoDock Vina were selected. © Fig. 4 shows
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the manner in which each compound is accommodated in the
binding pocket and the PbMLS residues that interact most
strongly with the ligand.

Notably, as shown in the figure inset, the alkaloids are not bound
in the same region of the binding pocket. Strong electrostatic in-
teractions exist between the functional groups present in alka-
loid 1 and ASP96 and GLY435 of PbMLS. In the case of ASP96, a
hydrogen bond is present in alkaloid 1 between the methoxy
group of the indole and the carbon atoms of the indole core, and
in alkaloid 2, this interaction occurs with the side chain of
SER216. Conversely, stronger electrostatic interactions occur be-
tween the NH of the indole core of alkaloid 2 and the side chain of
ARG47. The residue ARG46 is critical for the stability of alkaloid 2
through m-interactions. The heterocycle of 2 exists in a more con-
strained conformation in the cavity, which favors the m-interac-
tions.

The energies obtained by AutoDock Vina for 1 (-8.0) and 2 (- 8.8)
are very close, with a difference of only 0.8. These data indicate
that alkaloid 2 tends to be somewhat more stable than 1 (the
lower the score, the greater the stability). This small energy dif-
ference is certainly not sufficient to explain the differences in
the experimental activities of these compounds. However, given
the enzyme specificity and their ability to fit into the binding
pocket, alkaloid 2 clearly exhibits a greater propensity for bind-
ing. LigPlot diagrams of the protein/ligand binding modes
(©Fig. 4) suggest that 2 participates in a higher number of non-
polar interactions than 1. As shown in ©Fig.4, the pocket of
PbMLS contains several cavities, and a perceptible difference ex-
ists between the regions of stability for ligands 1 and 2. Alkaloid 2
participates in a larger number of nonpolar contacts, and we be-

Original Papers RWZ3)

Fig.4 Molecular surface representation of malate
synthase from Paracoccidioides spp. and LigPlot dia-
grams of alkaloids (A) 1 and (B) 2 in the binding
pocket. The modes of interaction for the ligands are
represented in orange (model 1) and yellow (model
2) for alkaloid 1 and in blue (model 1) and green
(model 2) for alkaloid 2. The residues involved in the
interactions with the alkaloid ligands 1 and 2 are
represented in the diagram to the left and right, re-
spectively. Pink circles indicate residues involved in
hydrogen bonds or charged interactions; green
circles indicate residues involved in van der Waals
interactions; and blue arrows indicate side chain
hydrogen bond interactions. The arrowheads point
toward the electron donor. The binding modes
shown in orange for the compounds represent the
structures with the lowest scores and highest hits
from a total of 1000 independent simulations with
AutoDock Vina. The structures shown in yellow are
the binding modes with the second lowest scores
for alkaloids 1 and 2. (Color figure available online

only.)

PHE
517

GLU
219

lieve that this difference is crucial for providing additional stabil-
ity to compound 2. These contacts result in a large increase in the
entropy of the medium when the nonpolar groups of 2 are in the
cavity of PbMLS (greater complementarity). This conclusion is
supported by the fact that alkaloid 2 has a lower ASA than alka-
loid 1. The ASA of alkaloid 2 is almost 100 A2 less than that of al-
kaloid 1. The nonpolar groups of alkaloid 2 are better protected in
the PbMLS cavity (© Fig. 4). Our hypothesis is that the lower hy-
drophilicity of 2 provides sufficient specificity to ensure greater
accessibility to the binding pocket, resulting in a lower binding
free energy (not estimated here). This difference is certainly very
close to the threshold at which 2 would lose its stability in the
cavity, but it is still sufficient to maintain 2 in the cavity.

This difference was also clear when we analyzed the histogram
for each compound (not shown here). Nearly 100% (985/1000)
of the simulations for alkaloid 2 demonstrated - 8.8 scores for
mode 1, whereas for alkaloid 1, these states were not as well-de-
fined as those for alkaloid 2.

In conclusion, two novel alkaloids 1 and 2 were isolated from G.
ramosa, and alkaloid 2 exhibited activity against Paracoccidioides
spp. and the enzyme PbMLS. However, the inhibitory activity of
alkaloid 2 on enzyme PbMLS does not fully explain its activity
against Paracoccidioides spp. so that there are possible additional
targets involved. Alkaloid 2 is the first example of a MLS inhibitor
in the literature. Additionally, the results of molecular docking
analyses corroborated the experimental findings.

de Freitas CS et al. B-Carboline Alkaloids from... Planta Med 2014; 80: 1746-1752
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Material and Methods

v

General experimental procedures

IR spectra were obtained with a Perkin Elmer Spectrum 400
FT-IR. 'H, 13C, and 2D spectra were recorded on a Bruker Avance
II 500. HRMS spectra were recorded with a Waters Xevo Q-Tof
spectrometer.

Plant material

Fresh material from G. ramosa (stems, leaves, flowers, and roots)
was collected on November 19, 2006 from an area with Cerrado
vegetation with rocky outcrops at Cocalzinho, Parque Estadual
dos Pireneus (15°48'23"S, 48°49'21"W,; at 1100-1200 m alti-
tude), Goias, Brasil.

A voucher specimen was identified by Piero Delprete and depos-
ited at the Herbarium of the Federal University of Goias, Goidnia,
Brazil with the collection No. Delprete et al. 9955.

Plant extract and isolation

The plant material was dried at room temperature, and the dry
material was powdered and extracted with 95% ethanol ((leaves
-87g,4%x0.5L), stems (102 g, 4x0.5L), flowers (22 g, 4x0.1L),
and roots (103 g, 4 x 0.5 L)). The ethanol was removed under re-
duced pressure distillation using a rotary evaporator to afford
the crude EEL (24.5 g), EEF (9.2 g), EES (11.9g), and EER (12.6 g).
The EEL extract was successively partitioned (3 x 0.2 L) with HL
(0.9g), CL(1.5g), AL (2.3 g), and ML (5.0 g). This process was re-
peated with the EES and EER extracts.

The CL fraction (0.5 g) was fractionated using a chromatographic
open column (2 x 21 cm) packed with silica gel 60 (Machery-Na-
gel MN, 70 to 230 mesh, 30 g) eluting with a gradient of hexane/
AcOEt (1:1), AcOEt/MeOH (9:1), and MeOH. The total volume of
each eluent was 300 mL. Thirty fractions were obtained, and
these were grouped into 7 subfractions based on TLC analysis:
CLF1 (0.02g), CLF2 (0.03g), CLF3 (0.01g), CLF4 (0.04g), CLF5
(0.01g), CLF 6 (0.16 g), and CLF7 (0.30g). The subfraction CLF6
(0.16 g) was then fractionated using a chromatographic column
(1x11cm) packed with silica gel 60 (MN - 230 to 400 mesh)
eluting with CHCI3/MeOH (9:1), CHCI3/MeOH (1:1), and MeOH
(100 mL each).

This chromatographic purification yielded 73 fractions, which
were grouped into 10 subfractions CLF 6.1 (0.001g); CLF 6.2
(0.001 g); CLF 6.3 (0.003 g); CLF 6.4 (0.012 g); CLF 6.5 (0.010g);
CLF 6.6 (0.001g); CLF 6.7 (0.002 g); CLF 6.8 (0.001g); CLF 6.9
(0.001 g); and CLF 6.10 (0.125 g). From these subfractions, 12 mg
of alkaloid 1 was obtained from CLF 6.4, and 2 mg of alkaloid 2
was isolated from CLF 6.7 (0.001 g) after TLC analysis.

The AL fraction (2.0 g) was fractionated using a chromatographic
column previously packed with silica gel 60 (230 to 400 mesh,
MN, 2 x 21 cm, 30 g) eluting with a gradient of CHCl3/MeOH. This
chromatographic purification yielded 76 fractions, which were
grouped into 14 subfractions: ALF1 (0.02 g), ALF2 (0.09 g), ALF3
(0.03 g), ALF4 (0.03 g), ALF5 (0.02 g), ALF6 (0.02 g), ALF7 (0.16 g),
ALF8 (0.03 g), ALF9 (0.17 g), ALF10 (0.03 g), ALF11 (0.19 g), ALF12
(0.22 g), ALF13 (0.06 g), and ALF14 (0.57 g).

The subfraction ALF7 (0.16) was then fractionated by silica chro-
matography (MN, 230 to 400 mesh, 1x12cm, 5 g) eluting with
CHCI3/MeOH (95/5, 93/7, 90/10, and then 100/0). From the sub-
fraction eluted with 95:5 CHCl3/MeOH, the subfraction ALF7.1
yielded oleanolic acid (20 mg) and the subfraction ALF7.2 ursolic
acid (25 mg). From the subfraction eluted with CHCl3/MeOH 90/
10 ALF7.4, we isolated 6 mg of epicatechin.

de Freitas CS et al. 5-Carboline Alkaloids from... Planta Med 2014; 80: 1746-1752

Minimum inhibitory concentration

The yeast assay was performed using the microdilution method,
as described in the M27-S3 reference method of the CLSI [20],
with modifications previously described by de Paula e Silva et al.
[21], to determine MIC. Alkaloids 1 and 2 from G. ramosa were
prepared as described above and diluted according to the CLSI
M27-A3 method. The inocula were prepared in RPMI-1640 (GIB-
CO™) with L-glutamine and without sodium bicarbonate, sup-
plemented with 2% glucose and buffered to pH7.0 using
0.165M MOPS (Sigma-Aldrich). The isolated Paracoccidioides
Pb01 (ATCC-MYA-826) yeast cell suspension was adjusted to a fi-
nal concentration of 0.5 x 103 to 2.5 x 103 cells/mL in RPMI-1640.
In 96-well plates, serial dilutions (250 mg/L to 0.48 mg/L) of the
analyzed compounds were added to wells containing yeast. The
plates were incubated at 35 °C and 150 rpm for 48 h. After this pe-
riod, alamarBlue® (BioSource) was used according to the manu-
facturer’s instructions, and the plates were incubated for an addi-
tional 24 h, thus requiring 72 h for the MIC final reading. The low-
est concentration of antifungal agent that substantially inhibited
the growth of the organism was visually determined and was
considered the point at which no change was observed in the
original blue color of the reagent.

Malate synthase from Paracoccidioides spp.

activity assays

The activity assays, as well as the inhibition assays using pyruvic
acid (Sigma-Aldrich; 99.9%) and indole alkaloids, were per-
formed as previously described by Roucourt et al. [22]. Pyruvic
acid was used as a positive control for PDMLS inhibition. Samples
without added PbMLS served as the negative controls. Briefly, an
endpoint assay that measured the amount of CoA was used. The
number of free thiol groups on CoA was determined using DTNB
(Sigma-Aldrich) [23]. The absorption at 415 nm was measured
using a microplate reader (model 680, Bio-Rad Laboratories).
DTNB was added to a final concentration of 2 mM. The addition
of DTNB to the mixture halts the reaction, most likely due to re-
action of the DTNB with the free thiol groups of cysteine residues
[24]. The standard reaction mixture contained 2 ug of PbMLS,
100 mM Tris-HCl, 5 mM MgCl,, 2 mM glyoxylate (Sigma-Aldrich),
and 1 mM acetyl CoA (AppliChem GmbH). Unless stated other-
wise, the reactions were incubated for 45 min at pH 7.5. All ex-
periments were conducted in triplicate. Student t-tests were
used for statistical comparisons, and the observed differences
were statistically significant at p<0.05. The error bars corre-
spond to one standard deviation.

Receptor preparation

The 3D structure of PbMLS was generated based on the 3D struc-
ture of E. coli and B. anthracis malate synthase A (PDB id: 3CUZ)
using the Modeller algorithm in the ModWeb server [25]. The
quality of the predicted structure was assessed using the NIH-M-
Bl laboratory servers (http://nihserver.mbi.ucla.edu) with ERRAT
[26]. The Ramachandran plot of PbMLS was prepared on the
RAMPAGE web server [27], and Verify 3D was used to evaluate
the environments of the amino acids [28].

MD simulations for this structure were performed with GRO-
MACS [29-31] to reproduce the structural stability of this recep-
tor in its native environment [32]. The particle mesh Ewald meth-
od [33] was used with periodic boundary conditions in all direc-
tions. The entire system was composed of 5406 atoms of PbMLS,
3Cl ions, and 22500 solvent atoms. To release conflicting con-
tacts, the simulation was then subjected to minimization using
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the steepest descent energy and was considered complete only
when the tolerance of 1000 kJ/mol was no longer exceeded. After
minimization, the system was subjected to a 100 ps simulation in
the NVT and NPT ensembles. For both ensembles, the tempera-
ture was set to 300 K, and the position of the protein was re-
stricted. In the NVT ensemble, temperature coupling was per-
formed with the V-rescale Berendsen thermostat (thermostat re-
laxation constant=0.1ps), and the velocities were determined
from the Maxwell distribution. In the NPT ensemble, pressure
coupling was performed with the Parrinello-Rahman barostat
under the following conditions: pressure, 1 atm; time-step, 2 fs;
and isothermal compressibility of water, 4.5x107-bar™'. Only
after these steps was the system subjected to MD simulations.
The simulation was performed for 200 ns at a constant tempera-
ture of 300 K and a pressure of 1 atm with a time-step of 2 fs
without restricting the protein conformation. Data concerning
the trajectory of these times were collected every 5 ps. Equilibra-
tion of the trajectory was assessed by monitoring the equilibra-
tion of quantities such as RMSD of non-hydrogen atoms with re-
spect to the initial structure.

The program g_cluster (GROMACS tool) was used to determine
the conformations that best represent the structures of the entire
trajectory obtained during the simulation. The algorithm gromos,
as described by Daura [34], was selected for this purpose. A cutoff
of 0.3 nm for the clusters was used, given the profile of RMSD
(evolution of RMSD). The clusters were determined using the
non-hydrogen atom RMSD values. To prepare the structures for
docking, all of the water molecules were removed from the se-
lected structures.

Ligand preparations

The 3D structures of 1 and 2 were generated using the GlycoBio-
Chem PRODRG?2 Server [30]. Following conversion of the struc-
tures into PDB format, charges and non-polar hydrogen atoms
were added using the prepare_receptor4.py script from
MGLTools [35], and pdbqt files (format for AutoDock) containing
the individual compounds and the receptor were created. The
conformations in those files were used as the initial conforma-
tions in the molecular docking simulations.

Molecular docking

The conformations of the compounds on the surface of PhMLS
were limited to a region surrounding the binding pocket of the
protein, which was defined using the DogSiteScorer - active site
prediction and analysis server [36,37]. The structure of PhMLS
was fixed (rigid) during all docking tests. All stages of the simula-
tions were performed with a flexible ligand structure for the se-
lected PbMLS structure.

AutoDock Vina [38,39] was used for the molecular docking sim-
ulations with the PbMLS model and the compounds. The simula-
tions were performed with no preconceived bias toward particu-
lar interactions, and the best model structure of the complex was
determined according to the optimal simulated stability and ac-
cessibility (highest hits). This selection was based on analysis of
the histogram of the energies obtained for a total of 1000 inde-
pendent simulations of each compound. The two most frequent
states, with the lower energies in the histogram, were selected
as conformational modes.

The scores for the conformations generated by AutoDock Vina
(global energy) consider the weak attractive and repulsive van
der Waals forces (hydrophobic interactions), hydrogen bonds,
and torsional penalties [40].
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Theoretical calculations

The protocol used for these calculations is commonly found in
the literature [41,42]. The geometries of the cis and trans isomer
structures were first optimized using the MP2 method [43] and
the cc-pVDZ [44,45] basis sets and included the solvent effect
(chloroform) from the polarizable continuum model [46]. After
this process, these optimized structures were used to perform
the spin-spin coupling constant (J) calculations for the B3LYP
functional and cc-pVTZ [44,45] basis sets, which also included
solvent effects. All of the calculations were performed using the
Gaussian 09 package [47].

Supporting information

Supporting information shows experimental data for epicate-
chine and ursolic acid as well as spectra ('"NMR, COSY, HSQC,
HMBC, NOESY, HRMS) and HMBC and COSY correlation tables
for alkaloids 1 and 2. Two additional figures showing cluster anal-
yses and grid set within the pockets of PDMLS are also available as
Supporting Information.
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