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Abstract: We consider n dimensional hypersurfaces in the Euclidean space and
introduce the k-isothermic hypersurfaces, with k < n, as hypersurfaces that locally
admit orthogonal parametrization by curvature lines with k distinct coefficients of
the first fundamental form. It easy to check that the transformations: isometries,
dilations and invertions, preserve k-isothermic hypersurfaces. We prove that there
are no k-isothermic hypersurface of dimension n with distinct principal curvatures for
n > k + 3. We introduced two ways to generate a (k + 1)-isothermic hypersurface
from a k-isothermic hypersurfaces, which we will call 2-reducible. Moreover, we
provide a local characterization of Dupin 2-isothermic hypersurfaces and include

explicit examples of 2-irreducible Dupin 2-isothermic hypersurfaces.

Keywords: k-isothermic hypersurfaces. Dupin hypersurfaces. Irreducible hyper-

surface.

Resumo: Consideramos hipersuperficies de dimensao n no espago Euclidiano e intro-
duzimos as hipersuperficies k-isotérmicas, com k < n, como hipersuperficies que localmente
admitem parametrizacoes ortogonais por linhas de curvatura com k coeficientes da primeira
forma quadratica distintos. E facil ver que as transformacoes: isometrias, dilatacoes e inver-
soes, preservam hipersuperficies k-isotérmicas. Provamos que nao existem hipersuperficies
k-isotérmica de dimensao n com curvaturas principais distintas para n > k + 3. Intro-
duzimos duas maneiras para gerar uma hipersuperficie (k+1)-isotérmica apartir de uma

hipersuperficie k-isotérmica, a qual chamamos 2-redutivel. Além disso, apresentamos uma
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caracterizacao local para as hipersuperficies de Dupin 2-isotérmicas e incluimos exemplos
explicitos de tais hipersuperficies 2-irredutiveis.

Palavras-chave: Hipersuperficie k-isotérmica. Hipersuperficie de Dupin. Hipersuperficies
irredutivel.

1 Introduction

The investigation of conformally flat hypersurfaces has been of interest for quite
some time. Any surface in R® is conformally flat, since it can be parametrized by
isothermic coordinates. For higher dimensional hypersurfaces, E. Cartan [3| gave a
complete classification for the conformally flat hypersurfaces of n + 1 dimensional
space form when n > 4. He proved that such hypersurfaces are quasi-umbilic, i.e.,
one of the principal curvatures has multiplicity at least n — 1. In the same paper,
Cartan investigated the case n = 3. He showed that the quasi-umbilical hypersur-
faces are conformally flat, but the conversely does not hold (for a proof see [17]).
Moreover, he gave a characterization of the conformally flat 3-dimensional hyper-
surfaces, with three distinct principal curvatures, in therms of certain integrable
distributions. A classification of 3 dimensional hypersurfaces is a current research
topic, some works in this direction are (3|, [14] - [17], [24] - [27].

A particular class of conformally flat hypersurfaces are the called isothermic
hypersurfaces, which locally allow parameterization by curvature lines with all coetf-
ficients of the first quadratic form equal. All isothermic hypersurface is a conformally
flat hypersurface, but the conversely does not hold. In the case of surfaces in R?
the classification is an open problem, some works in this direction are [2], [5] - [11].
Particular classes of isothermic surfaces are, the constant mean curvature surfaces,
quadrics surfaces [28], surfaces whose lines of curvature has constant geodesic cur-
vature, in particular, the cyclides of Dupin. Case n = 3 is studied as a particular
case in studies dealing with conformally flat hypersurfaces.

A hypersurface M, immersed into a space form, is said to be Dupin if each
principal curvature is constant along its corresponding line or surface of curvature.
M is a proper Dupin hypersurface if the number g of distinct principal curvatures
is constant on M. Dupin surfaces were first studied by Dupin in 1822. Pinkall [18],
studied Dupin hypersurfaces in the setting of Lie sphere geometry. The local theory
of Dupin hypersurfaces in R" or S™ or H" is essentially the same.

In this paper, we define the n dimensional k-isothermic hypersurfaces in the eu-
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clidean space, with k < n, as hypersurfaces that locally admit orthogonal parametriza-

tion by curvature lines with k distinct coefficients of the first quadratic form. Such
hypersurfaces are preserved by isometries, dilations and invertions. We prove that
there are no n dimensional k-isothermic hypersurface with distinct principal cur-
vatures for n > k + 3. We introduced two ways to generate a (k + 1)-isothermic
hypersurface from a k-isothermic hypersurface, which we will call 2-reducible. More-
over, we provide a local characterization of Dupin 2-isothermic hypersurface in R*
and R’ and include explicit examples of 2-isothermic hypersurface irreducible.

The paper is organized as follows. In sect. 2, we define k-isothermic hyper-
surfaces in a local coordinate system and we give some properties of hypersurfaces
parametrized by lines of curvature, with distinct principal curvatures, that will be
used in the next section. In sect. 3, we show that there is no k-isothermic hyper-
surface in R"*! parametrized by lines of curvature, if n > k + 3. In sect. 4, we give
a local characterization of Dupin hypersurfaces in R* and R® that are 2-isothermic.
We finish by presenting examples of such a 2-isothermic Dupin hypersurfaces in R®
which are irreducible and have nonconstant Lie curvature.

2 Properties of hypersurfaces with distinct princi-

pal curvatures

An immersion X : Q C R® — R"! is a k-isothermic hypersurface if the first

fundamental form is given by

k
ds? = ZLi(d$3i+l+---+dxii+mi)> (1)

i=1

with oy = 0 and for 2 <[ < k, oy = Zg_:ll mj, where m; are called multiplicity of

coefficients L;, 1 <i < k, with mq +mo + ... + my = n.

An hypersurface M is a k-isothermic hypersurface if locally can be parametrized

by an immersion k-isothermic.

Let X : Q C R* — R"™, X(z1,...,2,) be a hypersurface parametrized by
lines of curvature, with distinct principal curvatures, —\;, 1 < ¢ < n, and let
N :Q C R" — R™! be a unit normal vector field of X. Then
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< X, X, >=0ij9ij N,i=NX, 1<i#j<n, (2)

where <, > denotes the Euclidean metric on R"*!.

Moreover for 1 < i # j < n, we have

X, —T0,X, —T9.X,;=0, (3)

where Fﬁj are the Christoffel symbols, given in terms of the metric (2) by

j Giiyi ' ii i - Gii
Ff:o? F;z:—’u ng:_ ’]7 Fzz 7]7 (5)
! 295 29,; T 20

where 1, j, k are distinct. It follows from (5) that

Giig = QFZJQW 1<i#j<n,
/ 7 g’l’l . .
Iy = -T,=", 1<i#j<n (6)
9ij

From (2) and (6), we get

X=X = 3 Tt X gy ~NigiiN. (7)
ki

For a hypersurfaces with distinct principal curvatures, the Lie curvature is de-
fined by
(A=) (N =)
(A = As) (= M)

Pkl — i, 4, k, | distinct. (8)

Proposition 1. [13]. Let X : Q C R — R, be a hypersurface parametrized by
lines of curvature, whose principal curvatures —\;, 1 < i < n, are distinct. Then
the Gauss equation for the immersion X is given by

Ly Ly
A,-Aj+g—?+—]+z

W T kg

i TV
Fikrjk

Jkk

=0, i#7], (9)
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where

Ly =T, —TL(I, —T).

17,8

Using (5), we obtain immediately
Proposition 2. Let X : Q C R™ — R""!, be a k-isothermic hypersurface parametrized
by lines of curvature, with n distinct principal curvatures. Then the Christoffel sym-
bols (5) satisfy for ay+1<i,j<a+my, ap,+1<a,b<a,+m, and1 <s<n,
Fis = Fj FZS = FZS’ F;z = F] FZa = Fb (1())

js? Jv ba>
where «y, ., m; and m, with 1 <[ # r <k, are given by (1).

An immersion X : Q C R® — R"! is a Dupin hypersurface if each principal
curvature is constant along its corresponding line ( or surface ) of curvature. If the
multiplicity of the principal curvatures is constant then the Dupin submanifold is
said to be proper.

3 K-isothermic hypersurfaces

In this section, we show that there is no k-isothermic hypersurface parametrized by
lines of curvature, if n > k + 3. This is achieved by the following theorem.

Theorem 3. There is no M™ C R"! k-isothermic hypersurface, with n distinct
principal curvatures forn > k + 3.

Proof: Suppose that M™ C R"! be a k-isothermic hypersurface. Let X : Q C
R™ — R""! be a parametrization by lines of curvature for M and denote by —\; the
distinct principal curvatures. As k < n, it follows from (1) that there is 1 < m;, < n,
such that the first fundamental form of X, is given by

k
ds® = Lig(dal, w1+ +dal )+ Li(dal o+ +d2f )
iig

with oy =0 and for 2 <[ <k, oy = 22;11 m;, where my; + mg + ... + my, = n.
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We will prove that 1 < m;, < 3. In fact, suppose m;, > 4, then using (9) and
(10), for a;y + 1 <, j,k, 1 < a;, +my, distinct , we have

—1 j i i\ 2 i\ 2 = (F;s)2
Aidj =7 L5t Ly + (Th)" + ()| = > .
i 51,5,k 5
11 . . . noo(1)?
Aide = I {ng,z’ + D + (%)2 + ( gl)Z} - Z ( L) ’
i 51,3,k s
1T . , , " (T, ?
M= {rgjﬁrzjﬁ( ik)2+(F§l)z} - > (Ll) : (11)
i sEi gkl 0
11 , . (T, ?
Ak = Li, {ng,l + D+ ()" + (Fi'l)ﬂ -2 ( lé) '
i s#i,5,k,l s

Subtracting, respectively, in (11) the first and second equation, and the third and
last equation, we obtain

1T . . .
Ai(Aj =) = I {Fﬁm —Thor+ (Th)° - (%’)2} ;

1T . . . ,
)\l()\j - )\k) = L— |:F§j,j - F;k,k + (F;k)2 - (F;J)2:| :

10

Therefore we obtained one contradiction, because all principal curvatures are dis-
tinct. Therefore 1 < m,;, < 3.

Now we will prove that for jo # 49, mj, = 1. Suppose m;, > 1, then rewritten
the first fundamental form of X as

ds® = Liy(daly, 41+ +dal, g, )+ Lig(dad, o+ .+ dal, 4 )+
k
Z Li(dz? .+ ...+ dz? )
710,50

and using (9) and (10), for a;,+1 <@ # j < ay+my, and oy +1 < k # 1 < o, +my,,
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we have

n

—Ly Ly Tyl TOrE 3 LTy,

>\2)\k - s
Ly Ly L, Ly 4~ L
M = —La _ Ly, _ ngrllzj _ ngrgcl N i ngris
Liy  Liy Lig Lo stigkl 8
Ly Ly DITk  [irk noiTk
)\)\k — Jk k) Ty ke Al kL is ks’ (12)
] LiO L,?O LiO L]O S#;j,k,l Ls
N\ = _Lﬂ N ﬂ N szrﬁl - F:krgcl N i ngrllzs
J - T —

Lio Ljo Lio Ljo s,k s

Again, subtracting the two last equations and two first equations, using (10) and ex-
pression of L, given by (9), we obtain (A; —A;)(A—Ag) = 0, which is a contradiction
since all principal curvatures are pairwise distinct. Therefore mj, = 1.

Therefore, for the existence of M, we must have m;, = 2 or m,, = 3 and for all
J # 19, m; = 1. Thus
If m;, = 2, then for all j # iy, m; =1andson=2+k—-1=1+k.
If m;, = 3, then for all j # iy, m; =1landson=3+k—-1=2+k.
Thus, for M k-isothermic to exist, we must have n = k+1 or n = k + 2. Therefore,
if n > k + 3, then there is no M k-isothermic.

O

Proceeding analogously to obtaining reducible Dupin hypersurface (for more de-
tails, see [18]), we define 2-reducible k-isothermic hypersurface.

Let M™ C R"*! be a k-isothermic hypersurface, with coefficients L;, 1 < i < k
not constant. It is then easy to check that the following constructions lead to a
(k-+1)-isothermic hypersurface M in R™2:

(1) Let M be the cylinder M x R C R™+2,

(2) Project M stereographically onto a hypersurface M C Sl Let M be the cone
R.M over M.

We define a 2-reducible k-isothermic hypersurface as a k-isothermic hypersurface ob-
tained by one of the two above constructions. More generally, all locally k-isothermic
hypersurfaces obtained by isometries, dilations and inversions in a hypersurface will

also be called 2-reducible. A hypersurface is a 2-irreducible k-isothermic hypersur-
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face if it is not 2-reducible.

Remark 4. We observed that in [18] the author presents two more constructions
that preserve Dupin hypersurfaces.

(3) Take an n dimensional linear subspace R" C R™"! and consider the rotations ¢,
of R"*2 that leave R"™ pointwise fixed. Let M be the hypersurface of R"*2 generated
by M under the rotations ¢;,.

(4) Let M be a tube in R"2 around M C R,

A hypersurface is said to be reducible if it is obtained by one of the four above
constructions, and every Dupin hypersurface that is locally Lie equivalent to such
a hypersurface. The third and fourth construction does not generate a (k + 1)-
isothermic hypersurface.

4 Class of 2-isothermic Dupin hypersurfaces parame-

trized by lines of curvature

In the previous section, we show that there is no k-isothermic hypersurface parametrized
by lines of curvature, if n > k+ 3. Using the 2-reducible definition we can construc-
tion examples of 2-isothermic Dupin hypersurfaces.

Example 5. Let M? C R?® be a Dupin isothermic surface, with two non zero
distinct principal curvatures. Then the cylinder M? x R C R* is a 2-isothermic
Dupin hypersurface with three distinct principal curvatures, two of them given by
the principal curvatures of M? and the third one is given by the null function.

We characterize the Dupin hypersurfaces that are 2-isothermic in R* and R®.
Using the Theorem 3, where for simplicity of notation we make ig = 1 we have two
cases, which without loss of generality are:

Case 1: m; = 2 i.e, the Dupin hypersurface that is 2-isothermic in R* has the first
fundamental form

ds® = Ly (dz} + da3) + Lydas, (13)

Case 2: m; = 3 i.e, the Dupin hypersurface that is 2-isothermic in R® has the first
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fundamental form

ds® = Ly (da} + da3 + da) + Loda]. (14)

We will show that there exist such hypersurfaces by presenting examples.

The following lemma provides a characterization of the principal curvatures of a
Dupin hypersurface from Case 1.

Lemma 6. Let M? C R*, be a proper Dupin hypersurface that is 2-isothermic of
the Case 1 type and that has three distinct principal curvatures. Then the principal

curvatures are given by

A = faohs + ho,

Ao = fihs + hy, (15)
)\ _ f2)\2_f1)\1

T h—f

Moreover, there is a change in each coordinate separately such that the coefficients
Ly and Lo of the first fundamental form (13) are given by

_ 1 [R-AT
L=t - |28 (16)

Where f; and h; are, respectively, differentiable functions of x; and xj, 1 < i < 2,
1<j<3.

Proof: We will first show that each \; is given by (15). Using (10), we have
Fis - 1%3-

In this equation, using (4), we obtain

A3 — >\2)
=0. 17
(= 73 (1)
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Az—A2
A3—A1?

)\3—)\2)
lo = 0. 18
( S vy . (18)

Using (17) and (18), we obtain

Moreover, differentiating

with respect to x; and x5, we get

Az — A
e _ B (19)
As— A1 fa
where f; and f, are, respectively, differentiable functions of z; and ws.
From (19), we have
(A3 =) fa= (As — A1) o (20)
Differentiating this equation with respect to s, we get
A23fa = A13f1- (21)
Now, differentiating (21) with respect to x5 and zy, respectively, we obtain
/
M = 2hia =0
fiy  _
A213 — A3 = 0. (22)

1

Therefore integrating this two equations and using (21) and (19), we obtain (15).
We show (16) by comparing (4) and (5), we get

A12 _ Ly A2 1 _ Ly, Az 1 _ Ly,
Ao— A 2Ly A=Ay 207 A — A3 2Ly
so that
[L1(>\2 — >\1)2} 2 =0, [L1(>\2 — Al)z] 1=0, [Lg()\g - )\1)2] 1=0,
and therefore _ ) _ )
L = {A";?’(_:”?’A)J , L, = {7"02;’3(:”_2&3)} , (23)

where f, is an arbitrary function of the variable 3 and f.,; is an arbitrary function
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of the variables x5 and x3.

Differentiating the first equations (23) with respect to x3, using (10), (4) and
(5), we have ?;(1'3) = 0. Therefore the first equation (23), can be rewritten as

L = L2 - Alr’ (24)

where ¢ is a constant.

Differentiating the second equation of (23) with respect to x2, using (4), we have
fas2

Loo =20 | =22 — T3

Aa— A3 g Aa— N\
r .
+ 12)\3_)\1:|

In this last equation, using (5), (4) and simplifying, we have

Foso Ao — A
— = >\3 _ )\1 (F§2 - Fi2)7

[
RS <lo Ao —)\1)
XM\ P A g )y

Now, using (19), we have % = % Therefore f,3 = fofs and using again (19) the

23
second equation (23), can be rewritten as

P Ty A (25)

Ay — Ay

Thus using (24), (25) and making dz, = cdzy, dTy = cdzy and drs = fzdzs, we
obtain (16).

The following lemma provides a characterization of the principal curvatures of a

Dupin hypersurface from case 2.

Lemma 7. Let M* C R®, be a proper Dupin hypersurface that is 2-isothermic of
the Case 2 type and that has four distinct principal curvatures. Then the principal

NEXUS Mathematicee, Goiania, v. 3, 2020, e20004. 11
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curvatures are given by

>\1 == (f2 —|— f3)h4 + hg + hg,
Ao =c[(fi+ fs)ha+ hs + ], (26)

Az = 1ic[(f1—f2)h4+h1—h2],

_c[(fo= Fi)hs = (ha = ) fs + fohi — fihs]
fo—cfi+(1—=0)fs ’

Moreover, there is a change in each coordinate separately such that the coefficients
Ly and Ly of the first fundamental form (14) are given by

Mg

1 L, = fo—cfi+(1—c)fs 2.

[ =
P = )2 A2 — Ap

(27)

Where f; and h; are, respectively, differentiable functions of x; and z;, 1 <1 < 3,
1<j <4, andc+# 1 is a constant.

Proof: We will first show that each \; is given by (26). By using (10), we have

F%?, = ngv le))s = Fgu Fiz = F§3= (28)
Fh = F§4 = F§4- (29)

Using (28) and (29), we obtain

A3 — Ay
= 30
e (30)
where ¢ # 1 is constant.
Using (29), and (30), we have
>\4 — >\2 _ Chlg >\4 — >\3 _ Chlg (31)
AL — A1 has’ Ar— A (1 - C)h23’

where hiz = fi+ f3, 1 <1 <2, hig = fi — f2 and f; are differentiable functions of
z; 1 <5 <3.
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Using (30) and (31) we get that A\; and Ay satisfying

Aoz =10 A3 = 0,
has.2 hasq
Ao — 5 oA4=0 A4 — Ao =0,
23 h13
Mt — 2220, =0 Aogs — 1333, — 0
134 — A4 = 2,34 — 2.4 =0,
23 h
13
A has2 N1 4 =0 A fusiy g
124 = G5 Ald = 214 — 7 A =0
13

From this two systems, we obtain that A; and Ay are given by (26) and A3, A4 are
obtained by substituting A; and A in (31).

Finally, we will show that L; and Lo satisfy equations (27). For this, we proceed
in a similar way to obtaining (16). That is, using (4) and (5), we get

[Li(X2 — \1)?] 2 =0, [L1(A2 — )\1)2]71 =0, [Li(\—M\)? ;=0,357<4
[Lg()\4 - >\1)2] 1 - O (32)

Using the two first equations (32), we obtain L;(Ay — A\;)? = f3,, where f,, is a

differentiable function of (x3,x4). Substituting (30) and (31) in this last equation
and using the third equation (32), we have 7347]- =0, 3 < j < 4. Therefore, we

c 2
L pum—
1 |i)\2_)\1:| )

where ¢ # 1 is an arbitrary constant.

obtain

Now, using the last equation (32), we obtain Ly(Ay — A\;)? = 7;34, where f,,, is a
differentiable function of (x9, z3,x4). Differentiating the last equation with respect
x9 and w3, using (4), (5), and (31), we get

f234,2 o h23,2 f234,3 o h’23,3

Y 0 )
f 234 has f 234 ha3

where h,23 = f2 + fg.
Therefore, 7234 = hog f4, where f, is an arbitrary differentiable function of x4. Thus,

NEXUS Mathematicee, Goiania, v. 3, 2020, e20004. 13
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we have

h23f4 2
Lo = .
? [M - AJ

Making dz, = cdxy, dTy = cdxs, dTs = cdxs and dxy = fydxs, we obtain (27).

The next theorem provides a local characterization for M"™ C R™!, 3 <r <4, a
2-Isothermic proper Dupin hypersurface.

Theorem 8. Let M" C R™1, 3 <r < 4, be a 2-isothermic proper Dupin hypersur-
face that is parametrized by lines of curvature and has r distinct principal curvatures
—\; giwven by (15) if r =3, and by (26) if r = 4. Then M can be parametrized by

Az—i)\l Gi—Ga+ (fi— f2)Gs|, ifr=3
X = (33)
o |Hi— Hy+ (= 1) Hs + (cfr = fa+ (e = 1) fs) Ha |, if 7 =4,

where G; and H; 1 <1 <3, 1< j <4 are, respectively, vector valued functions of
R* and R®.
Proof: We will show case r = 4. The case r = 3 is similar.
From the equation (3) using (10), we have
(Xa—T1X), —Th(Xa-TyX) =0, 1<i<3.
This equation, using (4), (10), (31) and (30), we obtain

(fa+ fs)Hf;.

Again from the equation (3) using (10), we have

(X3 —T13X), —T5 (X3 -T3X) =0, 1<i<2.

NEXUS Mathematicee, Goiania, v. 3, 2020, e20004. 14
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This equation, using (4), (10), (31), (30) and (34), we obtain

fiHy + Hj

Xa3 = Fi3X + )\1 . )\3

(35)
Using (3) and (10), we get

(X2 —T1,X) 1 T3, (X2 —T',X) =0,
(X71 _F%2X)72 _F%I (X71 —F§2X) =0.

Using this last two equations and (4), (10), (31), (30), (34) and (35), we obtain

/H H/

X= Ty T (36)
AL — Ay
/H H/

X,=T%X + M_ (37)
Ay — A

Now, integrating the system determined by (34), (35), (36) and (37), using (31) and
(30), we obtain

1

X =
A2 — A\

Hl—H2+ (C—l)H3+ (cfl—f2+(c—1)f3)H4 . (38)

Following we provide an example of an irreducible 2-isothermic Dupin hypersur-
face with nonconstant Lie curvature, with four distinct principal curvatures. The
used arguments in the construction of this example are analogous to those used in
the construction of Example 4.2 in [13].

Example 9. Consider the constant ¢ = % and the functions

1 ) 1
f3 = 7 + COS(\/_[L’g) fo= 1 sinh(zy) + 1 cosh(zy) + 27
1 1
hy = sinh(:cg) — cosh(xs) — 3 = 3 hs = —fs, (39)
-1 11 1
hy = -5 "3 cos(fxl) hy =1+ 5 sinh(zy4) + §5 cosh(zy).
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Now, define the functions \; : U C R* — R, where U is a neighborhood of (0, 0,0, 0)

)\1 — (f2 —|— f3)h4 + hg + hg,
Ao =c[(fi+ fs)ha+ hs + ],

Az = 1ic[(f1—f2)h4+h1—h2],
A= fi)hs = (he = ) fs + foln = fiho]
! fo—cfi+(1—c)fs ’
_ 1 [fmch+1-0f]"
= (A2 = Ap)% be = Ao — N\ '

Consider the quadratic forms
I = Ly (dz}+dej+de;) + Lodal, 11 = Ly (Adai+Xodas+Asda3) + Lodgdas. (40)

After very long computations we can show that these functions satisfy Gauss Equa-
tion (9) and Coddazi Equation (4). Therefore, by the Fundamental Hypersurfaces
Theorem, there is a hypersurface whose first and second quadratic forms are given
by (40). As the functions \; above, satisfy gii = 0forall 1 <7 <4, we have that the
hypersurface is a Dupin type and by (40) is 2-isothermic hypersurface with principal

curvatures —\;.

Using the Theorem 8, this hypersurface can be parametrized by

X

1 1 1 1
:)\2_)\1 Hl—H2—§H3+(§f1—f2—§f3)H4 .

Given initial conditions

121e;
32

121ey

Xai (O>0a070) = 56 ’

1<i<3, X,4(0,0,0,0) =

N(0,0,0,0) = es,
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and using (2) and (7), we have that vector functions H; above are given by

le(ismwm cos(VBr1), 0. 72 cos( 1) S cos( )

D 4 2
0, sinh(zy) + 1 cosh(zz),0, — 11 cosh(zz), 1 cosh(x2)),

=
(0, cos(V/2x3), V2sin(v/2 223), 77 cos(f 223), 77 cos(\/_ 173))

-6 =7 2
(1 — cosh(zy (O T , 0, — TR 11)+smh(:)34)(0,0,0,1,0).

Its Lie curvature (8) is given by

B 5 cosh(xg) + sinh(zs)
sinh(z,) + 5 cosh(23) + 4 cos(v/2x3)

Moreover, one can show that this is an irreducible Dupin hypersurface. In fact, we
consider the stereographic projection of X into the unit sphere S° C RS, given by

X2 -1 2
= X - -
f 7( + 9 €6 |, Y |X|2—|—1

where X = X(x1, 79, 23,24) € U C R and ¢ = (0,0,0,0,0,1) € RS. Let £ be
the field of unitary normal vectors of the immersion f given by & =< X, N >
(—f +eg) + N, where N is the unit normal vector field of the immersion X € R*.
The pair (f,£) induces a Legendre manifold p : U C R* — A% where A is the
manifold of lines that lie on the quadric Q°, in the real projective space P7, given by
the equation << Y)Y >>= 0, where <<, >> is the scalar product with signature
(6,2) on R® (see [4] for details).

According to Pinkall [18], a proper Dupin submanifold M"~! C A"~ is reducible
if, and only if, it has a curvature sphere map K that lies in a linear subspace of
codimension two in P"*2. The curvature sphere maps of this example are given by

K'=sin(t)[\(1, £,0),(0,€,1)], 1<i<A4

where Xz = %— < X,N >. The determinant of the 8 x 8 matrix, obtained by

considering the first and second order derivatives %L and %Ig , 1 <5 <4, evaluated
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at the point (0,0,0,0) is nonzero. Hence, for any 4, the curvature sphere map K*
does not lie in a linear subspace of codimension two in P’. Therefore, X is an

irreducible Dupin hypersurface.

Remark 10. The futures works will be in the directions of obtaining examples of
2-irredutible hypersurfaces that are not necessarily Dupin hypersurfaces.
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