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Abstract

Let k be an algebraically closed field andA be a tree algebra. We consider here a class obta
by the blowing-up of a tree algebraA at a set of verticesD of A, such an algebra is denoted
A{D}. The objective of this paper is to prove the equivalence between the derived-tameness
non-negativity of the Euler form for algebras of this form. We also show that, in this case, ifD is a
non-empty set thenA{D} must be derived equivalent to a special incidence algebra, called sem
algebra.
 2005 Published by Elsevier Inc.
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1. Introduction

Let k be a fixed algebraically closed field. For a finite-dimensionalk-algebraA, we de-
note by modA the category of finite-dimensional rightA-modules. We are interested in t
description of the derived categoryDb(A) of bounded complexes over modA. Our inter-
est in this problem is partially motivated by the fact that the derived categories of c
categories of coherent sheaves are related to the derived categories of finite-dime
algebras. For instance, it was shown by D. Happel [13] that, ifA is derived equivalent to
the derived category of a hereditary category, thenDb(A) is triangle equivalent toDb(H),
E-mail address:diane@inf.ufg.br.
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whereH is a hereditary algebra, orDb(A) is triangle equivalent toDb(cohX) where cohX
is the category of coherent sheaves over the weighted projective lineX in the sense of [7].

A precise description of the categoryDb(A) is known for relatively few classes o
algebras. One of those is given by algebras whose derived category is cycle-finite
these cases,A is derived equivalent to a tame hereditary algebra or to a tubular alg
The latest ones are in fact derived equivalent to some cohX. In general, very little is known
about the derived category. However, quite a lot is known for (skewed) gentle alg
(which includes semichain) whose derived category was studied in [10].

In this paper, we are interested in the case whereA is derived-tame. We recall that, b
[11], if the global dimension ofA is finite, then the derived categoryDb(A) is triangle
equivalent to the stable module category of the repetitive categoryÂ. Thus, following [16],
we say that an algebraA, of finite global dimension, isderived-tameprovided the categor
Â is tame, that is, each finite full subcategory ofÂ is tame, see [6]. For further discussi
on derived tameness, we refer the reader to [9]. It is an interesting question to
combinatorial criterion allowing to verify whether a given algebra is derived-tame or
Thus, for instance, arose the problem to determine which algebras are derived-tam
only if their Euler quadratic forms are non-negative. We recall that, ifA is an algebra o
finite global dimension, then its Euler quadratic form is defined on the Grothendieck
of A by χA(dimM) = ∑∞

i=0(−1)i dimk ExtiA(M,M) for anyA-moduleM .
This problem was first solved for tree algebras [5,8]. It was shown that a tree al

A is derived-tame if and only ifχA is non-negative. Moreover, in this case,A is derived
equivalent to one of the following: a hereditary algebra of typeE, Ẽ, a tubular algebra
or a special type of incidence algebras, called semichain algebra (see Section 2.2
definition). Semichain algebras play a prominent role in this paper.

We consider here a class of algebras obtained by the blowing-up of a tree algeA

at a set of verticesD, in the sense of [5], such an algebra is denoted byA{D}, see also
Section 2.3. These blowing-up of tree algebras are natural in our context since th
generalizations of tree algebras which contains the class of semichain algebras. The
tive of this paper is to give the equivalence between derived-tameness and non-ne
of the Euler form for algebras of this form. We prove the following theorem.

Theorem. Let A be a tree algebra andD a non-empty set of vertices ofA. The following
conditions are equivalent:

(a) The blowing-upA{D} is derived-tame.
(b) The Euler formχA{D} of A{D} is non-negative.
(c) The blowing-upA{D} is derived equivalent to a semichain algebraS(c,m).

In particular, in this case the derived class of the blowing-up algebraA{D} is uniquely
determined by the number of vertices, the corank and the Dynkin type of its Euler fo

It is easily seen in Section 2.4 that each of the equivalent conditions above im
that A is derived-tame. We will, as in the proof for tree algebras, consider two cla
of derived-tame tree algebras. We say that a derived-tame tree algebra isderived of type

E if it is derived equivalent to a hereditary algebra of typeEp, Ẽp (p = 6,7,8) or to a



22 D. Castonguay / Journal of Algebra 289 (2005) 20–41

s 3

ing-up
sed in

ted.

g
eal

the

d,

of

tivity,
], if
ave

gative
tubular algebra. Otherwise, we say that it isderivedE-free. Thus, the proof of the theorem
is divided in two cases depending whether the tree algebra is derived of typeE or not. If the
tree algebraA is derivedE-free, the proof is given in two propositions shown in Section
and 4, respectively. Section 5 presents the proof whenA is derived of typeE. We recall
some concepts and general facts in Section 2. We also introduce a subclass of blow
of tree algebras which are derived equivalent to semichain. This subclass will be u
the proof of the main theorem.

2. Derived-tame algebras and blowing-up

2.1. Notation

Let A be a basic algebra of the formA = kQ/I , whereQ is a finite quiver andI is an
admissible ideal of the path algebrakQ. We usually suppose that our algebra is connec
By a vertex ofA, we mean a vertex of the quiverQ. Observe that each vertexx of A is
associated to a primitive idempotent ofA, denoted byex .

In this paper, we usually assume thatA is atree algebra, that means that the underlyin
graph ofQ is a tree. In this case, there is a minimal set of paths generating the idI .
We refer to these monomial generatorsρ = a1 → ·· · → at in kQ as relations ofA and
indicate them by dotted lines.

We also considerA as ak-category whose objects are its vertices and in which
morphisms set fromx to y is eyAex .

Given two algebrasA andB, we say that they arederived equivalentif their respective
derived categoriesDb(A) andDb(B) are triangle equivalent.

We say thatA is areflectionof B if there exist an algebraC, not necessarily connecte
and aC-moduleM such thatA = C[M] andB = [M]C. In this case, we also say thatB

is areflectionof A. An algebraA is reflection equivalentto B if there exists a sequence
algebrasA = A1, A2, . . . ,At = B whereAi is a reflection ofAi+1 for eachi. Two algebras
which are reflection equivalent are also derived equivalent, see [19, (4.10)].

2.2. Derived-tame algebras

Let A andB be two derived equivalent algebras. One can show that the non-nega
and in this case, the corank of the Euler form are preserved. Moreover, by [16, (1.3)A

is derived-tame then so isB. Recall that the following algebras are derived-tame and h
a non-negative Euler form.

Examples. (a) By [11], tame hereditary algebrasA = kQ are derived-tame. IfA is
representation-finite (henceQ is of typeAn, Dn or Ep for p = 6,7,8) thenχA is positive
definite. If A is representation-infinite (henceQ is of typeÃn, D̃n or Ẽp for p = 6,7,8)
thenχA is non-negative with corankχA = 1.

(b) By [14], tubular algebras in the sense of [17] are derived-tame with a non-ne

Euler form of corank 2.
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(c) Another example of derived-tame algebras, see [10,16], is given by the inci
algebraS(c,m), calledsemichain algebra, of the following poset:

0+ 1+ · · · c+

m · · · 2 1

0− 1− · · · c−

This algebra has a non-negative Euler form of corankc, see [16]. We agree thatc can be
taken as−1. In this case,S(−1,m) is a hereditary algebra of typeAm. Also observe tha
we have thatS(0,m) is a hereditary algebra of typeDm+2, for m � 2, and thatS(1,m) is
derived equivalent to a hereditary algebra of typeD̃m+3, for m � 1.

2.3. Blowing-up

Let A = kQ/I be an algebra and letD be a set of vertices ofQ. We define theblowing-
up ofA at D to be the algebraA{D} = kQ{D}/I {D} given by the quiverQ{D} and ideal
I {D} describe below.

The quiverQ{D} is obtained fromQ by replacing each vertexd of D by the verticesd−
andd+ and each arrowα :x → d with d ∈ D by the arrowsα− : x → d− andα+ : x → d+
and dually for each arrowβ : d → y with d ∈ D.

There is an obvious quiver epimorphismQ{D} → Q which extends uniquely to a su
jective algebra morphismπ : kQ{D} → kQ. We define the idealI {D} of kQ{D} to be
the ideal generated by all linear combinationsρ = ∑m

i=1 λiwi of pathswi (having the
same starting and ending vertices) such thatπ(ρ) ∈ I . If D = {d}, we usually denote th
blowing-upA{D} by A{d}.

Remark that blowing-up can be defined in a more general way using a finiteF
instead of the set{+,−}, see [5, (2.5)].

From now on, we suppose thatA = kQ/I is a tree algebra. In this case, the idealI is
generated by paths. Thus, the idealI {D} is generated by all pathsw of Q{D} such that
π(w) ∈ I and by all commutativity relationsβ+α+ = β−α− whenever there are arrows

x α+−−→ d+ β+−−→ y and x α−−−→ d− β−−−→ y

in Q{D} such thatπ(d+) = π(d−) andπ(α+) = π(α−) as well asπ(β+) = π(β−). Ob-
serve that, in this case, the blowing-upA{D} is a quotient of an incidence algebra.

Examples. (a) If the algebraA = kQ is a chain

sm → ·· · → s1 → d0 → ·· · → dc

andD = {d0, . . . , dc}, thenA{D} coincides with the semichainS(c,m).
(b) Let A = kQ/I be given by the quiverQ = x α−→ y

β−→ d
γ−→ z andI be the ideal
generated by the pathαβγ . Then the blowing-upA{d} is given by the following quiver:
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β+

β−

z

d− γ −

bound by the relationsβ+γ + = β−γ − andαβ+γ + = 0.
(c) LetQ be the quiverd1

α−→ s
β−→ d2 andI be the ideal generated byαβ. The blowing-

upA{D}, with A = kQ/I andD = {d1, d2}, is given by the quiver:

d+
1 α+ d+

2

s

β+

β−
d−

1
α−

d−
2

bound by the relationsα+β+ = α+β− = α−β+ = α−β− = 0.

The next proposition, which follows directly from [5, (2.2)], tells us how reflect
equivalent algebras yield reflection equivalent blowing-up of these algebras. This pr
is an essential tool in the sequel.

Proposition [5, (2.2)]. LetA be an algebra andD be a set of vertices ofA. If A is reflec-
tion equivalent to an algebraB, then there exists a setE of vertices ofB corresponding to
vertices ofD under the sequence of reflections such that the blowing-upA{D} is reflection
equivalent to the blowing-upB{E}.

2.4. Full subcategory

Observe that the algebraA is a full subcategory of every blowing-upA{D}. Therefore,
it is natural to ask whether derived tameness and non-negativity of the Euler for
preserved under full subcategories.

Proposition. LetA be a triangular algebra andB be a full subcategory ofA. Then

(a) If A is derived-tame then so isB.
(b) If the Euler form ofA is non-negative then so is the Euler form ofB.

Proof. (a) Recall that the repetitive categorŷA of A is the algebra (without unity) give
by the doubly infinite matrix

Â =




. . . 0

. . . A

DA A

DA A



0
. . .

. . .
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whose elements are matrices with a finite number of non-zero coefficients. The s
the usual matrix one and the multiplication is induced from the canonical morph
A⊗k DA → A, DA⊗k A → A and the zero morphism DA⊗k DA → 0 where DA =
Homk(A, k).

Any two objects ofB̂ are of the formx[i] andy[j ] wherex, y ∈ B0 andi, j ∈ Z. The
set of morphisms in̂A from x[i] to y[j ] is given by

Â
(
x[i], y[j ]) =




A(x,y) × {i} if i = j,

DA(y,x) × {i} if j = i + 1,

0 else.

SinceB is a full subcategory ofA, one can easily see that DB(y, x) = DA(y,x) when-
everx, y are objects inB. Thus, the repetitive categorŷB of B is a full subcategory of the
repetitive categorŷA of A. Therefore, ifA is derived-tame then̂A is tame and, so iŝB.
Hence,B is derived-tame. This fact also easily follows from the equivalents definition
derived tameness given in [9].

(b) This result is well known ifB is convex. Let us then suppose thatB is not convex.
We prove this result by induction on the number of vertices ofA. Let x be a vertex ofA
which is not inB. There exists an algebraA′ which is reflection equivalent toA such that
x corresponds to a source inA′. Moreover, there exists a full subcategoryB ′ of A′ which
is reflection equivalent toB. In fact, B ′ is a full subcategory ofA′ (x) = A′/A′exA

′. But
A′ (x) is a convex subcategory ofA′. SinceA′ is derived equivalent toA, it follows thatχA′
is non-negative. Therefore,χA′ (x) is also non-negative. By the induction hypothesis,χB ′ is
non-negative. The result follows from the fact thatB is derived equivalent toB ′. �

The following remark on hereditary algebras will also be a useful tool.

Remark. Observe that for a hereditary algebra, the concepts of derived-tameness, ta
and non-negativity of the Euler form coincide.

2.5. B-tree algebras

To prove the main theorem, we introduce a subclass of the blowing-up algebras. O
that a similar class of algebras, called semi-tree, was introduced in [5, (2.6)]. In fa
made the condition (D5) stronger in such a way that this class corresponds to al
which are derived equivalent to semichain algebras.

Definition. Let Λ be an algebra,A = kQ/I be a tree algebra andD be a set of vertice
of A. We say thatΛ is aB-tree for(A,D) if Λ = A{D} and the pair(A,D) satisfies the
following conditions:

(D1) At each vertex ofD starts at most one arrow and at each vertex ofD ends at mos
one arrow.
(D2) The idealI is generated by a set of paths of length two or tree.
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(D3) If ε : a α−→ b
β−→ c is one of the generators of the idealI , then the middle vertexb

does not belong toD. Moreover, all other generators ofI that contain the arrowα
end in the vertexb, and all other generators ofI that contain the arrowβ start inb.

(D4) The generators ofI of length three have the formε : a → a′ α−→ b
β−→ c′ or dually,

ε′ : a′ α−→ b
β−→ c′ → c or they come as pairs(ε : a → a′ α−→ b

β−→ c′, ε′ : a′ α−→ b
β−→

c′ → c). In each case, the verticesa′, b andc′ do not belong toD and no other arrow
starts nor ends ina′ or in c′. Moreover, no other generator ofI contains the arrow
α or β.

(D5) There is no (full) convex subcategory ofA of one of the following forms, where th
vertex∗ belongs toD:

(1) (a) ◦ ◦
◦ ◦

◦ ◦

(b) ◦
∗ ◦ ◦

◦

(c) ◦
∗ ◦ ∗

(2) (a) ◦
◦ ◦ ◦ ◦

◦

(b) ∗
◦ ◦ ◦
◦

(3) (a) ◦ ◦
◦ ◦

◦ ◦

(b) ◦
∗ ◦ ◦

◦
(4) (a) ◦

◦ ◦ ◦ ◦
◦

(b) ∗
◦ ◦ ◦
◦

(5) ◦
◦ ◦ ◦ ◦

◦

(6) ◦
◦ ◦ ◦ ◦

◦
(7) ◦

◦ ◦ ◦ ◦ ◦
(8) ◦

◦ ◦ ◦ ◦ ◦
(9) ◦

◦ ◦ ◦ ◦ ◦
(10) ◦ ◦

◦ ◦
◦ ◦

If there exists such a pair(A,D), then we simply say thatΛ is a B-tree.

Examples. (a) The following algebras are not B-trees for(A,∅) whereA = A{∅} is the
corresponding algebra.

◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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(b) The blowing-up of the tree algebra

◦
x ◦ y

◦
at the set{x, y} is not a B-tree.

(c) The blowing-up of the tree algebra

x

y ◦ ◦ ◦ ◦

z

at the set{x, y, z} is a B-tree.

Remark. Each blowing-up described in (D5), (1)–(4), is derived equivalent to a wild (
means not tame) hereditary algebra and thus is not derived-tame, nor has a non-n
Euler form. While, those described in (D5), (5)–(10), are derived equivalent to here
algebras of typeE6.

2.6. Derived-tame tree algebras

We recall the result of T. Brüstle on tree algebras. C. Geiss obtained some of the
cations for a larger class of algebras.

Theorem [5,8]. LetA be a tree algebra. The following conditions are equivalent:

(a) A is derived-tame.
(b) χA is non-negative.
(c) A is derived equivalent to a hereditary algebra of typeEp, Ẽp (p = 6,7,8) or to a

tubular algebra or to precisely one of the semichain algebrasS(c,m).

In particular, the derived class of the tree algebraA is uniquely determined by the numb
of vertices, the corank and the Dynkin type of its Euler form.

Observe that algebras which are derived equivalent to a hereditary algebra of tyn

or Dtn are also derived equivalent toS(0, n − 2) or S(1, n − 3), respectively.
The above theorem and proposition 2.4 imply that ifA{D} is derived-tame or if its Eule

quadratic form is non-negative thenA is derived-tame. We recall that a derived-tame t
algebra is said to bederived of typeE if it is derived equivalent to a hereditary algeb
of type Ep, Ẽp (p = 6,7,8) or to a tubular algebra. Otherwise, it is said to bederived
E-free. We will consider those classes of algebras independently. We recall the conn

between the algebras derived of typeE and those which contain a full subcategory derived
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equivalent to a hereditary algebra of typeE6. This proposition follows from [2, (2.1)] an
[5, (1.3)].

Proposition. Let A be a derived-tame tree algebra. The following conditions are equ
lent:

(a) A is derived of typeE.
(b) A contains a convex subcategory which is derived equivalent to a hereditary al

of typeEq , Ẽq (q = 6,7,8) or to a tubular algebra.
(c) A contains a full subcategory which is derived equivalent to a hereditary algeb

typeE6.

We obtain the following lemma which connects B-tree algebras with derivedE-free
algebras. This lemma will allow us to apply results of [5] to B-tree algebras.

Lemma. Let A be a tree algebra andD be a set of vertices ofA such that the blowing-up
A{D} is derived-tame or the Euler form ofA{D} is non-negative. ThenA{D} is a B-tree
for (A,D) if and only if(A,D) satisfies the conditions(D1)–(D4)andA is derivedE-free.

Proof. The sufficiency follows from remark 2.5. The hypothesis together with prop
tion 2.4 and theorem 2.6 imply thatA is derived-tame. By the above proposition, it
sufficient to verify thatA does not contain a full subcategory which is derived equiva
to a hereditary algebra of typeE6. This is easily done by looking at the list of tree, algeb
derived equivalent toE6, see [2, Section 3]. �

In the next two sections, we prove the main theorem whenA is a derivedE-free tree
algebra. LetD be a set of vertices ofA such that the blowing-upA{D} is derived-tame o
the Euler form ofA{D} is non-negative. First, we prove thatA{D} is derived equivalent to
a B-tree algebra. Then, we show that B-tree algebras are derived equivalent to sem
algebras.

3. Blowing-up derived equivalent to B-tree

This section is devoted to prove the following proposition.

Proposition 3.1. Let A be a derivedE-free tree algebra andD be a set of vertices ofA
such that the blowing-upA{D} is derived-tame or the Euler form ofA{D} is non-negative
ThenA{D} is derived equivalent to a B-tree algebra.

Observe that the derived equivalence obtained here is, in fact, an equivalence g
a sequence of reflections.

As in [5], we remove, by reflections, some relations. LetA = kQ/I be a tree algebr

andρ = a0 → ·· · → ar be a generator of the idealI . We say thatρ is thin if
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(T1) botha0 andar are end vertices ofQ, that means that they only have one neighb
and

(T2) the projectiveA-modulePa0 has support{a0, . . . , ar−1} and the injectiveA-module
Iar has support{a1, . . . , ar}.

The following lemma enables us to assume that we deal with an algebra withou
relations.

Lemma 3.2 [5, (4.1)]. LetA be a tree algebra. Then there exists a tree algebraB without
thin relations such thatA is reflection equivalent toB.

Moreover, ifA is derivedE-free, then there exists a pair(B ′,E′) satisfying the condi
tions(D1)–(D4)such thatB ′{E′} = B. In addition, the vertices ofE′ are end vertices of a
monomial relation.

Remark. SinceQB is a tree, the vertices ofE′ are always end vertices ofQB .

Lemma 3.3. Let A be a derivedE-free algebra andD be a set of vertices ofA such that
the blowing-upA{D} is derived-tame or the Euler form ofA{D} is non-negative. The
there exists a tree algebraB without thin relations which is a B-tree for(B,∅) and a setE
of vertices ofB such thatB{E} is reflection equivalent toA{D}.

Proof. By the previous lemma, there exists a tree algebraB ′ without thin relations which
is reflection equivalent toA. On the other hand, there exists a pair(B,E′′) which satisfies
the conditions (D1)–(D4) such thatB{E′′} = B ′. By proposition 2.6,B ′ is derivedE-free
and so isB which is also a derived-tame tree algebra. By lemma 2.6,B{E′′} is a B-tree
for (B,E′′). Obviously,B is also a B-tree for(B,∅). The above lemma guarantees us t
each vertex ofE′′ is the beginning or the end of a monomial relation. In particular, th
vertices are end vertices ofQB .

On the other hand, by proposition 2.3,A{D} is derived equivalent toB ′{E′} for some set
E′ of vertices ofB ′ = B{E′′}. We prove that the vertices ofE′ are, in fact, vertices ofB. To
do so, suppose that there exists a vertexd ∈ E′′ such thatd+ ∈ E′ or d− ∈ E′, respectively.
We can assume without loss of generality thatd is the end of a monomial relation. Firs
let us suppose that this relation is of length 3. In this case,B ′{E′} = (B{E′′}){E′} contains
a convex subcategoryC of the form:

◦

◦ α ◦ β ◦ γ2
γ1

γ3

◦

◦
with αβγi = 0. SinceC is derived equivalent to a wild hereditary algebra of type 1.a,
the list in (D5), the remark 2.4 gives us the desired contradiction. Consequently,d must be
the end of a monomial relation of length 2, sayε : a → b → d . However,ε is a relation
of B ′ = B{E′′} and thus is not thin. Therefore, there exists a neighbory of a or of b and

depending on the case,B contains one of the following convex subcategories:
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By passing to the blowing-upB ′{E′}, we obtain a full subcategory which is deriv
equivalent to a wild hereditary algebra of type 2.a, see the list in (D5). Once more
yields a contradiction. In conclusion, the setsE′ and E′′ can be identified with sets o
vertices ofB andB ′{E′} = B{E} whereE = E′ ∪ E′′. �

By the above lemma, we can assume thatA is a tree algebra without thin relation
which is a B-tree for(A,∅). LetD be a set of vertices ofA such thatA{D} is derived-tame
or the Euler form ofA{D} is non-negative. With this assumption, we prove thatA{D} is
a B-tree (not necessarily for(A,D)). First, we show that any such pair(A,D) satisfies
the conditions (D2)–(D4). Then, we consider a suitable pair of the above blowing-u
prove that this one also satisfies the condition (D1). Finally, we use lemma 2.6 to con
that the algebra given byA{D} is a B-tree. We introduce the next notation to alleviate
proofs.

Notation. Let A be an algebra andF be a set of vertices ofA. Denote byA(F) the convex
hull of F , that is the smallest convex subcategory ofA which contains the vertices ofF .

Lemma 3.4. Let A = kQ/I be a tree algebra without thin relations which is a B-tree
(A,∅) and letD be a set of vertices ofA such thatA{D} is derived-tame or the Euler form
of A{D} is non-negative. Then(A,D) satisfies the conditions(D2)–(D4).

Proof. Observe that sinceA is a B-tree for(A,∅), the condition (D2) is trivially satisfied
The same holds for the part of the conditions (D3) and (D4) that do not involveD. Let us
start proving that (D3) holds.

Let ε : a → b → c be a generator ofI of length two. To prove that(A,D) satisfies (D3),
we only need to verify thatb does not belong toD. Thus, let us suppose thatb ∈ D. By
hypothesis,ε is not a thin relation, which means thata, b or c have a different neighborx.
Observe that ifx is a neighbor ofb then there is no relation froma to x, nor fromx to c

andA({a, b, c, x}) is of the following form:

a b c

x

If x is a neighbor ofa, dually forc, the convex subcategoryA({a, b, c, x}) is one of the
following:
x a b c or x a b c
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In each case, the blowing-up ofA({a, b, c, x}) atb is a full subcategory ofA{D} which
is derived equivalent to a wild hereditary algebra. The remark 2.4 gives us a contrad
That means thatb /∈ D and that(A,D) satisfies (D3).

Now, let us show that(A,D) also satisfies (D4). Recall that(A,∅) satisfies this con
dition. We first consider when there is a pair of generators ofI of length three. Le
(ε : a → a′ → b → c′, ε′ : a′ → b → c′ → c) be one of these generators. We have
show that{a′, b, c′} ∩ D = ∅. Let x ∈ {a′, b, c′} ∩ D. The blowing-up ofA({a, a′, b, c′, c})
atx is a full subcategory ofA{D} which is derived equivalent to the blowing-up of

c′

a′ b a

c

at the vertexx. By the above and the remark 2.5, this blowing-up is not derived-ta
neither does it have a non-negative Euler form. This yields the desired contradiction
sequently, we can assume, up to duality, that there exists a generator ofI of length three
ε : a → a′ → b → c′ with c′ an end vertex andy ∈ {a′, b, c′} ∩ D. By hypothesis,ε is not
a thin relation which means that there exists a neighborx of a or b different froma′ andc′.
If x is a neighbor ofb, thenA({a, a′, b, c′, x}) is of the following form:

a a′ b c′

x

In this case, the blowing-up ofA({a, a′, b, c′, x}) at y is derived equivalent to th
blowing-up of the hereditary algebra

a′ b c′

x

a

at the vertexy. This blowing-up is not derived-tame, neither does it have a non-neg
Euler form. Thus, we obtain a contradiction. Ifx is a neighbor ofa, thenA({a, a′, b, c′, x})
is of one of the following forms:
x a a′ b c′ or x a a′ b c′
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In both cases, the blowing-up ofA({a, a′, b, c′, x}) at the vertexy is derived equivalent to
the blowing-up of

b′

x a a′

c′

at the same vertex. Once more, this blowing-up is not derived-tame, neither does it
non-negative Euler form. This last contradiction completes the proof that the pair(A,D)

satisfies (D4). �
To satisfy condition (D1), we need to define a concept of maximality for the pair(A,D).

Definition. Let A be a tree algebra andD be a set of vertices ofA. We say that(A,D) is a
maximal pairif there is no other pair(A′,D′) such thatA′{D′} = A{D} with A′ a subtree
of A andD′ a set of vertices ofA′ containingD.

Remark. LetA = kQ/I be a tree algebra without thin relations which is a B-tree for(A,∅)

and letD be a set of vertices ofA such thatA{D} is derived-tame or the Euler form o
A{D} is non-negative. Then there exists a maximal pair(B,E) such thatA{D} = B{E}.
Moreover,B is a tree algebra without thin relations which is a B-tree for(B,∅) sinceB is
a subtree ofA. Clearly,B{E} is derived-tame or has a non-negative Euler form.

We thus have the following lemma.

Lemma 3.5. Let A = kQ/I be a tree algebra without thin relations which is a B-tree
(A,∅) and letD be a set of vertices ofA such thatA{D} is derived-tame or the Euler form
of A{D} is non-negative. Moreover, suppose that(A,D) is maximal. Then(A,D) satisfies
the conditions(D1)–(D4).

Proof. By the Lemma 3.4,(A,D) satisfies the conditions (D2)–(D4). Thus, it remains
show that (D1) holds. By duality, we can suppose that there exist at least two arrows
in a vertexb of D, saya → b ← c. Since the blowing-up ofa → b ← c at the verticesa
andb is a wild hereditary algebra given by the following quiver:

a+ b+
c

a− b−

We can suppose that neithera, nor c belong toD. Moreover, the verticesa andc are
end vertices ofA, since the blowing-up of
x a b c or x a b c
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at the vertexb is derived equivalent to a wild hereditary algebra.
By conditions (D3) and (D4), we have no relation beginning ina, nor in c. Therefore,

we obtained the same algebraA{D} if we consider the blowing-up ofA′ atD′ whereA′ is
the subtree ofA obtained by deleting the vertexc andD′ = D ∪ {a}. This contradicts the
maximality of(A,D). �
Lemma 3.6. Let A = kQ/I be a tree algebra without thin relations which is a B-tree
(A,∅) and letD be a set of vertices ofA such thatA{D} is derived-tame or the Euler form
of A{D} is non-negative. ThenA{D} is a B-tree.

Proof. By the last remark, we can suppose that(A,D) is maximal. Thus, by the pre
vious lemma,(A,D) satisfies the conditions (D1)–(D4). The conclusion follows fr
lemma 2.6. �

Therefore, the Proposition 3.1 is a consequence of Lemmas 3.3 and 3.6.

4. Derived-tameness of B-tree algebras

This section is devoted to the proof of the following proposition.

Proposition 4.1. Let B be a B-tree. ThenB is derived equivalent to a semichain algeb
S(c,m).

We remark that the derived equivalence of the former proposition is obtained by
quence of tilts, which in fact correspond to APR-tilts and reflections.

Using the above proposition, we get that all B-tree algebras are derived-tame an
non-negative Euler forms. Moreover, when the corankc is bigger than 2, they provide
class of derived-tame algebras which are neither derived equivalent to a hereditar
bra nor to a tubular one. Consequently, B-tree algebras are easy computable exam
algebras derived equivalent to semichain algebras.

In order to prove this result, we use essentially the results and ideas of Section 3
paper of Brüstle on derived-tame tree algebras [5]. In fact, the proof mainly consi
verifying that we can apply these results to B-tree algebras. This is done by induct
the number of monomial relations. Recall the following lemma.

Lemma 4.2 [5, (3.3)]. LetA be a hereditary algebra andD be a set of vertices ofA such
thatA{D} is a B-tree. ThenA{D} is derived equivalent to a semichain algebraS(c,m). If
A is of typeAn, thenc = |D| − 1.

Let A = kQ/I be a tree algebra. Given two verticesx andy of Q, we denote by�(x, y)

the convex subcategory ofA generated by all the vertices ofQ which are nearer (in a walk

to x than toy together within the interval[x, y], that is all vertices in a walk fromx to y.
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Example. Let A be the algebra given by the following bound quiver:

1 2 3 4

5 6 7 8 9 10 11

In this case, we have that�(5,7) is the convex subcategory generated by 5, 6 and 7. O
other hand,�(7,5) is the convex subcategory whose objects are 3, 4, 5, 6, 7, 8, 9 and

For the rest of this section, letA{D} be a B-tree for(A,D) with A = kQ/I . Recall that
for each monomial relation ofA, we can define a trisection of the quiverQ as fallow.

Now let ε : a → b → c be a monomial relation of length two as considered in (D3).
such a relation, we define three convex subcategories ofA, N−

ε = �(a, b), dually,N+
ε =

�(c, b) andN0
ε = ⋃

x �(x, b) where the union is taken over all neighborsx of b except
a andc. Then, by construction, the union of these three subcategories covers the
quiverQ. Moreover, by condition (D3), any relation ofA different fromε is completely
contained in one of the setsN−

ε , N+
ε , N0

ε .
For a relation of length three, we also define a trisection with the same propertie

condition (D4), we either have one relationε : a → a′ α−→ b
β−→ c′ wherec′ is an end vertex

of Q, or dually, a relationε′ : a′ α−→ b
β−→ c′ → c wherea′ is an end vertex ofQ, or there is a

pair of relations(ε : a → a′ α−→ b
β−→ c′, ε′ : a′ α−→ b

β−→ c′ → c). In each case, we associa
to ε or ε′ or (ε, ε′) a trisection ofQ as follows. We define three convex subcatego
of A, N−

ε = �(a′, b), dually,N+
ε = �(c′, b) and finally,N0

ε = ⋃
x �(x, b) where the union

is taken over all neighborsx of b excepta′ andc′. Any other relation is thus complete
contained in one of the setsN−

ε , N+
ε , N0

ε .

Example. In the previous example, consider the pair of monomial relations(ε : 7 → 8 →
9 → 10, ε′ : 8 → 9 → 10→ 11). ThenN−

ε = �(8,9) is the convex subcategory who
objects are the vertices 1, 2, 5, 6, 7, 8 and 9. Moreover, the convex subcategoryN+

ε =
�(10,9) is supported by{9,10,11} andN0

ε = �(3,9) ∪ �(4,9) by {3,4,9}.
Remark thatA{D} is a B-tree for anyD ⊆ {1,2,3,4,11}.

The following lemma describes which relations can be used in the inductive step.

Lemma 4.3 [5, (3.4)]. Let A{D} be a B-tree for(A,D) and letA = kQ/I . Then there
exists a monomial relationε or a pair of monomial relations(ε, ε′) in I such that at mos
one of the convex subcategoriesN−

ε , N+
ε , N0

ε , defined above contains some relation.

We suppose from now on thatA{D} and the relationε or the pair of relations(ε, ε′) is
the one described in the above lemma.

We need to consider a nicer form for this algebra. To do so, let us recall the follo

result.
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Lemma 4.4 [5, (3.1)]. LetA be an algebra of the following form:

x1 x2 · · · xr s A′

whereA′ denotes a convex subcategory ofA and there is no relation starting or ending
one of the verticesxi . LetD be a set of vertices ofA such thats /∈ D and(A,D) satisfies
the condition(D1). ThenA{D} is derived equivalent toB{D} whereB is given by the
following algebra or its dual:

x1 x2 · · · xr s A′

Lemma 4.5. Up to derived equivalence, we can suppose thatA{D} andε or (ε, ε′), respec-
tively, are such that two of the convex categoriesN−

ε , N+
ε andN0

ε are hereditary algebras
of typeAm with all the arrows pointing in the same direction.

Proof. We know that there exist at least two of the convex categoriesN−
ε , N+

ε andN0
ε

which are hereditary algebras. By (D5), they must be of typeAm, Dm or D̃m. Assume
first thatN0

ε is one of the hereditary categories. IfN0
ε contains a convex subcategory

the formx — b — y1 — y2 (for an arbitrary orientation of the arrows) thenA contains a
convex subcategory of type 5 or 2.a of the list in (D5) whereas the relation is of len
or 3. On the other hand, ifb has three neighbors{x, y, z} in N0

ε thenA contains a convex
subcategory of type 3.a or 1.a of the list in (D5) whereas the relation is of length 2
Assume the quiver ofN0

ε to be of the following form:

ys

b y1 y2 · · · ys−1

ys+1

By (D5), ys andys+1 are not inD. Indeed, ifys or ys+1 is in D thenA admits a convex
subcategory of type 2.b (ifs > 1), 3.b or 1.b (ifs = 1) whereas the relationε is of length
2 or 3. Moreover, by applying an APR-tilt atys , if necessary, we may suppose thatys and
ys+1 are both sinks or sources. This process is not interfering with the blowing-up
ys−1 does not belong toD by (D1). Thus, we obtain the same algebraA{D} if we replace
the verticesys andys+1 by a one vertexds which belongs toD. This new blowing-up is
still a B-tree. Therefore, we can suppose thatN0

ε is of the formb − y1 − · · · − ys , whose
of type Am. The result follows from Lemma 4.4. In the same way forN+

ε (dually N−
ε ),

we need to verify that it contains none of the following subcategories wherex, y andz are
different fromb (or from c′, whenε is of length 3):

x y z

x c y z, c or d c y

If this is the case thenA contains a convex subcategory of the form 8 (or 7), 4.a (or

or 4.b (or 2.b) of the list in (D5) whereas the relation is of length 2 (or 3). As above, we
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obtain thatN+
ε is of typeAm. If c /∈ D, the result follows from Lemma 4.4. Otherwise,

we do not have the desired orientation, there exists a source inN+
ε . Take the nearest sourc

from c, then since(A,D) satisfies condition (D1), it cannot belong toD. Thus, we can
apply Lemma 4.4. �
Remark. In the last lemma,N−

ε (or N+
ε ) is a hereditary algebra of typeAm with all the

arrows pointing in the direction of the monomial relation.

In order to show Proposition 4.1, we apply the proof of T. Brüstle. For this purpo
is enough to verify that the algebras obtained at each induction step is a B-tree. W
four possibilities, up to duality. To know more on the derived equivalences used
following, we refer the reader to [5].

First, consider the case whereε : a α−→ b
β−→ c is a relation ofA of length 2 as considere

in (D3) andN−
ε , N0

ε contain no relation. By the above lemma, we can suppose thatA is of
the following form:

x1 · · · xt a b y1 · · · ys

c

A′

We know thatA is derived equivalent to the algebraB given by

cA′ b y1 · · · ys x1 · · · xt a

andA{D} is derived equivalent toB{D}. Moreover,B has less monomial relations thanA

and(B,D) satisfies conditions (D1)–(D4). Thus, we just have to see that(B,D) satisfies
condition (D5). If not,B contains a convex subcategoryC of the list in (D5). Since(A,D)

satisfies this condition, the subcategoryc ← b → y1 → ·· · → ys → x is contained inC,
with x = x1 if t �= 0 andx = a if t = 0. This implies thats = 0 and thatC cannot be of type
1, 3, 4, 6, 9 or 10. On the other hand, ifC is of type 2.a (or 2.b, 5, 7, 8), thenA contains
a convex subcategory of type 4.a (or 4.b, 6, 8 or 9, respectively). This yields the d
contradiction. Consequently,B{D} is a B-tree.

Now, consider the case whereε : a α−→ b
β−→ c is a relation of length 2 as in (D3) andN−

ε ,
N+

ε contain no relation. By Lemma 4.5, we can suppose thatA is the following algebra:

x1 · · · xt a b

A′

c y1 · · · ys

We have thatA is derived equivalent to the following algebraB:

bA′ ys · · · y1 c a xt · · · x1

andA{D} is derived equivalent toB{D}. Moreover,B has less relations thanA and(B,D)
satisfies the conditions (D1)–(D4). Suppose that(B,D) does not satisfies condition (D5),
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that means thatB contains a convex subcategoryC of the list in (D5). Since(A,D) sat-
isfies this condition, we get that the subcategoryb ← ys ← ·· · ← y1 ← c ← a must be
contained inC. Thus,s = 0 andC cannot be of type 1, 3, 4, 6, 9 or 10. On the other ha
if C is of type 2.a (or 2.b, 5, 7, 8), thenA contains a convex subcategory of type 3.a
3.b, 10, 5, 6, respectively), a contradiction. Hence,B{D} is a B-tree.

In the last two cases, we deal with a pair of monomial relations of length three,(ε, ε′)
as considered in condition (D3). We consider that one of the verticesa or c may not exist
and therefore one of the relationsε or ε′ does not appear.

We begin with the case when both convex categoriesN−
ε andN+

ε are hereditary. Thu
we may assume by Lemma 4.5 thatA has the following form:

x1 · · · xt a a′ b

A′

c′ c y1 · · · ys

We have thatA is derived equivalent to the algebraB{d} whereB is of the form

bA′ ys · · · y1 c d a xt · · · x1

andB{D ∪ {d}} is derived equivalent toA{D}. Moreover,B has less relations thanA and
(B,D ∪ {d}) satisfies the conditions (D1)–(D4). Suppose thatB{D ∪ {d}} is not a B-tree,
that means thatB contains a convex subcategoryC of the list in (D5). But(A,D) satisfies
condition (D5). Thus,C must contain the subcategoryb ← ys ← ·· · ← y1 ← c ← d ← a.
Therefore,s = 0 and one of the verticesa or c does not exist. This implies thatA must
contain a convex subcategory of the same type asC, a contradiction.

We finish the proof with the case where we have a pair of monomial relations(ε, ε′)
as considered in (D4), and the convex subcategoriesN0

ε and N+
ε are hereditary. By

Lemma 4.5, we can assume thatA is the following algebra:

x1 · · · xt b c′ c y1 · · · ys

a′

a

A′

As in the previous case, one of the relationsε or ε′ may not exist. We have thatA is derived
equivalent to the blowing-upB{d} whereB is of the following form:

aA′ a′ d c y1 · · · ys x1 · · · xt

andB{D ∪ {d}} is derived equivalent toA{D}. Moreover,B has less monomial relation
thanA and (B,D ∪ {d}) satisfies the conditions (D1)–(D4). Suppose thatB contains a

convex subcategoryC of the list in (D5). But,(A,D) satisfies condition (D5) and thusC
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must contain the subcategorya → a′ → d → c. Therefore, one of the relationsε or ε′ does
not exist. In both cases,A contains a convex subcategory of the same type asC and we
obtain a contradiction. Thus,B{D ∪ {d}} is a B-tree.

Consequently, we have proved that given a B-tree, there exists a derived equ
B-tree such that the corresponding tree has strictly less monomial relations. Then P
tion 4.1 follows from induction and Lemma 4.2.

5. Blowing-up of derived type E tree algebra

Let A be a tree algebra andD be a non-empty set of vertices ofA such thatA{D} is
derived-tame or has a non-negative Euler form. To prove the main theorem, there r
to consider the case whenA is derived of typeE. The purpose of this section is to pro
the following lemma which yields a contradiction of the above hypothesis by usin
proposition 2.4.

Lemma 5.1. Let A be a tree algebra derived of typeE andd be a vertex ofA. ThenA{d}
is not derived-tame, neither does it have a non-negative Euler form.

Let A be a tree algebra derived of typeE andd be a vertex ofA. By definition,A is
derived equivalent to a hereditary algebra of typeEp, Ẽp with p = 6,7,8 or to a tubular
algebra. SinceA is a triangular algebra, we know thatA is reflection equivalent to a
algebraB whered corresponds to a source ofB which we also denote byd . Thus, by
proposition 2.3,A{d} is derived equivalent toB{d}. Therefore, it is sufficient to prove tha
B{d} is not derived-tame, and that it does not have a non-negative Euler form. O
other hand, there exists an algebraC (not necessarily connected) and aC-moduleM such
that B = C[M] andd is the extension vertex, that isM = radPd . We easily see that th
blowing-upB{d} corresponds to the one-point extensionB[M] = C[M][M]. It is a well-
known fact that Hochschild cohomology is preserved under derived equivalence.
H 1(A) = 0, we have thatH 1(C[M]) = 0. By [18], M is aseparated module, that means
that each indecomposable summand ofM belongs to a different connected compon
of C.

First, let us suppose thatC is connected and thus thatM is indecomposable.

Lemma 5.2. LetC be an algebra andM be an indecomposableC-module such thatC[M]
is derived equivalent to a hereditary algebra of typeEp, Ẽp with p = 6,7,8 or to a tubular
algebra. ThenC[M][M] is not derived-tame, neither does it have non-negative Euler f

Proof. If B = C[M] is derived equivalent to a tubular algebra, there exists aB-module
X such that dimHomB(M,X) � 3 or dimHomB(X,M) � 3. It follows from [17], that at
least one ofB[M] or [M]B is wild and thus,B[M] = C[M][M] is not derived-tame. Th
result now follows from [4, (6.2)]. Therefore, we can suppose thatB is derived equivalen
to a hereditary algebra of typeEp or Ẽp with p = 6,7,8.

Recall thatd is the extension vertex ofC[M]. Therefore, there exists a triangle equ

alenceF : Db(C[M]) → Db(H ′) whereH ′ is a hereditary algebra of typeEp or Ẽp with
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p = 6,7,8 such thatFPd is an indecomposableH ′-module. Moreover, we can suppo
that Hom(FPd,H ′) = 0. We deduce easily that Ext1(FPd,FPd) = 0 and EndFPd

∼= k.
Denote byFP ⊥

d the full subcategory of modH ′ whose objects are all the modulesX

such that Hom(FPd,X) = 0 = Ext1(FPd,X). By [11, (III.6.4)], FP ⊥
d

∼= modH where
H is a hereditary algebra. Following [12, (3.3)], the derived categoryDb(H) can be
identified with the full subcategory ofDb(H ′) whose objects are all complexesN such
that HomDb(H ′)(FPd,N[i]) = 0 for all i ∈ Z. We verify that for each indecomposab
C-projective modulePx , we haveFPx ∈ Db(H). But, HomDb(H ′)(FPd,FPx[i]) is iso-
morphic to

HomDb(C[M])
(
Pd,Px[i]

) =



0 if i < 0,

Hom(Pd,Px) if i = 0,

Exti (Pd,Px) if i > 0.

Sinced is a source, we getFC ∈ Db(H). It follows thatC is derived equivalent to th
hereditary algebraH . In fact,C ∼= EndDb(H) FC. SinceC[M] is derived-tame,H must be
tame.

Applying [3], there exists an indecomposableH -moduleN which is projective or reg
ular such thatH [N ] is derived equivalent toC[M] andH [N ][N ] is derived equivalent to
C[M][M].

If N is projective, thenH [N ] is a hereditary algebra. By hypothesis,H [N ] is of typeEp

or Ẽp with p = 6,7,8. SinceH [N ][N ] is also a hereditary algebra, it is clear that it m
be wild. By remark 2.4,H [N ][N ] is not derived-tame, and does not have a non-neg
Euler form, and the same is true ofC[M][M].

Therefore, we can suppose thatN is regular and thus thatH [N ] is derived equivalen
to a hereditary algebraH ′ of type Ẽp with p = 6,7,8. On the other hand, there exists
indecomposableH ′-moduleN ′ such thatH ′[N ′] is derived equivalent toH [N ][N ]. In fact
the moduleN ′, which is the image ofN under the derived equivalence, corresponds
regular module of quasi-length 2 in a stable tube ofH ′. The result follows from [15]. �

Finally, we have to consider the case whereC is not connected. Recall thatB = C[M]
is connected. Of course, it is easy to see thatC has at least five vertices sinceB = C[M] is
derived equivalent to a hereditary algebra of typeEp or Ẽp wherep = 6,7,8. Thus, it is
sufficient to show the following lemma.

Lemma 5.3. Let C be a non-connected algebra with at least three vertices and letM be
a separatedC-module such thatC[M] is connected. ThenC[M][M] is not derived-tame
neither does it have a non-negative Euler form.

Proof. By hypothesis, there exist connected algebrasC1, . . . ,Cr and for eachi, an inde-
composableCi -moduleMi such thatC = ∏r

i=1 Ci andM = ⊕r
i=1 Mi . Denote byd+ and
d− the extension vertices ofC[M][M]. Remark that radPd∗ = M for ∗ ∈ {+,−}.
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Let x be a vertex ofC. If dim M(x) � 2, we obtain a full subcategory ofC[M][M]
which is a wild hereditary algebra of the form

d+ ... x
... d−.

Thus, dimM(x) � 1 for all x.
For eachi, let xi be a vertex of the support ofMi/ radMi . Sincer � 2, C[M][M]

contains a convex subcategory of the form:

d+ d−

x1 x2

If r �= 2, thenC must contain a full subcategory which is a wild hereditary alge
Thus, by remark 2.4, we can assume thatr = 2. Since,C has more than three vertices, w
can suppose thatx1 has a neighbory. Suppose thaty ∈ supp(M1) or thatx1 ← y. Then,
we obtain a convex subcategory ofC[M][M] which corresponds to the following wil
hereditary algebra:

d+ d−

x1 x2

y

Thus,y /∈ supp(M1) andx1 → y. This implies that there is a monomial relationd+ →
x1 → y. Since, radPd+ = M = radPd− , we have also a monomial relationd− → x1 → y.
Therefore,C[M][M] contains a convex subcategory which is derived equivalent to
above wild hereditary algebra. The result follows from remark 2.4.�

This lemma finishes the proof of Lemma 5.1 and therefore of the theorem.

Remark. The proof of the theorem gives us a way of verifying whether a blowing-u
a tree algebra at some non-empty set is derived-tame (or equivalently have a non-n
Euler form) or not.

In fact, letA{D} be a blowing-up of a tree algebraA. If A contains, as a convex su
category, some algebras whose derived equivalent toE6, see [2, Section 3], thenA{D}
is not derived-tame. If not, remove by reflection all thin relations, see Lemma 3.2
algebra obtained in this way is a B-tree (for some maximal pair) if and only ifA{D} is

derived-tame.
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