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Abstract: We consider n dimensional hypersurfaces in the Euclidean space and

introduce the k-isothermic hypersurfaces, with k < n, as hypersurfaces that locally

admit orthogonal parametrization by curvature lines with k distinct coefficients of

the first fundamental form. It easy to check that the transformations: isometries,

dilations and invertions, preserve k-isothermic hypersurfaces. We prove that there

are no k-isothermic hypersurface of dimension n with distinct principal curvatures for

n ≥ k + 3. We introduced two ways to generate a (k + 1)-isothermic hypersurface

from a k-isothermic hypersurfaces, which we will call 2-reducible. Moreover, we

provide a local characterization of Dupin 2-isothermic hypersurfaces and include

explicit examples of 2-irreducible Dupin 2-isothermic hypersurfaces.

Keywords: k-isothermic hypersurfaces. Dupin hypersurfaces. Irreducible hyper-

surface.

Resumo: Consideramos hipersuperfícies de dimensão n no espaço Euclidiano e intro-
duzimos as hipersuperfícies k-isotérmicas, com k < n, como hipersuperfícies que localmente
admitem parametrizações ortogonais por linhas de curvatura com k coeficientes da primeira
forma quadrática distintos. É fácil ver que as transformações: isometrias, dilatações e inver-
sões, preservam hipersuperfícies k-isotérmicas. Provamos que não existem hipersuperfícies
k-isotérmica de dimensão n com curvaturas principais distintas para n ≥ k + 3. Intro-
duzimos duas maneiras para gerar uma hipersuperfície (k+1)-isotérmica apartir de uma
hipersuperfície k-isotérmica, a qual chamamos 2-redutível. Além disso, apresentamos uma
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caracterização local para as hipersuperfícies de Dupin 2-isotérmicas e incluímos exemplos
explícitos de tais hipersuperfícies 2-irredutíveis.

Palavras-chave: Hipersuperfície k-isotérmica. Hipersuperfície de Dupin. Hipersuperfícies
irredutível.

1 Introduction

The investigation of conformally flat hypersurfaces has been of interest for quite
some time. Any surface in R3 is conformally flat, since it can be parametrized by

isothermic coordinates. For higher dimensional hypersurfaces, E. Cartan [3] gave a
complete classification for the conformally flat hypersurfaces of n + 1 dimensional

space form when n ≥ 4. He proved that such hypersurfaces are quasi-umbilic, i.e.,
one of the principal curvatures has multiplicity at least n − 1. In the same paper,

Cartan investigated the case n = 3. He showed that the quasi-umbilical hypersur-
faces are conformally flat, but the conversely does not hold (for a proof see [17]).
Moreover, he gave a characterization of the conformally flat 3-dimensional hyper-

surfaces, with three distinct principal curvatures, in therms of certain integrable
distributions. A classification of 3 dimensional hypersurfaces is a current research

topic, some works in this direction are [3], [14] - [17], [24] - [27].

A particular class of conformally flat hypersurfaces are the called isothermic
hypersurfaces, which locally allow parameterization by curvature lines with all coef-

ficients of the first quadratic form equal. All isothermic hypersurface is a conformally
flat hypersurface, but the conversely does not hold. In the case of surfaces in R3

the classification is an open problem, some works in this direction are [2], [5] - [11].
Particular classes of isothermic surfaces are, the constant mean curvature surfaces,
quadrics surfaces [28], surfaces whose lines of curvature has constant geodesic cur-

vature, in particular, the cyclides of Dupin. Case n = 3 is studied as a particular
case in studies dealing with conformally flat hypersurfaces.

A hypersurface M , immersed into a space form, is said to be Dupin if each

principal curvature is constant along its corresponding line or surface of curvature.
M is a proper Dupin hypersurface if the number g of distinct principal curvatures

is constant on M . Dupin surfaces were first studied by Dupin in 1822. Pinkall [18],
studied Dupin hypersurfaces in the setting of Lie sphere geometry. The local theory

of Dupin hypersurfaces in Rn or Sn or Hn is essentially the same.

In this paper, we define the n dimensional k-isothermic hypersurfaces in the eu-
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clidean space, with k < n, as hypersurfaces that locally admit orthogonal parametriza-
tion by curvature lines with k distinct coefficients of the first quadratic form. Such
hypersurfaces are preserved by isometries, dilations and invertions. We prove that

there are no n dimensional k-isothermic hypersurface with distinct principal cur-
vatures for n ≥ k + 3. We introduced two ways to generate a (k + 1)-isothermic

hypersurface from a k-isothermic hypersurface, which we will call 2-reducible. More-
over, we provide a local characterization of Dupin 2-isothermic hypersurface in R4

and R5 and include explicit examples of 2-isothermic hypersurface irreducible.

The paper is organized as follows. In sect. 2, we define k-isothermic hyper-

surfaces in a local coordinate system and we give some properties of hypersurfaces
parametrized by lines of curvature, with distinct principal curvatures, that will be

used in the next section. In sect. 3, we show that there is no k-isothermic hyper-
surface in Rn+1 parametrized by lines of curvature, if n ≥ k + 3. In sect. 4, we give

a local characterization of Dupin hypersurfaces in R4 and R5 that are 2-isothermic.
We finish by presenting examples of such a 2-isothermic Dupin hypersurfaces in R5

which are irreducible and have nonconstant Lie curvature.

2 Properties of hypersurfaces with distinct princi-

pal curvatures

An immersion X : Ω ⊆ Rn → Rn+1 is a k-isothermic hypersurface if the first

fundamental form is given by

ds2 =
k∑

i=1

Li

(
dx2

αi+1 + ...+ dx2

αi+mi

)
, (1)

with α1 = 0 and for 2 ≤ l ≤ k, αl =
∑l−1

j=1
mj , where mi are called multiplicity of

coefficients Li, 1 ≤ i ≤ k, with m1 +m2 + ... +mk = n.

An hypersurface M is a k-isothermic hypersurface if locally can be parametrized

by an immersion k-isothermic.

Let X : Ω ⊆ Rn → Rn+1, X(x1, ..., xn) be a hypersurface parametrized by
lines of curvature, with distinct principal curvatures, −λi, 1 ≤ i ≤ n, and let
N : Ω ⊆ Rn → Rn+1 be a unit normal vector field of X. Then
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< X,i , X,j >= δijgij, N,i = λiX,i 1 ≤ i 6= j ≤ n, (2)

where <,> denotes the Euclidean metric on Rn+1.

Moreover for 1 ≤ i 6= j ≤ n, we have

X,ij −Γi
ijX,i −Γj

ijX,j = 0, (3)

Γi
ij =

λi,j

λj − λi

, (4)

where Γi
ij are the Christoffel symbols, given in terms of the metric (2) by

Γk
ij = 0, Γi

ii =
gii,i

2gii
, Γj

ii = − gii,j

2gjj
, Γi

ij =
gii,j

2gii
, (5)

where i, j, k are distinct. It follows from (5) that

gii,j = 2Γi
ijgii, 1 ≤ i 6= j ≤ n,

Γj
ii = −Γi

ij

gii

gjj
, 1 ≤ i 6= j ≤ n. (6)

From (2) and (6), we get

X,ii = Γi
iiX,i −

∑

k 6=i

Γi
ik

gii

gkk
X,k −λigiiN. (7)

For a hypersurfaces with distinct principal curvatures, the Lie curvature is de-
fined by

Ψjkli =

(
λj − λk

)(
λl − λi

)
(
λj − λi

)(
λl − λk

) , i, j, k, l distinct. (8)

Proposition 1. [13]. Let X : Ω ⊆ Rn → Rn+1, be a hypersurface parametrized by

lines of curvature, whose principal curvatures −λi, 1 ≤ i ≤ n, are distinct. Then

the Gauss equation for the immersion X is given by

λiλj +
Lij

gii
+

Lji

gjj
+

∑

k 6=i,j

Γi
ikΓ

j
jk

gkk
= 0, i 6= j, (9)
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where

Lij = Γj
ij,i − Γj

ij

(
Γi
ii − Γj

ij

)
.

Using (5), we obtain immediately

Proposition 2. Let X : Ω ⊆ Rn → Rn+1, be a k-isothermic hypersurface parametrized

by lines of curvature, with n distinct principal curvatures. Then the Christoffel sym-

bols (5) satisfy for αl + 1 ≤ i, j ≤ αl +ml, αr + 1 ≤ a, b ≤ αr +mr and 1 ≤ s ≤ n,

Γi
is = Γj

js, Γa
as = Γb

bs, Γi
ii = Γj

ji, Γa
aa = Γb

ba, (10)

where αl, αr, ml and mr with 1 ≤ l 6= r ≤ k, are given by (1).

An immersion X : Ω ⊆ Rn → Rn+1 is a Dupin hypersurface if each principal
curvature is constant along its corresponding line ( or surface ) of curvature. If the

multiplicity of the principal curvatures is constant then the Dupin submanifold is
said to be proper.

3 K-isothermic hypersurfaces

In this section, we show that there is no k-isothermic hypersurface parametrized by
lines of curvature, if n ≥ k + 3. This is achieved by the following theorem.

Theorem 3. There is no Mn ⊆ Rn+1 k-isothermic hypersurface, with n distinct

principal curvatures for n ≥ k + 3.

Proof: Suppose that Mn ⊆ Rn+1 be a k-isothermic hypersurface. Let X : Ω ⊆
Rn → Rn+1 be a parametrization by lines of curvature for M and denote by −λi the
distinct principal curvatures. As k < n, it follows from (1) that there is 1 < mi0 < n,

such that the first fundamental form of X, is given by

ds2 = Li0

(
dx2

αi0
+1 + ... + dx2

αi0
+mi0

)
+

k∑

i 6=i0

Li

(
dx2

αi+1 + ... + dx2

αi+mi

)

with α1 = 0 and for 2 ≤ l ≤ k, αl =
∑l−1

j=1
mj , where m1 +m2 + ...+mk = n.
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We will prove that 1 < mi0 ≤ 3. In fact, suppose mi0 ≥ 4, then using (9) and
(10), for αi0 + 1 ≤ i, j, k, l ≤ αi0 +mi0 distinct , we have

λiλj =
−1

Li0

[
Γj
ij,i + Γi

ij,j +
(
Γi
ik

)2
+
(
Γi
il

)2
]
−

n∑

s 6=i,j,k,l

(
Γi
is

)2

Ls

,

λiλk =
−1

Li0

[
Γj
ij,i + Γi

ik,k +
(
Γi
ij

)2
+
(
Γi
il

)2
]
−

n∑

s 6=i,j,k,l

(
Γi
is

)2

Ls

,

λlλj =
−1

Li0

[
Γj
lj,l + Γi

ij,j +
(
Γi
ik

)2
+
(
Γl
il

)2
]
−

n∑

s 6=i,j,k,l

(
Γl
ls

)2

Ls

, (11)

λlλk =
−1

Li0

[
Γj
lj,l + Γi

ik,k +
(
Γi
ij

)2
+
(
Γl
il

)2
]
−

n∑

s 6=i,j,k,l

(
Γl
ls

)2

Ls

.

Subtracting, respectively, in (11) the first and second equation, and the third and

last equation, we obtain

λi

(
λj − λk

)
=

−1

Li0

[
Γi
ij,j − Γi

ik,k +
(
Γi
ik

)2 −
(
Γi
ij

)2
]
,

λl

(
λj − λk

)
=

−1

Li0

[
Γi
ij,j − Γi

ik,k +
(
Γi
ik

)2 −
(
Γi
ij

)2
]
.

Therefore we obtained one contradiction, because all principal curvatures are dis-
tinct. Therefore 1 < mi0 ≤ 3.

Now we will prove that for j0 6= i0, mj0 = 1. Suppose mj0 > 1, then rewritten

the first fundamental form of X as

ds2 = Li0

(
dx2

αi0
+1 + ... + dx2

αi0
+mi0

)
+ Lj0

(
dx2

αj0
+1 + ...+ dx2

αj0
+mj0

)
+

k∑

i 6=i0,j0

Li

(
dx2

αi+1 + ...+ dx2

αi+mi

)

and using (9) and (10), for αi0+1 ≤ i 6= j ≤ αi0+mi0 and αj0+1 ≤ k 6= l ≤ αj0+mj0,
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we have

λiλk =
−Lik

Li0

− Lki

Lj0

−
Γi
ijΓ

k
kj

Li0

− Γi
ilΓ

k
kl

Lj0

−
n∑

s 6=i,j,k,l

Γi
isΓ

k
ks

Ls

,

λiλl =
−Lil

Li0

− Lli

Lj0

−
Γi
ijΓ

k
kj

Li0

− Γi
ikΓ

l
kl

Lj0

−
n∑

s 6=i,j,k,l

Γi
isΓ

k
ks

Ls

,

λjλk =
−Ljk

Li0

− Lkj

Lj0

−
Γj
ijΓ

k
ki

Li0

− Γi
ilΓ

k
kl

Lj0

−
n∑

s 6=i,j,k,l

Γi
isΓ

k
ks

Ls

, (12)

λjλl =
−Ljl

Li0

− Llj

Lj0

−
Γj
ijΓ

k
ki

Li0

− Γi
ikΓ

l
kl

Lj0

−
n∑

s 6=i,j,k,l

Γi
isΓ

k
ks

Ls

.

Again, subtracting the two last equations and two first equations, using (10) and ex-

pression of Lrs given by (9), we obtain (λi−λj)(λl−λk) = 0, which is a contradiction
since all principal curvatures are pairwise distinct. Therefore mj0 = 1.

Therefore, for the existence of M , we must have mi0 = 2 or mi0 = 3 and for all

j 6= i0, mj = 1. Thus
If mi0 = 2, then for all j 6= i0, mj = 1 and so n = 2 + k − 1 = 1 + k.

If mi0 = 3, then for all j 6= i0, mj = 1 and so n = 3 + k − 1 = 2 + k.
Thus, for M k-isothermic to exist, we must have n = k+1 or n = k+2. Therefore,

if n ≥ k + 3, then there is no M k-isothermic.

�

Proceeding analogously to obtaining reducible Dupin hypersurface (for more de-
tails, see [18]), we define 2-reducible k-isothermic hypersurface.

Let Mn ⊆ Rn+1 be a k-isothermic hypersurface, with coefficients Li, 1 ≤ i ≤ k

not constant. It is then easy to check that the following constructions lead to a
(k+1)-isothermic hypersurface M̃ in Rn+2:

(1) Let M̃ be the cylinder M × R ⊆ Rn+2.
(2) Project M stereographically onto a hypersurface M̂ ⊆ Sn+1. Let M̃ be the cone

R.M̂ over M̂ .
We define a 2-reducible k-isothermic hypersurface as a k-isothermic hypersurface ob-

tained by one of the two above constructions. More generally, all locally k-isothermic
hypersurfaces obtained by isometries, dilations and inversions in a hypersurface will
also be called 2-reducible. A hypersurface is a 2-irreducible k-isothermic hypersur-
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face if it is not 2-reducible.

Remark 4. We observed that in [18] the author presents two more constructions

that preserve Dupin hypersurfaces.
(3) Take an n dimensional linear subspace Rn ⊆ Rn+1 and consider the rotations φt

of Rn+2 that leave Rn pointwise fixed. Let M̃ be the hypersurface of Rn+2 generated
by M under the rotations φt.
(4) Let M̃ be a tube in Rn+2 around M ⊆ Rn+1.

A hypersurface is said to be reducible if it is obtained by one of the four above
constructions, and every Dupin hypersurface that is locally Lie equivalent to such

a hypersurface. The third and fourth construction does not generate a (k + 1)-
isothermic hypersurface.

4 Class of 2-isothermic Dupin hypersurfaces parame-

trized by lines of curvature

In the previous section, we show that there is no k-isothermic hypersurface parametrized

by lines of curvature, if n ≥ k+3. Using the 2-reducible definition we can construc-
tion examples of 2-isothermic Dupin hypersurfaces.

Example 5. Let M2 ⊆ R3 be a Dupin isothermic surface, with two non zero
distinct principal curvatures. Then the cylinder M2 × R ⊆ R4 is a 2-isothermic

Dupin hypersurface with three distinct principal curvatures, two of them given by
the principal curvatures of M2 and the third one is given by the null function.

We characterize the Dupin hypersurfaces that are 2-isothermic in R4 and R5.
Using the Theorem 3, where for simplicity of notation we make i0 = 1 we have two

cases, which without loss of generality are:
Case 1: m1 = 2 i.e, the Dupin hypersurface that is 2-isothermic in R4 has the first
fundamental form

ds2 = L1

(
dx2

1 + dx2

2

)
+ L2dx

2

3. (13)

Case 2: m1 = 3 i.e, the Dupin hypersurface that is 2-isothermic in R5 has the first
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fundamental form

ds2 = L1

(
dx2

1 + dx2

2 + dx2

3

)
+ L2dx

2

4. (14)

We will show that there exist such hypersurfaces by presenting examples.

The following lemma provides a characterization of the principal curvatures of a

Dupin hypersurface from Case 1.

Lemma 6. Let M3 ⊆ R4, be a proper Dupin hypersurface that is 2-isothermic of

the Case 1 type and that has three distinct principal curvatures. Then the principal

curvatures are given by

λ1 = f2h3 + h2,

λ2 = f1h3 + h1, (15)

λ3 =
f2λ2 − f1λ1

f2 − f1
.

Moreover, there is a change in each coordinate separately such that the coefficients

L1 and L2 of the first fundamental form (13) are given by

L1 =
1

(λ2 − λ1)2
, L2 =

[
f2 − f1

λ2 − λ1

]2
. (16)

Where fi and hj are, respectively, differentiable functions of xi and xj, 1 ≤ i ≤ 2,

1 ≤ j ≤ 3.

Proof: We will first show that each λi is given by (15). Using (10), we have

Γ1

13 = Γ2

23.

In this equation, using (4), we obtain

(
λ3 − λ2

λ3 − λ1

)

,3

= 0. (17)
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Moreover, differentiating λ3−λ2

λ3−λ1

, with respect to x1 and x2, we get

(
log

λ3 − λ2

λ3 − λ1

)

,12

= 0. (18)

Using (17) and (18), we obtain

λ3 − λ2

λ3 − λ1

=
f1

f2
, (19)

where f1 and f2 are, respectively, differentiable functions of x1 and x2.
From (19), we have (

λ3 − λ2

)
f2 =

(
λ3 − λ1

)
f1. (20)

Differentiating this equation with respect to x3, we get

λ2,3f2 = λ1,3f1. (21)

Now, differentiating (21) with respect to x2 and x1, respectively, we obtain

λ1,23 −
f ′
2

f2
λ1,3 = 0,

λ2,13 −
f ′
1

f1
λ2,3 = 0. (22)

Therefore integrating this two equations and using (21) and (19), we obtain (15).

We show (16) by comparing (4) and (5), we get

λ1,2

λ2 − λ1

=
L1,2

2L1

,
λ2,1

λ1 − λ2

=
L1,1

2L1

,
λ3,1

λ1 − λ3

=
L2,1

2L2

,

so that

[
L1(λ2 − λ1)

2
]
,2
= 0,

[
L1(λ2 − λ1)

2
]
,1
= 0,

[
L2(λ3 − λ1)

2
]
,1
= 0,

and therefore

L1 =

[
f 3(x3)

λ2 − λ1

]2
, L2 =

[
f23(x2, x3)

λ3 − λ1

]2
, (23)

where f 3 is an arbitrary function of the variable x3 and f 23 is an arbitrary function
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of the variables x2 and x3.

Differentiating the first equations (23) with respect to x3, using (10), (4) and

(5), we have f
′

3(x3) = 0. Therefore the first equation (23), can be rewritten as

L1 =

[
c

λ2 − λ1

]2
, (24)

where c is a constant.
Differentiating the second equation of (23) with respect to x2, using (4), we have

L2,2 = 2L2

[
f 23,2

f23

− Γ3

32

λ2 − λ3

λ3 − λ1

+ Γ1

12

λ2 − λ1

λ3 − λ1

]
.

In this last equation, using (5), (4) and simplifying, we have

f 23,2

f23

=
λ2 − λ1

λ3 − λ1

(
Γ3

32 − Γ1

12

)
,

=
λ2 − λ1

λ3 − λ1

(
log

λ2 − λ1

λ2 − λ3

)

,2

.

Now, using (19), we have
f23,2

f23

=
f ′

2

f2
. Therefore f 23 = f2f3 and using again (19) the

second equation (23), can be rewritten as

L2 =

[
(f2 − f1)

f3

λ2 − λ1

]2
. (25)

Thus using (24), (25) and making dx̃1 = cdx1, dx̃2 = cdx2 and dx̃3 = f3dx3, we
obtain (16).

�

The following lemma provides a characterization of the principal curvatures of a
Dupin hypersurface from case 2.

Lemma 7. Let M4 ⊆ R5, be a proper Dupin hypersurface that is 2-isothermic of

the Case 2 type and that has four distinct principal curvatures. Then the principal
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curvatures are given by

λ1 =
(
f2 + f3

)
h4 + h3 + h2,

λ2 = c
[(
f1 + f3

)
h4 + h3 + h1

]
, (26)

λ3 =
c

1− c

[
(f1 − f2)h4 + h1 − h2

]
,

λ4 =
c
[(
f2 − f1

)
h3 −

(
h2 − h1

)
f3 + f2h1 − f1h2

]

f2 − cf1 + (1− c)f3
.

Moreover, there is a change in each coordinate separately such that the coefficients

L1 and L2 of the first fundamental form (14) are given by

L1 =
1

(λ2 − λ1)2
, L2 =

[
f2 − cf1 + (1− c)f3

λ2 − λ1

]2
. (27)

Where fi and hj are, respectively, differentiable functions of xi and xj, 1 ≤ i ≤ 3,

1 ≤ j ≤ 4, and c 6= 1 is a constant.

Proof: We will first show that each λi is given by (26). By using (10), we have

Γ1

13 = Γ2

23, Γ3

13 = Γ2

21, Γ1

12 = Γ3

23, (28)

Γ1

14 = Γ2

24 = Γ3

34. (29)

Using (28) and (29), we obtain

λ3 − λ2

λ3 − λ1

= c, (30)

where c 6= 1 is constant.

Using (29), and (30), we have

λ4 − λ2

λ4 − λ1

=
ch13

h23

,
λ4 − λ3

λ4 − λ1

=
ch12

(1− c)h23

, (31)

where hi3 = fi + f3, 1 ≤ i ≤ 2 , h12 = f1 − f2 and fj are differentiable functions of
xj 1 ≤ j ≤ 3.
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Using (30) and (31) we get that λ1 and λ2 satisfying

λ1,23 = 0 λ2,13 = 0,

λ1,24 − h23,2

h23

λ1,4 = 0 λ2,14 −
h13,1

h13

λ2,4 = 0,

λ1,34 − h23,3

h23

λ1,4 = 0 λ2,34 −
h13,3

h13

λ2,4 = 0,

λ1,24 − h23,2

h23

λ1,4 = 0 λ2,14 −
h13,1

h13

λ2,4 = 0.

From this two systems, we obtain that λ1 and λ2 are given by (26) and λ3, λ4 are

obtained by substituting λ1 and λ2 in (31).

Finally, we will show that L1 and L2 satisfy equations (27). For this, we proceed

in a similar way to obtaining (16). That is, using (4) and (5), we get

[
L1(λ2 − λ1)

2
]
,2
= 0,

[
L1(λ2 − λ1)

2
]
,1
= 0,

[
L1(λj − λ1)

2
]
,j
= 0, 3 ≤ j ≤ 4,

[
L2(λ4 − λ1)

2
]
,1
= 0. (32)

Using the two first equations (32), we obtain L1(λ2 − λ1)
2 = f 34, where f 34 is a

differentiable function of (x3, x4). Substituting (30) and (31) in this last equation

and using the third equation (32), we have f 34,j = 0, 3 ≤ j ≤ 4. Therefore, we
obtain

L1 =

[
c

λ2 − λ1

]2
,

where c 6= 1 is an arbitrary constant.
Now, using the last equation (32), we obtain L2(λ4 − λ1)

2 = f
2

234, where f 234 is a

differentiable function of (x2, x3, x4). Differentiating the last equation with respect
x2 and x3, using (4), (5), and (31), we get

f234,2

f 234

=
h23,2

h23

,
f 234,3

f234

=
h23,3

h23

,

where h23 = f2 + f3.
Therefore, f234 = h23f4, where f4 is an arbitrary differentiable function of x4. Thus,
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we have

L2 =

[
h23f4

λ4 − λ1

]2
.

Making dx̃1 = cdx1, dx̃2 = cdx2, dx̃3 = cdx3 and dx̃4 = f4dx4, we obtain (27).

�

The next theorem provides a local characterization for M r ⊆ Rr+1, 3 ≤ r ≤ 4, a
2-Isothermic proper Dupin hypersurface.

Theorem 8. Let M r ⊆ Rr+1, 3 ≤ r ≤ 4, be a 2-isothermic proper Dupin hypersur-

face that is parametrized by lines of curvature and has r distinct principal curvatures

−λi given by (15) if r = 3, and by (26) if r = 4. Then M can be parametrized by

X =





1

λ2−λ1

[
G1 −G2 +

(
f1 − f2

)
G3

]
, if r = 3

1

λ2−λ1

[
H1 −H2 +

(
c− 1

)
H3 +

(
cf1 − f2 + (c− 1)f3

)
H4

]
, if r = 4,

(33)

where Gi and Hj 1 ≤ i ≤ 3, 1 ≤ j ≤ 4 are, respectively, vector valued functions of

R4 and R5.

Proof: We will show case r = 4. The case r = 3 is similar.

From the equation (3) using (10), we have

(
X,4 −Γ1

14X
)
,i −Γ4

4i

(
X,4−Γ1

14X
)
= 0, 1 ≤ i ≤ 3.

This equation, using (4), (10), (31) and (30), we obtain

X,4 = Γ1

14X +
(f2 + f3)H

′
4

λ1 − λ4

. (34)

Again from the equation (3) using (10), we have

(
X,3 −Γ1

13X
)
,i −Γ3

3i

(
X,3−Γ1

13X
)
= 0, 1 ≤ i ≤ 2.
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This equation, using (4), (10), (31), (30) and (34), we obtain

X,3= Γ1

13X +
f ′
3H4 +H ′

3

λ1 − λ3

. (35)

Using (3) and (10), we get

(
X,2−Γ1

12X
)
,1−Γ2

21

(
X,2−Γ1

12X
)
= 0,

(
X,1−Γ2

12X
)
,2−Γ1

21

(
X,1−Γ2

12X
)
= 0.

Using this last two equations and (4), (10), (31), (30), (34) and (35), we obtain

X,2= Γ1

12X +
f ′
2H4 +H ′

2

λ1 − λ2

, (36)

X,1= Γ2

12X +
cf ′

1H4 +H ′
1

λ2 − λ1

. (37)

Now, integrating the system determined by (34), (35), (36) and (37), using (31) and
(30), we obtain

X =
1

λ2 − λ1

[
H1 −H2 +

(
c− 1

)
H3 +

(
cf1 − f2 + (c− 1)f3

)
H4

]
. (38)

�

Following we provide an example of an irreducible 2-isothermic Dupin hypersur-

face with nonconstant Lie curvature, with four distinct principal curvatures. The
used arguments in the construction of this example are analogous to those used in

the construction of Example 4.2 in [13].

Example 9. Consider the constant c = 1

2
and the functions

f3 =
−1

2
+ cos(

√
2x3), f2 =

1

4
sinh(x2) +

5

4
cosh(x2) +

1

2
,

h2 = sinh(x2)− cosh(x2)−
1

2
, , f1 =

1

2
, h3 = −f3, (39)

h1 =
−1

2
− 1

2
cos(

√
2x1), h4 = 1 +

11

8
sinh(x4) +

15

8
cosh(x4).
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Now, define the functions λi : U ⊆ R4 → R, where U is a neighborhood of (0, 0, 0, 0)

λ1 =
(
f2 + f3

)
h4 + h3 + h2,

λ2 = c
[(
f1 + f3

)
h4 + h3 + h1

]
,

λ3 =
c

1− c

[
(f1 − f2)h4 + h1 − h2

]
,

λ4 =
c
[(
f2 − f1

)
h3 −

(
h2 − h1

)
f3 + f2h1 − f1h2

]

f2 − cf1 + (1− c)f3
,

L1 =
1

(λ2 − λ1)2
, L2 =

[
f2 − cf1 + (1− c)f3

λ2 − λ1

]2
.

Consider the quadratic forms

I = L1

(
dx2

1+dx2

2+dx2

3

)
+L2dx

2

4, II = L1

(
λ1dx

2

1+λ2dx
2

2+λ3dx
2

3

)
+L2λ4dx

2

4. (40)

After very long computations we can show that these functions satisfy Gauss Equa-

tion (9) and Coddazi Equation (4). Therefore, by the Fundamental Hypersurfaces
Theorem, there is a hypersurface whose first and second quadratic forms are given

by (40). As the functions λi above, satisfy ∂λi

∂xi
= 0 for all 1 ≤ i ≤ 4, we have that the

hypersurface is a Dupin type and by (40) is 2-isothermic hypersurface with principal

curvatures −λi.

Using the Theorem 8, this hypersurface can be parametrized by

X =
1

λ2 − λ1

[
H1 −H2 −

1

2
H3 +

(1
2
f1 − f2 −

1

2
f3
)
H4

]
.

Given initial conditions

X,i (0, 0, 0, 0) =
121ei
32

1 ≤ i ≤ 3, X,4 (0, 0, 0, 0) =
121e4
56

, N(0, 0, 0, 0) = e5,
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and using (2) and (7), we have that vector functions Hi above are given by

H1 =

(√
2

2
sin(

√
2x1),

−5

22
cos(

√
2x1), 0,

−2

11
cos(

√
2x1),

−13

22
cos(

√
2x1)

)

H2 =

(
0, sinh(x2) +

5

11
cosh(x2), 0,

4

11
cosh(x2),

2

11
cosh(x2)

)
,

H3 =

(
0,

−5

11
cos(

√
2x3),

√
2 sin(

√
2x3),

−4

11
cos(

√
2x3),

9

11
cos(

√
2x3)

)

H4 =
(
1− cosh(x4)

(
0,

−6

11
, 0,

−7

11
,
2

11

)
+ sinh(x4)

(
0, 0, 0, 1, 0

)
.

Its Lie curvature (8) is given by

Ψ =
5 cosh(x2) + sinh(x2)

sinh(x2) + 5 cosh(x2) + 4 cos(
√
2x3)

.

Moreover, one can show that this is an irreducible Dupin hypersurface. In fact, we
consider the stereographic projection of X into the unit sphere S5 ⊆ R6, given by

f = γ

(
X +

|X|2 − 1

2
e6

)
, γ =

2

|X|2 + 1

where X = X(x1, x2, x3, x4) ∈ U ⊆ R4 and e6 = (0, 0, 0, 0, 0, 1) ∈ R6. Let ξ be

the field of unitary normal vectors of the immersion f given by ξ =< X,N >

(−f + e6) + N , where N is the unit normal vector field of the immersion X ∈ R4.

The pair (f, ξ) induces a Legendre manifold µ : U ⊆ R4 → Λ9, where Λ9 is the
manifold of lines that lie on the quadric Q6, in the real projective space P 7, given by

the equation << Y, Y >>= 0, where <<,>> is the scalar product with signature
(6, 2) on R8 (see [4] for details).

According to Pinkall [18], a proper Dupin submanifold Mn−1 ⊆ Λ2n−1 is reducible

if, and only if, it has a curvature sphere map K that lies in a linear subspace of
codimension two in P n+2. The curvature sphere maps of this example are given by

Ki = sin(t)
[
λ̃i(1, f, 0), (0, ξ, 1)

]
, 1 ≤ i ≤ 4

where λ̃i = λi

γ
− < X,N >. The determinant of the 8 × 8 matrix, obtained by

considering the first and second order derivatives ∂Ki

∂xj
and ∂2Ki

∂x2

j

, 1 ≤ j ≤ 4, evaluated
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at the point (0, 0, 0, 0) is nonzero. Hence, for any i, the curvature sphere map Ki

does not lie in a linear subspace of codimension two in P 7. Therefore, X is an
irreducible Dupin hypersurface.

Remark 10. The futures works will be in the directions of obtaining examples of
2-irredutible hypersurfaces that are not necessarily Dupin hypersurfaces.
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