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Abstract

Let k be an algebraically closed field ardbe a tree algebra. We consider here a class obtained
by the blowing-up of a tree algebr& at a set of vertice® of A, such an algebra is denoted by
A{D}. The objective of this paper is to prove the equivalence between the derived-tameness and the
non-negativity of the Euler form for algebras of this form. We also show that, in this caBasif
non-empty set theA {D} must be derived equivalent to a special incidence algebra, called semichain
algebra.
0 2005 Published by Elsevier Inc.
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1. Introduction

Let k be a fixed algebraically closed field. For a finite-dimensidnalgebrad, we de-
note by mod4 the category of finite-dimensional rigitmodules. We are interested in the
description of the derived categofy’ (A) of bounded complexes over mdd Our inter-
est in this problem is partially motivated by the fact that the derived categories of certain
categories of coherent sheaves are related to the derived categories of finite-dimensional
algebras. For instance, it was shown by D. Happel [13] that, i§ derived equivalent to
the derived category of a hereditary category, th&A) is triangle equivalent t®? (H),
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whereH is a hereditary algebra, @”(A) is triangle equivalent t®” (cohX) where cotX
is the category of coherent sheaves over the weighted projectivi lim¢he sense of [7].

A precise description of the categofy’(A) is known for relatively few classes of
algebras. One of those is given by algebras whose derived category is cycle-finite [1]. In
these caseds is derived equivalent to a tame hereditary algebra or to a tubular algebra.
The latest ones are in fact derived equivalent to some&cdigeneral, very little is known
about the derived category. However, quite a lot is known for (skewed) gentle algebras
(which includes semichain) whose derived category was studied in [10].

In this paper, we are interested in the case where derived-tame. We recall that, by
[11], if the global dimension ofA is finite, then the derived categofy’(A) is triangle
equivalent to the stable module category of the repetitive cate@oﬂnus, following [16],
we say that an algebr, of finite global dimension, iderived-tameorovided the category
A is tame, that is, each finite full subcategoryZ)fs tame, see [6]. For further discussion
on derived tameness, we refer the reader to [9]. It is an interesting question to seek a
combinatorial criterion allowing to verify whether a given algebra is derived-tame or not.
Thus, for instance, arose the problem to determine which algebras are derived-tame if and
only if their Euler quadratic forms are non-negative. We recall that, i an algebra of
finite global dimension, then its Euler quadratic form is defined on the Grothendieck group
of A by xa(dimM) =" (—1) dimy Ext, (M, M) for any A-moduleM.

This problem was first solved for tree algebras [5,8]. It was shown that a tree algebra
A is derived-tame if and only if 4 is non-negative. Moreover, in this case,s derived
equivalent to one of the following: a hereditary algebra of t#heE, a tubular algebra,
or a special type of incidence algebras, called semichain algebra (see Section 2.2 for the
definition). Semichain algebras play a prominent role in this paper.

We consider here a class of algebras obtained by the blowing-up of a tree algebra
at a set of vertice®, in the sense of [5], such an algebra is denotedibp}, see also
Section 2.3. These blowing-up of tree algebras are natural in our context since they are
generalizations of tree algebras which contains the class of semichain algebras. The objec-
tive of this paper is to give the equivalence between derived-tameness and non-negativity
of the Euler form for algebras of this form. We prove the following theorem.

Theorem. Let A be a tree algebra and a non-empty set of vertices af The following
conditions are equivalent

(a) The blowing-upA{D} is derived-tame.
(b) The Euler formya(p; of A{D} is non-negative.
(c) The blowing-upA{D} is derived equivalent to a semichain algel§ia, m).

In particular, in this case the derived class of the blowing-up algel{®} is uniquely
determined by the number of vertices, the corank and the Dynkin type of its Euler form.

It is easily seen in Section 2.4 that each of the equivalent conditions above implies
that A is derived-tame. We will, as in the proof for tree algebras, consider two classes
of derived-tame tree algebras. We say that a derived-tame tree algelenavisd of type
E if it is derived equivalent to a hereditary algebra of typg, E, (p =6,7,8) orto a
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tubular algebra. Otherwise, we say that itlexivedE-free Thus, the proof of the theorem

is divided in two cases depending whether the tree algebra is derived & typeot. If the

tree algebra is derivedE-free, the proof is given in two propositions shown in Sections 3
and 4, respectively. Section 5 presents the proof whes derived of typeE. We recall

some concepts and general facts in Section 2. We also introduce a subclass of blowing-up
of tree algebras which are derived equivalent to semichain. This subclass will be used in
the proof of the main theorem.

2. Derived-tame algebras and blowing-up
2.1. Notation

Let A be a basic algebra of the forth=kQ/1, where(Q is a finite quiver and is an
admissible ideal of the path algelir@. We usually suppose that our algebra is connected.
By a vertex ofA, we mean a vertex of the quivel. Observe that each vertexof A is
associated to a primitive idempotent4f denoted by, .

In this paper, we usually assume thiis atree algebrathat means that the underlying
graph of Q is a tree. In this case, there is a minimal set of paths generating thelideal
We refer to these monomial generatars= a1 — --- — a, in kQ as relations ofA and
indicate them by dotted lines.

We also consider as ak-category whose objects are its vertices and in which the
morphisms set from to y is ey Ae, .

Given two algebragl and B, we say that they argerived equivalenif their respective
derived categorie®”(A) and D?(B) are triangle equivalent.

We say thata is areflectionof B if there exist an algebr&, not necessarily connected,
and aC-moduleM such thatA = C[M] and B = [M]C. In this case, we also say that
is areflectionof A. An algebraA is reflection equivalento B if there exists a sequence of
algebrasA = A1, Ay, ..., A, = B whereA; is areflection ofA; 1 for eachi. Two algebras
which are reflection equivalent are also derived equivalent, see [19, (4.10)].

2.2. Derived-tame algebras

Let A and B be two derived equivalent algebras. One can show that the non-negativity,
and in this case, the corank of the Euler form are preserved. Moreover, by [16, (18)], if
is derived-tame then so B. Recall that the following algebras are derived-tame and have
a non-negative Euler form.

Examples. (a) By [11], tame hereditary algebras = kQ are derived-tame. IfA is
representation-finite (hena® is of typeA,, D, or E,, for p =6, 7, 8) theny 4 is positive
definite. If A is representation-infinite (hena® is of typeAn, D, or]E for p=6,7,8)
then x4 is non-negative with coranky = 1.

(b) By [14], tubular algebras in the sense of [17] are derived-tame with a non-negative
Euler form of corank 2.
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(c) Another example of derived-tame algebras, see [10,16], is given by the incidence
algebraS(c, m), calledsemichain algebrgaof the following poset:

ot — 1t —

e DY

o —=1 —>

This algebra has a non-negative Euler form of corankee [16]. We agree thatcan be
taken as—1. In this caseS(—1, m) is a hereditary algebra of typf,,. Also observe that
we have thats(0, m) is a hereditary algebra of tyd®,,,2, for m > 2, and thatS(1, m) is
derived equivalent to a hereditary algebra of t¥pg, 3, form > 1.

2.3. Blowing-up

Let A =kQ/I be an algebra and I& be a set of vertices af. We define thélowing-
up of A at D to be the algebra{D} = kQ{D}/I{D} given by the quiveiQ{D} and ideal
I{D} describe below.

The quiverQ{D} is obtained fromQ by replacing each vertaekof D by the verticesl~
andd™ and each arrow : x — d with d € D by the arrowst™ : x — d~ anda™ : x — d*
and dually for each arro : d — y with d € D.

There is an obvious quiver epimorphisB{D} — Q which extends uniquely to a sur-
jective algebra morphism : kQ{D} — kQ. We define the ideal{D} of kQ{D} to be
the ideal generated by all linear combinatiogns= > " ; A;w; of pathsw; (having the
same starting and ending vertices) such thgt) € 1. If D = {d}, we usually denote the
blowing-upA{D} by A{d}.

Remark that blowing-up can be defined in a more general way using a finitgé set
instead of the sgtt, —}, see [5, (2.5)].

From now on, we suppose that=kQ/I is a tree algebra. In this case, the idéas
generated by paths. Thus, the idééD} is generated by all paths of Q{D} such that
w(w) € I and by all commutativity relation8Ta™ = ~«a~ whenever there are arrows

. _ _
x£>d+ﬂ—>y and x *>d —y

in Q{D} such thatr (d*) =n(d™) andr(at) = (e™) as well ast(8T) = 7 (7). Ob-
serve that, in this case, the blowing-4pD} is a quotient of an incidence algebra.

Examples. (a) If the algebrad = kQ is a chain
Sp—> - —>s1—>do— - —d,
andD = {do, ..., d.}, thenA{D} coincides with the semichaif\c, m).

(b) Let A =kQ/I be given by the quivepQ = x % y £, a2 7 and1 be the ideal
generated by the pati8y . Then the blowing-upi{d} is given by the following quiver:
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Bt d+ A
N / \
X —y Z
~ 7
B d- v

bound by the relationg*y* =8~y andapty* =0.
(c) Let O be the quiver; % s LN d> and! be the ideal generated m8. The blowing-
up A{D}, with A =kQ/I andD = {d1, d>}, is given by the quiver:

d;— at gt d;—
\S
7N

dy “e B dy
bound by the relations** =a™~ =a gt =2~ =0.

The next proposition, which follows directly from [5, (2.2)], tells us how reflection
equivalent algebras yield reflection equivalent blowing-up of these algebras. This property
is an essential tool in the sequel.

Proposition [5, (2.2)] Let A be an algebra and be a set of vertices AA. If A is reflec-
tion equivalent to an algebr&, then there exists a sét of vertices ofB corresponding to
vertices ofD under the sequence of reflections such that the blowing{up} is reflection
equivalent to the blowing-uB{E}.

2.4. Full subcategory

Observe that the algebrais a full subcategory of every blowing-up{D}. Therefore,
it is natural to ask whether derived tameness and non-negativity of the Euler form are
preserved under full subcategories.

Proposition. Let A be a triangular algebra and be a full subcategory od. Then

(a) If A is derived-tame then so B.
(b) If the Euler form ofA is non-negative then so is the Euler formaf

Proof. (a) Recall that the repetitive catego@of A is the algebra (without unity) given
by the doubly infinite matrix

=)
Il

DA A
DA A
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whose elements are matrices with a finite number of non-zero coefficients. The sum is
the usual matrix one and the multiplication is induced from the canonical morphisms
A®;DA — A, DA®; A — A and the zero morphism ;DA — 0 where ™A =
Homy (A, k).

Any two objects ofB are of the formx[i] andy[j] wherex, y € Bg andi, j € Z. The
set of morphisms im from x[i] to y[j]is given by

Ax,y) x {i} if i =,
A(xlil.y1j]) = | DAGy, x) x {i} if j=i+1,
0 else

SinceB is a full subcategory oft, one can easily see thatAdy, x) = DA(y, x) when-
everx, y are objects inB. Thus, the repetitive categoﬁl of B is a full subcategory of the
repetitive category% of A. Therefore, ifA is derived-tame thed is tame and, so i$.
Hence,B is derived-tame. This fact also easily follows from the equivalents definitions of
derived tameness given in [9].

(b) This result is well known ifB is convex. Let us then suppose ttiis not convex.
We prove this result by induction on the number of verticegiof.et x be a vertex ofA
which is not inB. There exists an algebr which is reflection equivalent ta such that
x corresponds to a source . Moreover, there exists a full subcategd{yof A’ which
is reflection equivalent t@®. In fact, B is a full subcategory oA’ = A’/A’e, A’. But
A’ is a convex subcategory df . SinceA’ is derived equivalent td, it follows that x 4/
is non-negative. Thereforg, « is also non-negative. By the induction hypothegig, is
non-negative. The result follows from the fact thats derived equivalent t&’. O

The following remark on hereditary algebras will also be a useful tool.

Remark. Observe that for a hereditary algebra, the concepts of derived-tameness, tameness
and non-negativity of the Euler form coincide.

2.5. B-tree algebras

To prove the main theorem, we introduce a subclass of the blowing-up algebras. Observe
that a similar class of algebras, called semi-tree, was introduced in [5, (2.6)]. In fact, we
made the condition (D5) stronger in such a way that this class corresponds to algebras
which are derived equivalent to semichain algebras.

Definition. Let A be an algebrad = kQ/I be a tree algebra anbl be a set of vertices
of A. We say thatA is aB-tree for(A, D) if A = A{D} and the pait(A, D) satisfies the
following conditions:

(D1) At each vertex oD starts at most one arrow and at each verte®aénds at most
one arrow.
(D2) The ideall is generated by a set of paths of length two or tree.
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(D3) Ife:a®b 2, ¢ is one of the generators of the idealthen the middle vertek
does not belong t®. Moreover, all other generators dfthat contain the arrow
end in the vertexd, and all other generators éfthat contain the arroy start inb.

(D4) The generators af of length three have the form:a — o’ % b B, or dually,
e’:a/%bic/—mortheycomeaspair&:a—>a/l>bﬁ>c/,e/:a/i>bﬁ>
¢’ — ¢). In each case, the vertice§ b andc’ do not belong tad> and no other arrow
starts nor ends in’ or in ¢’. Moreover, no other generator dfcontains the arrows
o or B.

(D5) There is no (full) convex subcategory &fof one of the following forms, where the
vertexx belongs toD:

1 @ o o (b) o (© o
AN | |
o—o *%—0—0 *—O0—3%
g }
@2 @ T (b)T
O—O0—0—0 O—O0—0
} l
3 @ o o (b) e
AN |
o—o0 k—O0—0
b |
@ @ (\) (b)T
O—O0—0—0 O—O0—0
| l
5 (\3 (6) o
7(\)7 _ 707 _
(N (\) (8) o
©) o (10) oo
o—o—c‘)—o—o \c‘)fo
/|
o o

If there exists such a paf, D), then we simply say that is a B-tree.

Examples. (a) The following algebras are not B-trees fot, ¥) where A = A{(}} is the
corresponding algebra.

oO——=0

0—>0—>0—>0—>0—>0 0—>=0—>0 0—>0—>0—30
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(b) The blowing-up of the tree algebra

at the sefx, y} is not a B-tree.
(c) The blowing-up of the tree algebra

Yy—0—>0—>0—>0

N<—

atthe setx, y, z} is a B-tree.

Remark. Each blowing-up described in (D5), (1)—(4), is derived equivalent to a wild (that
means not tame) hereditary algebra and thus is not derived-tame, nor has a non-negative
Euler form. While, those described in (D5), (5)-(10), are derived equivalent to hereditary
algebras of typ&s.

2.6. Derived-tame tree algebras

We recall the result of T. Bristle on tree algebras. C. Geiss obtained some of the impli-
cations for a larger class of algebras.

Theorem [5,8]. Let A be a tree algebra. The following conditions are equivalent

(a) A is derived-tame.

(b) x4 is non-negative. _

(c) A is derived equivalent to a hereditary algebra of typg, E, (p =6,7,8) orto a
tubular algebra or to precisely one of the semichain algelfas m).

In particular, the derived class of the tree algebtas uniquely determined by the number
of vertices, the corank and the Dynkin type of its Euler form.

Observe that algebras which are derived equivalent to a hereditary algebra of,type D
or Dr, are also derived equivalent 850, n — 2) or S(1, n — 3), respectively.

The above theorem and proposition 2.4 imply that{iD} is derived-tame or if its Euler
guadratic form is non-negative thehis derived-tame. We recall that a derived-tame tree
algebra is said to beerived of typek if it is derived equivalent to a hereditary algebra
of typeE,, E, (p =6,7,8) or to a tubular algebra. Otherwise, it is said todmived
E-free. We will consider those classes of algebras independently. We recall the connection
between the algebras derived of typand those which contain a full subcategory derived
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equivalent to a hereditary algebra of tylfie. This proposition follows from [2, (2.1)] and
[5, (1.3)].

Proposition. Let A be a derived-tame tree algebra. The following conditions are equiva-
lent

(a) A is derived of typéE.

(b) A contains a convex subcategory which is derived equivalent to a hereditary algebra
of typeE,, E, (¢ =6, 7, 8) or to a tubular algebra.

(c) A contains a full subcategory which is derived equivalent to a hereditary algebra of
typeEs.

We obtain the following lemma which connects B-tree algebras with defisee
algebras. This lemma will allow us to apply results of [5] to B-tree algebras.

Lemma. Let A be a tree algebra an@d be a set of vertices o such that the blowing-up
A{D} is derived-tame or the Euler form a&f{D} is non-negative. TheA{D} is a B-tree
for (A, D) ifand only if (A, D) satisfies the condition®1)—(D4)and A is derivedE-free.

Proof. The sufficiency follows from remark 2.5. The hypothesis together with proposi-
tion 2.4 and theorem 2.6 imply that is derived-tame. By the above proposition, it is
sufficient to verify thatA does not contain a full subcategory which is derived equivalent
to a hereditary algebra of tyfi&. This is easily done by looking at the list of tree, algebras
derived equivalent téig, see [2, Section 3]. O

In the next two sections, we prove the main theorem when a derivedE-free tree
algebra. LetD be a set of vertices oA such that the blowing-ug{D} is derived-tame or
the Euler form ofA{ D} is non-negative. First, we prove tha{D} is derived equivalent to
a B-tree algebra. Then, we show that B-tree algebras are derived equivalent to semichain
algebras.

3. Blowing-up derived equivalent to B-tree
This section is devoted to prove the following proposition.

Proposition 3.1. Let A be a derivedE-free tree algebra and be a set of vertices oA
such that the blowing-ug{D} is derived-tame or the Euler form &f{ D} is non-negative.
ThenA{D} is derived equivalent to a B-tree algebra.

Observe that the derived equivalence obtained here is, in fact, an equivalence given by
a sequence of reflections.

As in [5], we remove, by reflections, some relations. Uet kQ/I be a tree algebra
andp =ag — --- — a, be a generator of the ideal We say thap is thin if
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(T1) bothag anda, are end vertices of), that means that they only have one neighbor,
and

(T2) the projectiveA-module P,, has supporfao, ..., a,—1} and the injectivedA-module
I,, has supportay, ..., a,}.

The following lemma enables us to assume that we deal with an algebra without thin
relations.

Lemma 3.2[5, (4.1)] Let A be a tree algebra. Then there exists a tree algeRraithout
thin relations such that is reflection equivalent t@.

Moreover, ifA is derivedE-free, then there exists a paiB’, E’) satisfying the condi-
tions(D1)—(D4)such thatB’{E’} = B. In addition, the vertices of’ are end vertices of a
monomial relation.

Remark. SinceQp is a tree, the vertices @’ are always end vertices @f z.

Lemma 3.3. Let A be a derivedE-free algebra andD be a set of vertices of such that
the blowing-upA{D} is derived-tame or the Euler form of{D} is non-negative. Then
there exists a tree algebr without thin relations which is a B-tree f@B, ¢J) and a sett
of vertices ofB such thatB{E} is reflection equivalent ta{ D}.

Proof. By the previous lemma, there exists a tree alggdravithout thin relations which
is reflection equivalent ta. On the other hand, there exists a p@i; E”) which satisfies
the conditions (D1)—(D4) such th&{E"} = B’. By proposition 2.6 B’ is derivedE-free
and so isB which is also a derived-tame tree algebra. By lemma B{&"} is a B-tree
for (B, E”). Obviously,B is also a B-tree fotB, #). The above lemma guarantees us that
each vertex of£” is the beginning or the end of a monomial relation. In particular, these
vertices are end vertices 6fp.

On the other hand, by proposition 248D} is derived equivalent tB’{ E’} for some set
E’ of vertices ofB’ = B{E"}. We prove that the vertices &f are, in fact, vertices aB. To
do so, suppose that there exists a vertexE” such thati™ € E’ ord~ € E’, respectively.
We can assume without loss of generality thidas the end of a monomial relation. First,
let us suppose that this relation is of length 3. In this c&SgE’} = (B{E"}){E’} contains
a convex subcategoly of the form:

with aBy; = 0. SinceC is derived equivalent to a wild hereditary algebra of type 1.a, see
the listin (D5), the remark 2.4 gives us the desired contradiction. Consequéntlyst be

the end of a monomial relation of length 2, saya — b — d. However,e is a relation

of B’ = B{E"} and thus is not thin. Therefore, there exists a neighbof a or of » and
depending on the casB,contains one of the following convex subcategories:
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y—s>a—>b—>d, Y—a—=b—>=d O a—=ph—>d

By passing to the blowing-up’{E’}, we obtain a full subcategory which is derived
equivalent to a wild hereditary algebra of type 2.a, see the list in (D5). Once more, this
yields a contradiction. In conclusion, the sétsand E” can be identified with sets of
vertices ofB andB’{E’} = B{E} whereE=E'UE". O

By the above lemma, we can assume thais a tree algebra without thin relations
which is a B-tree foKA, ¥). Let D be a set of vertices of such thatA{D} is derived-tame
or the Euler form ofA{D} is non-negative. With this assumption, we prove thébD} is
a B-tree (not necessarily far, D)). First, we show that any such pdid, D) satisfies
the conditions (D2)—(D4). Then, we consider a suitable pair of the above blowing-up and
prove that this one also satisfies the condition (D1). Finally, we use lemma 2.6 to conclude
that the algebra given by {D} is a B-tree. We introduce the next notation to alleviate the
proofs.

Notation. Let A be an algebra an#l be a set of vertices of. Denote byA (F) the convex
hull of F, that is the smallest convex subcategoryiofvhich contains the vertices df.

Lemma 3.4. Let A = k(Q/I be a tree algebra without thin relations which is a B-tree for
(A, ¥) and letD be a set of vertices of such thatA{ D} is derived-tame or the Euler form
of A{D} is non-negative. Thefd, D) satisfies the condition®2)—(D4).

Proof. Observe that sincd is a B-tree for(A, @), the condition (D2) is trivially satisfied.
The same holds for the part of the conditions (D3) and (D4) that do not invdMeet us
start proving that (D3) holds.

Lete : a — b — ¢ be a generator af of length two. To prove thatd, D) satisfies (D3),
we only need to verify thab does not belong t®. Thus, let us suppose thate D. By
hypothesise¢ is not a thin relation, which means thatb or ¢ have a different neighbor.
Observe that ifc is a neighbor ob then there is no relation froma to x, nor fromx to ¢
andA({a, b, c, x}) is of the following form:

a—ph —>=c¢
|

X

If x is a neighbor of:, dually for ¢, the convex subcatego#({a, b, c, x}) is one of the
following:

X —a—ph—=c¢ or X —a—ph—=c¢
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In each case, the blowing-up &f({a, b, ¢, x}) atb is a full subcategory ofA{ D} which
is derived equivalent to a wild hereditary algebra. The remark 2.4 gives us a contradiction.
That means that ¢ D and that(A, D) satisfies (D3).

Now, let us show thatA, D) also satisfies (D4). Recall théd, ) satisfies this con-
dition. We first consider when there is a pair of generatord af length three. Let
(c:a—a —->b—c,¢:a - b—  — c) be one of these generators. We have to
show that{a’, b, /YN D =@. Letx € {d’, b, ¢’} N D. The blowing-up ofA({a, d’, b, ¢/, ¢})
atx is a full subcategory ofA{D} which is derived equivalent to the blowing-up of

at the vertexx. By the above and the remark 2.5, this blowing-up is not derived-tame,
neither does it have a non-negative Euler form. This yields the desired contradiction. Con-
sequently, we can assume, up to duality, that there exists a generdtof tgngth three
€:a—a — b— ¢ with ¢’ an end vertex ang € {a’, b, ¢’} N D. By hypothesis¢ is not

a thin relation which means that there exists a neighbafra or 4 different froma’ andc’.

If x is a neighbor ob, thenA({a,d’, b, ¢, x}) is of the following form:

In this case, the blowing-up o ({a,a’,b,c’, x}) at y is derived equivalent to the
blowing-up of the hereditary algebra

a—b— /(¢
!
;
at the vertexy. This blowing-up is not derived-tame, neither does it have a non-negative

Euler form. Thus, we obtain a contradictionxlfs a neighbor of:, thenA({a, a’, b, ¢/, x})
is of one of the following forms:

X—>=a-—>=gqg —=ph—( or X —a—=g —b—
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In both cases, the blowing-up df({a, a’, b, ¢, x}) at the vertexy is derived equivalent to
the blowing-up of

at the same vertex. Once more, this blowing-up is not derived-tame, neither does it have a
non-negative Euler form. This last contradiction completes the proof that thé4alr)
satisfies (D4). O

To satisfy condition (D1), we need to define a concept of maximality for thegaib).

Definition. Let A be a tree algebra anfd be a set of vertices of. We say thatA, D) is a
maximal pairif there is no other pai¢A’, D’) such thatA’{ D’} = A{D} with A’ a subtree
of A and D’ a set of vertices ofA’ containingD.

Remark. Let A = kQ/I be atree algebra without thin relations which is a B-tred fong)
and letD be a set of vertices o such thatA{D} is derived-tame or the Euler form of
A{D} is non-negative. Then there exists a maximal §&8irE) such thatA{D} = B{E}.
Moreover,B is a tree algebra without thin relations which is a B-tree(®r¢#) sinceB is

a subtree ofA. Clearly, B{E} is derived-tame or has a non-negative Euler form.

We thus have the following lemma.

Lemma 3.5. Let A = kQ/I be a tree algebra without thin relations which is a B-tree for
(A, ?) and letD be a set of vertices of such thatA{ D} is derived-tame or the Euler form
of A{D} is non-negative. Moreover, suppose that D) is maximal. ThergA, D) satisfies
the conditiongD1)—(D4).

Proof. By the Lemma 3.4(A, D) satisfies the conditions (D2)—(D4). Thus, it remains to
show that (D1) holds. By duality, we can suppose that there exist at least two arrows ending
in a vertexb of D, saya — b < c. Since the blowing-up af — b < ¢ at the vertices:

andb is a wild hereditary algebra given by the following quiver:

We can suppose that neithernor ¢ belong toD. Moreover, the vertices andc are
end vertices ofd, since the blowing-up of

X a b c or x —a—p=<—-=c
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at the vertex is derived equivalent to a wild hereditary algebra.

By conditions (D3) and (D4), we have no relation beginning jmor inc. Therefore,
we obtained the same algebtéD} if we consider the blowing-up o’ at D’ whereA’ is
the subtree oft obtained by deleting the vertexand D’ = D U {a}. This contradicts the
maximality of (A, D). O

Lemma 3.6. Let A = kQ/I be a tree algebra without thin relations which is a B-tree for
(A, ¥) and letD be a set of vertices of such thatA{ D} is derived-tame or the Euler form
of A{D} is non-negative. TheA{D} is a B-tree.

Proof. By the last remark, we can suppose tiiat D) is maximal. Thus, by the pre-
vious lemma,(A, D) satisfies the conditions (D1)-(D4). The conclusion follows from
lemma2.6. O

Therefore, the Proposition 3.1 is a consequence of Lemmas 3.3 and 3.6.

4. Derived-tameness of B-tree algebras
This section is devoted to the proof of the following proposition.

Proposition 4.1. Let B be a B-tree. Them is derived equivalent to a semichain algebra
S(c, m).

We remark that the derived equivalence of the former proposition is obtained by a se-
guence of tilts, which in fact correspond to APR-tilts and reflections.

Using the above proposition, we get that all B-tree algebras are derived-tame and have
non-negative Euler forms. Moreover, when the corari& bigger than 2, they provide a
class of derived-tame algebras which are neither derived equivalent to a hereditary alge-
bra nor to a tubular one. Consequently, B-tree algebras are easy computable examples of
algebras derived equivalent to semichain algebras.

In order to prove this result, we use essentially the results and ideas of Section 3 of the
paper of Briistle on derived-tame tree algebras [5]. In fact, the proof mainly consists in
verifying that we can apply these results to B-tree algebras. This is done by induction on
the number of monomial relations. Recall the following lemma.

Lemma4.2[5, (3.3)] Let A be a hereditary algebra anéd) be a set of vertices of such
that A{D} is a B-tree. Them {D} is derived equivalent to a semichain algel§t&, m). If
A is of typeA,,, thenc = |D| — 1.

Let A =kQ/I be atree algebra. Given two verticeandy of O, we denote by (x, y)
the convex subcategory df generated by all the vertices gfwhich are nearer (in a walk)
to x than toy together within the intervdlx, y], that is all vertices in a walk from to y.
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Example. Let A be the algebra given by the following bound quiver:

L A
5 6 7 8 9 10

11

In this case, we have that5, 7) is the convex subcategory generated by 5, 6 and 7. On the
other handi(7, 5) is the convex subcategory whose objects are 3, 4, 5, 6, 7, 8, 9 and 10.

For the rest of this section, let{ D} be a B-tree foA, D) with A =k Q/I. Recall that
for each monomial relation o, we can define a trisection of the quiv@ras fallow.

Now lete : a — b — ¢ be a monomial relation of length two as considered in (D3). For
such a relation, we define three convex subcategories &f . = >(a, b), dually, N =
>(c, b) and NS = {J, >(x, b) where the union is taken over all neighbarof » except
a andc. Then, by construction, the union of these three subcategories covers the whole
quiver Q. Moreover, by condition (D3), any relation df different frome is completely
contained in one of the set¢~, N, N°.

For a relation of length three, we also define a trisection with the same properties. By
condition (D4), we either have one relatiena — a’ % b £, ¢ wherec’ is an end vertex
of 0, ordually, arelatior’ : a’ %> b £, ¢ - ¢ whered' is an end vertex of, orthereisa
pair of relations(¢ :a — a’ % b boeeiad Hpls o ¢). In each case, we associate
to € or € or (¢, ') a trisection ofQ as follows. We define three convex subcategories
of A, N =w(d’,b), dually, N =(c’, b) and finally,NE =J, »(x, b) where the union
is taken over all neighbors of b excepte’ andc¢’. Any other relation is thus completely
contained in one of the set¢~, N, N°.

Example. In the previous example, consider the pair of monomial relatien§ — 8 —
9— 10 €¢:8— 9— 10— 11). ThenN; =r(8,9) is the convex subcategory whose
objects are the vertices 1, 2, 5, 6, 7, 8 and 9. Moreover, the convex subcalégcsy
>(10, 9) is supported by9, 10, 11} ande =>(3,9 Ur(4,9) by {3,4, 9}.

Remark thatA{D} is a B-tree for anyD C {1, 2, 3,4, 11}.

The following lemma describes which relations can be used in the inductive step.

Lemma 4.3 [5, (3.4)] Let A{D} be a B-tree for(A, D) and letA = kQ/I. Then there
exists a monomial relatioa or a pair of monomial relationse, ¢’) in I such that at most
one of the convex subcategori¥s, N, N2, defined above contains some relation.

We suppose from now on thdf{ D} and the relatior or the pair of relationse, ¢’) is
the one described in the above lemma.

We need to consider a nicer form for this algebra. To do so, let us recall the following
result.
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Lemma4.4[5, (3.1)] Let A be an algebra of the following form

X1 X2 e Xy S@

whereA’ denotes a convex subcategory4énd there is no relation starting or ending in
one of the vertices;. Let D be a set of vertices of such thats ¢ D and (A, D) satisfies
the condition(D1). ThenA{D} is derived equivalent td{D} where B is given by the
following algebra or its dual

X1 —> X2 o Xy sA)

Lemma4.5. Up to derived equivalence, we can suppose #{d?} ande or (¢, '), respec-
tively, are such that two of the convex categorés, N and N2 are hereditary algebras
of typeA,,, with all the arrows pointing in the same direction.

Proof. We know that there exist at least two of the convex categavies N~ and N?
which are hereditary algebras. By (D5), they must be of type D,, or D,,. Assume

first thatNS is one of the hereditary categories.i\l’tJ contains a convex subcategory of
the formx — b — y; — y» (for an arbitrary orientation of the arrows) the@ncontains a
convex subcategory of type 5 or 2.a of the list in (D5) whereas the relation is of length 2
or 3. On the other hand, if has three neighbots, y, z} in N€° then A contains a convex
subcategory of type 3.a or 1.a of the list in (D5) whereas the relation is of length 2 or 3.
Assume the quiver QNS to be of the following form:

s
b y1 y2 e Ys—1

Ys+1

By (D5), ys andy,4+1 are notinD. Indeed, ify, or y,4+1 isin D thenA admits a convex
subcategory of type 2.b (if > 1), 3.b or 1.b (ifs = 1) whereas the relationis of length
2 or 3. Moreover, by applying an APR-tilt &, if necessary, we may suppose thatand
ys+1 are both sinks or sources. This process is not interfering with the blowing-up since
ys—1 does not belong t® by (D1). Thus, we obtain the same algelargD} if we replace
the verticesy; andy,1 by a one vertex/; which belongs taD. This new blowing-up is
still a B-tree. Therefore, we can suppose tN&tis of the formb — y; — - - — y;, whose
of type A,,. The result follows from Lemma 4.4. In the same way gt (dually N),
we need to verify that it contains none of the following subcategories wherandz are
different fromb (or from ¢/, whene is of length 3):

x\)c)/z

If this is the case theA contains a convex subcategory of the form 8 (or 7), 4.a (or 2.a)
or 4.b (or 2.b) of the list in (D5) whereas the relation is of length 2 (or 3). As above, we

X c y 2,

or d——c¢c——)
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obtain thatV_' is of typeA,,. If ¢ ¢ D, the result follows from Lemma 4.4. Otherwise, if
we do not have the desired orientation, there exists a sourég ifTake the nearest source
from ¢, then since(A, D) satisfies condition (D1), it cannot belong . Thus, we can
apply Lemma4.4. O

Remark. In the last lemmaN_ (or N) is a hereditary algebra of type,, with all the
arrows pointing in the direction of the monomial relation.

In order to show Proposition 4.1, we apply the proof of T. Brustle. For this purpose, it
is enough to verify that the algebras obtained at each induction step is a B-tree. We have
four possibilities, up to duality. To know more on the derived equivalences used in the
following, we refer the reader to [5].

First, consider the case wherea < b 2, ¢is arelation ofA of length 2 as considered
in (D3) andN_, N€0 contain no relation. By the above lemma, we can supposeitisbf
the following form:

x1 . X a 1 . ¥s

!
©

We know thatA is derived equivalent to the algebBagiven by

O S

andA{D} is derived equivalent t@{D}. Moreover,B has less monomial relations than
and (B, D) satisfies conditions (D1)—(D4). Thus, we just have to see(tBaD) satisfies
condition (D5). If not,B contains a convex subcategaryof the list in (D5). Sinc&A, D)
satisfies this condition, the subcategory- » — y1 — --- — y;, — x is contained inC,
with x = x1 if 1 £ 0 andx = a if r = 0. This implies that = 0 and thatC cannot be of type
1, 3, 4, 6, 9 or 10. On the other handdfis of type 2.a (or 2.b, 5, 7, 8), thef contains
a convex subcategory of type 4.a (or 4.b, 6, 8 or 9, respectively). This yields the desired
contradiction. Consequentlg{D} is a B-tree.

Now, consider the case wherea % b b, cisarelation of length 2 as in (D3) ad ",
N contain no relation. By Lemma 4.5, we can suppose thistthe following algebra:

()

X1 e Xt a b c Yl e yS

We have that is derived equivalent to the following algebBa

A b Vs S y1 c a Xt s X1

andA{D} is derived equivalent t8{D}. Moreover,B has less relations thahand(B, D)
satisfies the conditions (D1)—(D4). Suppose fttfatD) does not satisfies condition (D5),
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that means thaB contains a convex subcategatyof the list in (D5). Since(A, D) sat-
isfies this condition, we get that the subcategbry y, < --- < y1 < ¢ < a must be
contained inC. Thus,s = 0 andC cannot be of type 1, 3, 4, 6, 9 or 10. On the other hand,
if C is of type 2.a (or 2.b, 5, 7, 8), theh contains a convex subcategory of type 3.a (or
3.b, 10, 5, 6, respectively), a contradiction. HenBéD} is a B-tree.

In the last two cases, we deal with a pair of monomial relations of length ttwa€)
as considered in condition (D3). We consider that one of the veriicgs: may not exist
and therefore one of the relatioa®r ¢’ does not appear.

We begin with the case when both convex categabigsand N/~ are hereditary. Thus
we may assume by Lemma 4.5 thiahas the following form:

X1 e Xt a a b c c 1 E Vs
We have that is derived equivalent to the algebBdd} whereB is of the form

A b Vs y1 c d a Xt X1

andB{D U {d}} is derived equivalent td{D}. Moreover,B has less relations thatrand
(B, D U {d}) satisfies the conditions (D1)—(D4). Suppose tBéb U {d}} is not a B-tree,
that means thaB contains a convex subcategaryof the list in (D5). But(A, D) satisfies
condition (D5). ThusC must contain the subcategdryx— y; < --- < y1 < c < d «a.
Therefore,s = 0 and one of the verticas or ¢ does not exist. This implies that must
contain a convex subcategory of the same typ€ @& contradiction.

We finish the proof with the case where we have a pair of monomial relatior$
as considered in (D4), and the convex subcatengEsand NZ are hereditary. By
Lemma 4.5, we can assume thats the following algebra:

¢ —=c y1 Vs

X1 e Xt

@Q%Q\%@

As in the previous case, one of the relatierar ¢’ may not exist. We have that is derived
equivalent to the blowing-up{d} whereB is of the following form:

@a a/ d C y1 Vs X1 Xt

and B{D U {d}} is derived equivalent ta {D}. Moreover,B has less monomial relations
than A and (B, D U {d}) satisfies the conditions (D1)—(D4). Suppose tRatontains a
convex subcategorg of the list in (D5). But,(A, D) satisfies condition (D5) and thu3
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must contain the subcategary— a’ — d — c. Therefore, one of the relatiomor ¢’ does
not exist. In both cases} contains a convex subcategory of the same typ€ asnd we
obtain a contradiction. Thu®{D U {d}} is a B-tree.

Consequently, we have proved that given a B-tree, there exists a derived equivalent
B-tree such that the corresponding tree has strictly less monomial relations. Then Proposi-
tion 4.1 follows from induction and Lemma 4.2.

5. Blowing-up of derived type E tree algebra

Let A be a tree algebra anfl be a non-empty set of vertices df such thatA{D} is
derived-tame or has a non-negative Euler form. To prove the main theorem, there remains
to consider the case whehis derived of typeE. The purpose of this section is to prove
the following lemma which yields a contradiction of the above hypothesis by using the
proposition 2.4.

Lemmab5.1. Let A be a tree algebra derived of tyfieandd be a vertex ofdA. ThenA{d}
is not derived-tame, neither does it have a non-negative Euler form.

Let A be a tree algebra derived of tyfieandd be a vertex ofA. By definition, A is
derived equivalent to a hereditary algebra of tffyg E, with p =6, 7, 8 or to a tubular
algebra. Sinced is a triangular algebra, we know that is reflection equivalent to an
algebraB whered corresponds to a source &f which we also denote by. Thus, by
proposition 2.3A{d} is derived equivalent t&{d}. Therefore, it is sufficient to prove that
B{d} is not derived-tame, and that it does not have a non-negative Euler form. On the
other hand, there exists an algelirdnot necessarily connected) and’anoduleM such
that B = C[M] andd is the extension vertex, that ¥ = radP;. We easily see that the
blowing-up B{d} corresponds to the one-point extensi®f/] = C[M][M]. It is a well-
known fact that Hochschild cohomology is preserved under derived equivalence. Since
HY(A) =0, we have thaH(C[M]) = 0. By [18], M is aseparated modulghat means
that each indecomposable summandMdfbelongs to a different connected component
of C.

First, let us suppose thétis connected and thus thaf is indecomposable.

Lemma5.2. LetC be an algebra and/ be an indecomposabte-module such that'[M]
is derived equivalent to a hereditary algebra of tyipg E,, with p =6, 7, 8 or to a tubular
algebra. TherC[M][M] is not derived-tame, neither does it have non-negative Euler form.

Proof. If B = C[M] is derived equivalent to a tubular algebra, there exisBsraodule
X such that dimHom(M, X) > 3 or dimHonyg (X, M) > 3. It follows from [17], that at
least one ofB[M] or [M]B is wild and thus,B[M] = C[M][M] is not derived-tame. The
result now follows from [4, (6.2)]. Therefore, we can suppose that derived equivalent
to a hereditary algebra of tyf®, or E, with p =6, 7, 8.

Recall thatd is the extension vertex af[M]. Therefore, there exists a triangle equiv-
alenceF : D*(C[M]) — D?(H') whereH’ is a hereditary algebra of tyii, or E,, with
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p =6, 7,8 such thatF P, is an indecomposabl&’-module. Moreover, we can suppose
that Hom(F P;, H') = 0. We deduce easily that Bx# P;, FP;) = 0 and EndF P; = k.
Denote byFPdL the full subcategory of moH’ whose objects are all the modulés
such that Hor# P, X) = 0 = Ext}(F Py, X). By [11, (11l.6.4)], FP;- = modH where

H is a hereditary algebra. Following [12, (3.3)], the derived categdfyH) can be
identified with the full subcategory ab”(H’) whose objects are all complexas such
that Homy /) (F Py, N[i]) = O for all i € Z. We verify that for each indecomposable
C-projective moduleP,, we haveF P, € D(H). But, HoMys 1) (F Pa, F Pyli]) is iso-
morphic to

0 if i <O,
Hompecpay (Pas Pilil) = § Hom(Py, Py) if i =0,
Ext (P;, P,) ifi>0.

Sinced is a source, we geFC € D’(H). It follows that C is derived equivalent to the
hereditary algebr/ . In fact,C = Endpsy, FC. SinceC[M] is derived-tamed must be
tame.

Applying [3], there exists an indecomposalifemodule N which is projective or reg-
ular such that?[N] is derived equivalent t€[M] and H[N][N] is derived equivalent to
C[M][M].

If N is projective, therf/[N] is a hereditary algebra. By hypothesis|N ] is of typeE,
orE, with p = 6,7, 8. SinceH[N][N] is also a hereditary algebra, it is clear that it must
be wild. By remark 2.4H[N][N] is not derived-tame, and does not have a non-negative
Euler form, and the same is true 6f M1[M].

Therefore, we can suppose thiétis regular and thus thatf[N] is derived equivalent
to a hereditary algebr&l’ of type IE,, with p = 6,7, 8. On the other hand, there exists an
indecomposablé/’-moduleN’ such thatd’[N'] is derived equivalent té/ [N ][N]. In fact
the moduleN’, which is the image ofV under the derived equivalence, corresponds to a
regular module of quasi-length 2 in a stable tub&f The result follows from [15]. O

Finally, we have to consider the case whéré not connected. Recall th&8t= C[M]
is connected. Of course, it is easy to see thats at Iea~st five vertices sinde= C[M] is
derived equivalent to a hereditary algebra of tfeor E, wherep = 6,7, 8. Thus, it is
sufficient to show the following lemma.

Lemma 5.3. Let C be a non-connected algebra with at least three vertices angi/ldie
a separated”-module such tha€'[M] is connected. The@[M][M] is not derived-tame,
neither does it have a non-negative Euler form.

Proof. By hypothesis, there exist connected algel&fas .., C, and for each, an inde-
composable”;-moduleM; such thatlC =[];_; C; andM = &;_; M;. Denote byd* and
d~ the extension vertices @f[M][M]. Remark that ra®d;« = M for x € {+, —}.
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Let x be a vertex ofC. If dim M (x) > 2, we obtain a full subcategory @[M][M]
which is a wild hereditary algebra of the form

Y
dt x=

d-.

Thus, dimM (x) < 1 for all x.
For eachi, let x; be a vertex of the support d¥f;/radM;. Sincer > 2, C[M][M]
contains a convex subcategory of the form:

o

If r £ 2, thenC must contain a full subcategory which is a wild hereditary algebra.
Thus, by remark 2.4, we can assume that2. Since,C has more than three vertices, we
can suppose that; has a neighboy. Suppose thap € suppgM1) or thatx; < y. Then,
we obtain a convex subcategory 6fM][M] which corresponds to the following wild
hereditary algebra:

1
|

Thus, y ¢ suppM1) andx; — y. This implies that there is a monomial relatigi —

x1 — y. Since, rad’;+ = M =radP,;-, we have also a monomial relatidm — x1 — y.
Therefore,C[M][M] contains a convex subcategory which is derived equivalent to the
above wild hereditary algebra. The result follows from remark 24.

This lemma finishes the proof of Lemma 5.1 and therefore of the theorem.

Remark. The proof of the theorem gives us a way of verifying whether a blowing-up of
a tree algebra at some non-empty set is derived-tame (or equivalently have a non-negative
Euler form) or not.

In fact, let A{D} be a blowing-up of a tree algebra If A contains, as a convex sub-
category, some algebras whose derived equivalefilsicsee [2, Section 3], theA{D}
is not derived-tame. If not, remove by reflection all thin relations, see Lemma 3.2. The
algebra obtained in this way is a B-tree (for some maximal pair) if and ondy{ Ip} is
derived-tame.



D. Castonguay / Journal of Algebra 289 (2005) 20-41 41

Acknowledgments

This work was during a visit of the author to J.A. de la Pefia at the UNAM, Mexico.
We thank both J.A. de la Pefia and the Universidad Nacional Autonoma de Mexico for the
hospitality. We gratefully acknowledge the financial support of NSERC, Canada, FCAR,
Québec and CONACyYT of Mexico.

References

[1] I. Assem, A. Skowraski, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988) 441-463.

[2] M. Barot, T. Brustle, J.A. de la Pefia, Derived-tame tree algebras ofEyp®rum Math. 12 (6) (2000)
713-721.

[3] M. Barot, H. Lenzing, One-point extensions and derived equivalence, J. Algebra 264 (1) (2003) 1-5.

[4] M. Barot, J.A. de la Pefia, Algebras whose Euler form is non-negative, Collect. Math. 79 (1) (1999) 119-131.

[5] T. Brustle, Derived-tame tree algebras, Compositio Math. 129 (2001) 301-323.

[6] P. Dowbor, A. Skowraski, On the representation of locally bounded categories, Tsukuba J. Math. 10 (1)
(1986) 63-72.

[7] W. Geigle, H. Lenzing, A class of weighted projective curves arising in representation theory of finite-
dimensional algebras, in: Singularities, Representations of Algebras and Vector Bundles, in: Lecture Notes
in Math., vol. 1273, Springer-Verlag, 1987, pp. 265-297.

[8] C. Geiss, Derived tame algebras and Euler-forms, with Appendix: On the derived subspace problem in
collaboration with B. Keller, Math. Z. 239 (2002) 829-862.

[9] C. Geiss, H. Krause, On the notion of derived tameness, J. Algebra Appl. 1 (2002) 133-158.

[10] C. Geiss, J.A. de la Pefia, Auslander—Reiten components for clans, Boll. Soc. Mat. Mexicana (3) 5 (1999)
307-326.

[11] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London
Math. Soc. Lecture Note Ser., vol. 119, Cambridge Univ. Press, 1988.

[12] D. Happel, Partial tilting modules and recollement, in: Proceedings of the International Conference of Al-
gebra, Novosibirsk, 1989, in: Contemp. Math., vol. 131, part 2, Amer. Math. Soc., Providence, RI, 1992,
pp. 345-361.

[13] D. Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2) (2001) 381—
398.

[14] D. Happel, C.M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, in: Lecture
Notes in Math., vol. 1177, Springer-Verlag, 1984, pp. 156-180.

[15] J.A. de la Pefia, On the representation type of one point extensions of tame concealed algebras, Manuscripta
Math. 61 (2) (1988) 183-194.

[16] J.A. de la Pefia, Algebras whose derived category is tame, in: Trends in the Representation Theory of Finite-
Dimensional Algebras, Seattle, WA, 1997, in: Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI,
1998, pp. 117-127.

[17] C.M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer-
Verlag, 1984.

[18] A. Skowraski, Simply connected algebras and Hochschild cohomologies, in: Proceedings of ICRA 1V,
Ottawa 1992, in: Canad. Math. Soc. Conf. Proc., vol. 14, 1993, pp. 431-447.

[19] H. Tashikawa, T. Wakamatsu, Applications of reflections functors for selfinjective algebras, in: Proceedings
of ICRA IV, in: Lecture Notes in Math., vol. 1177, Springer-Verlag, 1986, pp. 308-327.



