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Abstract
We introduce new two-parameter states of the quantized radiation field
interpolating from number states to chaotic states. Instead of dealing with
pure states, we consider truncated mixtures of number
states—number-chaotic states (NCS)—which reduce to number and chaotic
(thermal) states in two well-defined limits. We study the statistical and
squeezing properties of such states and show that there is a value of the
chaoticity parameter n̄ at which a transition from sub- to super-Poissonian
characteristics occurs. Analysing the atomic population inversion in the
Jaynes–Cummings model for these NCSs, we demonstrate the appearance
of collapses and revivals as n̄ is increased. Their phase space representations
are studied emphasizing the changes as the parameters are varied and we
discuss the nonclassical depth.

Keywords: Two-parameter states, quantized radiation field, electromagnetic
field
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1. Introduction

The basic pure states one uses to deal with the properties of a
single mode of the quantized radiation field are the number
states [1], the coherent states [2], the squeezed states [3]
and the phase states [4]. Superpositions of these states have
been extensively studied as, for example, two number [5],
coherent [6] and squeezed [7] states, as well as, discrete and
continuous superpositions of coherent states on a line and on
a circle [8–10]. Mixtures of number states, such as the chaotic
(thermal) state [11] and the Poissonian mixed state [12], also
play an important role when discussing the properties of the
electromagnetic field. A seminal example is the superposition
of a pure (coherent) state with a Gaussian (thermal) state
(suggested by Glauber [13]) to describe the pollution of the
state by thermal noise: this has been experimentally verified
by Arecchi et al [14].

Other interesting examples among the large number of
states studied in quantum optics are interpolating states which
vary between two given states. To our knowledge, the pioneer
of these states is the binomial state, introduced by Stoler
et al [15], which goes from a number state to a coherent state.

Other examples of such states are: the generalized geometric
state (GGS), introduced by Obada et al [16], which interpolates
between a number state and a chaotic state; the intermediate
number-phase state [17], interpolating between a number state
and the (Pegg–Barnett) phase state; the intermediate number-
squeezed state [18], going from a number state to a squeezed
state; the generalized superposition of coherent states [19],
which varies between two arbitrary coherent states, including
its extension for two squeezed states [20], and so on.

This paper is concerned with a new two-parameter state
interpolating between a number state and a chaotic state of
the electromagnetic field, which will be referred to hereafter
as the number-chaotic state (NCS). This state is an alternative
to the GGS presented in [16]; instead of pure states, which
require some randomization to lose their purity and become
chaotic, we consider truncated mixed states reducing to a
number and a chaotic (thermal) state of the field in two well-
defined limits. These states present interesting properties,
linked with the nature of the photon statistics changing from
sub- to super-Poissonian and collapses and revivals of the
atomic population inversion, within the Jaynes–Cummings
model, enhancing as the parameter measuring the degree of
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chaoticity is increased. The paper is organized as follows: in
the section 2, we discuss the interpolation between number
and chaotic states, presenting a brief summary of the GGS,
and introduce our proposal for the NCS. In section 3, we study
nonclassical properties (the sub-Poissonian effect, squeezing,
atomic population inversion) of this interpolating state while
section 4 is devoted to its phase space representations and to
the discussion of the nonclassical depth. Section 5 contains
our conclusions.

2. Interpolating from number to chaotic state

The density operator corresponding to a chaotic (thermal) state
is given by

ρ̂Ch(n̄) =
∞∑

m=0

PB
m (n̄) |m〉 〈m| (2.1)

where PB
m (n̄) is the Bose–Einstein (geometric) distribution

given by

PB
m (n̄) = 1

1 + n̄

(
n̄

1 + n̄

)m

(2.2)

with the parameter n̄, which specifies the state, representing
the mean number of photons, 〈n̂〉 = n̄; for a thermal state it
becomes

n̄ = (
eh̄ω/kT − 1

)−1
(2.3)

ω being the field frequency and T representing the temperature
of the radiation source. Note that if one defines

A = n̄

1 + n̄
< 1 (2.4)

(A = exp (−h̄ω/kT ) for a thermal state), the Bose–Einstein
distribution can be rewritten as

PB
m (A) = (1 − A)Am. (2.5)

As it is well known, if one makes n̄ → 0 (A → 0), which
corresponds to taking the temperature to zero in the case of
thermal states, then

lim
n̄→0

PB
m (n̄) = δm,0, (2.6)

so that the thermal state reduces to the vacuum state in this
limit. In the reverse way, one might say that the thermalization
of the vacuum leads to a thermal state; this is precisely the
view point of the thermofield dynamics formalism with the
introduction of thermal vacua [21]. One can naturally think
about the thermalization of a given Fock state |N〉 and question
whether an intermediate state can be constructed interpolating
between a number and a chaotic (thermal) state. Initially, we
comment on the proposal by Obada et al [16], known as the
GGS, and then present an alternative to it which we call the
NCS.

2.1. The generalized geometric state (GGS)

This interesting state was introduced in [16], its main
characteristics being summarized here. It is a three-parameter

interpolating state, denoted by |y,N〉 (where y is a complex
number), which is specified by

|y,N〉 =
N∑
n=0

CN
n (y) |n〉, (2.7)

where
CN
n (y) = λyn/2, (2.8)

with y = |y|e2iψ (restricted to |y| 
= 1) andλ2 = (1−|y|)/(1−
|y|N+1).

This definition yields an interpolation between the number
and chaotic states in the sense that these states appear as the
two limiting cases described below.
(a) Number-state limit. The GGS can be mapped onto a number
state |N〉 by settingψ = 0 and taking the limit |y| → ∞ since,
in this case,

CN
n (y)

|y|�1−→ |y|(n−N)/2 |y|→∞−→ δn,N (2.9)

for all n � N .
(b) Chaotic-state limit. Now, taking |y| = n̄/(1 + n̄) < 1 and
N → ∞, the density operator representing the field in this
limit reads

ρ̂ (y,∞) = |y,∞〉 〈y,∞|

= λ2
∞∑
n=0

∞∑
m=0

|y|(n−m)/2e2iψ(n−m) |n〉 〈m| . (2.10)

Assuming that ψ is a random phase and implementing an
ensemble average upon the state in (2.10), one obtains

〈ρ̂ (y,∞)〉ψ = 1

2π

∫ 2π

0
ρ̂ (y,∞) dψ

=
∞∑

m=0

nm

(1 + n̄)m+1
|m〉 〈m| . (2.11)

One readily recognizes in (2.11) the Bose distribution and
hence, with the parameter choices |y|, N and ψ , the GGS
is mapped onto a chaotic (or thermal) state. It should be
emphasized that to get a chaotic state from a pure state, as is the
case of the GGS, one has to perform randomization by hand,
which in the present case corresponds to an average over the
phase of the parameter y. Nonclassical properties and phase
space representations of the GGS were studied in detail in [16].

2.2. The number-chaotic state (NCS)

A distinct method, permitting interpolation between number
and chaotic states, is to rely on the observation made in the
beginning of this section and to start from a mixture of number
states, with weights somehow preserving the characteristics
of the Bose distribution, looking for chaotic mixed states
which become a pure number state when the chaotic nature
is suppressed. Since the thermal (chaotic) state reduces to
the vacuo state |0〉 when the temperature goes to zero, it seems
reasonable that to interpolate between a number state |N〉 and a
chaotic state one should consider truncated mixtures of number
states including only Fock states |m〉 with m � N .

Here we introduce a new interpolating state, the NCS,
which constitutes an alternative to the GGS as the truncated
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mixed state defined by

ρ̂NCS(n̄, N)= 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄) |N + m〉 〈N+m|

(2.12)
where PB

m (n̄) is the Bose–Einstein distribution given by (2.2).
Note that the mixed state (2.12) is properly normalized as a
consequence of the identity [22]

∞∑
m=0

(N + m)!

N !m!
Am = 1

(1 − A)N+1
(2.13)

which holds for |A| < 1.
This two-parameter state reduces to the number state |N〉

and to the thermal state in the following two well-defined
limits.
(a) The number-state limit. The NCS tends to a number state
when the parameter n̄ tends to zero. In fact,PB

m (n̄) → δm,0 and
this allows us to write the statistical distribution of the NCS,
in this limit, as

pN+m(n̄, N) = 1

(1 + n̄)N

(N + m)!

N !m!
PB
m (n̄)

n̄→0−→ δm,0 (2.14)

and we find from (2.12) that

ρ̂NCS(n̄ → 0, N) = |N〉 〈N |; (2.15)

in other words, when the parameter n̄ (which may be seen as
measuring the degree of chaoticity) tends to zero one recovers
the pure number state |N〉.
(b) The chaotic-state limit. On the other hand, it follows
immediately that pN+m(n̄, 0) = PB

m (n̄) and from (2.12) we
conclude that the NCS, for N = 0, becomes the chaotic state
with a mean number of photons equal to n̄, that is

ρ̂NCS(n̄, N = 0) = ρ̂Ch(n̄). (2.16)

These two limits of the NCS show that it constitutes an
interpolation between number and chaotic states, constructed
from a viewpoint rather distinct from the perspective of [16].

It should be noted that (2.12) is not the unique truncated
mixture of number states that possesses the limits mentioned
above. For instance, by suppressing the combinatorial factor in
the expression (2.12), and properly adjusting the normalization
constant (N = 1), one would still have a truncated mixed state
interpolating between the number and chaotic states; such a
state was introduced by Lee [23] (named the shifted thermal
state) inspired by the work of Scully et al [24]. Actually, the
factor PB

m (n̄) must appear in the weight of the state |N〉 in the
mixture in order to guarantee (since limn̄→0 P

B
m (n̄) = δm,0)

that the mixture reduces to the state |N〉 alone as n̄ goes to
zero; but any prescription for the statistical weights of the
mixture in the form pN+m(n̄, N) = Nfm(n̄, N)PB

m (n̄) will
lead to the same limits if fm(n̄, 0) = 1 and the sequence of
values fm(n̄ → 0, N) is limited, with fm going quickly to 1
as m increases. The choice made here somehow incorporates
the fact that, for a given N , the lowest energy states from |0〉 to
|N − 1〉 are not populated, that is, they do not participate in the
truncated mixture; it corresponds to extend the thermalization
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Figure 1. Trace of the square of the density matrix for the NCS,
D(n̄,N), plotted as a function of n̄ for various values of N .

of the vacuum state to a number state. In fact, equation (2.12)
can be rewritten in the form

ρ̂NCS(n̄, N) = 1

(1 + n̄)N

∞∑
m=0

PB
m (n̄)

1

m!

(
â†m|N〉)(â†m|N〉)†

,

(2.17)
which becomes the density matrix of the chaotic (thermal) state
if one replaces |N〉 by the vacuum state |0〉; in other words, the
NCS has been built up as a mimic of the thermal state and it can
therefore be viewed as a kind of thermalization of the number
state |N〉. One could naturally try to incorporate the NCS
within the context of the thermofield dynamics formalism [21]
but we will not pursue this issue here.

The probability distribution of photons of the NCS,
pN+m(n̄, N), thus resembles the one of the shifted thermal
state, being modulated by the combinatorial factor. As the NCS
is a mixed state, one can measure its departure from purity by
calculating the trace of the square of its density matrix, which
indicates the deviation from the idempotent property:

D(n̄, N) = Tr[ρ̂2
NCS] = 1

(1 + n̄)2N

∞∑
m=0

[
(N + m)!

N !m!
PB
m (n̄)

]2

.

(2.18)
Figure 1 illustrates the behaviour of D(n̄, N) as a function of
n̄ for some values of N ; one sees that the NCS loses its purity,
as n̄ increases, more quickly for large N than for small N ,
that is, Fock states with a small number of photons are more
resistant to degradation (by introducing chaoticity in the way
it is done here) than more intense fields, an aspect similar to
thermal decoherence effects [25].

3. Nonclassical properties of the NCS

We now discuss some nonclassical properties of the NCS
focussing on the variations in these aspects as we interpolate
between the number and chaotic states.
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3.1. Antibunching and sub-Poissonian effects

These two nonclassical effects occur simultaneously when we
are concerned with a stationary single-mode field, as in the
present case. Consequently, the study of one of them is enough
to establish the values of the system parameters for which these
effects are relevant. Sub-Poissonian statistics occurs when the
dispersion in the number operator n̂,

�n̂2 = 〈n̂2〉 − 〈n̂〉2 (3.1)

is smaller than the mean number of photons
〈
n̂
〉
, that is, when

the Mandel factor Q, defined by [26]

Q = (�n̂2 − 〈n̂〉)/〈n̂〉, (3.2)

is negative, Q belonging to the interval [−1, 0); otherwise, the
state is said to be Poissonian, whenQ = 0, or super-Poissonian
if Q > 0.

Both 〈n̂〉 and 〈n̂2〉 can be easily calculated using (2.4),
(2.5) and (2.13). In fact, since

∞∑
m=0

(N + m)!

N !m!
Amm = (N + 1)

A

(1 − A)N+2
, (3.3)

∞∑
m=0

(N + m)!

N !m!
Amm2 = (N + 1)(N + 2)

A2

(1 − A)N+3

+(N + 1)
A

(1 − A)N+2
, (3.4)

one finds

〈n̂〉NCS= 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄) (N+m)=N +(N +1) n̄

(3.5)
and

〈n̂2〉NCS = 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄) (N + m)2

= N2 + (2N + 1)(N + 1) n̄ + (N + 1)(N + 2) n̄2, (3.6)

where n̄ (the chaoticity parameter) is the mean number of
photons in the chaotic state ρ̂Ch(n̄). As one would expect,
the mean number of photons of a NCS is given by N plus a
contribution linear in n̄. The substitution of (3.5) and (3.6)
into (3.1) and (3.2) gives the Mandel factor of the NCS,

Q(n̄,N) = (N + 1) n̄2 − N

(N + 1) n̄ + N
. (3.7)

This Mandel parameter for the NCS naturally reduces to
those of the number state |N〉 and of the chaotic state in the
appropriated limits, that is,

Q(n̄ → 0, N) = Q|N〉 = −1 + δN,0,

Q(n̄, N = 0) = QCh(n̄) = n̄;
(3.8)

Q(n̄,N) is plotted in figure 2 as a function of n̄ for some values
ofN . From this plot, and directly from equation (3.7), one sees
that there is a critical value of n̄ for which a transition from
sub-Poissonian to super-Poissonian characteristics occurs; this
critical value is

n̄(N)
c =

√
N

N + 1
, (3.9)
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Figure 2. Mandel parameter for some NCS as a function of the
chaoticity parameter n̄; the state specified by N = 0 corresponds to
the chaotic (thermal) state.

the NCS having Q < 0 below it and Q > 0 above. With
exception of the case N = 0, the chaotic state (which can be
seen as the NCS associated to |0〉), one has 1/

√
2 � n̄(N)

c < 1
and so all NCS (with N > 1) are sub-Poissonian for low value
of n̄ (< 1/

√
2) and super-Poissonian when n̄ > 1.

3.2. Squeezing effect

To obtain the dispersion

�x̂2
l = 〈x̂2

l 〉 − 〈x̂l〉2 (3.10)

in the field-quadrature operators

x̂l = i1−l

2

(
â − (−1)l â†

)
, l = 1, 2, (3.11)

which satisfy [x̂1, x̂2] = i/2, we first calculate

〈x̂l〉NCS = Tr[ρ̂NCS x̂l] = 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄)

×〈N + m | x̂l |N + m〉 = 0 (3.12)

and, similarly

〈x̂2
l 〉NCS = 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄) 〈N + m | x̂2

l |N + m〉

= 1

4(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄)

×〈N + m|(2â†â + 1)|N + m〉
= 2〈n̂〉 + 1

4
. (3.13)

The substitution of (3.12) and (3.13) in (3.10) shows that the
dispersion in both quadratures of the NCS are equal,

�x̂2
l = 2〈n̂〉 + 1

4
. (3.14)
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The above result, expressing the square of the quadrature
variances in terms of the mean number of photons, actually
holds for all mixtures of number states [12] (including thermal
states, for which it becomes �x̂2

l = (2n̄ + 1) /4) and is
formally identical to that of a single number state |N〉, for
which �x̂2

i = (2N + 1) /4. For the NCS, using (3.5), one
finds

(�x̂2
l )NCS = 1

4 {2N + 1 + 2(N + 1) n̄} . (3.15)

Since the squeezing effect would occur when �x2
l < 1/4, for

either l = 1 or 2 (but not both simultaneously), one sees that the
NCS do not exhibit quadrature squeezing; the equality �x̂2

2 =
�x̂2

1 plus the squeezing condition would imply violation of
the Heisenberg inequality (�x̂2

1�x̂2
2 � 1/16). This result

does not come from the fact that the NCS interpolates between
two states showing no squeezing, the GGS being a counter-
example (other examples come from the interpolating states
studied in [5] and [17]); it is only due to the fact that the NCS
is a mixed state.

3.3. Atomic inversion

In experiments on electromagnetic cavities one monitors the
population of atomic states as a function of time. For the
case of a two-level (Rydberg) atom interacting with the field
as described by the single-photon Jaynes–Cummings model in
the rotating wave approximation, the Hamiltonian is given by

Ĥ = h̄ω0

2
σ̂3 + h̄ω â†â + h̄λ(σ̂+ â + σ̂− â†), (3.16)

where ω0 is the frequency of the transition between the ground
and the excited atomic states (h̄ω0 = E|e〉−E|g〉), ω is the field-
mode frequency and λ is the atom–field coupling parameter.
In the above equation, σ̂3 is a Pauli matrix and σ̂+ and σ̂−
correspond to the raising and lowering operators in the atomic
two-level basis, which are given by

σ̂3 =
(

1 0
0 −1

)
, σ̂+ =

(
0 1
0 0

)
,

σ̂− =
(

0 0
1 0

)
.

(3.17)

For a general state of the field, described by the density
matrix ρ̂F, the time evolution of the atomic population inversion
is given by

W(t) = Tr
[
ρ̂AF(t) σ̂3

]
= Tr

[
e−iĤ t/h̄

{|ψA(0)〉〈ψA(0)| ⊗ ρ̂F(0)
}

eiĤ t/h̄ σ̂3
]
,

(3.18)

where |ψA〉 represents a pure atomic state. When the initial
atomic state is a coherent superposition of the ground and
excited states

|ψA(0)〉 = cg |g〉 + ce |e〉 , (3.19)

the atomic population inversion is given by [12, 27]

Wδ(t) = |ce|2
{

1 − 2
∞∑
l=0

l + 1

ν + 1
sin2

(
λt

√
ν + 1

)
〈l| ρ̂F(0)|l〉

}

−|cg|2
{

1 − 2
∞∑
l=0

l

ν
sin2(λt

√
ν)〈l|ρ̂F(0)|l〉

}

+2 |ce| |cg|
∞∑
l=0

√
l + 1

[
sin(φ + γ )

sin(2λt
√
ν + 1)√

ν + 1

+δ cos(φ + γ )
sin2(λt

√
ν + 1)

ν + 1

]
|〈l|ρ̂F(0)|l + 1〉| (3.20)

where ν = l + δ2/4, δ = (ω0 − ω)λ−1 is the detuning
parameter, with φ and γ defined by ce c

∗
g = |ce| |cg| exp(−iφ)

and 〈l|ρ̂F(0)|l + 1〉 = |〈l|ρ̂F(0)|l + 1〉| exp(−iγ ). One should
note that the last term in the above expression does not appear
when one deals with a mixture of number states but it is relevant
for treating pure states; in fact, for pure states expression (3.20)
reduces to the expression obtained by Chaba et al [28].

Considering the resonant case (δ = 0) and the initial state
of the atom being the excited state |e〉, equation (3.20) becomes

W0(t) =
∞∑
l=0

cos
(

2λt
√
l + 1

)
〈l| ρ̂F(0) |l〉 (3.21)

and the atomic inversion in this case, when the field is initially
in the NCS, is given by

W
(NCS)
0 (t) = 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄)

× cos
(

2λt
√
N + m + 1

)
. (3.22)

For n̄ → 0, this expression reduces to the inversion for the
number state |N〉, W |N〉

0 (t) = cos
(
2λt

√
N + 1

)
, whereas for

N = 0 and n̄ 
= 0 one obtains the atomic inversion for a chaotic
state

W
(Ch)
0 (t) =

∞∑
m=0

PB
m (n̄) cos

(
2λt

√
m + 1

)
. (3.23)

The atomic inversion, in the case of the NCS with N = 1, is
illustrated in figure 3 for some values of n̄. It is seen that, from a
nearly regular oscillatory behaviour at low n̄ (similar to that of
the number state |1〉), one gets a more chaotic inversion pattern,
like that of the thermal (N = 0) state [29], as n̄ increases.
For larger N , however, the behaviour is distinct: collapses
and revivals of the atomic population inversion appear and are
enhanced by raising n̄. This interesting feature of the NCS is
illustrated in figure 4 where the atomic inversion is plotted as
a function of the rescaled time λt for N = 5 and some values
of n̄.

It follows from the discussion of the nature of the photon
statistics and of the atomic inversion made above that the
nonclassical properties of the NCS gradually (and quickly)
disappear as n̄ is increased; it looks as if the NCS evolves
continuously from being quantum to becoming classical as the
chaoticity parameter is raised from zero. To better analyse
this point one should investigate their representations in phase
space for increasing values of n̄.
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Figure 3. Atomic population inversion W
(NCS)
0 , as a function of λt , for the field initially prepared in the NCS with N = 1, at various values

of n̄: (a) n̄ = 0.1; (b) n̄ = 1.2; (c) n̄ = 3.0.

4. Phase space representations of NCS

The basic representations of a field state in phase space are the
P -, Q- and Wigner functions, which are linear representations
of the corresponding density matrix, defined as two-
dimensional Fourier transforms of the normally, antinormally
and symmetrically ordered characteristic functions, χN(η) =
Tr[ρ̂ eηâ

†
e−η∗â] , χA(η) = Tr[ρ̂ e−η∗âeηâ

†
] and χ(η) =

Tr[ρ̂ eηâ
†−η∗â] respectively:

P(β) = 1

π2

∫
d2η exp

(
βη∗ − β∗η

)
χN(η) (4.1)

Q(β) = 1

π2

∫
d2η exp

(
βη∗ − β∗η

)
χA(η) (4.2)

W(β) = 1

π2

∫
d2η exp

(
βη∗ − β∗η

)
χ(η), (4.3)

where β and η are complex and d2η = d(Re η) d(Im η) [11].
The P representation, introduced by Glauber and Sudar-
shan [2], is the diagonal representation of the density operator
in the coherent basis and can also be defined by

ρ̂ =
∫

d2β P (β) |β〉 〈β| (4.4)

where β = x + iy and d2β = dx dy, while the Q-function
corresponds to the diagonal matrix elements of ρ̂ in the
coherent basis, namely

Q(β) = 1

π
〈β| ρ̂ |β〉 . (4.5)

On the other hand, the Wigner function is a coordinate–
momentum representation which can be introduced as

W(x, y) = 1

π

∫
〈x − z/2| ρ̂ |x + z/2〉e−i y z dz (4.6)
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Figure 4. Same as figure 3 but with N = 5: (a) n̄ = 0.1; (b) n̄ = 1.2; (c) n̄ = 3.0.

and, as such, cannot be a true probability distribution for a
quantum state since, in this case, even being regular it possesses
ranges of negative values. In contrast, theP -function is usually
highly singular while the Q-function is always a positive
regular function. Both the Q- and the Wigner functions are
Gaussian convolutions of the P -function:

W(β) = 2

π

∫
d2η P (η) e−2|η−β|2 ,

Q(β) = 1

π

∫
d2η P (η) e−|η−β|2 ,

(4.7)

which accounts for their rather better behaviour.
Consider an arbitrary mixed state given by

ρ̂mix =
∞∑
j=0

pj |ψj 〉〈ψj | (4.8)

with
∑∞

j=0 pj = 1, where |ψj 〉 is a normalized pure state of the
field and, in particular, the case where |ψj 〉 = |j〉 is a number
state. The linearity of these representations assures that the
functions representing the mixed state (4.8) can be expressed
in terms of its constituents as

Pmix(β) =
∞∑
j=0

pj P|ψj 〉(β) (4.9)

Qmix(β) =
∞∑
j=0

pj Q|ψj 〉(β) (4.10)

Wmix(β) =
∞∑
j=0

pj W|ψj 〉(β) , (4.11)

with P|ψj 〉(β), Q|ψj 〉(β) and W|ψj 〉(β) denoting the P -, Q- and
Wigner functions of the state |ψj 〉, respectively. Since the
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P -function is a more complicated object, we concentrate on
the Q- and Wigner functions.

4.1. The Q-function of the NCS

For a single number state |j〉, the Q-function is given by

Q|j〉(β) = 1

π
|〈j |β〉|2 = 1

π
exp(−|β2|) |β2|j

j !
(4.12)

and therefore it follows from (2.12) and (4.10) that the Q-
function of the NCS is given by

QNCS(x, y) = 1

π
exp(−x2 − y2)

× 1

(1 + n̄)N

∞∑
m=0

(N + m)!

N !m!
PB
m (n̄)

(x2 + y2)N+m

(N + m)!
. (4.13)

Note that, for N = 0, the above equation reduces to the Q-
function of the chaotic state

QCh(x, y) = 1

π

1

1 + n̄
exp

(
−x2 + y2

1 + n̄

)
, (4.14)

which becomes the Gaussian Q-function of the vacuum state
as n̄ → 0; the temperature effect on the vacuum state is
manifested in the broadening of this Gaussian function.

On the other hand, the Q-function of a number state
|N〉 (with N 
= 0) is a Gaussian in which a crater is dug
symmetrically, reaching zero at the origin. As expected, the
Q-function of the NCS preserves this same form of a nonactive
volcano, with the mountain becoming broader and losing its
height, as n̄ is increased. To investigate any eventual change
in the quantum nature of the NCS as n̄ is varied, one should
study another phase-space representation, such as the Wigner
quasi-probability distribution, of such states.

4.2. Wigner function of the NCS

Similarly, the Wigner function of the number state |j〉 is given
by

W|j〉(β) = 2

π
exp(−2|β|2)(−1)jLj (4|β|2), (4.15)

where Lj(z) stands for the Laguerre polynomial [11] and so
the Wigner function of the NCS can be written as

WNCS(x, y) = 2

π
exp

[ − 2(x2 + y2)
] 1

(1 + n̄)N

×
∞∑

m=0

(N + m)!

N !m!
PB
m (n̄)(−1)N+mLN+m

[
4(x2 + y2)

]

(4.16)

Naturally, when N = 0 (4.16) becomes the Wigner function
of the chaotic state

WCh(x, y) = 1

π

2

1 + 2n̄
exp

(
−2(x2 + y2)

1 + 2n̄

)
, (4.17)

which has a Gaussian form reducing to that of the vacuum state
as n̄ → 0.

Both the Q- and Wigner functions of the NCS are
symmetric around the origin, as occurs to all mixtures of

number states since they have random phase. For N 
= 0, the
Wigner function varies gradually, as n̄ is increased, from the
shape of an ‘active volcano’ (characteristic of a number state)
to that of an nonactive one, somehow similar to the form of the
Q-function, as illustrated in figure 5. Apparently, for a given
N 
= 0, the NCS changes its nature from being a quantum state
at low values of n̄, the Wigner function possessing negative
values, to becoming classical for higher n̄. However, a detailed
analysis of the crater of the volcano show that the Wigner
function never becomes non-negative and thus the NCS will
not reduce exactly to a nonclassical state as n̄ grows. This
leads to the question concerning the nonclassical depth of the
NCS, which is the point addressed in the next section.

4.3. R representation and nonclassical depth of the NCS

To discuss the nonclassical depth of the NCS, we consider
the Lee procedure [30] and introduce the one parameter
representation, interpolating between the P - and Q-functions,
given by

R(β, s) = 1

πs

∫
d2η P (η) e−|η−β|2/s (4.18)

with β = x + iy, which reduces to the P -, Wigner and Q-
functions for the values s = 0, 1/2, 1 respectively. The
nonclassical depth of a given state is defined as the minimum
(sm) among the values of s for which the R-function becomes
strictly non-negative. Naturally, 0 � sm � 1 with 0 being the
classical value, associated with coherent states for example,
and 1 corresponding to the maximum degree of nonclassicality,
as for a number state.

For a number state |j〉, one has [30]

R|j〉(β, s)= 1

πs
exp

(−|β2|/s)
(

− (1 − s)

s

)j

Lj

( |β|2
s(1 − s)

)

(4.19)

and, therefore,

RNCS(x, y, s) = 1

πs
exp

[ − (
x2 + y2

)
/s

] 1

(1 + n̄)N

×
∞∑

m=0

(N + m)!

N !m!
PB
m (n̄)

(
− (1 − s)

s

)N+m

×LN+m

[
(x2 + y2)

s(1 − s)

]
. (4.20)

The value of this function at the origin when 1/2 < s < 1,

RNCS(0, 0, s) = 1

π
(−1)N

(1 − s)N

(s + n̄)N+1
, (4.21)

shows that, for N odd, the R-function has a negative value
at the origin for s in this range; thus, sm = 1 and the NCS
with N odd is as nonclassical as possible. When N is even,
(4.21) is positive and one has to analyse the minimum value
of the R-function. As illustrated in figure 6, where profiles of
R-functions along the x-axis are plotted for a specific NCS,
the minimum value of R (for N even) tends to zero as s

approaches 1 but remains negative for all s < 1, implying
that the NCS are always as nonclassical as possible within
the measure discussed. In this way, one sees explicitly that
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(a) (b)

(c) (d)

Figure 5. Wigner function of the NCS with N = 6 for various values of n̄: (a) n̄ = 0.1; (b) n̄ = 0.2; (c) n̄ = 0.6; (d) n̄ = 2.0.

the NCS satisfies Lee’s theorem [30] by which a state with a
density operator not containing the vacuum component |0〉 〈0|
possesses the maximum degree of nonclassicality. Looking
at the changes to a given R-function as one increases the
chaoticity parameter n̄, it is found that its minimum value tends
quickly to zero but is negative for all s < 1, as occurs with
the Wigner function (s = 1/2) shown in figure 5; one may
say that the quantum fingerprint of the number state remains
in the NCS and cannot be completely erased by increasing the
degree of chaoticity.

5. Conclusions

We have introduced a new two-parameter interpolating state—
designated by NCS—as a truncated mixture of number states
of which the density operator ρ̂NCS(n̄, N) reduces to that of the
number state |N〉 as n̄ → 0 and to a chaotic (thermal) state
(with temperature specified by n̄) when N = 0. Such a state

is an alternative to the proposal of [16] where interpolation
between the number and chaotic states is performed via a
pure state—the GGS—which requires a randomization of
one of the parameters to obtain the chaotic limit. Here,
we already start with a mixed state, the reduction to a pure
number state occurring through the elimination of the other
constituents of the mixture as n̄ goes to zero. Thinking in
the opposite direction, one may say that the NCS corresponds
to a chaotization of |N〉, constructed in the same way as
the chaotic (thermal) state with the mean number of photons
given by n̄ (which is given by (2.3), for a thermal state with
temperature T ), can be built from the vacuum state |0〉.

The study of the occurrence of nonclassical effects for
a field in a NCS reveals that these states do not present
quadrature squeezing, which is a feature shared by all mixtures
of number states, but they are sub-Poissonian for low values
of the chaoticity parameter n̄. In fact, we have shown that, as
n̄ increases from zero to higher values, the Mandel parameter
grows from −1 (for n̄ = 0) tending linearly to infinity as
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Figure 6. Profiles along the x-axis of some R-functions for the NCS with N = 4 and n̄ = 0.5: (a) s = 0.6; (b) s = 0.7; (c) s = 0.9;
(d) s = 0.99.

n̄ → ∞, a transition between sub- and super-Poissonian
characters of the statistics occurring at critical values in the
range 1/

√
2 � n̄(N)

c < 1. Collapses and revivals of atomic
population inversion, for a field initially in a NCS and within
the Jaynes–Cummings model, exist and increase with n̄ for
moderate and large values of N , with a pattern similar to that
appearing for a coherent state, but for low N (= 1, 2) the
inversion resembles that due to the chaotic (thermal) state.

The analysis of these effects indicates that, for a given N ,
the NCSs gradually lose their nonclassical properties as the
chaoticity parameter n̄ is increased. By looking at their phase-
space representations, however, one sees that it never becomes
a truly classical state. In contrast, it remains as nonclassical as
possible in the sense of Lee [30].

A point deserving further investigation in the present
perspective would be its extension for the case of interpolation
between an arbitrary state and a chaotic state of the radiation
field. In the case of a state corresponding to a mixture of
Fock states, ρ̂mix = ∑∞

N=0 pN |N〉 〈N |, the generalization is
straightforward and is similar to the process leading to the
squeezed thermal state as a Bose–Einstein weighted sum of
the squeezed number states [31]: mixed-chaotic states are
obtained replacing the components |N〉 〈N | of the NCS by
ρ̂NCS(n̄, N), that is, considering the mixture of NCSs with the
same weights. The extension to the case of an arbitrary pure
state, however, is more delicate since one has to deal with
density matrices possessing non-null off-diagonal elements in
the number basis; such an issue is left for future work.
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