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ABSTRACT

Aim Two fundamental questions about human language demand answers: why

are so many languages spoken today and why is their geographical distribution

so uneven? Although hypotheses have been proposed for centuries, the

processes that determine patterns of linguistic and cultural diversity remain

poorly understood. Previous studies, which relied on correlative, curve-fitting

approaches, have produced contradictory results. Here we present the first

application of process-based simulation modelling, derived from macroecology,

to examine the distribution of human groups and their languages.

Location The Australian continent is used as a case study to demonstrate the

power of simulation modelling for identifying processes shaping the diversity

and distribution of human languages.

Methods Process-based simulation models allow investigators to hold certain

factors constant in order to isolate and assess the impact of modelled

processes. We tested the extent to which a minimal set of processes determines

the number and spatial distribution of languages on the Australian continent.

Our model made three basic assumptions based on previously proposed, but

untested, hypotheses: groups fill unoccupied spaces, rainfall limits population

density and groups divide after reaching a maximum population.

Results Remarkably, this simple model accurately predicted the total number

of languages (average estimate 406, observed 407), and explained 56% of

spatial variation in language richness on the Australian continent.

Main conclusions Our results present strong evidence that current climatic

conditions and limits to group size are important processes shaping language

diversity patterns in Australia. Our study also demonstrates how simulation

models from macroecology can be used to understand the processes that have

shaped human cultural diversity across the globe.

Keywords

Culture, language diversity, macroecology, simulation modelling.

DOI: 10.1111/geb.12563
VC 2017 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/geb584

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2017) 26, 584–591

RESEARCH
PAPER

http://creativecommons.org/licenses/by/4.0/


INTRODUCTION

The approximately 7000 human languages are unevenly distrib-

uted across the globe (Lewis et al., 2014). Although geographical

patterns of language diversity are well documented, little is known

about the processes that have shaped them. For centuries, scholars

from multiple disciplines have proposed hypotheses to explain

the origin of language diversity (Gavin et al., 2013). Despite the

existence of these long-standing and diverse hypotheses, only a

limited number of studies have empirically assessed the relation-

ship between geographical patterns in language richness and

socio-cultural, environmental and geographical factors (Gavin

et al., 2013). Because results from these empirical studies contra-

dict one another, no consensus exists regarding the relative impor-

tance of different causal factors (Gavin et al., 2013). All previous

empirical studies have relied on correlative, curve-fitting methods.

Correlative analyses have the potential to identify factors associ-

ated with language diversity patterns. However, because correla-

tion does not equate to causation, seeking the specific processes

that drive language diversity patterns requires a process-based

approach (Gotelli et al., 2009; Gavin et al., 2013).

A shift from correlative studies and narrative explanations to

the use of simulation models (Rangel et al., 2007; Gotelli et al.,

2009; Colwell & Rangel, 2010) has recently revolutionized the field

of macroecology. These simulation models allow investigators to

hold certain factors constant in order to isolate and assess the

impact of others (Rangel et al., 2007). Geographical simulation

models can also be predictive, producing maps with taxon ranges

that can be compared with observed range maps to provide a

more statistically robust means of inferring the roles that specific

variables and underlying processes play (or fail to play) in deter-

mining spatial diversity patterns (Rangel et al., 2007). Here we

present, to our knowledge, the first application of these tools

derived from macroecology to examine the processes underlying

the distribution of human groups and their languages.

To demonstrate the power of this new approach for under-

standing patterns in human diversity, we examine the spatial

distribution of languages in Australia. The continent is an

ideal domain for investigating questions of language diversity.

Just as at the global scale, the number of languages spoken

per unit area varies widely within Australia (Fig. 2a, c). To a

greater extent than most regions, language ranges (i.e. the

geographical area occupied by speakers of a language) prior

to European settlement are known for the entire continent of

Australia with a fair degree of confidence (Bowern, 2016).

Moreover, by focusing on Australia we can examine

continent-wide expansions of hunter-gatherer groups without

any confounding effects from major differences in subsistence

technology that characterize other continents.

The degree to which different processes influence language

diversity patterns in Australia is contested. Some argue that

human groups spread across the continent soon after arrival

(40,000–50,000 years ago) (Birdsell, 1957). If regular contact

between speakers is required to prevent linguistic divergence

(Labov, 2001; Hock & Joseph, 2009), then environmental

barriers, such as rivers and mountains, may have divided the

early, rapidly spreading populations into linguistically distinct

groups (Gavin et al., 2013; Axelsen & Manrubia, 2014). Others

argue that changing environmental conditions during the Last

Glacial Maximum (c. 23,000–15,000 years ago) and the Antarctic

Cold Reversal (c. 14,500–12,500 years ago) would have driven

populations into refugia that offered more resources (Evans &

McConvell, 1997; Nettle, 1998; Sutton & Koch, 2008; Williams

et al., 2013). Isolation in refugia for substantial periods, along

with neutral changes in languages, could have led to diversifica-

tion (Gavin et al., 2013; Williams et al., 2015). In contrast to these

views based on demic diffusion (i.e. languages spreading with

populations) other researchers have emphasized the importance

of cultural diffusion, in which languages spread and converge

without mass migration (Dixon, 1997). Finally, limits on group

size may facilitate the division of social groups (Birdsell, 1979;

Kosse, 1990; Dunbar, 2008). Researchers have hypothesized that

limits on group size represent a balance between, on the one

hand, the benefits that larger groups provide for increased mate

choice and cooperation in resource procurement and, on the

other hand, the costs of maintaining social ties, including remem-

bering and processing the information needed to recognize unre-

lated individuals (Kosse, 1990; Nettle, 1999; Dunbar, 2008). If

limits on group size divide growing populations, and environ-

mental carrying capacity varies in a region, spatial variation in

language diversity patterns may arise. Despite the diversity of

hypotheses offered in the literature, none of these ideas have been

rigorously tested.

Our aim here is not to examine all possible hypotheses, but

rather to test the extent to which a minimal set of processes may

determine the number and spatial distribution of languages in

Australia. Our model makes only three assumptions. First, human

groups move to fill unoccupied spaces. Second, environmental

carrying capacity drives local population density (an assumption

supported by empirical analyses of hunter-gatherer groups; Bird-

sell, 1953). Third, linguistically defined social groups have a maxi-

mum population size. We assume that when the population

speaking one language reaches a maximum size it will divide into

two populations, each speaking a distinct language. Overall, our

model is not driven by pure environmental determinism, but

rather is based on a process by which environmental carrying

capacity shapes population density and social limits on group size

divide populations. We expect this intentionally simplistic model

to perform poorly in areas where processes not explicitly mod-

elled here (e.g. topographical barriers, historical movement in and

out of refugia, cultural diffusion of language) have been major

drivers of language diversity patterns.

METHODS

The objective of the simulation is to evaluate the extent to

which we can reproduce both the total number of languages

and the spatial pattern of language richness (i.e. languages

per unit area) of the pre-colonial distribution of Australian

languages. Our model is stochastic, spatially explicit and

based on hypothetical rather than actual languages.

Simulation models reveal language diversification mechanisms
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Environmental data

Data for analyses are presented in the figures in the main

text and Supporting Information, or are available from the

references cited. A hexagonal grid was laid out on a map of

Australia (17,136 cells), and the area of each hexagonal cell

was computed and recorded (average area 450 km2). We

designed the grid to ensure that cell sizes would be large

enough to encompass a group of individuals, but smaller

than the range of 99% of languages in the empirical Austra-

lian language map. The mean annual precipitation for each

map cell was extracted from WorldClim, which is based on

data from 1950–2000 (Hijmans et al., 2005) (Fig. S1 in the

Supporting Information).

Environmental carrying capacity

On the basis of previous correlation-based studies that found

a relationship between precipitation and range size of

hunter-gatherer-fisher (HGF) groups (Birdsell, 1953), we

assumed that the carrying capacity for HGF groups, in spa-

tial density of individuals, should also be a function of pre-

cipitation. The only free parameters in the model define the

relationship between mean annual precipitation (using mod-

ern climate data) and a cell’s carrying capacity (i.e. the

number of people that will occupy the cell), with each model

run exploring a different set of parameter combinations.

Although there is evidence that carrying capacity increases

with precipitation in multiple species, including humans, the

exact relationship is unknown (Birdsell, 1953; Pascual et al.,

1997; Georgiadis et al., 2003). For this reason, we evaluated

some of the most widely used functions: power, exponential

and logistic. The power function took the following form:

K 5 aPb

where K is the carrying capacity, measured in the number of

individuals per square kilometre, P is mean annual precipita-

tion, measured in millimetres of rain per year, and a and b

are unknown parameters to be estimated. While a serves as a

simple scaling factor, b governs the rate of growth of carry-

ing capacity with the increase in precipitation. We also eval-

uated a two-parameter exponential function

K 5 a 1 ebP

and a three-parameter logistic function

K 5
h

1 1 e2bðP2aÞ ;

in which h is the curve’s maximum value, b governs the

steepness of the curve and a is the level of precipitation at

the midpoint of the sigmoid.

Group size

We used published information to establish typical numbers

of members for HGF groups. These data implicitly

incorporate the social, cultural, political and cognitive fac-

tors that constrain group size. We used the dataset com-

piled by Binford (2001) for HGF group sizes from around

the world. From the 339 groups included in the list, we

excluded estimates of HGF groups located in arctic and

subarctic biomes because these climate zones do not occur

in Australia (Olson et al., 2001), and we merged estimates

for contiguous groups sharing a language. We also

excluded estimates for HGF groups from Australia to avoid

circularity in our arguments. This procedure left 178

group-size estimates, from which we built a statistical dis-

tribution (Fig. S2).

Model algorithm

Given trial values for the parameters of the carrying capacity

functions and the estimated precipitation values for the hex-

agonal map cells in Australia, for each cell (i) we calculated

the carrying capacity of HGFs (Ki). Each simulation started

with 10 individuals of a single language group occupying a

single, randomly chosen map cell (i). For each new language,

a maximum population size was sampled from the empirical

distribution of HGF group size (Binford, 2001). The model

advanced in discrete time steps (see Movie S1). At any given

time step, each language range covered a specific region of

the map, constrained to be a contiguous set of cells. Time

was modelled strictly as algorithmic steps, with no intended

relationship to historic time. At each time step (t), a regional

carrying capacity (Ki,j) of each occupied cell (i) was the car-

rying capacity of the cell i (Ki) plus the carrying capacity of

all its p adjacent cells (cells that share an edge with a cell

already occupied by the focal language or an unoccupied

cell).

The increase in population size (N) that was attributable

to individuals of cell i between time step t and the next time

step (t 1 1) was given by

Ni;t11 5 rNi;t 3 12

Ni;t 1
Xp

j51

Ni;j;t

Ki 1
Xp

j51

Ki;j

2
666664

3
777775
;

where the per capita intrinsic rate in population growth

r 5 1.01, RNi,j,t is the regional population size (the number

of individuals at time t in all p cells, indexed by j, that are

adjacent to cell i), and RKi,j is the regional carrying capacity

(for the same p cells adjacent to cell i). Thus, the equation

above takes into account the potential population growth of

individuals present in the cell i, but also the opportunity

for colonization of the adjacent cells. The new individuals

(Ni,t 1 1 – Ni,t) were distributed across all regional cells as a

function of availability of resources in each cell (N/K). The

size of a population speaking a language increased and

expanded its geographical range until it reached its maximum

population size, which had been sampled, a priori, from the
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empirical distribution of HGF group sizes. Notice that the

population growth rate (r) does not affect the outcome of the

model, but only the rate of expansion of the simulated lan-

guage family.

When a population reached its maximum size, an empty

cell at the edge of the previous growing population was ran-

domly chosen. The new cell was assumed to be colonized by

10 individuals representing a new language, which then expe-

rienced population growth and range expansion, just as for

the first language. The new population was allowed to colo-

nize only adjacent cells, but not cells already occupied by

other language groups. Just as for each previously simulated

language, the expansion of the new population was halted

when the population reached its pre-determined maximum

population size, or sooner if no adjacent empty cells

remained available. For each run, the simulation stopped

when all cells of the map had been colonized (see Movie S1).

Observed patterns

To evaluate the capacity of the model to replicate observed

patterns, we overlaid an equal-area grid on the map of Aus-

tralia, with each cell measuring 300 km 3 300 km. Our

choice of grid resolution ensured that each cell encompassed

more than one language, but also that cells were small

enough to capture the variation in the richness of languages

across space. Any grid cell with less than 20% of its area

occupying land was removed from the grid. The final grid

was composed of 98 cells.

Data for the Australian language map (Fig. 2a) came from

all available sources on language locations (Bowern, 2016).

Numerous compilations exist in the literature (O’Grady

et al., 1966; Wurm, 1972; Tindale & Jones, 1974; Wurm &

Hattori, 1981). Regional surveys were also consulted, includ-

ing unpublished or locally published maps and pamphlets

from regional Aboriginal language centres. For the most part,

sources were in broad agreement, as might be expected since

they were not compiled independently. Where sources did

not agree on boundary locations, we favoured sources that

were explicit about the basis of their evidence, local sources

over national surveys, and primary sources (e.g. statements

of locations in reference grammars) over secondary compila-

tions. Where no single source was obviously more reliable

than another, we used the majority placement.

A further issue concerned how to treat the boundaries

between languages and dialects. Australian linguists have

tended to ‘lump’ rather than ‘split’ (treating, for example,

Yol˛u and Western Desert as single languages rather than as

subgroups with several mutually unintelligible languages).

The question of mutual intelligibility was challenging, since

in areas of extensive multilingualism, speakers can under-

stand quite different varieties through long acquaintance.

Our choices for inclusion of ‘dialects’ were based on a com-

bination of intelligibility, the need for even sampling and

consistency across the continent.

We quantified the map of language richness by counting

the number of observed language polygons that mapped into

each 300 km 3 300 km grid cell – intentionally much

coarser (about 200 times) than the grid used for the simula-

tions themselves. Because of the complex shape of Australia’s

coastline and the removal of coastal cells with a small land

area, the occurrence of four small-ranged coastal languages

was not recorded in our final map of language richness. We

excluded island languages from our analysis. Our final list

comprised 407 languages.

Model test and validation

We tested the ability of the simulation model to replicate two

observed patterns: (1) the map of language richness and (2)

total number of languages in Australia (407).

To compare observed and predicted maps of language rich-

ness, the 300 km 3 300 km grid was also overlaid on the

simulated language map. We then produced the predicted

map of language richness by counting the total number of

simulated language ranges that intersected or were contained

by each grid cell. The coefficient of determination (r2) of a lin-

ear regression was used to measure the fit between observed

(response variable) and simulated (explanatory variable) maps

of language richness. The difference between the observed and

predicted number of languages for each cell yielded the map

of residuals (Fig. 2e), which indicates regions where our model

underestimated (positive values) or overestimated (negative

values) the observed number of languages.

In addition to the map of language richness, we also eval-

uated the ability of the model to predict the number (407)

of observed languages in the grid. We calculated a standar-

dized measure of similarity (s) between observed (O) and

predicted (P) number of languages as

s 5 12
jO2Pj

P
:

To evaluate the combined ability of the model to simultane-

ously predict the map of language richness and the number

of languages, we created an ad hoc goodness of fit index (f)

that took into account both measures of fit. The goodness of

fit index was calculated as the average between (1) the coeffi-

cient of determination of the regression (r2) between the

observed and predicted maps of language richness and (2)

the standardized similarity index (s) between the observed

and predicted number of languages

f 5
r2 1 s

2
:

The maximum possible value of f is 1, which would occur if

the model predicted exactly 407 languages, and the pattern

of language richness precisely matched the observed map

(r2 5 1). However, because standardized similarity (s) is not

constrained by a minimum value, f may take negative values.

Simulation models reveal language diversification mechanisms
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Stochasticity

Two features of our simulation model were defined stochasti-

cally: (1) the seed cell for each language and (2) the maxi-

mum population size for each language. The seed cell for the

initial language was chosen randomly from among all hexag-

onal cells on the map, whereas seed cells for subsequent lan-

guages were chosen from among the empty cells adjacent to

the range of any previously simulated language. The maxi-

mum population size for each language was randomly chosen

from the documented global distribution of HGF population

sizes (Binford, 2001), before simulating the corresponding

range, regardless of the location where the new language

arose.

To assess the effect of stochasticity in the model predic-

tion, we ran 120 replicates of the simulation for each param-

eter combination. Subsequently, to calculate the predicted

map of language richness for each given parameter combina-

tion, we averaged predicted language richness, among the

120 replicates, for each grid cell. Similarly, the predicted

number of languages for each parameter combination was

calculated as the number of predicted languages averaged

over all 120 replicates.

Parameter estimation

Because the values of the parameters of the carrying capacity

functions were not known, we constructed a Markov chain

Monte Carlo Gibbs sampler (Gelman et al., 2013) to stochas-

tically explore the parameter space and evaluate how multiple

parameter values and alternative carrying capacity functions

affect the predictive power of the model. Using the goodness

of fit index f, the Gibbs sampler algorithm estimates how

likely it is that each of our models, as defined by different

parameter combinations of the carrying capacity functions,

would produce the observed language map data. We ran the

sampler multiple times during preliminary evaluation of the

model and used previous runs as burn-ins for subsequent

runs by feeding the best parameter combinations of previous

runs as seed parameters of the new run. For the final analy-

sis, we ran 8.4 3 105 replicates of the simulation to explore

7000 different parameter combinations (total chain length of

the last analysis) for each of the three alternative carrying

capacity functions. To compare the parameter combinations

with regard to the model’s explanatory power, we ranked the

7000 parameter combinations according to their goodness of

fit index (f).

The best fitting parameter combination for the power

function provided substantially better predictive power for

carrying capacity than the exponential and logistic functions.

Thus, here we only provide results for the power function.

The power function is a monotonic increasing function. The

lack of an asymptote in the best-fitting function suggests

that, based on current climate data, nowhere in Australia is

wet enough to allow human population density to reach its

potential maximum (see Fig. S3).

RESULTS

Our model had strong predictive power across all criteria we

evaluated. The estimates of the total languages in Australia

(383–427 languages, average 406) produced by replicates of

the 200 best parameter combinations (see Methods and Fig.

S4) bracket the observed number (407 languages; Fig. 1). To

be able to predict an aspect of human social behaviour with

such precision and so few parameters is remarkable.

Visually, the maps for observed and estimated language

richness per cell are strikingly similar (Fig. 2c, d), and the

estimated language richness per cell explains 56% of the vari-

ation in observed richness (Fig. 2f; for the best 200 models

0.53< r2< 0.58, Fig. S5). The location of initial colonization

had no effect on model results (see Methods and Fig. S6).

We also used a traditional correlational approach to examine

the relationship between observed language richness and

mean precipitation value in each 300 km 3 300km grid cell

(r2 5 0.43). Not only did our simulation model explicitly

incorporate processes shaping language diversity, but it also

had greater predictive power (56% vs 43%) than the simple

correlation approach.

DISCUSSION

Our results provide evidence that current climatic conditions

and limits to group size have a causal role in shaping spatial

patterns of indigenous language richness on the Australian

Predicted number of languages

Fr
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y 
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0 200 400 600 800
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of languages

Figure 1 Distribution of total number of languages predicted by

the 200 best models. Average predicted total languages 5 406.

Observed total languages 5 407. The lower limit of the x-axis

was defined based on one being the theoretical minimum

number of languages on the continent. The maximum extent of

the x-axis (c. 800 languages) was set assuming all languages on

the continent had the same range size, which was defined as the

median language range size from the distribution of observed

language ranges.
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continent. The causal link between climate and carrying

capacity suggests that climatic conditions similar to those

currently prevailing in Australia drove processes responsible

for the majority of the pattern observed.

Because we deliberately built a minimal model for a com-

plex process, it is not surprising that some variation in the

spatial patterns of diversity remains unexplained (Fig. 2e, f).

Future work could incrementally incorporate a wide variety
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Figure 2 Observed and predicted language diversity patterns for the continent of Australia. The observed language map (a) shows

ranges for a total of 407 languages (based on data from Bowern (2016)). The predicted language map (b) depicts results from one

model replicate (final analysis includes 8.4 3 105 replicates). The observed (c), predicted (d), and residual (e) maps of language richness

shown were based on the best parameter combination. The scale in (c) and (d) depicts the number of languages with ranges intersected

or contained by a given grid cell. The scale in (e), which illustrates fit, represents (observed – predicted) languages in each grid cell. The

model predicts 56% of the variation in observed language richness patterns (f).
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of historical, social and environmental factors to investigate

more fully the determinants of geographical patterns in lan-

guage diversity, both in Australia and on a global scale. The

map of residuals (Fig. 2e) offers clues regarding additional

factors that may be at play. For example, the model underes-

timated language richness (red cells in Fig. 2e) in areas with

a greater density of large rivers and lakes, such as the conflu-

ence of the Murray and Darling Rivers in the south, the

region around Lake Eyre and adjoining rivers, and the For-

tescue, Ashburton and Gascoyne Rivers in the west. Addi-

tional water resources may increase carrying capacity and

potential linguistic diversity beyond limits shaped by precipi-

tation alone. In other regions, overestimation of language

diversity may relate to inaccuracies in the observed language

map. For example, an early and sustained colonial impact in

the south-east may have caused extinction of languages prior

to documentation. Also, the degree to which certain lan-

guages are distinct or represent dialectal clusters is conten-

tious. Under-splitting of these languages in the creation of

the observed map could lead to model overestimation (e.g.

the Ngarinyin language cluster in the north-west; dark blue

cell in Fig. 2e).

Recent work in biogeography has demonstrated the value

of process-based simulation models for uncovering mecha-

nisms driving species diversity patterns (Rangel et al., 2007;

Gotelli et al., 2009; Colwell & Rangel, 2010). These previous

studies reveal that mechanisms tend to vary across different

taxa and regions (Gotelli et al., 2009). We believe that the

mechanisms shaping the patterns of diversity of human lan-

guages will also be variable in their impact and context

dependent. For example, patterns of species richness are

strongly influenced by the overlap of ranges, but the ranges

of human languages tend not to overlap in space, as we see

in the Australian case presented here (Gavin & Stepp, 2014).

Instead, the forces that determine language range sizes shape

spatial patterns in language richness, with smaller ranges

leading to greater richness per unit area. In Australia, we

conclude that environmental carrying capacity and human

group sizes are major influences on language range sizes and

diversity patterns. However, we expect that either different

degrees of the same processes or different processes will drive

language diversity patterns in other regions, where environ-

mental, social and historical conditions differ substantially

from Australia. The methodological approach we outline here

can be used to compare the degree to which different proc-

esses shape patterns of language diversity across different

regions of the world.

Generations of anthropologists and linguists have docu-

mented the impressive diversity of human cultures and lan-

guages. What remains largely unknown is how this diversity

evolved, and why some regions support far more diversity

than others. The factors causing these patterns of diversity

undoubtedly vary across space and time. The Australian case

we present here exemplifies a new and promising approach

using simulation models derived from macroecology to

determine the processes that have shaped human diversity

across the globe.
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SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of this article at the publisher’s web-site:

Movie S1 Example simulation of one replicate of the model.

The final analysis was based on 8.4 3 105 replicates. The

geographical location of model initiation does not affect the

results (see Fig. S6).

Figure S1 Map of mean annual precipitation on the

Australian mainland.

Figure S2 Empirical distribution of group size for hunter-

gatherer-fishers.

Figure S3 Power functions used to predict carrying capacity

(individuals/km2) from mean annual precipitation (mm), as

estimated by the 10 best models.

Figure S4 Relationship between carrying capacity parameters.

Figure S5 Distribution of the coefficient of determination

(r2) between observed and predicted maps of language

richness for the 200 best models.

Figure S6 Predictive power of the model when each cell is

used as seed cell.
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